
 Eindhoven University of Technology

MASTER

Application-grounded evaluation of predictive model explanation methods

Lin, C.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Mar. 2025

https://research.tue.nl/en/studentTheses/20caa80b-42ba-4845-a748-dba8f617543f


Application-grounded evaluation
of predictive model explanation

methods

Master’s Thesis

Chin-Fang Lin

Department of Mathematics and Computer Science
Data Mining Research Group

Graduation committee:

prof. dr. M. Pechenizkiy (supervisor, TU/e)
ir. Simon B. van der Zon (supervisor, TU/e)

W. van Ipenburg MSc. (supervisor, Rabobank)
Jan W. Veldsink MSc. (supervisor, Rabobank)

dr. O. Papapetrou (TU/e)

Final version

Eindhoven, September 2018



Abstract

The current fraud detection system at Rabobank suffers from high false alarm rate. Therefore,
a Machine Learning (ML) model has been introduced to learn the behaviour of fraud and re-
duce the false alarm rates. In addition to the model accuracy, the reason why a model makes
a specific decision is also crucial to understand. Hence, the explanation model is applied to en-
hance the interpretability of the ML model. We evaluate explanation interpretability by providing
useful information to domain experts and, further, by performing the reduce false alarms task
automatically. The evaluation is performed on two model-agnostic explanation methods: Local
Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP).

In applying explanations to provide useful information, two experiments were conducted. The
first experiment was done to investigate the relation between model accuracy and interpretability.
The second experiment was done to discover the utility of the explanation on aggregating local
explanation into group and global levels.

To investigate the relation between model accuracy and interpretability, six ML models with dif-
ferent accuracy scores and biases were built. The soundness between each explanation decreasing
with the accuracy score was observed. However, the behaviour of the explanations became diverse
when we encountered different model complexity, class distribution and dimension of data. These
results make it challenging to define the ML model accuracy threshold regarding interpretability.
Hence, we concluded the experiment with an unknown threshold and moved to the utility on
aggregating explanation at different levels.

To discover the utility of the explanation at different levels, the utility of two state-of-art model-
agnostic explanation models, SHAP and LIME, were investigated. Based on their strengths and
weakness, we aggregated the explanation at different levels and applied visualization techniques
to derive useful explanations in a case study. The desired useful explanations are fulfilled and
summarized. The possible utility for the domain experts is also demonstrated.

In the false positive elimination task, two approaches are proposed to filter out the false alarms
by explanation feature values and extracted rules, respectively. In the first approach, the ML
filter was built by substituting the explanation feature values for the original feature values. The
performance of the ML filter can outperform the ML model on different types of fraud. With the
same true positive rate, the false positive rate of the ML filter was 40% less and 32% less than
the ML model in Mo1 and Mo2 respectively. Hence, the explanation values are recommended
for future use to automatically post-process the fraud alerts. In the second approach, although
the ML filter cannot achieve better performance, the extracted rules can still provide insight on
describing false positives.
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Chapter 1

Introduction

From self-driving cars to email spam filtering, machine learning (ML) systems are becoming in-
creasingly ubiquitous. They outperform humans in specific tasks, and they are gradually being
used to guide human decisions. The ML systems deployed are expected not only to perform tasks
but also to meet other criteria, such as safety, non-discrimination, faithfulness, and the ability
to provide the right to explanation. However, unlike the measurement of accuracy, these criteria
usually cannot be quantified completely. This situation introduces the need for model interpretab-
ility : if a model decision can be explained in understandable terms to humans, then we can verify
whether the reasoning is sound.

The evaluation of interpretability can be grouped into two types [4]. The first type evaluates
interpretability in the context of application-based evaluation. The assumption is that if an ML
system is useful in performing a task, then it must be interpretable on a certain level. The second
type evaluates interpretability in the context of function-based evaluation. A common approach
is to restrict the ML model to some interpretable class, such as decision trees and decision lists,
and then claim that the model can reach accuracy as well as more complicated models can.

