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Abstract 

 
Time has become an important factor in competitiveness. Reliable and timely supplies build upon the 
alignment of different operations that compose the supply network. In order to improve on-time 
delivery performance of a multi-level supply network in the high-tech industry, this research focuses 
on supply chain operations planning. A model is developed to study the effects of order releases on 
utilization, costs, tardiness and therewith delivery performance. Therewith, this study proposes a new 
delivery performance metric that represents the fraction of demand that is met within a specified lead 
time. Results demonstrate that order releases can be improved by taking into consideration 
information from the whole supply network. Therewith, this research shows the potential of 
centralized planning, coordination, and decision making in a multi-level supply network.   
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Management Summary 

 

This report presents the results of a study conducted on supply chain operations planning and control. 
In this context, the multi-level supply network of Prodrive Technologies is used as a case study. 
 
Problem context 
Prodrive Technologies strongly believes in the vertical integration of their key manufacturing 

processes. By the vertical integration of operations, a transparent supply network exists that offers 

optimal control and flexibility. Currently, upstream operations are executed within a subsidiary 

manufacturing plant i.e., Prodrive Mechanics. Hence, the internal supply network can be considered 

as a multi-level network, wherein upstream operations are distinguished from downstream 

operations. Considering that products are becoming increasingly complex, the company is challenged 

by an increasing variety of operations and products in the near future. Additionally, the company 

experiences rapid growth in sales volume. This leads to a strong urge for improved supply chain 

planning and control.  

After the current supply chain and operations planning was compared with formal control structures, 

it was found that differences exist in information available throughout the supply network. This leads 

to a decoupled planning and control structure which withholds the current planning from central 

coordination of order releases. According to academic literature, this negatively affects customer 

service and operational costs. This is confirmed by a performance analysis of the current upstream 

operations’ on-time delivery performance.  

Analysis  
Prodrive Technologies defines internal delivery performance as the fraction of demand that is met 
within a specified lead time. However, analysis of the current situation demonstrated that current 
measurements consider order-lines and do not represent the fraction of demand. To determine if 
demands are met within a specified lead time, jobs’ finish dates are compared with due dates. 
However, analysis revealed that job’s finish dates are unreliable. On 35% of the late jobs produced 
upstream in 2017, finish dates were registered before items were actually received. When items are 
received, corresponding dates are registered as delivery dates. Therefore, measuring on-time delivery 
performance by delivery dates instead of finish dates yields a more reliable performance indicator. 
When measuring delivery performance based on delivery dates instead of finish dates, average 
delivery performance decreased by 17.1 percent points.  
 
To improve the reliability of current measurements, a metric is defined that represents the fraction of 
demand that is met within a specified lead time. More specifically, a method of measurement is 
developed that represents the fraction of demand that is met on-time, and the fraction that is 
delivered with certain tardiness. With this metric, referred to as V-CLIP, deliveries’ contribution 
towards performance is proportional. Firstly, contribution is determined by the volume that is 
delivered (𝒑𝒒𝒑𝒂𝒓𝒕𝒊𝒂𝒍) compared to the planned production quantity (𝒑𝒒̂). Secondly, a deliveries’ 
contribution reduces in proportion to the complementary cumulative distribution function of 

deliveries’ tardiness (𝑭(𝑻𝒑𝒂𝒓𝒕𝒊𝒂𝒍)). Quantities that are not delivered at all, do not make any 

contribution to the delivery performance. Mathematically this entails:  
 

 𝑉 − 𝐶𝐿𝐼𝑃𝑗: = ∑
𝑝𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗

𝑝𝑞̂𝑗 𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗∈ 𝑗 
  ∗ (1 − (𝐹(𝑇𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗)))  
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When measuring according to V-CLIP, upstream operations in 2017 were found to have average a 

delivery performance of 60.8%.  

Design 
By a model, the effects of aspects that influence upstream supply chain operations within a multi-level 
supply network are studied. First, the conceptualization described the design of one upstream supply 
chain operation that is generalizable to other (upstream) operations in high-tech environments. Based 
on a formal planning structure’s anticipation function, responsible for realizing an order schedule that 
is lead-time feasible, the model was developed. The model builds upon three design parameters that 
generate order proposals, determines delivery dates, and allows for manufacturing flexibility 
considerations.  
 
Numerical analysis of the model output demonstrated that order releases, either multi-echelon or 

local based, have a large impact on upstream operations’ utilization, costs, tardiness and therewith 
performance. Operational costs were modeled by setup-costs, inventory carrying costs, and machine 

availability costs. Performance was modeled by the fraction of demand that is delivered and the 

deliveries’ tardiness, leading to V-CLIP.  

To find how the release of materials and resources can be best coordinated, three lot-sizing scenarios 

have been compared wherein different order sizes were generated based on items’ average demand. 
Items’ average demands were used to develop three volume categories that were used for lot-sizing 

decisions. Typically high volume items contained small demand aggregations, securing balanced 

capacity requirements, and low volume items contained large demand aggregations to justify setup 

costs. 

Results show that current order releases can be improved by taking into consideration information 

from the whole supply network. Additionally, applying smaller demand aggregations for all volume-

categories resulted in balanced capacity requirements and reduced supply chain investments in 

inventories. 

Recommendations 
It is demonstrated by academic literature that the decoupling of production units is common in 

vertically integrated supply networks. However, a supply network’s planning and control can only be 
optimized if information from upstream and downstream operations is shared and taken into 

consideration with order releases. In addition to the vertical integration of operations, vertically 

integrated information is required. 

Based on this insight, the following recommendations are given to Prodrive Technologies: 

It is recommended to measure internal on-time delivery performance by V-CLIP. This research has 

demonstrated that current measurements are not conforming to what Prodrive Technologies defines 

as delivery performance. Additionally, it is shown that current measurements depend on unreliable 

data. By measuring according to V-CLIP, validity and reliability are improved. Also, V-CLIP gives a more 

accurate representation of the detailed information from the execution function, collected by the 

company’s Manufacturing Execution System.  

Secondly, it is recommended to conduct further research with a multi-echelon perspective on 

demands, buffers, and order sizes. This research shows Prodrive Technologies the potential value of 

centralized coordination and decision making in the multi-level supply network that consists of 

Prodrive Technologies and Prodrive Mechanics. It is shown that with order releases based on 

information from upstream and downstream the supply network, supply and demand can be better 
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aligned resulting in improved on-time delivery performance without increasing operational costs 

compared to current practices. 

Next, it is recommended to reduce differences in commonality from upstream and downstream 

operations. Numerical analysis of current order releases demonstrates that reducing current order 

sizes increases on-time delivery performance and reduces supply chain investments in intermediate 

inventories. Because smaller order quantities directly affect the number of setups, a small increase in 

capacity may be required to cover for uncertainties. However, analysis demonstrates that the savings 

in inventory investment outweigh costs of the capacity increase, resulting in reduced overall costs and 

improved delivery performance. Note that this implication especially concerns Prodrive Technologies’ 
Injection Molding department because this study is built upon historical data and the operational 

configuration of only this department. However, the model is developed such that the behavior of 

other operations can also be simulated. Therefore, it is recommended to extend this analysis to other 

(upstream) operations to find if delivery performance and operational costs can be improved 

compared to current practices. Additionally, it is recommended to study the potential of starting a 

program for reducing setup and changeover times. High investments are made in the automation and 

efficiency of operations. With robots, automated guided vehicles, and automated warehouses, a 

‘lights out factory’ is realized. However, the Injection Molding department still relies on conventional 

setups that are labor intensive. Therefore, it is recommended to invest in reducing setups and 

changeovers bringing Prodrive Technologies closer to the realization of a ‘lights out factory’ in the 
high-tech industry.  

Finally, it is recommended to make upstream material requirements dependent on downstream 

production orders instead of inter-subsidiary stock-transport orders. By this simple adjustment in the 

ERP, rescheduling proposals can be automatically communicated if downstream demand changes. 

This research shows the potential of reducing differences in information available throughout Prodrive 

Technologies’ supply network and therefore the implementation of this recommendation is an 
important step forward. When empirical data will be at disposal in the near future, order acceptance 

and replanning decisions will require further attention. Additionally, future research should extend 

this research to more operations of the supply network. At last, future research should receive an 

integral approach of planning decisions under the availability of buffers, e.g. safety times and safety 

stocks that are used to cover for uncertainties in supply and demand. 
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1. Introduction 
Time, quality, and cost have always been important elements in competitiveness. Prodrive 

Technologies (PT1) strongly believes that the vertical integration of their key manufacturing processes 

brings the time, quality, and cost elements at their disposal. By vertical integration of operations, the 

company features a supply network wherein lead times are transparent and can be altered quickly 

based on planning and control decisions. Knowing that future products are becoming increasingly 

complex and the company experiences rapid growth in sales volume, a strong urge exists for improved 

supply chain planning and control.  

This project represents a study wherein is sought how on-time delivery performance of PT’s most 
upstream supply chain operations can be improved by improving supply chain planning and control. 

The upstream supply chain operations that will be considered are characterized as a separate entity 

within PT that is distinguished from other, more downstream operations.  

By considering PT’s supply network, supply chain operations planning, manufacturing flexibility, and 

different performance metrics, the supply chain planning and control matter is reviewed in its full 

scope. Consequently, this is exactly where lays the academic contribution as well as the added value 

for PT.  

This section will sequentially treat the problem context (1.1), the research problem (1.2), and the 

research method (1.3). The research method consists of the deliverables, research questions, and 

methodology. This section will conclude with the thesis outline.  

 

1.1. Problem context 

PT is founded in 1993 as an electronics design firm specialized in digital signal processing and motion 

control. Nowadays the core competence of the company is the design, development, and production 

of electronic solutions among which Printed Circuit Boards (PCBs). Vertical expansion started in 1999 

when PT expanded production of electronics with an automated production line, followed by module 

assembly. Later, operations were expanded by the integration of cable manufacturing. In 2012, PT 

decided to vertically integrate its supply chain with an internal supplier (i.e., Prodrive Mechanics) that 

mainly supplied PT with plastics and metal components that are used in the assembly of PT’s end-

products. The production of plastics typically includes housings and enclosures for electronic 

solutions. Manufacturing of machined parts consists of cold plates or heat sinks that can be used for 

cooling purposes of power conversion modules for example. Later Prodrive Mechanics (PM2) also 

expanded operations with production of inductors, transformers, motors, and actuators by the 

establishment of the Magnetics operation.  

Over the years, the vertical integration of PT’s key manufacturing processes has resulted in a wide 

range of operations, i.e. (I) Surface Mounted Device (SMD) Printed Circuit Board Assembly (PCBA) 

manufacturing, (II) Conventional PCBA manufacturing, (III) System Assembly, (IV) Cable Harness 

manufacturing, (V) Magnetics, (VI) Machining, and (VII) Injection Molding. Whereas the integration of 

                                                           
1 In the remainder of this document, Prodrive Technologies B.V. will be abbreviated as PT. 
2 In the remainder of this document, Prodrive Mechanics B.V. will be abbreviated as PM. 
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the full front-to-end supply chain offers more in-house control and flexibility, it also urges PT to have 

a well-organized Supply Chain Operations Planning (SCOP) in place. 

In the organizational structure of PT, the Organization Support department is responsible for the SCOP 

function. The process requires input from Sales, Operations, Planning, and Procurement and is 

visualized in the control structure below (Figure 1).  

Planning Prodrive Technologies
Sales

Shop floor planning

Magnetics

Machining

Injection 
Molding

Cable Harness 
manufacturing

System 
Assembly

Conventional 
PCBA 

manufacturing

SMD PCBA 
manufacturing

Procurement Prodrive Technologies

Procurement 
Prodrive Technologies

Su
pp

lie
r

C
ustom

er

Injection Molding

Information

Goods flow

Planning Prodrive Mechanics

Procurement  Prodrive Mechanics

Shop-floor 
planning

Planning

Shop floor planning

Planning

Prodrive Mechanics Prodrive Technologies

 

Figure 1: Supply Chain Operations Planning control model 

Before products are delivered to the end-customer, products are assembled at the System Assembly 

department. Assembly includes ‘high volume products’, ‘low volume products’, and ‘in-line low 

volume products’. This characterizes PT’s demand that consists of high and low volume products. 

When considering the operations carried out prior to System Assembly, we can distinguish between 

operations carried out within PT and PM. Operations carried out at PM are executed prior or parallel 

to the operations carried out at PT and generally have less information available about downstream 

and future demand. Due to the organizational relation of PT and PM, the organization is considered 

as a multi-level supply network. PT´s upstream operations carried out at PM produce mostly in larger 

batch-sizes than PT´s downstream operations which indicates a so-called difference in commonality 

(Bertrand et al., 2016). In the remainder of this research, Machining, Injection Molding, and Magnetics 

will therefore, be referred to as PT’s upstream supply chain operations.  

Considering that products are becoming increasingly complex, PT is challenged with an increasing 

variety of operations and products in the near future. In this development, it is of key importance to 

deliver products on-time with superior quality in order to create a sustainable value towards 

customers. Closely related to this matter are on-time deliveries from internal operations since delivery 

reliability towards end-customers is greatly dependent on PT’s internal operations delivery 

performance. PT’s SCOP is directly responsible for arranging these on-time deliveries. Preliminary 

research in the orientation phase of this study, i.e. research proposal, revealed that current delivery 

performance of PT’s upstream operations was insufficient (de Waal, 2018b). 

By focusing on the planning of PT’s upstream supply chain operations, a focus on the effects of 

planning decisions throughout the supply chain and the on-time delivery performance of PT’s internal 
supplier is secured. 
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1.2. Research problem 

To get an overview of the problem situation as described in the previous section, a cause and effect 

diagram is developed as is recommended by van Aken et al. (2007). Whereas the complete cause and 

effect diagram can be found in Appendix A, a concise representation is illustrated in Figure 2. The 

diagram can be summarized by various causes that negatively affect PT’s (I) on-time delivery 

performance, (II) Operational Equipment Effectiveness (OEE), and (III) planning workload.  

The causes originate from different disciplines and a selection had to be made to secure a feasible 

project scope. To facilitate the selection, causes were categorized by (I) design & engineering related, 

(II) supply chain & operations related, and (III) practical issues such as human errors. From these three 

categories, only the effects of supply chain & operations related causes towards on-time delivery 

performance are taken into consideration within this study. 

On-time delivery  
performance of PT’s 

upstream supply chain 
operations

The number of projects and 
corresponding workload for 

proto-types is rapidly growing

Required capacity for series 
production is rapidly growingMain 

effect

Problem

Root 
Cause

Demand is volatile and can 
deviate from forecasts

High replanning frequency

Unpredictable capacity 
requirements

Imbalanced workload

 

Figure 2: Concise Cause & Effect diagram 

PT’s demand is characterized by a mix of both high and low volume products. In addition, the product 

portfolio includes both high and low complexity products. Whether products are assembled or 

produced to order depends on the particular product market combination as is also pointed out by de 

Kok & Fransoo (2003). Items that require short customer perceived lead times are generally assembled 

to order and kept in stock at the Customer Order Decoupling Point (CODP). Considering the case 

company's supply network, the CODP lays after the upstream supply chain operations. This implies 

that Machining, Injection Molding, and Magnetics mainly produce based on forecasts and demand 

prognoses. However, forecasts and demand prognoses are made in conjunction with the customer. 

Since most high-tech products are customer specific and have a high obsolesce risk, demand 

prognoses are mostly binding commitments due to contractual agreements. 

Besides regular production, a high-tech environment is typically also accompanied with prototypes. 

Due to the short product life-cycles of high-tech products, many new products are developed, tested, 

and produced in combination with regular production. This requires a certain flexibility from the 

supply chains’ SCOP. Other typical demand-related attributes of high-tech products are complex 

product configurations, unreliable and long lead times for procurement items, and volatile demand.  

Due to these high-tech characteristics, PT’s supply network is subject to frequent replanning, buffers, 

and unpredictable capacity requirements. Different studies among which Yang & Jacobs (1999), 

concluded that increased replanning frequency leads to increased production schedule instability and 
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When identifying the problem, it is crucial to distinguish between the real problem and perceptual 

problems. Based on the analysis and diagnosis phase described in the regulative cycle, a conceptual 

and scientific model will be developed based on the framework from Mitroff et al. (1974). When the 

scientific model is validated, model solving starts which leads to potential solutions and one final 

solution design. The last two steps of the cycle, intervention and evaluation will be out of this project’s 
scope. An outline of the methodology with the reference sections are described below. 

Orientation phase  

The orientation phase is conducted mostly in the preliminary stage of this research and was therefore 

described in the research proposal that preceded this report. The orientation phase contains the 

problem context and therefore the set of problems, the problem statement, the assignment, the 

approach, and theoretical background. However, since these elements provide important fundament 

for the research, the orientation phase is also described in Sections 1.1, 1.2, and 1.3. The theoretical 

background of the problem context is presented in a literature study (de Waal, 2018a), performed 

parallel to the research proposal. This information is applied in Sections 2.1 and 3 of this report. 

Analysis & Diagnosis  

Just as the orientation phase, the analysis and diagnosis were conducted to a large extent in the 

preliminary stage of this research. In the main phase of the research, the problem context, delivery 

performance, are further analyzed and diagnosed in Section 2 that led to a more specific selection of 

causes, such that the project reaches sufficient depth into all relevant aspects of the problem context. 

Conceptualization 

In the conceptualization, a conceptual model is developed based on the problem context that was 

studied in the analysis and diagnosis. In this phase, the scope is defined and different input variables 

are reviewed and selected. It is important that accepted standards, published throughout the years in 

scientific literature, are used as a reference. Therefore, the literature review performed parallel to this 

research is used as a scientific reference and is described in Section 2. Based on the literature base 

and more specific analysis and diagnosis of the problem context, the conceptual model is developed. 

The conceptual model in this research is based on the operations planning control structure developed 

by Jansen, De Kok, & Fransoo (2013). The conceptual model is presented and explained in Section 3. 

Modeling 

The quantification of the conceptual model towards a scientific model is an important step towards 

potential solution designs. The scientific model needs to be expressed in formal, mathematical terms 

or algorithms, such that numerical analysis or computer simulation are possible (Bertrand & Fransoo, 

2002). The numerical insights should represent the relationships between input variables. In this 

research, the model will represent causal relations between planning horizon, lot-size, delivery 

performance, and operating costs. The model is described in Section 4. 

Model solving   

To solve the scientific model, mathematical algorithms or simulations can be applied. In case of high 

complexity, computer software simulation can be used instead of mathematical models (Bertrand & 

Fransoo, 2002). However, when using simulation, verification and validation of the model are very 

important to ascertain the reliability and validity of the results. By applying different scenario’s and 
combinations of input-variables, near-optimal results can be found in order to solve the model. By 

combining these input variables, causal relations between input variables can be drawn whereby new 

insights can be obtained. The model solving and numerical study of this research are presented in 

Sections 4 and 5. 
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Implementation 

The final phase of the research framework is the implementation and elaboration of one solution 

design. In this research, the implementation phase will consist of a summarization of the results. 

Additionally, conclusions are drawn and presented. Conclusions and recommendations from this 

research are presented in Section 6. 

 

1.3.4. Scope 

When conducting scientific research and defining a feasible scope, it is important that insights are 

generalizable, in this case to other production environments in the high-tech industry. However, to 

secure a feasible research scope and reach sufficient in depth, not all operations of the case company's 

supply chain can be considered.  

In preliminary research, delivery performance of PT’s upstream supply chain operations was found to 

be insufficient. Therefore this research focusses on PT’s upstream supply chain operations. In the 
development of the scientific model, generalizability to other (upstream) operations in high-tech 

environments is taken into account. However, due to time-limitations the numerical analysis that is 

done by computer simulation only considers one of PT’s upstream operations, Injection Molding. Due 

to characteristics such as high product mix, both high and low volume products, and dependent 

workcenters, Injection Molding is a good representation of other operations in a high-tech 

environment.  

 

1.4. Thesis outline 

The following section of this report will continue with a more in-depth study of the current situation. 

The study of the current situation is supplemented with theoretical background on SCOP designs, 

methods of manufacturing flexibility, and performance measurements from the on-time delivery 

performance. The conceptual model will be described in Section 3. Then, Section 4 includes the 

detailed description of the mathematical model and Section 5 consists of the numerical study. Finally, 

Section 6 presents this research’s conclusions and recommendations.   
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Figure 5: Lead Time Anticipation procedure (Jansen et al. 2013) 

 
When comparing the formal control structure with the case company’s control structure, a difference 

exists due to the fact that the case company’s supply structure makes use of an internal supplier (i.e., 

PM). As briefly described in the introduction, a number of reasons exist that cause the case company’s 
supply network to be considered a multi-level supply network wherein processes, i.e. operations, of 

PT and PM are decoupled. The operations that are executed within PM are referred to as the case 

company’s upstream supply chain operations. This implicitly leads to downstream operations that are 

executed by PT. 