In this thesis, we investigate application-based evaluation on the model-agnostic local explanation
model. The model-agnostic local explanation model is one approach of post-hoc interpretation.
Post-hoc interpretations explain predictions without elucidating the mechanisms by which models
work; they may confer the useful information for the end user of machine learning [7]. Hence, it
can be used to explain black-box models without sacrificing predictive performance. The model-
agnostic local explanation model can therefore be introduced to solve the banks fraud detection
problem.

The popularity of online banking systems has led to an increase in the cases of fraud each year.
Online banking fraud is difficult to detect because the fraudulent behaviour is very dynamic, bur-
ied in different customers’ profiles, dispersed across highly imbalanced large data sets and occurs
within a very limited time, thus requiring real-time detection [18]. Moreover, most customers
rarely check their online banking history regularly, so they often cannot report fraudulent trans-
actions immediately.

1.1 Motivation

In the current fraud detection system at Rabobank, the rule-based detector is used to identify
fraudulent online transfer behaviours. The detector continuously generates large amounts of fraud
alerts every day. However, most of these alerts are false alarms that can result in block the trans-
action and frozen online banking functions for customers. Once the rule-based detector generates

2 Application-grounded evaluation of predictive model explanation methods



CHAPTER 1. INTRODUCTION

an alert, domain experts need to analyze the alert within a small timeframe and manually scan
through different attributes for each type of fraud. The description of rules also require regularly
update in order to reduce the number of these false alarms. This process demands much effort and
is time-consuming. Therefore, an ML model can be introduced to learn the behaviour of fraud
and reduce the false alarm rates.

However, the existing issue is the trade-off between model accuracy and interpretability, where
more accurate ML algorithms are usually harder to interpret by humans. The accurate ML model
is a black box and there is no extra information can be used to assist domain experts in post pro-
cessing the alerts. As a result, the explanation model is applied to enhance the interpretability of
the ML model while retaining the prediction performance. In this thesis, we investigate the utility
of the explanations for domain experts and perform false alarms elimination task automatically.
The pros and cons of each system is summarized in Table 1.1.

Pros Cons
Rule-based detector Easy to understand High FPR
Accurate ML model Better TPR/FPR No help in processing positives
Accurate ML model
+ explanation

Better TPR/FPR
Extra information for domain experts

Utility of explanation not studied

Table 1.1: The pros and cons of each fraud detection system.

1.2 Goals and Challenges

The main goal of this thesis is to evaluate model-agnostic explanation methods Local Interpretable
Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) on providing
useful information to a domain expert and further assisting in the false alarm elimination task.
The first goal is to evaluate the interpretability of explanation by soundness of the explanation.
Once the relation between model accuracy and the soundness of the explanation is established, we
can provide the information to domain experts. The explicit accuracy threshold for interpretable
ML model may also be defined. The second goal is to discover the utility of the explanation
on aggregating local explanation into group and global levels. A local explanation is only helpful
when we have an interest in a specific case. Hence, we aggregate local explanation and discover the
useful information that can be provided. The third goal is applying explanation to assist domain
experts in automatically eliminating false alarms while retaining most of the true positives. The
evaluation of usefulness is compared to the performance with other baselines.

The main challenges in achieving the research goal can be grouped into three. To achieve the first
goal, the link between quantitative accuracy score and qualitative soundness need to be estab-
lished. A useful explanation needs to be defined in order to achieve the second goal. A way to
present the model explanation in terms that are understandable to humans needs to be developed
as well. For the third goal, a framework will be established based on the explanation values. To
the best of our knowledge, no previous research has applied explanation values to eliminate false
alarms. The explanation values can be considered as the attributed importance of each alert.
However, how the attributed importance can relate to false alarms and true positives is not ob-
vious. The relationship between attributed values and corresponding importance is also unclear.
Furthermore, the imbalanced class distribution in false alarms and true positives increases the
difficulty of learning the behaviour of alerts.

Application-grounded evaluation of predictive model explanation methods 3
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1.3 Approaches

The first experiment was conducted on six ML models with different accuracy scores and bi-
ases. State-of-the-art model-agnostic explanation methods provided a local explanation for each
instance to ensure local accuracy. The explanation can be visualized in a single instance or ag-
gregately for all instances. From an explanation of a single instance, it is difficult to judge the
relationship between the local explanation and the ML models accuracy. Since it only reflects
the local behaviour of the model and the result is highly dependent on the chosen instance, we
therefore grouped the local explanation into the model level and visualized the result.

In the second experiment, we investigated the utility of explanation on model, group and local
levels. Since the connection between ML explanations and humans desired explanations remains
unclear, we addressed the problem by starting from a human perspective and then applying visu-
alization techniques to derive useful explanations. The following types of explanations will be
discussed: general, abnormal, contrastive and selected.

In the third experiment, we investigated the utility of processing alerts and reducing false alarm
rates in a more efficient way to assist domain experts. We proposed two approaches to solve this
problem through the application of the explanation values of each alert. In the first approach,
we built an ML filter by substituting the explanation feature values for their original values. We
expected that some of the characteristics of false positives and true positives are reflected by the
explanations. In the second approach, we transferred the information from the explanation values
to the original feature values and built a false positives filtering layer. To do so, we clustered the
local explanations into several groups and observed the dominant features in each group. After
gaining an understanding of the ML model, we found rules that map these clusters from the
explanation values back to the original feature domains. We did so by applying the subgroup
discovery technique in each cluster to find subgroups that were as large as possible and had the
most unusual distributional characteristics. The generated rules can help domain experts gain in-
sights into the combination of features that may induce false alarms. Finally, we filtered out rules
that have a high concentration of false positives and measure the output performance. Two other
baselines were also designed to be compared with the proposed framework, which were filtering
rules discovered without clustering and the original ML model.

1.4 Results

The result of the first experiment shows that the soundness between explanations decreases with
the accuracy score in the simple models. However, the behaviour of the explanations became
diverse when we encountered different model complexities, class distributions and dimensions of
data. These results made it challenging to define the ML model accuracy threshold regarding
interpretability. Hence, we concluded the experiment with an unknown threshold and moved to
the utility of explanations.

Explanation utility is discovered from the model, group to local level. The properties of useful
explanations attained on each level are summarized in Table 5.5. On the local level explana-
tion, we showed that the output probability can be boosted by prior knowledge obtained from
the explanations. Moreover, we present the possible utility of the explanations for domain experts.

In the application-grounded evaluation, we proposed two approaches to eliminate FPs automatic-
ally. In the first approach, we built an ML filter by substituting the explanation feature values for
their original values. The performance of the ML filter are better than the ML model. Hence, the
goal is achieved. The explanation values are recommended for future use to automatically post-
process the fraud alerts. In the second approach, the visualization result illustrated the structure

4 Application-grounded evaluation of predictive model explanation methods



CHAPTER 1. INTRODUCTION

of dominant features in each cluster. The similar patterns occurred in both explanation values
and the original features. The extracted rules from each cluster can represent the general rule that
describes false positives of some clusters. However, those rules contained many true positives. As
a result, the filter cannot outperform any baseline.

1.5 Thesis outline

This thesis is structured as follows. In Chapter 2, we discuss the problems that emerge when eval-
uating explanations on domain experts from different aspects, then we summarize the problems
in the research questions. In Chapter 3, we describe state-of-the-art model-agnostic explanation
methods and summarize their advantages and drawbacks. In Chapter 4, we establish the frame-
work used to eliminate false alarms and describe each component in detail. In Chapter 5, we first
investigate the relation between model accuracy and interpretability. Then we present the explan-
ation utility at the global, group and local levels. In Chapter 6, we show the application-grounded
evaluation results on the performance of the false alarm elimination framework. In Chapter 7,
we draw conclusions based on the research questions, and then we discuss the limitations of our
research and future work directions.