To return to the number of reasons why the case company’s supply network is decoupled, four 
decoupling criteria specified by Bertrand et al. (2016) are used. Bertrand et al. (2016) specify four 

criteria for decoupling processes in a production system that are executed sequentially or in parallel. 

These criteria are; (I) two successive processes are not synchronized in speed, setup, or uncertainty, 

(II) there is a difference in the opportunity to vary resources, (III) difference in commonality (e.g. 

different batch sizing), and (IV) difference in information available. 

2.1.1. Reasons for decoupling 

By a brief description of how the case company currently executes’ production planning, the reasons 
for decoupling will be further explained. The case company’s planning is described according to 

demand planning, order release, and execution. Note that in the context of the control structure and 

LTA procedure from Jansen et al. (2013), demand planning and order release are part of supply chain 

operations planning and execution belongs to the production network (see Figure 4).  

 

Demand planning 

Most of the case company’s sales are initiated by projects. A project phase typically consists of 
communication from account managers with (potential) customers, research & development, 
prototyping, and testing. Once a product is ready for series production, account managers provide a 
demand forecast and actual demand is confirmed. Typically these demand patterns contain a demand 
ramp-up. Once forecasts and customer demands are known, demand and operations planning follows. 
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Demand and operations planning is organized based on product portfolios. These product portfolios 

are controlled by demand planners. One product portfolio consists of the full range of items to be 

produced internally for a selection of end-customers. This is referred to as the demand planning 

function. Since the demand planning function is based on product portfolios, the function transcends 

planning of operations. In other words, generally different demand planners plan production on the 

same workcenters and operations. However, when it comes to the case company’s upstream 
operations, these are not planned by the case company’s demand planners. Production that is 

executed within PM, is planned by operations planners that focus only on the operations carried out 

within PM. Material requirements are communicated from PT to PM by internal purchase orders. One 

crucial difference between communicating material requirements through purchase and production 

orders is that purchase orders do not communicate changes in demand. Once purchase orders are 

fixed by inter-subsidiary transport orders, plant to plant demand changes are no longer forwarded 

through automatic rescheduling proposals. Alternatively, production orders do allow automatic 

rescheduling proposals when demand changes. The current way of working leads towards a difference 

in information available throughout operations executed upstream and downstream the supply 

network. This is, therefore, the first reasons for decoupling and is based on the fourth decoupling 

criteria from Bertrand et al. (2016) listed earlier.  

 

Production planning and order release 

Given that material requirements are defined by demand planners for the case company’s 

downstream operations, load balancing and order release still have to be executed before actual 

production can start. According to Hopp & Spearman (2000), the order release mechanism builds upon 

three pieces of information: the item, the required production quantity, and the order due date. These 

pieces of information are made available for all items through the Enterprise Resource Planning (ERP) 

system. Production plans are generated based on item-specific routers, setup and cycle times, and 

material requirement schemes. It is the planners’ responsibility to use accurate ERP parameters such 
that reliable production plans are created. Also, it is the planners’ responsibility to balance future 
capacity requirements by prioritizing orders and to release orders for production once they can be 

started. Balancing future loads or adjusting future available capacity are examples of manufacturing 

flexibility (Reichhart & Holweg, 2007). Research from Land et al. (2015) has demonstrated the 

effectiveness of manufacturing flexibility in reducing tardiness. Reichhart & Holweg describe at least 

four potential sources of manufacturing flexibility; (I) Machine flexibility, (II) Labor flexibility, (III) 

Routing flexibility, (IV) Source flexibility. Whereas the first three measures contribute to workload 

balancing, the last contributes to work load control.  

Where the operations planners apply workload balancing measures for upstream operations, demand 

planners do this for the case company’s downstream operations. Source flexibility depends on the 

particular item. Some items are not outsourced due to intellectual property or quality concerns. 

Others can be produced externally but only if this is known well in advance. Therefore determining 

future capacity requirements is of key importance. Usually, make-buy decisions are made by 

representatives from both sourcing and planning. 

In the introduction, where all available operations were listed, it was explained that the case 

company’s upstream operations typically produce in larger batch sizes than PT’s downstream 
operations. This is due to the fact that operations carried out at PM, require larger setups and 

changeovers that are more labor-intensive than those of PT. This indicates a so-called difference in 

commonality that corresponds to the third decoupling criteria listed by Bertrand et al. (2016). 
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Execution 

Once orders are released, production can start. However, it may be that workcenters on the shop-
floor are still occupied by other jobs. According to Jansen et al. (2013), this is not necessarily 
problematic. They explain that higher level production plans and order release are made such that it 
still leaves space for optimizations on the production level, “the PU has a degree of freedom to 
optimize its own objectives, independently of the SCOP function” (Jansen et al., 2013, p. 253). They 
motivate this by stating not all events that occur at production are known a priori or can be captured 
in mathematical formulations. Additionally, they explain that it would become computationally 
intractable to include all dynamics because each production unit, i.e. operation, has its own objectives. 
 
When comparing the execution of production at operations carried out at PT and at PM, a difference 
is found in the optimization of production plans. Whereas production at PT is accurately controlled 
and optimized with shop-floor plans, the optimization of production plans receives less attention at 
upstream operations. Due to the fact that a number of years ago, PT’s operations (e.g., downstream 
operations) were the business’ core competence and these were the most capital intensive, a planning 
function evolved wherein production plans were better optimized at PT’s operations. However, over 
the years also large investments have been made in PM’s operations while planning and shop-floor 
planning did not evolve. 
 
 

2.1.2. Current design 

When the case company’s current planning design is placed in the context of formal supply chain 

operations designs and control models, two important findings result: 

1. It is the SCOP’s responsibility to coordinate the flow of materials throughout the supply 
network. Formal control structures stress the importance of central coordination from the 
SCOP function. However, currently the control model is decoupled into two structures 
wherein differences exist in information that is available upstream and downstream the 
supply network. This negatively affects what the SCOP function intends to do; coordinating 
the release of materials and resources such that customer service constraints are met at 
minimal costs.  

2. Over the years, vertical integration and large investments in the case company’s upstream 
operations gave these operations larger impact on the overall customer service level. 
However, the current planning structure and optimization of shop-floor plans upstream the 
supply chain did not evolve.  
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2.2. Supply Chain Operations Planning performance 

The case company measures delivery performance according to different metrics. First of all, delivery 

performance is measured from suppliers and towards customers. Secondly, delivery performance 

towards customers can be distinguished by internal customers and external customers. Although the 

case company did not define an exact metric for internal delivery reliability so far, a preliminary study 

revealed that the upstream supply chain operations; Machining and Injection Molding, had an 

alarming on-time delivery performance of 69.2%. This figure was obtained based on the case 

company’s current method of measurement; Confirmed Line Item Performance (CLIP). By this 

method, confirmed due dates are compared with actual finish dates. In other words, the preliminary 

study revealed that 30.8% of the jobs produced by PM in 2017 is produced later than it’s confirmed 
due date. A more detailed explanation of the current method of measurement according to CLIP will 

follow later in this section. 

The case company defines delivery performance as the fraction of customer demand that is met within 

a specified lead time without backordering. This study considers backordered demand as the fraction 

of demand which is not fulfilled within the specified lead time but delivered later instead. When 

measuring delivery performance, lead times can be compared from a customer’s perspective or the 

manufacturer’s perspective. One may refer to corresponding metrics as the Requested Line Item 

Performance (RLIP) and the Confirmed Line Item Performance (CLIP) respectively. Additionally, 

delivery performance can be measured according to standardized lead times i.e., Standard Line Item 

Performance (SLIP). 

The RLIP represents the fulfillment of the requested delivery lead times as perceived by the customer. 

However, these requested lead times may be unrealistic from a supply chain perspective and cannot 

be easily retrieved from ERP. When a customer demand occurs, lead times are currently confirmed 

according to standard lead times, material availability, and capacity utilization of resources. This 

method leads to a delivery performance scenario mostly conforming to CLIP. One other metric with 

which delivery performance can be measured is by considering the volume that is delivered. This can 

be referred to as Confirmed Volume Performance (CVP) and can be measured by comparing the 

planned quantity to be delivered with the actual delivered quantity.  

 

2.3. Current on-time delivery performance 

In order to measure the case company’s current on-time delivery performance, the above-mentioned 

methods of measurements will be compared, taking into consideration the available data. Therefore, 

the available data is described first in Section 2.3.1. Then different methods of measurement are 

presented in Section 2.3.2. The goal is to determine and define one robust performance indicator for 

assessing on-time delivery performance. The final method of measurement will be presented and 

discussed in Section 2.3.3.  

 

2.3.1. Data  

In this analysis, historical data is used from all three upstream operations. The data includes; items, 

planned quantities, produced quantities, due dates, delivery dates and more. The data is logged during 

20173. To analyze on-time delivery performance, operations’ performance needs to be measured 

                                                           
3 01 January 2017 until 31 December 2017 
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individually. Considering the data of all upstream operations, it appears that 80% of the jobs produced 

at PM is processed by Machining. This provides an indication of how large Machining is compared to 

the other upstream operations; Injection Molding and Magnetics (see Figure 6).  

The analysis also reveals that just half of the jobs produced by Magnetics and Injection Molding are 

useful for further analysis (see Table 1). Only jobs that are finished correctly, i.e. correctly received 

and registered by representatives from the warehouse, contain reliable end dates that are usable for 

the analysis of on-time delivery performance. A more detailed explanation on reliability of the job 

history that was used for this analysis can be found in Appendix B. Appendix B will also contain a more 

detailed explanation on the deletion of outliers, e.g. jobs that are registered correctly but were 

received exceptionally late, i.e. > 30 days, and therefore deleted from the data-set. 

 

Figure 6: Number of confirmed orders by operation 

Operation Correctly finished orders # Total orders # % Correctly finished 

Machining 3958 5853 68% 

Injection Molding 263 529 50% 

Magnetics 225 459 49% 

Undefined 134 511 26% 

Table 1: Production orders produced by PM, 2017 
 

2.3.2.  Measurements 

In the current situation, performance is measured by comparing due dates that are job-specific (𝒅𝒋) 

with dates whereon the job’s items are actually received (𝒓𝒋). In this representation, ‘j’ denotes the 

job, i.e. a production order. Please note that an overview of all notation is provided in Appendix I.  

As explained earlier, the determination of order due dates in the current situation is conforming to 

CLIP which can be represented by 𝐶𝐿𝐼𝑃𝑗: = {1            𝑖𝑓 [𝑟𝑗 −  𝑑𝑗] ≤ 0,    𝑒𝑙𝑠𝑒 
0

 

As explained earlier, due dates are determined in the current situation based on standard lead times, 

material availability, and capacity utilization of resources. It is therefore important to stress that lead 

times and therewith due dates are defined differently for jobs processed at PT or at PM. When jobs 

are processed at PM, they are subject to standard inter-subsidiary transport time of 1 day (see Figure 

7). This shortens warehouse’s lead time for order confirmations with 1 day, causing the delivery 

performance measurements to be made before items are transported to PT. Once they are received 

at PT, subsequent jobs can be started downstream. Alternatively, on-time delivery performance for 

items produced by PT is measured just before jobs start at the subsequent operation as shown in 

Figure 8. This is caused by the fact that items produced at PT don’t require inter-subsidiary transport 

time. However, despite the delivery performances from PT and PM are measured at a different phase 

80%

7%
6% 7%

Machining

Injection Molding

Magnetics

Undefined
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in the case company’s supply network, due dates and therewith delivery performance measurements 

are comparable under the assumption that inter-subsidiary transport time never exceeds one day. 

This assumption is reviewed with representatives from the case company’s logistics department. Since 
inter-subsidiary transport is arranged multiple times per day the assumption is considered reasonable. 

An elaborate explanation of lead times can be found in Appendix C. 
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Purch. order
( 1 days)
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(0 days)
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(3 days)
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System Assembly (order #)
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Figure 7: Lead times of operations executed at PM 
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(3 days)

System 
Assembly 
(3 days)

Injection Moulding (order #) System Assembly (order #)
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(0 days)

WH1 
(3 days)

CLIP  

Figure 8: Lead times of operations executed at PT 

CLIP by operation 

To determine delivery performance on operations level based on a certain time interval, delivery 

performance of all jobs produced by the particular operation (𝒐) and due within the specified time 

interval is measured as in equation (1). 

 𝐶𝐿𝐼𝑃𝑜(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑): =   
∑ 𝐶𝐿𝐼𝑃𝑗𝑗 𝜖 𝑜𝑗

|𝑜𝑗|
      𝑤ℎ𝑒𝑟𝑒   𝑡𝑠𝑡𝑎𝑟𝑡  ≤  𝑑𝑗  ≤ 𝑡𝑒𝑛𝑑 (1) 

 

By applying this metric, it appeared that 𝐶𝐿𝐼𝑃𝑜(01 − 01 − 2017, 31 − 12 − 2017) from Injection Molding 

(88%) is much higher than from Machining (69%). This may partly be caused by the higher utilization 

of Machining compared to Injection Molding. Utilization in relation to on-time delivery performance 

will therefore be discussed later in more detail. However, when interpreting these results, it should 

be taken into consideration that just 50% of the orders produced by Injection Molding were used in 

the analysis. All other jobs were incorrectly finished or were considered as outliers. When all job 

history would have been logged correctly, different results might have been found. This stresses the 

importance of correctly monitoring and reporting e.g. finishing, jobs during the process. Results are 

presented below in Table 2. 
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Tardiness 

By applying CLIP, delivery performance is based on line-item performance, making CLIP a boolean 

metric. This implies that CLIP does not represent a relative difference between 1 or 10 days late for 

example. Alternatively, order lateness can also be represented by Tardiness (𝑻𝒋) (van Ooijen, 1996). 

Tardiness is measured by 𝑇𝑗 ∶= 𝑚𝑎𝑥[ 0 ,   𝑟𝑗 − 𝑑𝑗 ]. 

 In the current situation4, Machining produces all late orders with an average tardiness of 11 days and 

Injection Molding produces with average tardiness of 5 days (see Table 2).  

 

Tardiness and Utilization 

Different studies among which Land, Stevenson, Thürer, & Gaalman (2015) demonstrated that periods 

of high utilization, generally worsen on-time delivery performance. To study and verify the effects of 

high utilization on-time delivery performance, average utilization per operation over 2017 is 

determined by considering all jobs produced in 2017 at the relevant workcenters. This implies that 

also incorrectly logged orders were considered in this analysis in order to obtain historical capacity 

requirements. In the analysis, norm processing times (𝒄𝒄̂) are multiplied with planned order 

quantities (𝒑𝒒̂). The resulting component is supplemented with norm setup times (𝒇̂). Together this 

composes the required capacity which is then divided by the available capacity (𝑪). The workcenter 

utilizations (𝝆𝒌) are determined by 𝜌𝑘: =
∑ (𝑓̂𝑗 + 𝑐𝑐̂𝑗 ∗ 𝑝𝑞̂𝑗)𝑗 𝜖 𝑘𝑗

𝐶𝑘
.  

Utilizations from all workcenters that compose an operation can then be averaged to determine the 

average operation’s utilization (𝝆𝒐). The average utilization of Injection Molding over 2017 was 45% 

and is shown in Table 2. In Figure 9 and Figure 10, the utilization is depicted together with the number 

of tardy orders per week. Between these two variables, a weak positive correlation (21%) is found 

which aligns with the conclusions from Land et al. (2015). A possible explanation for the considerable 

weak correlation is the low number of jobs from Injection Molding that were usable in the analysis of 

job tardiness (50%). At Machining, where the number of correctly finished orders is about 68% and 

utilization was 86%, a moderate positive correlation (49%) is found between the utilization and 

number of tardy orders (see Figure 10).  

Department 
 

Count of 
confirmed 

orders 

Count of 
Tardy  
orders  

Average CLIP 
 

𝑪𝑳𝑰𝑷𝑶 

Average 
Tardiness  

(days) 

Average 
Utilization 

𝛒̅ 

Average 
Volume 

performance 

Machining 3958 1839 69% 11 86% 96% 

Injection Molding 263 49 88% 5 45% 95% 

Magnetics 225 171 54% 10 - 97% 

Table 2: Tardiness analysis PM, 2017 

 

                                                           
4 From 01-01-2017 until 31-12-2017 



16 
 

           

Figure 9: Injection Molding 2017 Figure 10: Machining 2017 

 

Volume performance 

Now that relative lateness can be expressed by means of tardiness, a representation of the number 

of produced items is still missing. Hence, the case company aims to measure on-time delivery 

performance by the fraction of demand that is met within a specified lead time. In order to represent 

the fraction of fulfilled demand, volume performance is analyzed. Volume performance is measured 

by comparing the planned order quantity (𝒑𝒒̂𝒋) with the produced quantity (𝒑𝒒𝒋). Due to yield loss 

or material shortages for example, volume performance can be negatively affected. Current 

operations’ volume performance (𝑽𝒐) is calculated by 𝑉𝑜 ≔  
∑  

𝑝𝑞𝑗
𝑝𝑞̂𝑗

𝑗 𝜖 𝑜𝑗

|𝑜𝑗|
    𝑤ℎ𝑒𝑟𝑒 𝑝𝑞𝑗 = MIN [𝑝𝑞𝑗, 𝑝𝑞̂𝑗].  

From all jobs that had a volume performance greater than 100%, a volume performance of 100% was 

used to prevent a biased average. The outcomes show that average volume performance is currently 

greater than or equal to 95% (see Table 2). However, in this volume performance, on-time is not 

considered yet. This implies that also late deliveries are considered and could positively influence 

volume performance.   

 

Volume performance considering on-time 

In order to assess which fraction of customer demand is met on-time, it is reviewed for each delivery 

whether it was received before the corresponding job was due and if not, how tardy it was received. 

This implies that partially delivered quantities (𝒑𝒒𝒑𝒂𝒓𝒕𝒊𝒂𝒍)  and corresponding dates whereon items 

were received (𝒓𝒑𝒂𝒓𝒕𝒊𝒂𝒍) had to be taken into consideration. Within the case-company’s production 
environment, partial deliveries result from serial batch production and transfer batches that are sent 

to the warehouse, sometimes even parallel to production (see Figure 11).  

To express the deliveries’ fraction of demand, volume performance is measured for each partial 

delivery. Thus, the fraction is obtained by the volume that is delivered (𝒑𝒒𝒑𝒂𝒓𝒕𝒊𝒂𝒍), divided by the 

planned production quantity (𝒑𝒒̂). If the delivery is on-time, the corresponding fraction of demand 

contributes fully to the delivery performance. If the delivery is received late, the fraction that is 

delivered is discounted by the extent to which it was tardy. In this analysis, lateness of partial deliveries 

is expressed by 𝑇𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 ∶= 𝑚𝑎𝑥 [ 0 ,   𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 −  𝑑𝑗 ]. 

0

5

10

15

20

0%

50%

100%

150%

200%

1 5 9 13 17 21 25 29 33 37 41 45 49

Utilization vs Tardiness, 
Injection Molding 2017

0

20

40

60

80

100

0%

50%

100%

150%

200%

1 5 9 13 17 21 25 29 33 37 41 45 49

Utilization vs Tardiness, 
Machining 2017

Coefficient of correlation = 21% Coefficient of correlation = 49% 



17 
 

Hence, the fraction that is delivered late, is multiplied by the complementary cumulative distribution 

function of the deliveries’ tardiness (𝑭(𝑻𝒑𝒂𝒓𝒕𝒊𝒂𝒍)). By means of this multiplication, a deliveries’ 
contribution to the on-time performance reduces in proportion to its tardiness. This logic is 

mathematically expressed in equation (2). Quantities that are not delivered at all, do not make any 

contribution to the delivery performance. From this point onwards this method of measurement will 

be referred to as Volume-Confirmed Line Item Performance (𝑉 − 𝐶𝐿𝐼𝑃).  

 𝑉 − 𝐶𝐿𝐼𝑃𝑗 : = ∑
𝑝𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗

𝑝𝑞̂𝑗 𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗∈ 𝑗 
  ∗  (1 − (𝐹(𝑇𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗))) (2) 
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1.      Serial production batch    3.      Transfer batches (Warehouse) 

2.      Late production    4.      Partial consumption downstream  

Figure 11: Material flow 

Appendix H.1 is provided with a numerical example of V-CLIP and two possible extensions. The 

extensions provide a more critical look on which delayed items are actually causing delays 

downstream and which not. This insight is obtained by comparing partial deliveries of upstream 

operations with consumption downstream. Due to the process characteristics such as long setup 

times, PT’s upstream operations generally produce in larger batch sizes than PT’s downstream 

operations. This implies that the produced quantity from upstream supply chain operations (𝒑𝒒𝒋) is 

consumed partially (𝒄𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒋) over time by downstream operations. By considering the real time 

inventory position, it can be analyzed whether late deliveries actually cause delays in downstream 

production. If so, performance can either be penalized by the delay of the whole production batch 

downstream or just for those items which were delayed.  

A more detailed explanation of this extension can be found in Appendix H.1. However, due to the 

limited focus on inventory management in this project’s scope, extensions of V-CLIP will not be taken 

into further consideration and are marked as a direction for future research.   

 

V-CLIP 

In order to assess delivery performance by V-CLIP, a cumulative distribution function on the partial 

deliveries first needs to be determined. Based on historical data, a Negative Binomial distribution was 

fitted to the partial deliveries. A more elaborate explanation on distribution fitting to the tardy 

deliveries can be found in Appendix D. When comparing outcomes of V-CLIP with CLIP, performance 

is slightly higher (8.2 percent points) due to consideration of volume performance and tardy deliveries 

(see Table 3). One interesting finding is that many partial deliveries are made after jobs were 
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operations, delivery performance perceived by the end-customer can be increased. This may 

automatically justify low upstream performance. However, safety stocks are costly and safety times 

can enlarge customer waiting times and therefore an optimum should be sought in terms of costs and 

service levels. Due to limitations, this research will not follow a multi-echelon approach for 

determining desired upstream service levels. Instead, it is assumed that items can be externally 

outsourced and delivered with similar costs as in the current situation and a delivery performance (V-

CLIP) of 90%. Therefore, this study applies a target delivery performance of 90% for the case 

company’s upstream operations. 

 

2.4 Insights and Conclusions 

In the previous sections, the current supply chain design and the current methods of performance 

measurement were analyzed and described. According to the regulative cycle by van Strien (1997), 

this analysis should now enable the researcher to draw more specific diagnosis of the problem context 

which can form a foundation for the conceptual design, described in the following section. 

 

Insights 

After that the current design is placed in the context of a formal supply chain operation’s control 

structure, two findings result that are also presented in Section 2.1.2. The first concerns the decoupled 

supply and control structure which withholds the current SCOP function from central coordination of 

order releases. According to formal SCOP designs, this negatively affects customer service and 

operational costs. This is confirmed by the performance analysis on the current situation, presented 

in Section 2.3. The analysis revealed that when looking at how PT desires to measure its delivery 

performance, performance can be best measured by V-CLIP. Applying V-CLIP, the case company’s 
upstream operations currently have an average on-time delivery performance of 60.8%. Additionally, 

the performance analysis and assessment of available data demonstrate that on-time delivery 

performance is best represented by considering delivery dates instead of dates whereon jobs are 

confirmed as finished. 

The second finding on the current planning design in the context of a formal supply chain operation’s 

control structure concerns the execution. Investments in vertical integration and the case company’s 
upstream operations increased the impact of those operations on the overall customer service level. 

Jansen et al. (2013) explain that operations need some space to optimize execution towards its own 

objectives because not all events can be known a priori. These optimizations by means of shop-

floorplans are not made at upstream operations. The diagnosed problem situation is also graphically 

summarized in Figure 12. 
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Figure 12: Multi-level control structure & Multi-level supply network 

 

 

Conclusions 

Based on the control structure developed by Jansen et al. (2013), and a literature base on supply chain 

operations planning and desings (Bertrand et al., 2016; A. G. de Kok & Fransoo, 2003; Jansen et al., 

2013), improvements can be made that are conceptualized in the following section.  

To develop a redesigned SCOP function that features a central order release mechanism, fundamental 

elements from the lead time anticipation model can be applied. These fundamental elements consist 

of demand planning, order release, and execution. Based on these three elements, the SCOP’s 
performance can be assessed based on the customer service level by V-CLIP and on projected 

operational costs as compared to the current situation. The SCOP requires many input variables such 

as items, quantities, and due dates that can be adjusted and numerically compared to find causal 

relations and effects on performance outcomes. Additionally, manufacturing flexibility measures can 

be applied to improve performance. A more detailed conceptualization of redesigned SCOP function 

follows in the next section. 
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3.2. Functional Requirements   

To define FRs, one first needs to define FR for the entire system (Bertrand et al., 2016). As described 

in Section 2, the case-company has set itself the goal to deliver with an average customer service level 

of 99.8% by 2020. Therefore it is considered that the overall system requirement is a customer service 

level (V-CLIP) of at least 99.8%. To develop a scenario wherein acceptable operational costs result, the 

second system FR is that the service level has to be met under smaller or equal operational costs as in 

the current situation.  

Based on the FRs for the entire system, FRs are determined for the system that is in scope. Because 

the production system that is considered consists of different echelons, buffers can be applied to 

compensate for disruptions in the system. By applying buffers in the form of safety times or safety 

stocks, downstream performance can be improved. Consequently, operational costs will increase and 

that safety times can enlarge customer waiting times. Therefore an optimum should be sought in 

terms of costs and service levels. As explained in Section 2.3, this research will not follow a multi-

echelon approach for determining desired upstream service levels. Alternatively, it is assumed, based 

on interviews with the case companies’ representatives from procurement and planning, that items 

can be externally outsourced and delivered with similar costs and a delivery performance (V-CLIP) of 

90%.  

 

3.3. Design parameters 

Now that a targeted delivery performance is defined for the case company’s upstream operations, 
this functional requirement needs to be translated into design parameters. Design parameters are 

used to adjust the model that represents the case company’s planning function. By making 

adjustments, new insights can be obtained from causal relations between planning parameters and 

its interdependencies. Based on the three fundamental elements of the LTA procedure developed by 

Jansen et al. (2013), the following design parameters are formulated: 

DP1: Order release – Order proposal mechanism 

DP2: Determining due dates, delivery dates and performance – Load balancing mechanism 

DP3: Adjusting available capacity – Manufacturing flexibility considerations 

 

 

3.4. Input and Output variables 

Besides the order proposal mechanism, the load balancing mechanism, and manufacturing flexibility 

considerations, the model has two important output variables that are directly related to the 

functional requirements that have been formulated. First of all, the model aims to provide insights 

into the aspects that influence on-time delivery performance (V-CLIP) in a multi-level supply 

organization in a high-tech environment. Secondly, operational costs are included such that realistic 

scenarios are modeled wherein higher delivery performance is offset by higher operational costs. 

Before output parameters are described in more detail in Sections 3.4.6 and 3.4.7, first input variables 

are further explained. At last, this section will conclude with a schematic overview of all input and 

output variables. 
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3.4.1. Items and item parameters 

To mimic a manufacturing environment which is representative for the case company’s upstream 

supply chain operations, historical demand is considered. The historical demand that is available 

includes sales orders and forecasted demands. In total 221 items are considered that have average 

demands ranging from 50 pieces to 2000 pieces per month. More about demand data is explained in 

Section 3.4.2. Before going further into demand characteristics, required input parameters that are 

pre-determined for all items are described. 

Bill Of Materials (BOM)  

All items have a BOM wherein raw materials, sub-assemblies, and assemblies are listed. The BOM also 

includes information about the quantities or the ratio of parts to succeeding parts. Because some raw 

materials and sub-assemblies may be used in more than one end product, upstream demand may 

consist of aggregated downstream demands. The upper BOM level is referred to as level 0, the most 

downstream BOM level is referred to as level ‘M’ and can be up to 8 levels for complex products. 

Routers  

Besides that all items have BOMs, all items are linked to operations and workcenters by standard 

routers. The router specifies which (sequence of) operations an item is subject to. When a router is 

completed, items are booked to stock, waiting for shipment or a subsequent operation, e.g. assembly. 

An overview of the routers that are used to model the case company’s Injection Molding department 
is provided in Table 4. Four workcenters compose six unique routers. In Table 4 and Figure 14, the 

workcenters, routers and its respective occurrence are presented. The occurrence represents the 

fraction of jobs produced on the particular router. One can derive that especially the first three 

workcenters are utilized most. From Figure 14 it appears workcenters 1, 2, and 3 can be predecessors 

of workcenter 4. Additionally, workcenter 4 is dependent on other workcenters and will therefore 

always be a successor of workcenters 1, 2, or 3. 

Cycle- and Setup times  

For each processing step that is workcenter specific, item-specific cycle- and setup are pre-

determined. With these ‘norm’ times, predictions on capacity requirements can be made as presented 

in Section 2.3.2. The cycle times represent the actual processing time, where the total predicted 

processing time equals the order quantity multiplied by the norm cycle time. Additionally, setup time 

is defined as the time that a job is prepared, affecting machine availability. This implies that job 

preparation which can be carried out off-line is not incorporated in the setup time that is considered 

in the model. Next to the cycle- and setup times, also throughput times are determined which 

represent the predicted lead times. The lead times are specified for each router and shown in Table 

4. Lead times consist of processing time, waiting or queue time, and handling and transportation time.  

Router Workcenter Occurrence Lead time 

A-1  Wc1 32% 6 days 

A-2  Wc1 + Wc4 8% 10 days 

B-1  Wc2 32% 6 days 

B-2  Wc2 + Wc4 8% 10 days 

C-1  Wc3 16% 8 days 

C-2  Wc3 + Wc4 4% 12 days 

 

 

Table 4: Routers & Occurrence           Figure 14: Workcenters & Routers 

Wc 1

Wc 2

Wc 3

Wc 4
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3.4.2. Demand 

To model and simulate a demand pattern, the case company’s sales order history is used as empirical 

data. The data includes a combination of high and low volume items. The demand that is considered 

contains aggregated sales history from the first three months of 2018. The data consists of forecasts 

and actual orders. For all end-items, forecasts up to one year are available. Changes in forecasts such 

as adjusted requirement dates or orders sizes are available. However, currently these are only 

available for end-items. To prevent the data-set will consist of duplicate order-lines, changes in 

demand are disregarded. Moreover, it is questionable to what extent these changes are reflected to 

upstream operations. Alternatively, the model will incorporate only actual demands.  

Average demand and order size  

Based on average (monthly) demand (𝒒̅𝒊) that is item specific, lot-sizing decisions can be made. When 

determining planned production quantities (𝒑𝒒̂𝒊,𝒋), a lot-size horizon (𝒍𝒉𝒊) is defined. This logic is 

derived from the case company’s ERP system and earlier research carried out by Krajewski, King, 

Ritzman, & Wong, (1987). A lot-size horizon refers to the time interval wherein an item’s future 
demands can be aggregated into order quantities. Based on items’ average monthly demands, 
different lot-size horizons can be created and compared wherein high volume products have relatively 

short lot-size horizons and low volume products have relatively large demand aggregations, resulting 

in larger order quantities to justify setup costs. In Figure 15, average monthly demands are plotted for 

all 221 items. In Table 5, volume categories are presented based on the items’ average monthly 

demands. Therein, 47% of the items are categorized as low demand items, 32% as moderate demand 

items, and 21% as high demand items. 

 

 

Figure 15: Average monthly demand per item  
 

 

 

 

Table 5: Volume categories 
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Demand uncertainty  

Demand uncertainty is mainly caused by incoming information about the future (e.g., changes in 

forecasts, sales order changes) and by information about the past (e.g., rejected production in the 

form of yield loss). Information received by upstream operations planning is typically received from 

downstream operations planning that receives information about forecasts and sales orders directly 

from the customer. This implies that the case company’s SCOP consists of a multi-level supply 

structure with interdependencies of different operations and has differences in information available 

along the organization.  

Supply chain and operations literature proposes different methods of modeling demand changes over 

time. De Kok & Inderfurth (1997) proposed to model demand changes from respective time-periods 

and different levels of the production structure by one overall demand uncertainty parameter. This 

procedure can be considered as an alternative to taking into account planned order deviations of all 

periods at all production levels. In their research, de Kok & Inderfurth (1997) constructed demand 

uncertainty by setup stability and quantity stability. These are directly related to the case company’s 
deviations in requirement dates and order quantities.  

  

Demand distributions  

To be able to create multiple realistic future demand scenario’s, distributions are fitted to historical 

demand data. The data is fitted by aggregated demand on customer-level and demand aggregated on 

item-level. However, neither of those aggregations resulted in an adequate fit. Therefore, empirical 

data is used as upstream demand as an alternative. A more elaborate description of the demand fitting 

procedures can be found in Appendix E. Because downstream demand (i.e. sales order history) is used 

as a direct input for upstream demand, BOM ratios and lead times of intermediate operations are not 

considered. Below is described how downstream demand is modified such that is still representative 

as upstream demand. 

Downstream versus Upstream demand  

One important consequence of considering (downstream) demand data for upstream operations, is 

that the effects of intermediate planning decisions are not taken into consideration. This is illustrated 

below in Figure 16. Planning decisions from intermediate operations (𝐷2, . . , 𝐷𝑛−1) such as lot-sizes and 

safeties influence original demands (𝐷1). Because this study aims to provide insight into the effects of 

lot-sizing decisions from upstream operations onto delivery performance, the best insights can be 

obtained with demands that are not influenced by planning decisions from intermediate operations. 

Note that in future research, also planning decisions from intermediate operations can be taken into 

consideration, ultimately leading to research on full-scope supply chain operations planning decisions. 

When considering the supply network in its full scope, effects of intermediate operations planning 

decisions will have to be taken into consideration as well.  

Although downstream demand is representative for upstream demand, some small modifications had 

to be made such that BOM ratios are applied for instance. The demand includes BOM ratios of 1:1, 1:2, 
1:3 and 1:4. This ratio reflects the relation of end products to upstream parts. For most products 

produced upstream, think of covers, housings, or cold plates, not more than 4 items are assembled 

into an end product. However, end products may consist of multiple, different components that are 

produced upstream. A front cover and back cover for instance. This characteristic was incorporated 

by assigning downstream demand of approximately 700 items, to only 221 upstream items. This 

represents the fact that multiple upstream parts can be assembled into one end-item. At last, it is 

important to mention that material requirements are received by upstream operations’ start dates. 
This will be further explained in Section 4.2. 
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Figure 16: Demand patterns 

3.4.3. Capacity and capacity requirements 

To create a realistic supply chain and operations planning model, available capacity is limited. To 

initiate the model, a standard available amount of hours per day is assigned to each workcenter, 

representing the current available capacity. Based on the manufacturing flexibility measures proposed 

by Reichhart & Holweg (2007), available capacity can be adjusted. By adding shifts or machines 

available capacity can be increased, but consequently higher operational costs will result. In contrast 

to labor and machine flexibility, routing and source flexibility are rare for PT’s upstream operations.  
Some items cannot be outsourced due to intellectual property or quality concerns. Others cannot be 

outsourced or produced at other workcenters since equipment and tooling are very specific.  

Capacity requirements at each workcenter are determined by considering item specific setup- and 

cycle times, and order quantities. By aggregating all required capacity per day, based on the 

workcenters’ start dates, it can be determined how much available resources are utilized and whether 

available capacity will be sufficient.  

Start dates are determined based on standard lead times. Based on an item’s router, a standard lead 
time can be subtracted from the requirement date to determine an item’s start date. Because a job 

has a standard amount of days wherein it has to be processed at a certain workcenter, the job has a 

certain lead time wherein it has to be produced. Based on the requested date from downstream which 

is equal to the upstream due date (𝒅𝒋), lead times can be subtracted resulting in planned start 

dates (𝒔̂𝒋). The production environment of the case company is represented by producing according 

to ‘Earliest start date’. However, to some extent ‘Earliest start date’ may be overruled by ‘First Come 

First Served’ since it is possible that a job at one workcenter is delayed, causing a delay in the 

subsequent workcenter. In this case, the delayed job will not disrupt other jobs in queue that can be 

processed right away. For the Injection Molding department, this would mean a delayed job at 

workcenters 1, 2, or 3 which would cause a delay to workcenter 4 (see Figure 14). 

 

3.4.4. Supply behavior 

Besides that the case company is subject to demand uncertainties, generally high-tech manufacturing 

environments also experience supply uncertainties such as yield losses due to quality issues and 

stochastic processing times.  

Yield loss   

Due to quality issues, either from raw materials, purchased items, or production itself, yield losses 

occur. Yield loss occurs when products do not pass the embedded quality tests and thereafter 

operators are not able to resolve it.  
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The setup- and cycle times that are used as an input to determine capacity requirements are averages 

of actual setup- and processing times, determined by the planners in correspondence with support 

engineers. Obviously, these times actually also include variances which demonstrate statistical 

patterns. In addition to setup- and cycle times, throughput time also consists of waiting times, and 

times for handling and transportation. These are all aggregated and reflected by the lead times that 

are defined for each workcenter, and also for each router. These lead times are defined with a certain 

safety, such that it also covers (most) timing variabilities. 

In PT’s current planning process, variabilities are covered by safety time. However, information 

regarding timing variances both processing time variability and total lead time variability can 

potentially be determined based on the machine software and the Manufacturing Execution Software. 

Because machine software is in place only for the first three workcenters, processing time variability 

for the first three workcenters could be analyzed. The results are provided in Appendix F. Similarly 

lead times were analyzed by considering start- and stop confirmations for each order processed via 

Manufacturing Execution Software system. However, due to the unreliability of order confirmations 

that is already discussed in Section 2.3, historical lead time variabilities could not be determined and 

are not included in the model. Instead, total lead time is modeled as if it is only dependent on order 

size, cycle time, and waiting times due to limited capacity. Consequently, delays occur when waiting 

times plus processing times exceed a job’s standard lead time and therewith the predetermined due 

date. In this case, a job is modeled as having (partial) tardy deliveries. The exact determination of 

tardiness and delivery performance is further described in Section 3.4.7. 

 

3.4.5. Starting inventory  

To initiate the model and prevent the model from creating repetitive lumps of capacity requirements 

over time, starting inventories (𝑰𝑷𝒊(0)), are required. Since the demand stream which is used as 

input, is based on sales orders from a certain time interval, nearly all items have to be produced in the 

first 30 days if no inventory would be assumed. This results in capacity requirements as shown in 

Figure 17. Besides that all items will have to be produced in the first 30 days, it also leads to repetitive 

peaks in capacity requirements which is also not representative for actual capacity requirements.  

 

Figure 17: Capacity requirements without inventory (wc1)  
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To generate a more realistic capacity requirements scenario, starting inventories are considered for a 

selection of 120 items. This prevents the large peak in capacity requirements from occurring in the 

first period and spreads capacity requirements more evenly. Sections 4 and 5 will treat the resulting 

capacity requirements and load balancing in further detail.  

 

3.4.6. Costs 

The operational cost parameters that are included in this model consists of startup costs, inventory 

carrying costs, and machine availability costs. Startup costs will be accounted for each new job setup. 

Depending on the workcenter, set-up times and therewith set-up costs differ. Generally, producing 

large order quantities will reduce total startup costs. However, producing large order quantities 

increases inventory carrying costs. PT uses a standard carrying cost of 12% which consists of interest, 

holding costs, and opportunity costs of capital. To calculate inventory carrying costs of each job, the 

item price is multiplied by the order quantity and the carrying cost ratio, which are then multiplied by 

the time the item will be in stock. Since items are not booked to stock between workcenters 1, 2, 3, 

and 4, intermediate inventory costs are disregarded.  

In addition to carrying- and setup costs, machine availability costs also compose a significant part of 

operational costs. Although machines operate mostly autonomously, machines require setups, 

maintenance, and (un-) loading. Based on average up-time, workcenters are available 8 hours per day 

per machine, including weekends. Workcenters with 𝑥 machines have 𝑥-fold availability. During 

standard machine availability hours, a standard hourly rate of 60 EUROS is considered. When the 

available capacity is increased by adding shifts, operational costs will increase. In the model, each extra 

hour that is added to increase machine availability and therewith available capacity, imposes 150% of 

the standard hourly costs.  