Application-grounded evaluation of predictive model explanation methods 5



Chapter 2

Problem Statement

The main objective of this thesis is to evaluate model-agnostic explanation methods on providing
useful information to domain experts and further assisting domain experts in the false alarm
elimination task. The process of evaluation can be illustrated in Figure 2.1.

Figure 2.1: The process of evaluating interpretability of explanation methods.

From a black box ML model, the explanation model LIME or SHAP can be applied to explain the
prediction result. There are many criteria can be used to evaluate interpretability, e.g., soundness,
usefulness, completeness, compactness and comprehensibility. Concerning the utility for domain
experts, the information regarding the relation between ML model accuracy and soundness of the
explanation is helpful. Soundness means that everything an explanation says is true [6]. With
this information, domain experts can have an expectation on the explanation with corresponding
ML model accuracy. Moreover, if an accuracy threshold can be defined such that the given model
is interpretable, the domain experts can trust ML model based on the accuracy. This problem is
addressed in Section 5.1, where we discuss the soundness of explanation with reference ML models.

In addition to soundness, the usefulness can also be adopted to evaluate interpretability. The
good explanation for humans can be considered as useful. Miller [12] explored various research
fields and summarized what a good explanation is from different perspectives, such as philosophy,
cognitive psychology and social psychology. A good explanation is general, abnormal, contrastive
and selected. General is a cause that can explain most of the events is very general and can be
considered a good explanation. In contrast to general causes, abnormal causes that rarely occur
but influence the outcome are also good explanations. contrastive explanation that highlight the
difference between the case of interest and the reference case are good to humans. Moreover,
humans prefer to select one or two causes from a huge number of causes is the selected explana-
tion. Molnar [13] combined two perspectives and described the meaning of good explanations in
interpretable ML. We assume the useful explanation should also satisfy the types of good explan-
ations. We discuss which useful information can be provided to domain experts by aggregating
local explanations at different levels in Section 5.4.
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CHAPTER 2. PROBLEM STATEMENT

To assist domain experts in the false alarm elimination task, the post process of alerts need to
be conducted automatically, otherwise domain experts cannot analyze the alert within a small
timeframe. In addition, it is also crucial to bridge the knowledge gap between rule-based detector
and ML model. This could be done by discovering the rules captured by ML model and the rules
induced more false positives. In Chapter 6, we propose a framework that combines an explanation
model with different data mining techniques to eliminate false alarms. Note that the terms false
alarm and false positives (FPs), as well as real alarm and true positives (TPs), are used inter-
changeably.

We address the above-mentioned problems and summarize the research questions as follows:

1. Will interpretability drop as the reference model become less accurate / biased?

We investigate the following models with diverse accuracy and biased: a) perfect b) mod-
erately accurate c) random d) imbalance e) high-dimensional f) low-dimensional. From
observing relation between model accuracy and the soundness of the explanation, we might
able to define an accuracy threshold such that the corresponding ML model is interpretable.

2. Which type of useful information can be obtained at the model-, group- or local-level ex-
planations?

We consider that good explanations are useful to humans. Hence, we started by defining
the types of good explanations. Then, we investigated the utility of two state-of-art model-
agnostic explanation models, SHAP and LIME. Based on their strengths and weakness, we
aggregated the explanation at different levels and applied visualization techniques to derive
useful explanations in a case study.

3. Can the explanations help a domain expert to post process fraud alerts?

The explanation values of each alert can be considered as the importance of each feature.
We expect that these explanation values can identify groups of obvious false alarms or actual
fraud. Therefore, the explanation values can be adopted to automatically eliminate the false
alarms.

4. Can the explanations indicate the structure of different fraud detector rules?

Each rule consists of a number of mathematical and logical operations on specific features.
In order to discover the dominant features in the rules, we cluster alerts based on their
similarity in the explanation values. Then the features with a higher impact in each cluster
can be explored. Moreover, we apply the rule mining technique to discover the pattern of
alerts and extract relevant rules from each cluster.

Application-grounded evaluation of predictive model explanation methods 7



Chapter 3

Background and related work

In this chapter, we introduce the state-of-art model-agnostic explanation methods LIME and
SHAP. Afterwards, we compare the pros and cons of both methods and connect their strengths
with the useful explanations.