 

3.4.7. Delivery performance 

From Section 2.3 it became apparent that it is most accurate to consider deliveries instead of order 

confirmations. Because data from the case company shows that orders are often confirmed before all 

deliveries are made, and items are actually only available once they are delivered, delivery 

performance is best represented by dates whereon (partial) deliveries are received (𝒓𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒋). To 

model partial deliveries it is assumed that production at the end of each day, is delivered, booked to 

stock and available for downstream operations. This implies that if 50% of the job’s required 
processing time (𝒛𝒋), is produced at the due date, at least 50% is produced on time. When the 

remaining 50% of the job is produced at (𝒅𝒋 + 𝟏), the remaining 50% is produced with Tardiness (𝑻𝒋) 

equal to 1 day. To express delivery performance and penalize tardiness of partial deliveries, Volume 

Confirmed Line Item Performance (V-CLIP) will be applied as presented in equation (2).  

All deliveries that are tardy, are multiplied by the complementary cumulative distribution function of 

the deliveries’ tardiness. The cumulative distribution for this research was determined by statistical 

distribution fitting to historical tardy deliveries made at the case company’s upstream operations 
during 2017. The distribution fitting process and results are explained in more detail in Appendix D. 

The analysis demonstrated that tardy deliveries considered in this study can be best approximated by 

a Negative Binomial distribution (𝑇𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  ∼ 𝑁𝐵( 1 , 0.08755 )).  
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3.4.8. Item overview 

In Figure 18, all input and output variables are graphically depicted. Notice that the scope of the 

research mainly focuses on the most upstream production unit(s) of the production network. Within 

this upstream production unit, four different interdependent workcenters are modeled. On the 

workcenters, items can be processed that have one out of six routers displayed in Table 6. The table 

also provides insight into the occurrence and lead times of the routers. The simulated occurrence 

represents the occurrences of routers from the data-set that will be used as model input. 
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Figure 18: Items for inclusion 

 

Router Workcenter Lead time Occurrence Cum. Occ. Simulated occurrence Delta 

A-1 Wc1 6 days 32% 32% 32% 0% 

A-2 Wc1 + Wc4 10 days 8% 40% 7% -1% 

B-1 Wc2 6 days 32% 72% 32% 0% 

B-2 Wc2 + Wc4 10 days 8% 80% 9% 1% 

C-1 Wc3 8 days 16% 96% 17% 1% 

C-2 Wc3 + Wc4 12 days 4% 100% 3% -1% 
Table 6: Router description 
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the router’s last workcenters’ partial deliveries are considered and therefore transfer batch splitting 

is allowed.  

- Jobs are only started when the preceding workcenter is finished. 

When a job is processed by two workcenters, the job may only start at the second workcenter if it is 

finished by the first workcenter. 

- No yield loss. Scrap percentages compensate for non-conforming goods. 

The case-company compensates yield losses by applying a scrap percentage to each job. In extreme 

circumstances, it may be that the scrap percentage is insufficient. However, in the model is assumed 

that scrap percentages cover all yield losses. 

- Outsourcing is only possible on a structural basis. No ad-hoc outsourcing can be arranged 
due to intellectual property and quality. 

When available capacity is running short and quick actions are needed it can be decided to add extra 

shifts. In case extra machinery has to be purchased, a standard lead time of 8 months is considered. 

In case extra capacity is needed within 8 months and extra shifts provide insufficient increase in 

capacity, items can be outsourced. In the model, outsourcing costs three-fold of regular in-house 

production. 

- Although inventory is not dynamically modeled, starting inventory is assumed. 

As described in Section 3.4.2, upstream demand that is considered in this model consists of historic 

sales data wherein nearly all items show demands during the first 30 days of the simulation. Because 

this creates large repetitive peaks in capacity requirements it has been decided to consider starting 

inventory and exclude some of the demands during the first weeks of simulation. A list of the 120 

items and corresponding starting inventories is provided in Appendix G.  

- Upstream demand is requested by start date. This means that standard lead time is already 
subtracted from the requirement date downstream. 

For simplicity, it is assumed that input data consists of requirement dates where lead times are 

already subtracted. This implies that incoming demands already specify start dates for production. 

- Items are not distinguished by priority or importance. 

By assessing performance with V-CLIP, the importance of items for the case company’s most 
important customers is not included. All items are of equal importance and have equal impact on 

average delivery performance and operational costs. 
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4.2. Model design 

Based on the model that is conceptualized in Section 3, the detailed model design and modeling 

choices are presented in this section. The detailed design is elaborated with algorithms and 

mathematical expressions.  

In Section 3.3, three design parameters are presented that are based on elements from the LTA 

procedure (Jansen et al., 2013). These design parameters are represented by three model mechanisms 

wherein (I) order proposals are generated, (II) load balancing is applied and end dates are determined, 

and (III) on-time delivery performance is determined by V-CLIP. Additionally, the model calculates 

operational costs and allows for manufacturing flexibility in the form of extra shits, machines, or 

outsourcing. The relations between the three different mechanisms and additional functions are 

graphically depicted in the model design in Figure 19. 

 

Import upstream demand

Generate order proposals

Load balancing

Execution

Apply lot size scenarios

Prioritize jobs

Flexibility considerations

 

Figure 19: Model design 

4.2.1. Objective function 

The main objective of the model is to provide this study with insights and understanding of the aspects 

that influence on-time delivery performance (V-CLIP) in a multi-level supply organization that operates 

within a high-tech environment. To model realistic scenarios wherein high delivery performance is 

offset by higher operational costs, the model’s objective function includes a cost minimization 
function. The cost minimization function is formulated by:  

 𝑀𝑖𝑛(𝐴𝑐 +  𝐶𝑐) (3) 

 

To minimize costs, two cost variables are expressed by equations (4) and (5). The cost variables reflect 

availability costs (𝑨𝒄) and carrying costs (𝑪𝒄) respectively. The terms and concepts are also explained 

in Section 3.4.6 that is devoted to operational costs. Note that the standard hourly rate (𝒉𝒓) for 

availability increases with 150% (𝒉𝒓𝑒𝑥𝑡𝑟𝑎) for each hour that exceeds the standard 8 hours of 

availability time (𝒂𝒗𝒂𝒊) per day. Carrying costs consist of a 12% carrying ratio (𝒄𝒓). The carrying cost, 

incurred for each job are added with a standard setup cost (𝒇𝒄). In order to determine the total costs, 

the cost elements rely on a time-frame that consists of the full planning horizon. Availability costs are 

calculated for each day (𝒕) of the planning horizon. Carrying costs and setup costs are determined for 

each job of the whole planning horizon. 
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 𝐴𝑐 =  ∑(𝑎𝑣𝑎𝑖(𝑡) ∗ ℎ𝑟 +  𝑎𝑣𝑎𝑖𝑒𝑥𝑡𝑟𝑎(𝑡) ∗ ℎ𝑟𝑒𝑥𝑡𝑟𝑎)
𝑇

𝑡=1

 (4) 

 

 

𝐶𝑐 =  ∑ ∑( 𝑝𝑞̂𝑖,𝑗 ∗ 
𝑙ℎ𝑖 ∗  𝑐𝑟

2
+ 𝑓𝑐𝑖,𝑗)

𝐽

𝑗=1

𝐼

𝑖=1

 (5) 

 

4.2.2. Import upstream demand 

To model incoming material requirements, a demand-set is imported that is based on customer 

demands (downstream sales order). As explained in Section 3.4.2, the data is modified such that BOM 

ratios are included and requirement dates are specified as start dates.  

4.2.3. Generate order proposals (mechanism 1) 

Once material requirements are available, the model continues by calculating order proposals. The 

procedure for generating order proposals is summarized by a pseudo code that is presented below in 

Algorithm 1. 

The algorithm starts by determining the average monthly demands for each item (𝒒̅𝒊). These monthly 

averages are used for lot-sizing decisions as described in Section 3.4.2. To obtain monthly average 

demands, future demands for each item are summed and divided by the length, expressed in months, 

of future demands that are available (𝒎𝒐𝒏𝒕𝒉𝒔𝒊). 

Once the average monthly demands are determined, the mechanism groups items into volume 

categories. The volume categories represent items with low monthly demands, moderate monthly 

demands, and high monthly demands. Once all items are categorized, items are subject to a lot-size 

function wherein, based on the item’s volume category a so-called lot-size horizon (𝒍𝒉𝒊) is coupled. 

The lot-size horizon reflects a certain amount of weeks wherein future demands will be aggregated to 

form an order proposal for the particular item. Based on an item’s lot-size horizon, a lot-size interval 

(𝒍𝒔𝒊,𝒋) is defined that starts from the item’s nearest requirement date and has a length equal to the 

item’s lot-size horizon (𝒍𝒉𝒊). The item’s nearest requirement date from downstream is then used as 

the job’s planned start date (𝒔̂𝒋). 

The length of an item’s lot-size horizon may be shorter than the length of an item’s available future 
demands. In this case, not all future demand can be covered by one production order. Therefore, the 

mechanism may generate multiple order proposals for one item. If so, each new lot-size interval will 

start from the first upcoming requirement date. The algorithm repeats this process for each item until 

all future demands are converted into order proposals.  

To provide insights into the effects of different lot-sizing decisions, different scenarios (𝒔𝒄) will be 

compared. Based on the average monthly demands, three scenarios are created wherein high volume 

products have a relatively short lot-size horizon and low volume products have a relatively long lot-

size horizon to justify setup costs. The lot-size scenarios in combination with the volume groups that 

were already presented in Table 5 are summarized in Table 7. Numerical results and effects of 

different lot-sizing decisions will be compared and evaluated in Section 5. An elaborate numerical 

example of algorithm 1 is provided in Appendix H.2. 
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Algorithm 1: Generate order proposals 

Input: 𝑞𝑖, 𝑠𝑐                                                                                                                                     ⊳  ∀ 𝑖 ∈ {𝐼} 

Output: 𝑝𝑞̂𝑖,𝑗 

1: read downstream demand (𝑞𝑖)        
2: average monthly demand (𝑞̅𝑖)= [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖]. 𝑠𝑢𝑚(𝑞𝑖) /  𝑚𝑜𝑛𝑡ℎ𝑠𝑖  
3: lotsize(𝑠𝑐, 𝑞𝑖̅) 
 
    function: lotsize(sc, 𝑞𝑖̅) 
 
 

4:          
5:          
6:          
7:          
8:          
9:          

    end function 

 
# Generate production orders 

   10:    for 𝑖 do:                                                                                                                                                                    
   11:          determine job’s start date (𝑠̂𝑖,𝑗) =  min[𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖]    
   12:         determine job’s lot-size interval (𝑙𝑠𝑖,𝑗)  = 𝑠̂𝑖,𝑗 + 𝑙ℎ𝑖                                                                                         

   13:         determine planned job quantity (𝑝𝑞̂𝑖,𝑗) = [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 <  𝑙𝑠𝑖,𝑗]. 𝑠𝑢𝑚(𝑞𝑖)  
    
  # While not all downstream demand is covered, generate more production orders 
   14:     while 𝑝𝑞̂𝑖 <  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖]. 𝑠𝑢𝑚(𝑞𝑖): 
   15:                          j = j+1 
  16:                          𝑠̂𝑖,𝑗 = min[𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 >  𝑙𝑠𝑖,𝑗−1 ] 
  17:                          𝑙𝑠𝑖,𝑗 = 𝑠̂𝑖,𝑗 + 𝑙ℎ𝑖                        

  18:                          𝑝𝑞̂𝑖,𝑗 = [𝑑𝑖,𝑗 < 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 ≤  𝑙𝑠𝑖,𝑗] . 𝑠𝑢𝑚(𝑞𝑖)            
 

 

  Lot-size scenarios  
  High (1) Mid (2) Low (3) 

Low 0 - 250 26 wks 20 wks 8 wks 

Mid 251 - 500 13 wks 10 wks 4 wks 

High 501 > 4 wks 4 wks 2 wks 
Table 7: Lot-size scenarios & Volume categories 

 

  

sc = 1 sc = 2 sc = 3 
  If  𝑞̅𝑖  <= 250: 
          𝑙ℎ𝑖 = 26 
  elif  𝑞̅𝑖  <= 500: 
          𝑙ℎ𝑖 = 13 

     else: 
             𝑙ℎ𝑖 = 4 

  If  𝑞̅𝑖  <= 250: 
          𝑙ℎ𝑖 = 20 
  elif  𝑞̅𝑖  <= 500: 
          𝑙ℎ𝑖 = 10 

     else: 
             𝑙ℎ𝑖 = 4 

  If  𝑞̅𝑖  <= 250: 
          𝑙ℎ𝑖 = 8 
  elif  𝑞̅𝑖  <= 500: 
          𝑙ℎ𝑖 = 4 

     else: 
             𝑙ℎ𝑖 = 2 
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4.2.4. Load balancing (mechanism 2) 

Once job proposals are generated, Algorithm 2 continues by determining capacity requirements and 

actual end dates. The model will later use these to compare actual end dates with planned end dates, 

i.e. due dates, to determine tardiness and therewith delivery performance.  

The Load balancing mechanism starts with sorting jobs ascending by start date. Then, it sorts jobs by 

its corresponding workcenters. Note that based on the pseudo code, care has to be taken when 

referring to job’s indices after sets have been sorted. In the mathematical model, this ambiguity in 

referencing is overcome by referring to indices of the sorted sets, for example when selecting a 

preceding job (𝑗 − 1). This is illustrated below in Table 8 where ‘old’ refers to the index before jobs 
were sorted by start date and workcenter. ‘New’ refers to the changed indices that are used by the 

mathematical model. Note that the example considers 4 workcenters and just 20 jobs.   

 

 

 

 

 

 
Table 8: Indexing 

 

To determine whether the required capacity can be fulfilled within the available lead time, available 

and required capacity are calculated. To calculate available capacity, the mechanism relies on 

workcenter availability (𝑪𝒌). The daily availability of workcenters, expressed in hours, depends on the 

standard availability time (𝒂𝒗𝒂𝒊𝒌) and extra availability time (𝒂𝒗𝒂𝒊𝒌,𝒆𝒙𝒕𝒓𝒂) as shown in equation (6). 

With flexibility considerations, workcenter availability (𝑪𝒌) can be (temporarily) increased. Obviously, 

this is offset by higher operational costs. More about improving current performance by flexibility 

considerations is described in the numerical analysis, presented in Section 5. 

 𝐶𝑘  (𝑡) =  𝑎𝑣𝑎𝑖𝑘(𝑡) +  𝑎𝑣𝑎𝑖𝑘,𝑒𝑥𝑡𝑟𝑎(𝑡)  (6) 

 

Required capacity is calculated by norm setup times (𝒇̂𝒋,𝒌) and norm cycle times (𝒄𝒄̂𝒋,𝒌) for each job at 

each workcenter. The model features plots, wherein capacity loads per day per workcenter are 

depicted as shown before in Figure 17.   

 

 

  

k = 1 k = 2 k = 3 k = 4 

old  new old  new  old  new  old new 

3 1 2 6 4 11 1 16 

5 2 6 7 7 12 8 17 

11 3 9 8 10 13 12 18 

16 4 15 9 14 14 13 19 

20 5 19 10 18 15 17 20 
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Once jobs are sorted and required capacity is determined, the mechanism initializes end date 

calculations by setting end dates (𝒆𝒋) equal to due dates (𝒅𝒋). Since the model intends to improve 

current load balancing practices, the algorithm will later search if jobs can be produced earlier in case 

of capacity shortages. 

Because the demand data that this model considers contains start dates, equations (7) and (8) are 

used to determine a job’s due dates. Since the model includes dependent workcenters, workcenter 

specific due dates are defined as in equation (7). Hence, if a job processed at workcenters 3 and 4 

incurs a delay at workcenter 3, the job’s end date at workcenter 3 will affect the start date at 
workcenter 4. 

 𝑑𝑗,𝑘 =  𝑠𝑗,𝑘 + 𝑙𝑗,𝑘 (7) 

 

A job’s overall due date is determined as in equation (8). The job’s overall due date is equal to the 

largest due date of the job at all relevant workcenters. 

 𝑑𝑗 =  max [𝑑𝑗,𝑘] (8) 

 

 

The load balancing mechanism uses two functions that iteratively update the available capacity and 

resulting end dates (see Algorithm 2). The mechanism iterates until all jobs are processed sequentially 

by the corresponding workcenters. The available capacity is determined by taking a job’s due 
date (𝒅𝒋,𝒌) and subtracting the planned end date from the preceding job (𝒆𝒋−𝟏,𝒌). This may lead to 

front-loading of capacity requirements. Net available capacity is then determined by subtracting the 

required capacity from the available capacity. 

When the net available capacity is insufficient to finish the job before the planned due date, a negative 

net available capacity will result. Based on the number of days required for processing the capacity 

shortage, the job’s end date will be postponed. However, for those jobs that contain routers with 

more than one workcenter, the start date of the job at a particular workcenter is not only dependent 

on the end date of the preceding job at this workcenter but also on the end date of this job at the 

preceding workcenter. This logic is presented in equation (9).  

 

 

Note that ambiguity in referencing may emerge when referring to workcenters just as referring to 

jobs’ indices described earlier in this section. The model has overcome this ambiguity in referring to 

workcenters by referring to a unique job number and a corresponding router as described in Section 

3.4.1. Alternatively, one could also decide to reset workcenters´ indices as was described for jobs in 

Table 8. Also Algorithm 2 is numerically demonstrated by an example in Appendix H.3. 

 

 

 

 

 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 = 𝑚𝑖𝑛( 𝑑𝑗,𝑘 − 𝑒𝑗−1,𝑘,    𝑑𝑗,𝑘 − 𝑒𝑗,𝑘−1 ) ∗  𝐶𝑘 (9) 
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Algorithm 2: Load balancing 

Input: 𝑠𝑗̂, 𝑝𝑞̂𝑗, 𝑙𝑘 , 𝐶𝑘                            ⊳  ∀ 𝑗 ∈ {𝐽} 

Output: 𝑒𝑗 

1:  sort jobs ascending by planned start date (𝑠𝑗̂) 
2:  sort jobs by workcenter (𝐽𝑘) 
3:  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 = 𝑓𝑗,𝑘  +  𝑝𝑞̂𝑗 ∗ 𝑐𝑐̂𝑗,𝑘                       
4:  𝑔𝑟𝑜𝑠𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 = 𝑙𝑘 ∗  𝐶𝑘                                     
5:  set end date of job j equal to due date:  𝑒𝑗,𝑘 = 𝑑𝑗,𝑘 
   
       function: Available capacity during lead time(𝑑𝑗,𝑘, 𝑒𝑗,𝑘 , 𝐶𝑘)   
6:  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘   =  (𝑑𝑗,𝑘 −  𝑒𝑗−1,𝑘) ∗  𝐶𝑘  
7:  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 =  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘  
       end function 

 
       function: End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

 8:         if  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘< 0:              
 9:              𝑒𝑗,𝑘 = 𝑒𝑗,𝑘 + (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑗,𝑘 / 𝐶𝑘 ) 
10:     else 
11:            𝑒𝑗,𝑘 = 𝑒𝑗−1,𝑘 + (𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 / 𝐶𝑘)   
       end function 
 
12:    while   𝑒𝑗−1,𝑘 >  𝑒𝑗,𝑘:                           ⊳ for j ∈ {2,3,…,J} 
13: Available capacity during lead time(𝑑𝑗,𝑘 , 𝑒𝑗,𝑘, 𝐶𝑘) 
14: End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

 

 

 

4.2.5. Delivery performance (mechanism 3) 

In order to calculate delivery performance, the Volume-Confirmed Line Item Performance metric is 

used which is also presented in Section 2.3. Delivery performance calculations are made by the third 

mechanism and are summarized by the pseudocode in Algorithm 3.  

The mechanism calculates performance based on tardiness of (partial) deliveries. As explained earlier 

in Section 3.4.7, partial deliveries are modeled by transfer batches that follow after daily production. 

It is assumed that production at the end of each day is delivered, booked to stock, and available for 

downstream operations. Therefore, the V-CLIP mechanism first determines tardiness (𝑻𝒋). Then, the 

mechanism assigns delivery performance of 100% if the fraction of demand is fully met on time. When 

the job’s actual end date, determined in Algorithm 2, exceeds the due date, the mechanism starts by 

calculating the fraction of demand that is delivered late, i.e. tardy. In other words, it checks on which 

days tardy deliveries are made and what the corresponding quantities are.    