3.1 Explanation methods

It is vital to ensure that ML models make decisions for the right reasons. Understanding why a
model makes such a prediction can help the user to debug, gain trust in and further improve the
existing model. This process falls into a research area called interpretability, which is defined as
the ability to explain or present in understandable terms for humans [4].

Simple models, such as linear models and decision trees, usually cannot handle difficult tasks
but can be interpreted by their weights and decision nodes. Complex models, such as ensemble
methods or neural networks, typically have better predictive ability; however, they are difficult for
humans to interpret. Hence, the explanation model uses a simpler model to locally approximate
the original complex model and to return the explanation.

Recently, many current methods for interpreting machine learning predictions fall into the class of
additive feature attribution methods. The explanation methods LIME [16] and SHAP [9][8] used
in the following experiments also belong to this class.

3.1.1 Additive feature attribution methods

An additive feature attribution method explains the model output as the sum of the values attrib-
uted to each input feature. The explanation model can be written as a linear function of binary
variables:

Definition 3.1.1 (Additive feature attribution methods). The explanation model g can approx-
imate output z′ with the attribution value of each features φi.

g(z′) = φ0 +

M∑
i=1

φiz
′
i (3.1)

where φi ∈ R, z′ ∈ {0, 1}M and M is the number of interpretable input features. The z′i represent
the appearance of the features. If the feature is observed then z′i = 1, otherwise z′i = 0.
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3.1.2 LIME

The local explanation method LIME interprets an individual prediction by learning an inter-
pretable model locally. The intuition behind LIME is that it samples instances both in the
vicinity and far away from the interpretable representation of the original input. Then LIME
takes the interpretable representation of these sample points, determines their predictions and
builds a weighted linear model by minimizing the loss and complexity. The samples weighting is
based on their distances from the original point. The points weights decrease as the points get
farther away. The explanation is locally faithful, which means it represents the model prediction
of vicinity instances. This is illustrated in Figure 3.1

Figure 3.1: The black curve is the decision boundary of a complex model f . The red cross is the
instance being explained. LIME samples instances (red and blue dots), weights them based on
their distances from the original instance (represents by size) and determines predictions using f .
The dashed grey line is the learned explanation model g that is locally faithful [16].

The interpretable representation can be the features themselves or the representation of the ac-
tually used features. For example, an interpretable representation for numerical classification is
a binary vector indicating a presence or absence of the discretized feature. For text and image
classification, an interpretable representation can be an appearance of a word or a superpixel.

We now formalize this intuition. Let f denote the complex model being explained. In classifica-
tion f(x) is the probability that an instance x belongs to the certain class. Let g be defined as
explanation model g ∈ G, where G is a class of interpretable models, such as linear models and de-
cision trees. In the current version of LIME, G is the class of linear models, such that g(z′) = wg ·z′.

As previously mentioned, LIME explains an instance by interpretable representation and draws the
samples around it. Let x denotes the original instance, where x ∈ RN and N is the number of fea-
tures in the original input. A mapping function is defined to convert the binary pattern of missing
features represented by x′ to its original feature value x = hx(x′). The interpretable representation
of input and the samples are denoted by binary vectors x′ and z′, where x′, z′ ∈ {0, 1}M . LIME
draws samples around x′ uniformly at random. Given a perturbed sample z′, LIME can recover
the sample to its original input z and obtain f(z), which is used as a label for the explanation
model.

To ensure the interpretability and local fidelity, LIME produces the explanation ξ by minimizing
the loss L(f, g, πx) and complexity Ω(g). L(f, g, πx) measures how unfaithful g is in approximating
f . Ω(g) measures the complexity of the explanation model. For example, Ω(g) can be the number
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of non-zero weights of linear models or the depth of the decision trees. The proximity measure
between x and z is denoted as an exponential kernel πx. Given the dataset Z of perturbed samples
with associated labels, the explanation ξ(x) can be obtained by optimizing the following equation:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (3.2)

The loss L is computed by weighted square loss as Equation 3.3 , where πx(z) is an exponential
kernel defined on some distance function with width.