There are two types of tardy jobs. One is started on-time and finished tardy. The second is started 

with a certain tardiness and also finished tardy. Note that jobs are started with a certain tardiness due 

to delays from preceding jobs (e.g. WIP) or delays incurred at preceding workcenters. To detect at 

what time period the first partial deliveries are made, the required days of production (𝒛𝒋) is 

determined and compared with the job’s tardiness (𝑻𝒋). 
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When the required days of production is less than the job’s tardiness, the job is actually started later 
than the due date. The actual start date is then determined as in equation (10). To determine V-CLIP 

performance in Algorithm 3, the pseudocode loops over all partial deliveries. Therefore, the code 

loops from the actual start date, referred to by diff, until the actual end date referred to by (𝑻𝒋). This 

is modeled by Algorithm 3 in lines 11 until 13. 

  Start date when job is started late = 𝑑𝑗 + (𝑇𝑗 − 𝑧𝑗) (10) 

 

When the required processing time exceeds the job’s tardiness, it is certain the job is at least started 

before it is due. In this case, the corresponding volume of on-time production will not have to be 

multiplied by the cumulative distribution function of the deliveries’ tardiness. For all deliveries that 

are made tardy, Algorithm 3 uses the same logic that was used to calculate delivery performance for 

jobs that are started later than the due date. The loop is represented in lines 15 until 20 from Algorithm 

3. Just as the previous algorithms, Algorithm 3  is provided with a numerical example that can be found 

in Appendix H.4. 

 

 

Algorithm 3: V-CLIP 

Input: 𝑑𝑗, 𝑒𝑗, 𝑧𝑗                     ⊳  ∀ 𝑗 ∈ {𝐽} 

Output: 𝑉 − 𝐶𝐿𝐼𝑃𝑗 

1: determine Lateness (𝐿𝑗)= Due date (𝑑𝑗) – End date (𝑒𝑗)                                                              
2: determine Tardiness (𝑇𝑗) = abs[ 𝐿𝑗] 
3: sort jobs by workcenter  (𝐽𝑘)                                 
4: determine required days of production for job (𝑧𝑗) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘  / 𝐶𝑘                                             
 
5:         for j  do:                                   
6:           if  𝑇𝑗== 0: 
7:        VCLIP = 1 
8:            else: 
9:                VCLIP (𝑇𝑗 , 𝑧𝑗)      
  
    function: VCLIP(𝑇𝑗 , 𝑧𝑗) 
10:         if  𝑧𝑗 ≤ 𝑇𝑗 : 
11:               diff = 𝑇𝑗 − 𝑧𝑗   

12:              for x  in range (𝑑𝑖𝑓𝑓, 𝑇𝑗): 
13:                    VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝐶𝑘/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 
14:         else: 
15:               for x  in range (0 , 𝑇𝑗):  
16:                      diff = 𝑧𝑗 −  𝑇𝑗  
17:                         if x == 0: 
18:                                  VCLIP =  max [𝑑𝑖𝑓𝑓 ∗ 𝐶𝑘, 𝐶𝑘]/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘  
19:                       else: 
20:                                 VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝐶𝑘/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 
    end function 
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4.3. Simulation characteristics 

Because empirical demand data is used as input data, and only one set is available and prepared to 

run the model it is important to justify certain decisions regarding (I) simulation length, (II) warm-up 

period, (III) and the number of replications.  

 

Simulation length  

The empirical data contains aggregated sales history from the first three months of 2018. Because 

forecasts were disregarded, future demands from April 2018 onwards gradually decrease over time 

where the last demands appear by the end of 2018. The complete demand-set contains over 300 time 

periods, i.e. days. The total number of downstream material requirements that are sent to upstream 

operations consists of 3580 order-lines. According to Metha (2000), who described methods for 

modeling and simulation, a random number stream should occur 15 to 20 times. Considering the 

demand-set, each of the 221 items occurs on average 16 times. However, since there are low and high 

volume products, some items occur less than 10 times whereas others occur more than 25 times (See 

Table 9). Despite some items have low occurrences, it is unlikely that these amounts are contradictory 

to the amounts recommended by Metha (2000). Considering the figures from Metha, the most 

significant item characteristic that varies throughout the simulation are the routers. Since even the 

most exceptional router, C-2, has 90 occurrences in the demand-set the simulation length is 

considered sufficient.  

Number of 
occurrences 

Count 
of items 

 Number of 
occurrences 

Count 
of items 

7 1  18 23 

8 2  19 21 

9 7  20 12 

10 3  21 10 

11 11  22 10 

12 18  23 5 

13 18  24 3 

14 17  25 1 

15 22  26 1 

16 19  27 0 

17 16  28 1 
Table 9: Frequency distribution of demand occurrences 

 

Warm-up period  

Instead of using a warm-up period, this study applied data preparation and included starting 

inventories such that a warm-up period was not required. This decision is made because a warm-up 

period instead of starting inventories does not necessarily yield realistic outcomes. As already 

motivated in Section 3.4.5 where starting inventories were explained, the demand set without starting 

inventories leads to a large peak of capacity requirements continued with repetitive cycles of capacity 

requirements. This is caused by the repetitive process of generating order proposals wherein future 

demands are aggregated into production orders. Since new jobs are only started when there are 

material requirements downstream, this may defer some job proposals whereby demands and 

corresponding capacity requirements are leveled over time. However, there was not enough empirical 

data available to increase the demand-set by several months in order to include a warm-up period of 
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several months and this would increase computation time considerably. Instead, starting inventories 

are considered for 120 items, presented in Appendix G. Next to starting inventories, so-called sub-

runs are applied whereby only the first five months of simulation are used for performance 

measurements. Sub-runs were required since the demand-set contains data wherein the first five 

months accurately represent actual demands and demands decrease further into the future. This can 

also be derived from a gradual decrease in capacity requirements depicted in Figure 17. Consequently, 

performance is measured only over the near future such that a more reliable interpretation of results 

is secured. 

 

Number of replications  

Over time, several methods have been developed to determine the required number of simulation 

replications. According to Chung (2004), the required number of simulations is determined by the 

replication mean and the standard deviation of the replication mean. With these figures a relative 

precision can be calculated, leading to a required number of simulation replications. 

For a robust statistical analysis, the standard error should be relatively small in comparison to the 

sample mean (𝒙̅). The standard error is calculated by equation (11). Then, to determine the desired 

amount of replications (𝒏) the relative precision determines a ratio by dividing the standard error by 

the sample mean of the data (see equation (12)). Later, during numerical interpretation of the results 

performances will be compared that range around 86% that represents the current situation. To have 

a reliable interpretation of results, it is desired to have a standard error not larger than 1 percent 

point, say. In equations (11) and (12), 𝒕 indicates the t-distribution where 𝜶 represents the confidence 

level and 𝑛 − 1 the degrees of freedom. In the equations, 𝒔 represents the sample standard deviation.  

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 = 𝑡1−𝛼 /2,𝑛−1 ∗ 𝑠/ √𝑛 (11) 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡1−𝛼 /2,𝑛−1 ∗ 𝑠/ √𝑛

𝑥̅
 (12) 

 

When the model is checked with 10 observations, a relative precision of 0,012 is obtained (see Table 

10). When the model is checked with 5 replications, a relative precision of 0,017 is obtained. To secure 

the correct interpretation and comparison of results, numerical results will be obtained by doing ten 

replications. 

 Table 10: Replications 

 

  

𝑛 𝛼 𝑥̅ 𝑠 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
10 0.95 0,868 0,014 0,010 0,012 
5 0.95 0,866 0,014 0,014 0,017 
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4.4. Model verification & validation 

In this phase of the research, the mathematical model is checked for conceptual and mathematical 

errors or coding errors that potentially cause incorrect calculations and results.  

4.4.1. Verification 

The verification of the model consists of the assurance that the model meets the requirements. The 

mathematical model is built in Python programming language. To verify no coding errors exist, the 

mathematical model and program have been checked separately for coding errors. Additionally, 

calculations were checked by comparing the output from the model with manual computations. 

Manual computations for all three mechanisms of the model are motivated in Appendices H.2, H.3, 

and H.4. If the model did not behave as expected, the error was traced and the program was corrected 

until the model generated trustworthy results. 

In addition to the manual computations, three important modeling phases are also manually 

computed and checked to verify the results. These are the (I) job proposal mechanism, (II) capacity 

requirements calculations, and (III) verification of performance and cost calculations. One important 

model mechanism, the load balancing mechanism that determines the actual end dates, is not treated 

in further detail although it has a considerable effect on the model output. Instead, numerical 

computations provided in Appendix H.3 together with the verification of the model output provide 

sufficient overall assurance that the model meets the requirements. 

 

Verification job proposal mechanism 

The model is initiated by importing downstream demand and transferring all requirements to job 

proposals. To verify that the model considers the correct lot-size horizons and therewith proposes the 

correct number of jobs, the number of proposed jobs are manually checked and verified. As the results 

in Table 11 indicate, the first mechanism of the model can be verified since the number of proposed 

jobs is correct. 

 

 

Table 11: Verification job proposal mechanism 

 

Verification of capacity requirements 

Once all job proposals have been initiated, capacity requirements are determined by considering pre-

determined setup and cycle times for each job at each workcenter. Note that the capacity 

requirements as plotted in Figure 20 and Figure 21 are predictions. Due to variabilities in processing 

times, actual capacity requirements may deviate. In Figure 20, a plot is shown based on the second 

lot-size scenario for the first workcenter. Since the plot corresponds exactly with the capacity 

requirements computed by the model shown in Figure 21, the capacity requirements function is 

verified. 

 Scenario 1 Scenario 2 Scenario 3 

Model 569 662 1189 

Manual 569 662 1189 
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Figure 20: Manual computation of capacity requirements wc1 

 

Figure 21: Model computation of capacity requirements wc1 
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Verification of results: costs & delivery performance 

To verify if operational costs are computed correctly and delivery performance is measured as 

intended, calculations for all three scenarios are also made apart from the model. Because manual 

computations correspond with the model output, the model is verified. 

 

 

 

 

Table 12: Verification of results 

4.4.2. Validation 

The validation step checks whether the model is an accurate representation of the system that is in 

scope. Sargent (2005) distinguishes face validity and historical data validity. Whereas face validity is 

used to ask individuals if the model’s behavior is reasonable, historical data validity uses empirical 
data to validate if outcomes match with actual results.  

Historical data validity could only be assessed to a limited extent. First of all, historical data is not 

always reliable enough for comparison with model outcomes. As described in Section 2.3, only 50% of 

the jobs produced by Injection Molding were finished correctly and considered reliable. Also, it was 

concluded that mainly partial deliveries can be considered reliable compared to order confirmation 

dates. However, partial deliveries from the model are not collected separately by the model and 

therefore only the final partial deliveries, equal to the actual end dates can be compared with 

historical data. From Figure 22 it can be derived that the simulated tardiness in all three scenarios has 

a high correlation with the historical tardiness. One remark is that the data from the simulation and 

the historical data, are not from the same time period. However, the data from the simulation is based 

on similar parameter settings such as lot-sizing and cycle times whereby similar tardiness is obtained.  

 

Figure 22: Tardiness: historical data versus simulated data 
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Scen(3) = coefficient of correlation = 74%
Scen(2) = coefficient of correlation = 78%
Scen(1) = coefficient of correlation = 77%

  Scenario 1 Scenario 2 Scenario 3 

Model 
V-clip 65.2% 83.3% 91.4% 

Costs € 838,476.64 € 778,917.80 € 697,247.12 

Manual 
V-clip 65.2% 83.3% 91.4% 

Costs € 838,476 € 778,917 € 697,247 
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Face validity is secured by interviews with different employees throughout the case-company. 

Representatives from the planning department were asked to validate outcomes regarding lot-sizing 

and other planning decisions. Representatives from the administration office and planning 

department were asked to review the cost calculations and results. Support Engineers from the 

Injection Molding department were asked to review cycle times, lead times and setups. At last, the 

overall model is validated by the project supervisor, working at the organization support department.  

After these verification and validation actions, it can be concluded that the developed model 

generates reliable and valid results. 
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5. Numerical study (model solving) 
Throughout numerical experiments and different combinations of simulation runs and parameter 

settings, insights into aspects that influence on-time delivery performance and operational costs are 

obtained and explained in this section.  

 

5.1. Experiments 

In order to obtain useful insights from the model, experiments are set-up that provide fundament for 

answering the research questions that were presented in Section 1.2 

The first research question presented in Section 1.2 addresses the case company’s current 

performance. Because this performance was extensively measured and described in Section 2, it 

follows that a scenario can be simulated wherein the model mimics the current situation. This scenario 

will, therefore, make use of parameters that correspond with the current situation. The current 

situation will be described in Section 5.2. 

1. What is the model output under parameters that correspond with the current situation? 
2. Is the model output, based on the current situation, in line with the actual output? 

The second research question presented in Section 1.2 mainly focusses on planning design and is used 

as a motivation for modeling decisions that built upon the planning design. An interesting extension 

for numerical experiments on the proposed planning design would be the consideration of different 

replanning policies wherein consequences different of frozen horizons (F) and replanning intervals (R) 

can be compared in terms of delivery performance and operational costs. However, this research only 

represents a planning wherein one future scenario is calculated without considering changes in 

demand or forecasts that will emerge in later time periods.  

Especially the third research question will receive much attention within this section since the 

numerical study can be used to compare different planning decisions, i.e. parameter settings. By 

sensitivity analysis, the impact of different lot-sizing decisions on utilization, operational costs, and 

delivery performance is analyzed. Additionally, model output under different available capacity will 

be compared. From these insights and a sensitivity analysis, it can finally be concluded under which 

capacity and release, the most favorable on-time delivery performance and operational costs will 

result. 

3. What happens with the model output when different lot-sizing decisions are applied? 
4. What happens with the model output under different available capacity? 
5. What is the best mix given the targeted delivery performance? 

 

5.2. Current situation 

To approximate the case company’s actual planning function, current ERP parameters and orders sizes 

were analyzed. With the insights that are derived from this analysis, a simulation can be developed 

wherein a scenario is created that corresponds to historical planning decisions and outcomes. By using 

these current ERP parameters as input for the planning model, the model output can be compared 

with the historical output that is also documented in Section 2.3.  
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ERP parameters: lot-sizing and throughput parameters   

The first model mechanism generates order proposals. These are based on lot-size horizons. The logic 

of these lot-size horizons is also applied by the case company’s ERP. Therefore, it could be analyzed 

what historical lot-size horizons were, based on current ERP parameters. The current horizons are 

summarized by a frequency distribution in Figure 23. The lot-sizing horizons are also provided in 

tabular form in Appendix J. Figure 23 depicts three types of lot-size horizons. One lot-size horizon is 

based on the case company's current ERP parameters from the Injection Molding department. The 

second type of lot-size horizon is based on historical order sizes. Planners sometimes use different 

order sizes than proposed by ERP based on standard parameters. These decisions are usually based 

on a planners’ insights about yield losses or future demands that are not at the disposal of ERP at that 

time. Due to these deviations in order size, it is relevant to consider ‘actual’ lot-size horizons in 

addition to ERP-based lot-size horizons. Whether the ‘actual’ lot-size horizons are correct, is validated 

by representatives from the planning department. Finally, insights from the ERP-based and ‘actual’-
based lot-size horizons were used to generate simulated lot-size horizons. 

Figure 23: Frequency distribution of lot-size horizons 

Scenario: ERP-based  

From the analysis of ERP parameters and historical order sizes, it appeared that on 33% of the items, 

demands are aggregated by only 1 week (see Figure 23). As explained in Section 4.2.3 where the order 

proposal mechanism is described, the model’s three lot-sizing scenarios aggregate the highest 

demands only by 4, 4, or 2 weeks respectively. Therefore, an extra lot-sizing scenario is developed that 

resembles the current planning function and its decisions. This extra lot-sizing scenario is developed 

with four lot-sizing categories wherein the fourth category aggregates demands by just one week. 

Obviously, this leads to a large number of setups. Taking into consideration the relatively long set-up 

times of the case company's upstream supply chain operations, this scenario led to an average 

utilization larger than 100%. Capacity requirements at the first workcenter are shown below in Figure 

24. By increasing machine availability with extra capacity, utilization could be decreased. However, 

this led to high operational costs (see Table 13).   

Table 13: Performance ERP-based scenario 

Total cost Service level Capacity requirements 

772,450.64 59.7% 85.8% 
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Figure 24: Capacity requirements (wc1) 

 

Although the planning parameters that are used as input for the model correspond with current ERP 

parameters, still a significant difference is found between simulated and historical performance i.e., 

utilization, V-CLIP, and costs. This remarkable result can be explained when considering multiple 

echelons of the case company's supply network.  

For many items produced upstream, downstream planning and lot-sizing decisions e.g., demand 

aggregations, are incorporated into the planning. In other words; when incoming demands at 

upstream echelons are already aggregated by planning and lot-sizing decisions from downstream 

operations, further aggregation is not necessarily needed. To explain this by an example, when 

planning at downstream echelon 𝑫𝒏−𝟏 would aggregate demands by 4 weeks, incoming demands at 

the preceding echelon 𝑫𝒏 that exists upstream will be received as if they are aggregated by 4 weeks. 

This is illustrated in Figure 25. In this scenario, aggregating demands by one week at the upstream 

echelon  𝑫𝒏 will effectively be equal to demand aggregation equal to four weeks. 
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?
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Figure 25: Multi-echelon demand aggregations 

It is without the scope of this research to analyze the planning and lot-sizing decisions from 

downstream echelons. However, a more detailed analysis on planning and lot-sizing decisions from 

downstream echelons could potentially lead to better insights into actual demand aggregations 

throughout the case company’s supply network. These insights can also be useful for central order 

coordination of the SCOP function. Analyzing the impact of demand aggregations throughout the 

supply network is therefore marked as a direction for further research. Instead, this research will 

generate a more realistic approximation of the case company’s current planning function by demand 

aggregations ranging from 4 to 12 weeks. This corresponds with the three scenarios that were 

described in Section 4.2.2.  
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Scenario: Multi-echelon based 

Because the ERP-based scenario leads to contradictory results compared to historical performance, a 

second scenario is made that is based on a so-called multi-echelon approach. Multi-echelon based lot-

size horizons are determined and validated just like the ‘actual’ lot-size horizons were validated in 

coordination with representatives from the planning department. With this approach, multi-echelon 

stands for the consideration of planning decisions from downstream operations and its effects on lot-

sizing from upstream operations. The multi-echelon approach resulted in lot-size categories shown in 

Table 14. 

 

 

 

 

Table 14: Current scenario 

In comparison with the ERP based scenario, the multi-echelon scenario shows a large decrease in 

setup-costs and required capacity. Additionally, the service level approximates the average delivery 

performance that resembles current practices and was presented in Section 2. Therefore, studying 

lot-sizing decisions according to a multi-echelon based scenario is considered to yield a better 

approximation of current practices. 

 Table 15: Performance multi-echelon based scenario 

 

5.3. Sensitivity analysis 

With the sensitivity analysis is targeted to obtain better insights into the causal relations between; (I) 

demand aggregations and order quantities, (II) capacity requirements and available capacity, and (III) 

performance. Additionally, the robustness of the model is demonstrated. 

In the development of the model, three different lot-sizing scenarios were incorporated. The different 

lot-sizes have a direct effect on order quantities that are generated. The model output for each 

scenario is summarized in Table 16. An overview of the lot-sizing scenarios can be found in Section 

4.2.3, Table 7. 

Producing large order quantities, with scenario 1, results in large peaks in capacity requirements. The 

peaks are costly since machine availability needs to be temporarily increased and large inventories 

result. These extra costs do not outweigh cost reductions due to fewer setups and changeovers in 

periods of low utilization. Additionally, overall delivery performance is decreased with 20.3 percent 

points (-20.3 p.p.) compared to current practices which makes it unfavorable to produce large order 

quantities as with scenario 1. 

Lot-size horizons Volume categories 
ERP based 

Volume categories 
Multi-echelon based 

12 wk 4% 21% 

8 wk 8% 32% 

4 wk 50% 47% 

1 wk 38% 0%  

Total cost  Service level Capacity requirements 

€  718,494.64 85.5% 79.9% 
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Table 16: Sensitivity analysis lot-sizing scenarios 

The second scenario leads to similar order quantities as with the multi-echelon based scenario 

presented earlier in this section. However, the second scenario applies larger order quantities to low-

volume items, reducing setups and changeovers but increasing inventory. Model output indicates that 

this leads to reduced utilization but higher operational costs (+8%) and similar delivery performance 

compared with current practices shown in Table 16. 

The third lot-sizing scenario wherein the shortest lot-size horizons are applied, yields the best overall 

performance. Although capacity requirements are better leveled than with scenarios 1 and 2, the large 

number of setups cause an increase in required machine availability. At workcenters 1 and 2, where 

capacity requirements are highest, available capacity is therefore increased by 7% resulting in 

comparable operational costs as with current practices. Additionally, this configuration leads to 

improved on-time delivery performance (+5.9 p.p.). For completeness, Table 16 also includes 

conventional delivery performance, measured by CLIP. One can derive from CLIP compared to V-CLIP 

that it behaves by a similar trend under the different lot-sizing scenarios.  

To find if further optimization is possible, the lot-size horizons from each volume category in the third 

scenario were separately adjusted (+1 and -1) to find if performance in terms of operational costs and 

on-time deliveries could be improved. From this iterative search, it appeared that the lot-sizing horizon 

for the high volume category could not be further optimized. Decreasing the high-volume category’s 
lot-size horizon to 1 week led to increased utilization and even a small decrease in performance (see 

Figure 26). Increasing the high-volume category’s lot-size horizon to 3 weeks reduced performance 

even more (-2.1 p.p.). Adjusting lot-size horizons for the moderate volume category also did not yield 

significant improvements. By increasing the horizon to 5 weeks, delivery performance decreased  

(-0.4 p.p.). By decreasing the lot-size horizon to 3 weeks, capacity requirements increase (+1.7 p.p.) 

and resulting improvements of delivery performance are negligible (+0.1 p.p.). At last, adjustments on 

low volume lot-size horizons neither improve performance. Results for the high, moderate, and low 

volume lot-sizing horizons are graphically depicted in Figure 26, Figure 27, and Figure 28. 
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 Lot-size scenarios  

 Scenario (1) Scenario (2) Scenario (3) 

                              Costs € 838,475.64 € 778,916.80 € 697,247.12 

       V-CLIP    (CLIP) 65.2%   (52.7%) 83.3%   (68.8%) 91.4%   (74.7%) 

Utilization 78.5% 80.0% 83.1% 

Difference with current situation 
 (multi-echelon based scenario) 

Costs 
V-CLIP 

€ 119,981.00 € 60,442.16 € -21,247.52 

-20.3% -2.2% 5.9% 

Figure 26: High volume category Figure 27: Moderate volume category Figure 28: Low volume category 
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5.4. Best mix 

From the approximation of the current planning model in Section 5.2, it became clear that in terms of 

utilization and V-CLIP, it is infeasible to have weekly changeovers and setups (see Table 13). The 

numerical analysis of lot-size scenarios in Section 5.3, demonstrated that extraordinary large lot-size 

horizons led to large repetitive peaks in capacity requirements, dramatically affecting tardiness. From 

the sensitivity analysis, it became apparent that the best mix of the case company’s demand 
aggregations and order release consists of 2-week, 4-week, and 8-week lot-size horizons for 

respectively high, moderate, and low volume categories. To justify the increase in setups and 

changeovers compared to current practices, machine availability on workcenters 1 and 2 is increased 

by 7%.  

 

5.5. Insights 

Now that the model output is numerically compared and sensitivity analysis is executed, the following 

insights are obtained: 

1. What is the model output under parameters that correspond with the current situation? 

Upstream planning decisions are affected by downstream planning and lot-size. To provide an 

accurate representation of the current situation, multi-echelon analysis on ERP parameters and 

planning decisions is required. Model output under lot-sizing parameters that correspond with the 

current situation, based on a multi-echelon perspective, is presented in Table 15. 

2. Is the model output, based on the current situation, in line with the actual output?  

Numerical analysis demonstrated that a multi-echelon analysis on planning decisions from the whole 

supply network would provide the best representation of actual performance. However, this study 

received most focus on planning decisions from one upstream echelon and therefore approximated a 

multi-echelon scenario by using insights from representatives of the planning department. This led to 

three volume categories and corresponding lot-sizing horizons ranging between 4 to 12 weeks. This 

approximation of the current situation led to model output that is comparable with actual 

performance (85.5% versus 86%). Note that the actual performance of the Injection Molding 

department is extensively reported in Section 2.3. Resulting operational costs from the model output 

were validated by representatives from the planning department and administration office. 

3. What happens with the model output when different lot-sizing decisions are applied?  

It is demonstrated that reduced order quantities lead to reduced tardiness. However, reducing order 

quantities leads to more setups which increases utilization. As is described for the ‘best mix’, available 
capacity may need to be (temporarily) increased to justify higher capacity requirements due to an 

increased number of setups. Clearly, an optimum exists between the number of setups, utilization, 

operational costs, and overall on-time delivery performance.  

4. What happens with the model output under different available capacity?  

Sensitivity analysis was carried out on the third lot-sizing scenario. By increasing available capacity on 

workcenters 1 and 2, tardiness was reduced and V-CLIP improved. In other words, by increasing 

available capacity the consequence of reducing order quantities can be offset. By increasing available 

capacity at workcenters 1 and 2 just as in the best mix, the effectiveness on V-CLIP and utilization 

gradually decreases as shown in Figure 29. 
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Figure 29: Sensitivity of utilization 

 

5. What is the best mix given the targeted delivery performance? 

When the planning was conceptualized in Section 3, functional requirements were listed for the entire 

system, i.e. the case company’s complete supply network. Based on the system requirements, 

requirements were listed for the operations in the scope of this research, i.e. the case company’s 
upstream supply chain operations. Requirements concerned delivery performance and operational 

costs. It was determined that at least 90% V-CLIP is required by operational costs that do not exceed 

current costs. By applying the third scenario and increasing available capacity on workcenters 1 and 2 

by 7%, a delivery performance of 91.4% can be realized by a cost reduction of € 21,247.52 (-1.0%) 

compared to operational costs of current practices.  
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6. Conclusions & Recommendations  
Now that the numerical results have been analyzed and reported, overall conclusions are presented in 

this section. Conclusions will be given by the structure of the research questions that were formulated 

and presented in Section 1.3. This section will conclude with a discussion wherein implications and 

recommendations are given.   

 

6.1. Conclusions 

This research is focused on the case company’s planning design and therewith the decoupled supply 
and control structure that is applied for supply chain operations planning. Throughout the research, 

different findings and conclusions emerged that are presented below. 

6.1.1. Conclusions by research questions 

- How should the planning system of upstream supply chain operations be designed? 

Due to the vertical integration of the case company’s supply network and product characteristics such 
as short life-cycles and complex configurations, a strong urge exists for a well-organized SCOP 

function. It is the SCOP’s responsibility to coordinate the release of materials and resources in the 

supply network such that customer service constraints are met at minimal costs. In the current 

situation, the case company’s supply and control structure is decoupled into two structures wherein 

differences exist in information available throughout the supply network. This withholds the SCOP 

function from central coordination, resulting in insufficient on-time delivery performance. 

After the current planning design was compared with formal supply chain operation’s control 

structures it was found that the SCOP’s anticipation function, responsible for realizing an order 

schedule that is lead-time feasible, consists of elements that are useful for developing the case 

company’s SCOP function. The fundamental elements consist of demand planning, order release, and 

execution. 

After that the model was conceptualized and translated into mathematical expressions, the outcomes 

from different releases of materials and resources could be numerically compared by on-time delivery 

performance and operational costs. From this numerical analysis, the impact of limited information 

available throughout the supply network became clear. When planning only with the information that 

is available upstream the supply chain, frequent setups and changeovers led to high operational costs 

and exceptionally poor on-time delivery performance. When planning based on information available 

throughout the whole supply network, supply and demand from upstream and downstream 

operations could be better aligned resulting in reduced operational costs and improved on-time 

delivery performance. It is therefore important that the planning design of upstream operations relies 

on a central coordination and release mechanism that is represented by the company’s SCOP. 

-  How should on-time delivery performance of upstream supply chain operations be measured? 

To assess whether the SCOP function coordinates the release of materials and resources such that on-

time delivery performance constraints are met at minimal operational costs, robust performance 

indicators are required.  

The case company defines delivery performance as the fraction of demand that is met within a 

specified lead time. However, analysis of the current situation demonstrated the case company’s 
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metric for internal on-time delivery performance does not reflect the fraction of demand but considers 

order-lines instead. Additionally, it is found that current performance measurements are based on 

unreliable data. Currently, the case company measures internal on-time delivery performance by 

comparison of a job’s finish date and due date. Analysis demonstrated that on 35% of the jobs 

produced late by all upstream operations in 2017, finish dates were registered before all items were 

received. Measuring on-time delivery performance of upstream operations in 2017 by delivery dates 

instead of finish dates gives a more reliable performance indicator and decreased average delivery 

performance by 17.1 percent points.  

To improve current measurements, a metric is defined that represents the fraction of demand that is 

met within a specified lead time. More specifically, a method of measurement is developed that 

represents the fraction of demand that is met on-time, and the fraction that is delivered with certain 

tardiness. Tardy deliveries’ contribution towards performance reduces in proportion to the deliveries’ 
tardiness by partial deliveries’ cumulative distribution function. The fraction of demand that is not 

delivered at all, does not make any contribution to the performance. When applying the improved 

performance metric that is referred to as ‘V-CLIP’, outcomes are slightly higher due to the 

consideration of the fraction of demand that is delivered and the contribution of tardy deliveries. 

- How should the planning system of upstream supply chain operations be modeled and how do 
model parameters influence on-time delivery performance and operational costs? 

Based on elements from the anticipation function developed by Jansen et al. (2013), a model is 

developed that consists of three mechanisms wherein (I) order proposals are generated, (II) load 

balancing is applied, and (III) on-time delivery performance is determined by V-CLIP. Additionally, 

operational costs are calculated based on setups, inventory carrying costs, and machine availability. 

To secure a feasible scope but include all characteristics of upstream supply chain operations, one 

operation is modeled that is represented by four interdependent workcenters.  

Numerical comparison and sensitivity analysis demonstrated that order releases, either multi-echelon 

or local based, have a large impact on utilization, costs, tardiness and therewith performance. To find 

how the release of materials and resources can be best coordinated by the case company’s SCOP, 
three lot-sizing scenarios have been compared wherein different order proposals were generated 

based on items’ average demand. Items’ average demands were used to develop three volume 

categories that were used for lot-sizing decisions. Typically high volume items contained small demand 

aggregations, securing balanced capacity requirements, and low volume items contained large 

demand aggregations to justify setup costs. Results show that an optimum exists in demand 

aggregations for each volume-category in terms of on-time delivery performance under consideration 

of constrained operational costs. Also, it was found that current order releases can be improved by 

applying smaller demand aggregations, resulting in balanced capacity requirements and reduced 

supply chain investment in inventories. Therewith, the difference in commonality, i.e. difference in 

order size upstream and downstream the supply network, can be reduced. With an increase of 7% of 

the available capacity at workcenters 1 and 2, V-CLIP can be increased towards 92.1% with similar 

operational costs as in the current situation.   
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With all sub-questions answered, an answer to the main research question can be formulated. It can 

be concluded that the current coordination of order releases can be improved with a central release 

mechanism. With centralized decision making over a multi-level supply network, consisting of internal 

production and internally subcontracted production, differences in information and differences in 

commonality upstream and downstream the supply network can be reduced. It is found that better 

alignment of demand aggregations throughout the supply network, leading to order proposals used 

by the central release mechanism, can reduce tardiness and improve internal on-time delivery 

performance without increasing operational costs.  

 

6.2. Discussion 

Besides the findings and conclusions that emerged throughout this study, a reflection of the research 

is provided below. The reflection consists of implications of this study for scientific research and for 

the case company. 

6.2.1. Implications for scientific research 

Based on the above-presented findings and conclusions, this study has made three contributions to 

existing academic literature. First, existing central release mechanisms, which are studied in detail by 

anticipation and clearing functions, represent a supply network that belongs to a single organization 

wherein information is shared freely (Hackman & Leachman, 1989; Jansen et al., 2013; Missbauer, 

2011). However, this study has demonstrated it is not straightforward that a supply network is 

designed accordingly in practice. Therefore, this study compared a release mechanism in a multi-level 

supply network wherein differences exist in information available upstream and downstream the 

network. By this study it was found and confirmed that a difference in information available leads to 

sub-optimal delivery performance and operational costs. Secondly, this study adds to existing 

literature by the development of a delivery performance metric that represents the fraction and the 

extent to which deliveries are made within a specified lead time. To the best of our knowledge, this 

combination is not represented by other existing delivery performance metrics that are used for 

assessing internal delivery performance. Additionally, this measure of on-time delivery performance 

has been used in the comparison and assessment of order release mechanisms which provides a use-

case example of the newly proposed service measure. Thirdly, this research adds to the existing 

literature by comparing the impact of different demand aggregations from the central release 

mechanism to utilization and therewith delivery performance and operational costs. By grouping 

items into different volume categories and linking these to volume dependent demand aggregations, 

different order quantities are generated. By comparing different order sizes, it is revealed that in the 

context of this particular study, on-time delivery performance could be improved without increasing 

supply chain investment compared to current practices. When reviewing multiple production units or 

even a full supply network by the impact of demand aggregations, this approach could potentially 

allow the central coordination mechanism to make further improvements.   

 

6.2.2. Implications and recommendations for the case company 

This research has shown the case company the potential value of centralized control in the multi-level 

supply network that consists of Prodrive Technologies and Prodrive Mechanics. Although it is 

confirmed by academic literature that decoupling of production units is common in vertically 

integrated supply networks, decision making can only be optimized if information between upstream 
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and downstream operations is shared and taken into consideration with order releases. In addition to 

the vertical integration of operations, vertically integrated information is required. 

Based on this insight, a number of recommendations are given to the case company: 

Measure on-time delivery performance by V-CLIP  

It is recommended to measure internal on-time delivery performance by one standardized metric such 

that the performance of different operations is comparable over time. During this research, a metric 

is developed that is conform to what the case company intends to measure; ‘the fraction of demand 

that is met within a specified lead time’. It is recommended that the newly developed metric, referred 

to as V-CLIP, will be used for future measurements of internal on-time delivery performance. 

Compared to the current method of measurement wherein confirmed line item performance is 

measured, V-CLIP yields a slightly higher output since also tardy deliveries contribute to overall 

performance. However, this research also revealed that current performance is actually lower than 

what is measured due to the unreliable registration of jobs’ finish dates.  It was found that 35% of the 

jobs produced late by upstream operations in 2017, finish dates were registered before all items were 

received. Since material comes only available once deliveries are made, it is recommended to start 

measuring delivery performance by delivery dates instead of finish dates. Also, it is recommended to 

improve registration of finish dates such that the reliability of data is enhanced. In the near future, the 

company’s existing Manufacturing Execution System allows for accurate registration of partial 

deliveries and jobs’ finish dates on operations-level. This data can then be compared with existing 

delivery registrations made at the warehouse. Depending on how reliable data will be registered with 

MES, V-CLIP allows comparing future delivery performance by data from MES and warehouse. 

Potentially these performance outcomes can then also be compared to assess operations’ and 

warehouse’s performance. 

 

Analyze demand, inventories, and order sizes from a multi-echelon perspective  

Although a multi-echelon analysis received limited attention in this research, it is demonstrated that 

planning decisions can be improved when demands, inventories, and orders sizes are considered from 

a multi-echelon perspective. Therefore, it is recommended to conduct further research with a multi-

echelon focus on the impact of order release decisions. In this context, extra insights could be obtained 

by the inclusion of multi-level demand and buffers in the form of inventories and safety times 

throughout the supply network. 

To facilitate this kind of future research it is strongly advised to collect data on forecasts, 

(intermediate) demands, ERP parameters, replanning and rescheduling, and data that represents the 

execution function e.g., setup times, cycle times, yield loss, deliveries, and order confirmations. 

Currently, only data is available from forecasts, customer demands and the execution function. With 

this research, it is demonstrated that it would be valuable if also intermediate demand and 

intermediate demand changes are studied in future research.  

 

Reduce difference in commonality between upstream and downstream operations  

Numerical analysis of the impact from current order releases on operational costs and on-time 

delivery performance has demonstrated the potential of reducing currently applied order sizes. By 

applying smaller order sizes, on-time delivery performance increases due to leveled capacity 

requirements. Additionally, supply chain investments in intermediate inventories between upstream 

and downstream operations can be reduced. Because smaller order quantities directly affect the 
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number of setups, a small increase in capacity may be required to cover for uncertainties. Analysis 

demonstrates that to some extent, savings in inventory investment may outweigh costs of a capacity 

increase, resulting in improved delivery performance and reduced operational costs compared to 

current practices. Note that this implication especially concerns Prodrive Technologies’ Injection 

Molding department because this study is built upon historical data and the operational configuration 

of only this department. However, the model is developed such that the behavior of other operations 

can also be simulated. Therefore, it is recommended to extend this analysis to other (upstream) 

operations to find if delivery performance or operational costs of the current situation can be 

improved by order release decisions.  

Because numerical analysis revealed the potential of decreased order sizes for the Injection Molding 

department, it is recommended to start a program for reducing setup and changeover-time. High 

investments are made in the automation and efficiency of upstream operations. With robots, 

automated guided vehicles, and automated warehouses, a ‘lights out factory’ is realized. However, 
the Injection Molding department still relies on conventional setups that are labor intensive. 

Therefore, it is recommended to invest in the potential of reduced setups and changeovers bringing 

Prodrive Technologies closer to the realization of a ‘lights out factory’ in the high-tech industry. 

 

Reduce difference in information available between upstream and downstream operations  

At last, it is recommended to facilitate upstream operations executed by PM with information from 

downstream. Due to the multi-level supply structure of PT and PM, material requirements are 

currently communicated through stock-transport orders. Because stock-transport orders don’t 
incorporate changes in demand, downstream demand changes are not automatically communicated 

through rescheduling proposals to upstream operations. Therefore, it is recommended to make 

upstream material requirements dependent on downstream production orders instead of inter-

subsidiary stock-transport orders. By this simple adjustment in the ERP, rescheduling proposals can 

be automatically communicated if downstream demand changes. This matter received limited 

attention in this research since only one upstream production unit was modeled and downstream 

demands were considered only from one point in time. However, this research has shown the 

potential of reducing differences in information available throughout the supply network and 

therefore the implementation of this recommendation is an important step forward. It is likely that 

under the availability of rescheduling proposals and robust on-time delivery performance metrics, 

order acceptance and replanning decisions will require more attention in the future. 

 

6.2.3. Limitations & Future Research 

Despite the contributions of this research, also a number of limitations were encountered. The largest 

limitation of this research is that only a single production unit was modeled and downstream demand 

from intermediate operations was not at disposal. Instead, incoming demands were modeled based 

on historical customer demands. Through the numerical study and comparison of results, it appeared 

that downstream planning decisions had indirect effects on upstream planning. Because no 

intermediate demands were available, these effects were difficult to retrieve from the ERP parameters 

that were available. However, in correspondence with representatives from the planning department, 

effects of downstream planning decisions were represented such that numerical analysis of this study 

could still demonstrate the potential of multi-echelon planning. 
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If in future research intermediate demands would be incorporated, the impact of planning decisions 

throughout the whole supply network can be further studied. Additionally, with the availability of 

intermediate demands, V-CLIP can be extended by the inclusion of downstream consumption, as it 

was referred to in this research. When considering the full supply network in future research, it is 

recommended to include interdependencies of workcenters within one production unit. Previous 

studies have generalized output from one production unit by only modeling the bottleneck 

workcenter. In the context of the case company’s manufacturing network, interdependent 
workcenters lead to shifting bottlenecks which require a representation of all workcenters as is 

applied in this research.  

 

Rolling planning horizon  

Another limitation of this research concerns the consideration of future demands from only one point 

in time. Hence, the impact of rescheduling and demand changes received little attention in this 

research. When intermediate demand data is available and empirical data is available about 

rescheduling proposals, a planning under a rolling horizon can be studied (Yang & Jacobs, 1999). By 

considering a rolling planning horizon, the planning functions’ decisions regarding replanning can be 
optimized by defining a frozen internal, wherein no replanning is allowed, and a replanning interval, 

wherein planned production may still be rescheduled.   

 

Buffers 

Earlier in this report, it was remarked that downstream customer service levels say 95%, do not 

necessarily require upstream service levels of 95%. Therewith, the potential of a comparison from 

service levels throughout the supply network was addressed. However, this research received limited 

focus on buffers throughout the supply network, e.g. safety times, safety stocks that can be used to 

cover for uncertainties in supply or demand. Although this research included the effects of upstream 

inventories, no integral focus exists on buffers throughout the whole supply network. Jansen et al. 

(2013) argued that optimization of safety stocks under rolling planning is to-date an unsolvable and 

intractable problem6. However they also mention that earlier experiments showed that eliminating 

safety stocks “is especially appropriate in situations where value added downstream in supply 

networks is relatively small” (2013, p. 257). This contradicts with Prodrive Technologies’ supply 
network and therefore it is considered relevant to gain further insights into improvements of planning 

decisions and buffers within a supply network as from Prodrive Technologies.  

  

                                                           
6 to-date concerns 2013 
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Appendix 

A Introduction 

A.1 Organization chart 
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Figure 30: Organizational chart 
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A.2 Cause and effect diagram 
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Figure 31: Cause and Effect diagram
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B Data reduction 

From the order history that is available, a selection was made of all orders processed by Prodrive 

Mechanics over 2017. From these orders, only the ones that were processed by Machining, Injection 

Molding, and Magnetics are considered. To determine tardiness, scheduled end dates can be 

compared with actual end dates (i.e., finish date of order confirmed by warehouse). Because not all 

orders are logged correctly during the production and warehouse processes, the data contains many 

incorrect or missing information. Only 68% of the orders in the data set is actually confirmed by 

warehouse. Because it is questionable whether all confirmations were logged correctly by the formal 

process, incorrectly logged order confirmations are deleted from the data set. More specifically, 

orders are assumed to be logged incorrectly when the confirmation date is more than 31 days before 

or more than 31 days after the scheduled end date. This elimination of outliers reduced the available 

data by 3% to 65%. 

  count  count of 
confirmed 

% 
confirmed 

count of order 
with tardiness 
≤ 31 days 

% 
confirmed 
correctly 

count of order 
with tardiness 
≥ -31 days 

% 
confirmed 
correctly 

Machining 5853 4108 70% 3990 68% 3958 68% 

Injection 
Molding 

529 290 55% 288 54% 263 50% 

Magnetics 459 237 52% 226 49% 225 49% 

totals: 6841 4635 68% 4504 66% 4446 65% 
 Table 17: Data reduction 
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C Determining due dates 

Items produced by Machining are produced at a subsidiary manufacturing plant named PM. This 

results in different lead time as compared to operations carried out at PT. Lead times play an 

important role in the determination of due dates, tardiness, and therewith delivery performance. To 

prevent ambiguity in performance measurements between PT and PM, it is described below how 

these differences in lead times are taken into consideration when determining due dates and 

tardiness. 

To compare the definition of lead times within PT and PM the Injection Molding department provides 

an interesting example because Injection Molding is moved recently from PM to PT. Due to the 

movement of Injection Molding in February 2018, different lead times are applied since then, but 

delivery performance based on due dates still has to be comparable with the former scenario wherein 

Injection Molding was still part of PM. When Injection Molding was still part of PM, items were 

‘procured’ with a standard inter-subsidiary transport time of 1 day (see Figure 32). This transport time 

applies for all jobs processed at PM. Since the movement, goods are still physically transported from 

the production site to the central warehouse and to the subsequent operation. However, just as with 

PT’s operations, Injection Molding does no longer require inter-subsidiary transport time. Therefore, 

also internal lead time between the production site and the central warehouse is set to a standard of 

3 days. Note that lead time as in the old scenario equals internal throughput time from the new 

scenario when we assume inter-subsidiary transport time to be deterministic (i.e., B2conf + Purch. 

order = Imconf = 3 days). Under this assumption, the definition of due dates and end dates is the same 

for production at PT and production at PM. Therewith, delivery performance at both plants is 

comparable. 

B2conf
(2 days)

Injection Molding (order #) Pur.

Purch. order
( 1 days)

BookSYSA
(0 days)

WH1 
(3 days)

System 
Assembly 
(3 days)

System Assembly (order #)

CLIP  

Figure 32: Lead times at PM 

Imconf 
(3 days)

System 
Assembly 
(3 days)

Injection Moulding (order #) System Assembly (order #)

BookSYSA
(0 days)

WH1 
(3 days)

CLIP  

Figure 33: Lead times at PT 

For completeness, another example is added of lead times from Machining, executed at PM. These 

lead times still includes inter-subsidiary transport time similar as in the old scenario of Injection 

Molding. The example is graphically depicted in Figure 34.  
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E Demand distribution 

To determine the demand fluctuations that the case company’s supply network is confronted with, 

sales orders are analyzed. Over a period of several months, data was gathered from sales orders which 

is shown in Figure 37. To aggregate sales data, demand changes were neglected and only the final 

sales orders were considered.   

 

Figure 37: Sales orders Q1 2018 

To analyze the demand, and create multiple scenario’s later, different distributions were fitted to the 

empirical data. To obtain an adequate fit, sales were aggregated on customer level and item level. 

However, neither of those aggregations led to good results. Two software programs were used for 

distribution fitting. Just as with distribution fitting to Tardiness described in Appendix D, first a rough 

analysis was made with EasyFit and later a more detailed analysis was made with R. 

The first analysis, carried out with Easyfit provided results allong three tests, (I) the Kolmogorov-

Smirnov test, (II) the Anderson-Darling test, and the (III) Chi Squared test. Based on the outcomes of 

those three tests, a weibull distributed demand seemed to have the most promising fit.   

Kolmogorov-Smirnov test:   

Although the sales order history cotains discrete values, the test assumes a continious distibution. 

With the test, the hypothesis is tested whether the data follows a particular distribution, in this case 

a weibull distributed demand. Since the test statistic is greater than the critical value, the hypothesis 

was rejected. 

Anderson-Darling test:  

Just as with the above described K-S test, it is checked whether the critical value is under the test 

statistic. Also for this test, the hypotheses were rejected, indicating that no adequate fit is found 

between the sales history and the weibull distribution.  

Chi Squared test:  

The chi-square test is an alternative to the Anderson-Darling and K-S tests. In contrast to the previous 

tests, this test allows for discrete distributions. For all levels of significance, the test statisctic exceeded 

the critical value meaning that no adequate fit was found between the sales history data and a weibull 

distribution. 
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Although outcomes from Easyfit already demonstrate that even a Weibull distribution did not result 

in an appropriate fit, a second analysis was made with R.  This only confirmed that no appropriate fit 

could be found. Therefore, it has been decided that only empirical demand data will be used instead.  

R script:   
> setwd("myworkdirectory") 

> library(fitdistrplus) 
> library(logspline) 
> library(survival) 
> library(MASS) 
> library(moments) 

# read the data 
Demand_history <- read.csv("Sales orders.csv", header = TRUE, row.names = NULL, nrows = 
4277) 

> summary(x) 
Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 1.0     2.0     6.0   137.8    36.0 22000.0 

> descdist(x, discrete = FALSE, boot = 5000) 

  summary statistics 
------ 
min:  1   max:  22000  
median:  6  
mean:  137.7816  
estimated sd:  889.9189  
estimated skewness:  15.10891  
estimated kurtosis:  273.7145  
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# Based on the previous plot we try different distributions 

fit_n <- fitdist(x, "norm") 
summary(fit_n) 
plot(fit_n) 
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fit_ln <- fitdist(x, "lnorm") 
summary(fit_ln) 
plot(fit_ln) 
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fit_w <- fitdist(x, "weibull") 
summary(fit_w) 
plot(fit_w) 
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par(mfrow = c(2, 2)) 
plot.legend <- c("Weibull", "normal", "lognormal") 
denscomp(list(fit_w, fit_n, fit_ln), legendtext = plot.legend) 
cdfcomp(list(fit_w, fit_n, fit_ln), legendtext = plot.legend) 
qqcomp(list(fit_w, fit_n, fit_ln), legendtext = plot.legend) 
ppcomp(list(fit_w, fit_n, fit_ln), legendtext = plot.legend) 

 

 

 

 

 

 

 





73 
 

F Processing time variability 

To analyze processing variability for each item, at each workcenter, on average 600.000 cycles were 

analyzed for each machine where on average approximately 200 distinct programs were used.  

To summarize the results, plots are shown in Figure 38, Figure 39, and Figure 40. Roughly all average 

cycle times are under 40 seconds for these workcenters. Variances diverge, especially for those jobs 

with only a small number of cycles, for example trial-shots for items in prototype phase. A part of the 

data is also represented in Table 18, wherein a snap shot is included of the available data on cycle 

times.  

 

Figure 38: Cycle time analysis workcenter 1 

 

Figure 39: Cycle time analysis workcenter 2 

 

Figure 40: Cycle time analysis workcenter 3 
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Program + timestamp Average cycle time Variance cycle time Count cycle time 
pp_2015_12_29__11_31_29.txt 37,38596154 0,143332729 208 

pp_2015_12_29__18_31_15.txt 27,67170732 1,41582E-05 246 

pp_2015_12_30__08_22_15.txt 30,87179775 1,293908004 178 

pp_2015_12_30__09_58_52.txt 30,4354057 0,107323667 14888 

pp_2016_01_08__15_00_25.txt 17,42037316 7,37053E-05 11684 

pp_2016_01_18__13_54_07.txt 19,95744512 0,001864801 10568 

pp_2016_01_22__14_45_10.txt 20,145902 0,054568953 8082 

pp_2016_01_25__13_57_27.txt 30,33792427 0,59031946 4384 

: : : : 
Table 18: Snapshot of cycle time data 
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G Starting inventories 

To initiate model calculations and generate feasible order proposals, starting inventories are applied. 

Starting inventories reduce large capacity requirement at the start of the simulation. Since the 

demand stream which is used as input, is based on sales orders from a certain time interval, nearly all 

items have to be produced in the first 30 days if no inventory would be assumed. Table 19 provides 

an overview of applied starting inventories for a selection of items. In total 120 items of the 221 items 

in total are assigned with starting inventory. 

 

Item 
Item 

number Router Months of stock 
Average monthly 

demand 
Starting 

inventory 

6487-1100-3100 6 A-1 1,00 26,91 27 

6309-1200-8904 214 C-1 1,00 1367,27 1367 

6309-1603-4101 213 A-2 1,00 1352,73 1353 

6432-1000-2906 102 A-2 1,00 237,45 237 

6731-1601-7101 46 B-1 2,00 108,00 216 

6500-1100-4304 95 A-1 1,50 224,36 337 

6001-1303-0101 32 B-2 0,25 88,36 22 

6527-1200-4100 150 A-1 0,25 383,64 96 

6516-1500-9400 185 B-1 0,50 571,64 286 

6564-1200-1504 123 A-1 0,50 311,64 156 

6655-1301-9907 126 A-1 0,25 314,91 79 

: : : : : : 

6525-1701-1900 186 A-1 0,50 577,45 289 

6500-1100-5704 66 B-1 0,50 153,09 77 

6309-1600-0500 107 B-1 1,00 265,82 266 

6309-1600-2600 18 B-1 0,50 60,73 30 

6309-1300-5800 181 A-1 0,25 539,64 135 

6475-1400-0800 41 A-1 0,25 94,91 24 

6001-1333-6200 207 C-1 0,50 1263,64 632 

6500-1400-5400 98 B-1 0,50 226,18 113 

6731-1601-7201 165 A-1 0,50 444,00 222 

6596-1200-8302 161 B-1 0,50 414,18 207 

6516-1400-3500 189 B-2 0,50 605,82 303 

6731-1601-7201 165 A-1 0,50 444,00 222 
Table 19: Starting inventories 
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H Numerical examples:  

H.1 Example 1: V-CLIP 

In this example, a numerical example is considered where an upstream operation has released a 

production order that will be due on 10-04-2018. The target quantity contains 96 pieces of which only 

90 pieces are delivered. Let’s assume the remaining pieces where rejected due to unconformities. Due 

to the process characteristics such as long setup times, the manufacturer’s upstream operations 

generally produce in larger batch sizes than the organization’s downstream operations such as 

assembly for example (see Table 21). This implies that the produced quantity from upstream supply 

chain operations (𝒑𝒒𝒋) is consumed partially over time by downstream operations (𝒅𝒒𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒋). 

Ultimately downstream operations will recognize a shortage of 6 items which will be considered as 

backorders (𝑩𝒋) (see Table 22). The examples are based on a Uniform distribution to all tardy 

deliveries ranging between 1 until 10 days tardy. The formula increases penalty when tardiness 

increases and also penalizes for those products that are backordered. 

 

 

 

Table 20: Numerical example - planned and actual order quantities 

 

 

 

 

Table 21: Upstream production/ delivery schedule 

 

𝑐𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝐵𝑗  

11-04 32 0 

13-04 32 0 

17-04 32 6 
Table 22: Downstream consumption schedule 

When on-time delivery performance according 𝑉 − 𝐶𝐿𝐼𝑃𝑗 is measured by equation (2), and the 

cumulative distribution function of a Uniform distribution is applied, performance of 83% is found (see 

calculation below).  

Delivery performance V-CLIP 

Input: 𝑞̂𝑗 𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 𝑇𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 

Output: 𝑉 𝐶𝐿𝐼𝑃 

  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 48
96

+  24
96

∗(1 − (𝐹(2))+  18
96

∗(1 − (𝐹(3))=  83% 
        = 50% +   20%  +   13%  =   83%   

𝑝𝑞̂𝑗 96 items 

 𝑝𝑞𝑗 90 items 

𝑑𝑗 10-04 

𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝑝𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 

07-04 24 

09-04 24 

12-04 24 

13-04 18 
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When the matter is considered from an inventory management perspective the assessment of on-

time delivery performance can be taken a step further. By reviewing whether late partial deliveries 

are actually causing delays downstream, different delivery performance would result. Strictly 

speaking, downstream production is not disrupted as long as items are delivered in sufficient quantity 

and before the planned consumption date downstream (𝒄𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒋). This logic is also graphically 

depicted in Figure 11. To express this logic mathematically a new variable is included, the inventory 

position (𝑰𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒋). Each time a new partial delivery is received or a partial delivery is consumed, the 

inventory position will be updated. Based on the inventory position and possibly backorders, it can be 

determined whether a planned production batch downstream is delayed or not. To complete the 

example, it is assumed the last 6 pieces are delivered with 1 day tardiness, at 18-04. Based on the 

example on-time delivery performance of either 99.4% on item level, or 96.7% on batch level are 

found.  

Delivery performance on item level 

Input: 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗   𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗    𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝑐𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝐵𝑗  

Output: Delivery performance on item level 

1. 𝑆𝑒𝑡 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(0) = 0  
2. 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡)= ∑ 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 (𝑡 − 1) + 𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡) −  𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡) 

𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(07 − 04) = 24 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(09 − 04) = 24 + 24 =  48 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(11 − 04) = 48 − 32 =  16 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(12 − 04) = 16 + 24 =  40 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(13 − 04) =  40 + 18 − 32 = 26 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(17 − 04) =  26 − 32 = −6 
𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(18 − 04) =  −6 + 6 = 0 

3. 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 90
96

+  6
96

∗ (1 − (𝐹(1)) =  99.4%  

 

Delivery performance on batch level 

Input: 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗   𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗    𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝑐𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  𝐵𝑗  

Output: Delivery performance on batch level 

1. Set 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 (0) = 0 
2.  𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡)= ∑ 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 (𝑡 − 1) + 𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡) − 𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡) 
 

3. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ≔ {
𝐵𝑎𝑡𝑐ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑓     𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  ≤  𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗  (𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗) , 𝑒𝑙𝑠𝑒
𝐵𝑎𝑡𝑐ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑤ℎ𝑒𝑛      𝑑𝑞𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗(𝑡) ≤  𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑗 (𝑡)             

  

 
4. Delivery performance = 32

96
+  32

96
 + 32

96
∗ (1 − (𝐹(1)) =  96.7% 

Although the penalty for delaying a whole production batch seems harsh, delayed production of the 

whole batch with all its related consequences is a realistic scenario. However, we will not further apply 

the above mentioned metrics since relating the consumed quantity to the partially delivered 

quantities leads to a more inventory management related perspective on the problem. This would be 

out of scope of this research.  
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H.2 Example 2: Generate order proposals 

Example by numerical enumeration of items 20, 21, and 22 (see Table 23). These items were selected 

because each item is categorized in a different ‘volume group’. Item 20, has a high average demand 
(>500), item 21 has a moderate average demand (251 < 𝑞21 < 500), item 22 has a low average demand 

(<250). For a description of volume categories and lot-sizing decisions, please see Figure 15 and Table 

5 presented in Section 3.4.2. Note that this example follows lot-size scenario 2. 

  

 

 

 

 

Table 23: Numerical enumeration: Generate order proposals 

 
 

 
>>> read downstream demand       ⊳  ∀ 𝑖 ∈ { 20,21,22 } 
 
  

# determine date difference and covert to months 
>>> 𝑚𝑜𝑛𝑡ℎ𝑠𝑖  = (downstreamdemand[‘Requested date’].max() - downstreamdemand[‘Requested date’].min()).months() 

 
Order reservation Requested date Requested quantity 

23 03-01-2018 68 

427 15-01-2018 768 

621 23-01-2018 14 

749 30-01-2018 2 

906 02-02-2018 10 

1071 09-02-2018 60 

1308 22-02-2018 2 

1409 28-02-2018 16 

1464 01-03-2018 30 

1539 05-03-2018 36 

1606 06-03-2018 16 

1588 06-03-2018 60 

1783 12-03-2018 4 

1995 20-03-2018 24 

2050 22-03-2018 2 

2127 27-03-2018 2000 

2337 06-04-2018 200 

2928 16-05-2018 10 

3302 15-06-2018 20 
Table 24: Downstream demand item 20 

 

 

Item PT's item description 

: : 

20 6829-1800-0700 

21 6724-1400-7300 

22 6500-1100-2405 

: : 
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Order reservation Requested date Requested quantity 

48 03-01-2018 10 

212 08-01-2018 2 

226 08-01-2018 2 

247 08-01-2018 40 

457 16-01-2018 6 

569 19-01-2018 76 

555 19-01-2018 10 

649 24-01-2018 10 

1862 14-03-2018 80 

1908 15-03-2018 2 

2036 22-03-2018 2 

2063 22-03-2018 2 

2867 09-05-2018 1380 

2977 18-05-2018 2 

3043 24-05-2018 2 

3116 31-05-2018 6 

3127 31-05-2018 2 

3258 13-06-2018 8 

Table 25: Downstream demand item 21 

Order reservation Requested date Requested quantity 

55 03-01-2018 2 

240 08-01-2018 2 

342 11-01-2018 2 

702 26-01-2018 50 

1222 19-02-2018 180 

1228 19-02-2018 4 

1400 28-02-2018 54 

1585 06-03-2018 32 

1659 08-03-2018 30 

2503 16-04-2018 2 

2512 16-04-2018 2 

2514 16-04-2018 36 
Table 26: Downstream demand item 22 

# sum requested downstream demand per item 
>>> average monthy demand (𝑞̅𝑖)= downstream_demand.groupby(item).sum(quantity) / 𝑚𝑜𝑛𝑡ℎ𝑠𝑖  
𝑞20 = 3322 / 5 =  644 

𝑞21 = 1634 / 5 =  327 

𝑞22 = 396 / 5 =  79 

>>> Lotsize(2,(𝑞𝑖))                                ⊳  ∀ 𝑖 ∈ { 20,21,22 } 



80 
 

 
       

   

 

 

 

 

 

 

 

 

 

 

 

 

>>> (𝑠𝑖,𝑗) = min[𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖]          # determine due date       

𝑠20,𝑗 =  03 − 01 − 2018 

𝑠21,𝑗 =  03 − 01 − 2018 

𝑠22,𝑗 =  03 − 01 − 2018 

 

>>> (𝑙𝑠𝑖,𝑗)  = 𝑠𝑖,𝑗 + 𝑙ℎ𝑖  # determine planning horizon by due date + lot size defined in weeks 

𝑙𝑠20,𝑗 =  03 − 01 − 2018 + to_timdelta(𝑙𝑠20 ∗ 7, 𝑢𝑛𝑖𝑡 =′ 𝑑′)  =  31 − 01 − 2018 

𝑙𝑠21,𝑗 =  03 − 01 − 2018  + to_timdelta(𝑙𝑠21 ∗ 7, 𝑢𝑛𝑖𝑡 = ′𝑑′) 

𝑙𝑠22,𝑗 =  03 − 01 − 2018 + to_timdelta(𝑙𝑠22 ∗ 7, 𝑢𝑛𝑖𝑡 = ′𝑑′)  

 

>>> (𝑝𝑞̂𝑖,𝑗) = [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 <  𝑙𝑠𝑖,𝑗] . 𝑠𝑢𝑚(𝑞𝑖)  #determine planned quantity job j 

𝑝𝑞̂20,𝑗 =  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 <  31 − 01 − 2018]. sum(𝑞𝑖) 

Table 27: Planned order item 20 

 

For element(20) in downstream_demand: 
If 644 <= 250: 
    𝑙ℎ20 = 20 
elif 644 <= 500: 
        𝑙ℎ20 = 10 
else: 
        𝑙ℎ𝑖 = 4 

 return 𝑙ℎ20 = 4 

For element(21) in downstream_demand: 
If 327 <= 250: 
    𝑙ℎ21 = 20 
elif 327<= 500: 
        𝑙ℎ21 = 10 
else: 
        𝑙ℎ21 = 4 

 return 𝑙ℎ21 = 10 

For element(22) in downstream_demand: 
If 79 <= 250: 
    𝑙ℎ22 = 20 
elif  𝑞𝑖  <= 500: 
    𝑙ℎ22 = 10 
else: 
    𝑙ℎ22 = 4 

 return 𝑙ℎ22 = 20 

Order # (upstream) Start date Planning horizon length Planned quantity 

20 03-01-2018 31-01-2018 852 
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𝑝𝑞̂21,𝑗 =  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 <  14 − 03 − 2018]. sum(𝑞𝑖) 

Table 28: Planned order item 21 

 𝑝𝑞̂22,𝑗 =  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 < ]. sum(𝑞𝑖)  

Table 29: Planned order item 22 

 
# generate new jobs until all demand for item 20 is covered 

 while 𝑝𝑞̂20 <  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖] . 𝑠𝑢𝑚(𝑞𝑖):   
      j = j+1 
     𝑠20,𝑗 = min[𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 >  𝑙𝑠𝑗−1 ] 
     𝑙𝑠20,𝑗 = 𝑠𝑗 + 𝑙ℎ20                        

     𝑝𝑞̂20,𝑗 = [𝑑𝑖,𝑗 < 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 ≤  𝑙𝑠𝑖,𝑗] . 𝑠𝑢𝑚(𝑞𝑖)             

Table 30: Planned orders item 20 

 
 while 𝑝𝑞̂21 <  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖] . 𝑠𝑢𝑚(𝑞𝑖):  

     j = j+1 
     𝑠21,𝑗 = min[𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑒𝑠 𝑜𝑓 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 >  𝑙ℎ𝑗−1 ] 
     𝑙𝑠21,𝑗 = 𝑠𝑗 + 𝑙ℎ21                        

     𝑝𝑞̂21,𝑗 = [𝑑𝑖,𝑗 < 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 ≤  𝑙𝑠𝑖,𝑗] . 𝑠𝑢𝑚(𝑞)             

Table 31: Planned orders item 21 

 

while 𝑝𝑞̂22,𝑗 =  [𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 < ]. sum(𝑞𝑖)  

  - 

  

Order # (upstream) Start date Planning horizon length Planned quantity 

21 03-01-2018 14-03-2018 236 

Order # (upstream) Start date Planning horizon length Planned quantity 

22 03-01-2018 23-05-2018 396 

269 02-02-2018 02-03-2018 88 

270 01-03-2018 29-03-2018 2172 

271 06-04-2018 04-05-2018 200 

272 16-05-2018 13-06-2018 10 

273 15-06-2018 13-07-2018 20 

274 15-03-2018 24-05-2018 1388 

275 24-05-2018 02-08-2018 18 
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SET_Wc3= Jobs.loc[Load['Router'].isin(['C-1','C-2'])]  

Table 35: Selection of jobs @ Wc3  

 
SET_Wc4= Jobs.loc[Load['Router'].isin(['A-2','B-2','C-2'])]  

 Table 36: Selection of jobs @ Wc4  
 

>>> 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 = 𝑓𝑗,𝑘  +  𝑝𝑞̂𝑖,𝑗 ∗ 𝑐𝑐̂𝑗,𝑘 
 
# order 165, cycle time wc1 = 26 seconds per piece, quantity order 165 = 1852 pieces 
48151,98 = SET_Wc1.loc[Jobs['Order #'].isin([165])]['Daily_Load'].sum())   
55560 = SET_Wc4.loc[Jobs['Order #'].isin([165])]['Daily_Load'].sum())   

 Table 37: Average daily capacity requirements at workcenter during lead time of job 165 

# order 26, cycle time workcenter 2 = 33 seconds per piece, quantity order 26 = 184 pieces 
6072 = SET_Wc2.loc[Jobs['Order #'].isin([26])]['Daily_Load'].sum())   

26 6731-1601-7404 26 03-01-2018 766.67 0.0 

868 6731-1601-7404 26 04-01-2018 766.67 0.0 

869 6731-1601-7404 26 05-01-2018 766.67 0.0 

870 6731-1601-7404 26 06-01-2018 766.67 0.0 

871 6731-1601-7404 26 07-01-2018 766.67 0.0 

872 6731-1601-7404 26 08-01-2018 766.67 0.0 
      

Table 38: Average daily capacity requirements at workcenter during lead time of job 26 

Item PT's item description Order # Start date Planned Quantity Router 

: : : : : : 

88 6527-1101-0700 88 15-01-2018 944 C-1 

219 6001-1444-7800 219 16-02-2018 188 C-1  

148 6731-1601-7304 562 18-06-2018 26 C-2 

: : : : : : 

Item PT's item description Order # Start date Planned Quantity Router 

: : : : : : 

      

165 6527-1200-4402 165 09-01-2018 1852 A-2 

      

: : : : : : 

Index Material Order # Date Daily_Load_Wc1 Daily_Load_Wc4 

165 6527-1200-4402 165 09-01-2018 8025.33 0.0 

1705 6527-1200-4402 165 10-01-2018 8025.33 0.0 

1706 6527-1200-4402 165 11-01-2018 8025.33 0.0 

1707 6527-1200-4402 165 12-01-2018 8025.33 0.0 

1708 6527-1200-4402 165 13-01-2018 8025.33 0.0 

1709 6527-1200-4402 165 14-01-2018 8025.33 0.0 

1710 6527-1200-4402 165 15-01-2018 0.0 13890.0 

1711 6527-1200-4402 165 16-01-2018 0.0 13890.0 

1712 6527-1200-4402 165 17-01-2018 0.0 13890.0 

1713 6527-1200-4402 165 18-01-2018 0.0 13890.0 
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# order 219, cycle time workcenter 3 = 29 seconds per piece, quantity order 26 = 188 pieces 
5452 = SET_Wc3.loc[Jobs['Order #'].isin([219])]['Daily_Load'].sum())   

Index Material Order # Date Daily_Load_Wc3 Daily_Load_Wc4 

219 6001-1444-7800 219 16-02-2018 681.5 0.0 

705 6001-1444-7800 219 17-02-2018 681.5 0.0 

706 6001-1444-7800 219 18-02-2018 681.5 0.0 

2051 6001-1444-7800 219 19-02-2018 681.5 0.0 

2052 6001-1444-7800 219 20-02-2018 681.5 0.0 

2053 6001-1444-7800 219 21-02-2018 681.5 0.0 

2054 6001-1444-7800 219 22-02-2018 681.5 0.0 

2055 6001-1444-7800 219 23-02-2018 681.5 0.0 
Table 39:  Average daily capacity requirements at workcenter during lead time of job 219 

 
>>> determine gross available capacity   = 𝑙𝑘 ∗  𝐶𝑘                                     
 

# For an overview of standard lead times, based on routers, see Table 6 
# order 165 
172800 = Jobs.loc[Jobs['Order#'].isin([165])&(Jobs['Daily_Load']>0)]['Capacity_Wc1'].sum()) 
86400 = Jobs.loc[Jobs['Order#'].isin([165])&(Jobs['Daily_Load']>0)]['Capacity_Wc4'].sum()) 
 
# order 26 
216000 =Jobs.loc[Jobs['Order#'].isin([26])&(Jobs['Daily_Load']>0)]['Capacity_Wc2'].sum()) 

# order 219 
172800 = Jobs.loc[Jobs['Order#'].isin([219])&(Jobs['Daily_Load']>0)]['Capacity_Wc3'].sum()) 
 

Item Material Router Lead time IM Lead time PPS 

: : : : : 

16 6432-1000-2906 A-2 6 4 

165 6527-1200-4402 B-2 6 4 

168 6505-1200-1700 C-1 8 0 

: : : : : 
Table 40: Item parameter overview 

 Table 41: Available capacity per day for each workcenter 

>>> set:   𝑒𝑗,𝑘 = 𝑑𝑗,𝑘 
# order 165 
14-01-2018 =Jobs.loc[Jobs['Order #'].isin([165]) & 
(Jobs['Daily_Load_Wc']>0)]['Due_date'] 
18-01-2018 =Jobs.loc[Jobs['Order #'].isin([165]) & 
(Jobs['Daily_Load_Wc']>0)]['Due_date'] 
 

Date Available cap. Wc1 Available cap. Wc2 Available cap. Wc3 Available cap. Wc4 

: : : : : 

16-02 43200 43200 28800 28800 

17-02 43200 43200 28800 28800 

18-02 43200 43200 28800 28800 

19-02 43200 43200 28800 28800 

20-02 43200 43200 28800 28800 

21-02 43200 43200 28800 28800 

: : : : : 
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# order 26 
08-01-2018 =Jobs.loc[Jobs['Order #'].isin([26]) & 
(Jobs['Daily_Load_Wc']>0)]['Due_date'] 
 
# order 219 
23-02-2018 =Jobs.loc[Jobs['Order #'].isin([219]) & 
(Jobs['Daily_Load_Wc']>0)]['Due_date'] 

 
  # End date needs to be re-calculated when prior job finishes later.  
  # If so, calculate net available capacity and determine new end date. 
while   𝑒164,1 >   𝑒165,1:                        

     Available capacity during lead time(𝑙𝑘  𝑑𝑗,𝑘 𝑒𝑗,𝑘 𝐶𝑘) 

            𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1   = (𝑑165,1 − 𝑒164,1 ) ∗  𝐶1 
                                                      0 = (14-01-2018 − 14-01-2018) * 43,200 
               𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1– 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1 
                                                   -48,151.98 = 0 – 48,151.98 
      

      End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

           if  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1< 0:              
                  𝑒165,1 = 𝑒165,1 + ( 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒165,1 / 𝐶1 ) 
    16 − 01 − 2018 = 14 − 01 − 2018 + (48,151.98 / 43,200 )  

           else 
                  𝑒165,1 = 𝑒164,1 +( 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,1 / 𝐶1 ) 

 

while   𝑒164,4 >   𝑒165,4:                        

     Available capacity during lead time(𝑙𝑘  𝑑𝑗,𝑘 𝑒𝑗,𝑘 𝐶𝑘) 

            𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4 = 𝑚𝑖𝑛(𝑑165,4 − 𝑒164,4, 𝑑165,4 − 𝑒164,1) ∗  𝐶4 
                                                      0 = (18-01-2018 − 18-01-2018) * 28,800 
               𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4– 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4 
                                                     -55,560= 0 – 55,560 
      

      End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

           if  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4< 0:              
                  𝑒165,4 = 𝑒165,4 + ( 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒165,4 / 𝐶4 ) 
    20 − 01 − 2018 = 18 − 01 − 2018 + ( 55,560 / 28,800 )  

           else 
                  𝑒165,4 = 𝑒164,4 +( 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦165,4 / 𝐶4 ) 

 

while   𝑒25,1 >   𝑒26,1:                        

     Available capacity during lead time(𝑙𝑘  𝑑𝑗,𝑘 𝑒𝑗,𝑘 𝐶𝑘) 

            𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1 = (𝑑26,1 − 𝑒25,1 ) ∗  𝐶1 
                                                      43,200 = (08-01-2018 − 07-01-2018) * 43.200 
               𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1– 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1 
                                                      37,128 = 43.200  – 6,072 
      

      End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

           if  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1< 0:              
                  𝑒26,1 = 𝑒26,1 + ( 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒26,1 / 𝐶1 )  

           else 
                     𝑒26,1 = 𝑒25,1 +( 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦26,1 / 𝐶1 ) 
                08-02-2018 = 07-01-2018 + (6,072 / 43,200 ) 

Since wc4 follows wc1, it 

is also checked when wc1 

finishes (𝑒164,1) 
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while   𝑒218,1 >   𝑒219,1:                        

     Available capacity during lead time(𝑙𝑗,𝑘 𝑑𝑗,𝑘 𝑒𝑗,𝑘 𝐶𝑘) 

             𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦219,1 = (𝑑219,1 − 𝑒218,1 ) ∗  𝐶1 
                                                       57,600 = (23-02-2018 − 21-02-2018) * 28,800 
                 𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦219,1 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘– 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘  
                                                       57,148 = 57,600 – 5,452  
      

      End date(𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘) 

           if  𝑛𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦219,1< 0:              
                  𝑒219,1 = 𝑒219,1 + ( 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒219,1 / 𝐶1 )  

           else 
                     𝑒219,1 = 𝑒218,1 +( 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦219,1 / 𝐶1 ) 
    22-02-2018 = 21-02-2018 + (5,452 / 28,800 ) 
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H.4 Example 4: Performance measurement (V-CLIP) 

This example contains numerical enumeration of item 133 (job 696), item 199 (job 578), and item 197 

(job 258). These jobs were selected because performance is calculated differently for each job. Job 

696 is produced on-time and therefore has on-time performance of 100%. The two jobs which are 

produced late are different in the sense that job 578 is produced partly before and partly after due 

date and job 258 is started late such that the full delivery was late. Note that this example follows lot-

size scenario 2. 

 

 

 

 

 
Table 42: Numerical enumeration: V-CLIP 

 

 

 

 

 

 
 

Table 43: Lateness 

determine Lateness (𝐿𝑗)= Due date (𝑑𝑗) – End date (𝑒𝑗)                                                                
  𝐿696= 0 = 05-08-2018 – 05-08-2018  
 𝐿578= 4 = 08-07-2018 – 12-07-2018  
 𝐿258= 4 = 14-03-2018 – 10-03-2018  
 
determine Tardiness (𝑇𝑗) = [𝐿𝑗]

+ 
 𝑇696= 0 = [0]+= max[0, 0] 
 𝑇578= 1  = [1]+= max[0, 1] 
 𝑇258= 3 = [4]+= max[0, 4] 
 
categorize jobs by workcenter  (𝐼𝑘)                                     ⊳  ∀ 𝑘 ∈ {𝐾} 
 

Item Job Router 

:   : 

133 696 A-1 

199 578 A-1 

197 258 A-1 

 : : : 
                      Table 44: Wc1  Table 45: Wc2 

 

 

Item PT's item description Job 

: : : 

133 6655-1302-2706 696 

199 6309-1200-1504 578 

197 6726-1500-0300 258 
: : : 

Item Job Due date End date Tardiness V-CLIP Router 

: : : : : : : 

133 696 05-08-2018 05-08-2018 0 days 100% A-1 

199 578 08-07-2018 12-07-2018 4 days 84,5% A-1 

197 258 10-03-2018 14-03-2018 4 days 68,2% A-1 

: : : : : : : 

Item Job Router 

: :  : 

220 14 B-1 

67 15 B-1 

188 22 B-2 

: : : 
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Item Job Router 

:  : : 

170 46 C-1 

59 13 C-2 

68 55 C-1 

: : : 
                      Table 46: Wc3                                 Table 47: Wc4  

 

determine required days of production for job (𝑧𝑗) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗,𝑘 / 𝐶𝑘                                            
 𝑧696 = 3,070 / 43,200 = 0.071 days 
 𝑧578 = 227,280 / 43,200 = 5.26 days 
 𝑧258 = 49,976 / 43,200 = 1.16 days 
 
 
         for j  do:                        ⊳   ∀ 𝑗 ∈ {𝐽} 
           if  𝑇𝑗== 0: 
   𝑧696 = 3,070 / 43,200 = 0,071 days 
               VCLIP = 1 
              else: 
               VCLIP (𝑇578, 𝑧578)      
               VCLIP (𝑇258, 𝑧258)      
   

function: VCLIP (𝑇578, 𝑧578)      
         if  𝑧578 ≤ 𝑇578 
               diff = 𝑇578 − 𝑧578  
              for x  in range (𝑑𝑖𝑓𝑓 , 𝑇578): 
                    VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝐶1/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 
        else: 
             for x  in range (0 , 𝑇𝑗):  
                     diff = 𝑧𝑗 − 𝑇𝑗  
                1.26 = 5.26 - 4 
                         if x == 0: 
                           processed = max [𝑑𝑖𝑓𝑓 ∗ 𝐶1, 𝐶1] 
                                 VCLIP =  max [𝑑𝑖𝑓𝑓 ∗ 𝐶1, 𝐶1]/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1 
                              0.38 = max[2 * 43,200, 43,200] / 227.280  
                       else: 

              today = min[ 𝐶1, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1, − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) 
           processed = processed + today 

                                 VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝑡𝑜𝑑𝑎𝑦/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 
                          0.538 = 0.38 + (43,200 / 48,378 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(1,1,0.08755))) 
                             0.682 = 0.538 + (43,200 / 48,378 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(2,1,0.08755))) 

            0.814 = 0.682 + (43,000 / 48,378 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(3,1,0.08755))) 
           0.845 = 0.814 + (11,280 / 48,378 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(4,1,0.08755))) 

 
  
 
 
 
 
 

 function: VCLIP (𝑇258, 𝑧258)      
         if  𝑧258 ≤ 𝑇258: 
               diff = 𝑇258 − 𝑧258  
           2.84 = 4 – 1.16 
              for x  in range (𝑑𝑖𝑓𝑓, 𝑇258): 
                                       (3, 4): 
                    VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝐶1/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦1,258 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 

Item Job Router 

: :  : 

188 22 B-2 

59 13 C-2 

173 16 A-2 

: : : 
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                          0.596 = 0 + (43,200 / 49,976 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(3,1,0.08755))) 
                          0.682 = 0,596 + (6,776 / 49,976 * (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(4,1,0.08755))) 
        
 
       else: 
             for x  in range (0 , 𝑇258):  
                     diff = 𝑧258 − 𝑇258 
                         if x == 0: 

  processed = max [𝑑𝑖𝑓𝑓 ∗ 𝐶1, 𝐶1] 
                       VCLIP =  max [𝑑𝑖𝑓𝑓 ∗ 𝐶1, 𝐶1]/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦258,1 
                else: 
                       today = min[ 𝐶1, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1,𝑎𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦578,1, − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) 

  processed = processed + today  
 VCLIP =  𝑉𝐶𝐿𝐼𝑃 + (𝐶1/ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦258,1 ∗ (1 − 𝑛𝑏𝑖𝑛𝑜𝑚. 𝑐𝑑𝑓(𝑥, 1,0.08755))) 
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F :  frozen interval 

R :   replanning interval 

hr :  hourly rate for machine availability, expressed in EUROS 

ℎ𝑟𝑒𝑥𝑡𝑟𝑎:  hourly rate for extra availability, expressed in EUROS 

𝑓𝑐:  setup costs, expressed in EUROS 

cr :  carrying ratio for inventory carrying costs, expressed in percentage 

𝑎𝑣𝑎𝑖(𝑡): planned machine availability for time period t, expressed in hours per day 

𝑎𝑣𝑎𝑖𝑒𝑥𝑡𝑟𝑎(𝑡): planned extra machine availability time for time period t, expressed in hours per day 

𝑧𝑗:  required capacity of job j 

𝑐𝑐𝑗 (𝑐𝑐̂𝑗): cycle time (norm) of job j 

𝑓𝑗 (𝑓𝑗):  setup time (norm) of job j 

scen :  scenario 

m :  Bill Of Material-level 

n :   echelon level 

x :  number of workcenters 

𝜌𝑘:  utilization at workcenter k 
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J Standard model parameters 

To approximate the actual scenario, ERP parameters and historic order sizes are analyzed. With the 

insights from this analysis, a simulation can be developed wherein a scenario is created that is close 

to the actual planning model. Figure 41 provides the frequency distribution of lot-sizes parameters. 

Table 48 presents the lot size parameters by a numerical overview.  

 
Figure 41: Frequency distribution of lot-size horizons 

Table 48: Lot size horizons versus simulated lot size horizons 
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1 1 1 1 

2 1 1 1 

3 1 1 1 

4 1 1 1 

5 1 1 1 

6 1 1 1 

7 1 1 1 

8 1 1 1 

9 1 1 1 

10 1 1 1 

11 1 1 1 

: : : : 

211 5 12 10 

212 8 12 10 

213 13 12 10 

214 13 12 10 

215 13 12 12 

216 13 12 12 

217 13 13 12 

218 13 13 12 

219 13 20 12 

220 26 26 12 

221 26 26 12 