L(f, g, πx) =
∑

z,z′∈Z
πx(z)(f(hx(z′))− g(z′))2 (3.3)

To solve the above equations and to obtain the explanation, LIME approximates Ω(g) by selecting
K features with Lasso and then learning the weights via least squares.

The advantage of LIME is that the runtime does not depend on the size of the dataset but on the
complexity of f(x) and the number of samples. However, any choices of interpretable represent-
ation and G will have some drawbacks. Since the complex model can be treated as a black-box,
the chosen interpretable representation might not fully explain specific behaviours. Additionally,
a linear models G cannot provide faithful explanation if the input model is highly non-linear.

3.1.3 SHAP

SHAP assigns each feature importance based on Shapley values from game theory. Shapley values
is a unique solution in the class of additive attribution methods that satisfies three desired prop-
erties: local accuracy, missingness and consistency. Local accuracy requires the sum of the feature
contributions to be equal to the models prediction. Missingness requires the absent features in the
original input to have no impact. Consistency ensures that when the model changes and a feature
has a higher impact on the model, the importance of that feature will never decrease. Lundberg et
al. [9] have proven the SHAP method is the only possible locally accurate and consistent method
that satisfied the missingness property. With these properties, SHAP can provide theoretically
justified improvements for existing explanation model such as LIME.

Shapley value is one way to distribute total gains of the contributors, assuming that all the con-
tributors collaborate. Shapley value is calculated by considering all the possible orders of the
contributors arrival and by computing each contributors marginal contribution. The following
example depicts this.

Suppose there are two players A and B in the coalitional game, and their contribution values v are
v(A) = 6, v(B) = 10 and v(A,B) = 24. The following table displays the marginal contributions
of both players. Therefore, the expected marginal contribution and Shapley value for playerA is
0.5 ∗ 6 + 0.5 ∗ 14 = 10 and for playerB is 0.5 ∗ 18 + 0.5 ∗ 10 = 14.

order of arrivals marginal contributions of A marginal contributions of B

A, B v({A}) = 6 v({A,B})− v({A}) = 18
B, A v({A,B})− v({B}) = 14 v({B}) = 10

SHAP approximates the input value as a conditional expectation function of the original model
fx(S) = f(h(z′)) = E[f(x)|xS ], where S is a set of non-zero indexes in z′, and E[f(x)|xS ] is the
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expected value of the conditional function on a set of input features S. SHAP values combine
these conditional expectations with the classic Shapley values from game theory to attribute φi
values to each feature:

φi =
∑

S⊆M\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ i)− fx(S)] (3.4)

where M is the number of interpretable input features. This value is the marginal contribution
when i feature adds to the set of feature S weighting according to the number of ways to devise
this marginal calculation divided by the permutation of all features.

We describe how SHAP is adapted to combine with LIME and tree-based classification models to
obtain full explanations for ML models as follows.

Kernel SHAP

LIME chooses the parameters heuristically and does not recover the Shapley values. Hence, the
intuition of Kernel SHAP is to find the loss function L, weighting kernel πx, and the regularization
term Ω that recover the Shapley values.

Lundberg et al. [9] have proven that the following solutions make Equation 3.2 recover the Shapley
values and hold for the above three properties:

Ω(g) = 0 (3.5)

πx(z′) =
M − 1

(Mchoose|z′|)|z′|(M − |z′|)
(3.6)

L(f, g, πx) =
∑
z′∈Z

[f(hx(z′))− g(z′)]2πx′(z′) (3.7)

where |z′| is the number of non-zero elements in z′.

Tree SHAP

Currently, popular feature attribution methods for tree ensembles are inconsistent. Thus, when
a model changes, such as a feature having a higher impact on the models output, the current
methods can actually lower the impact of that feature [8]. A tree SHAP model is proposed to
provide a theoretical improvement by solving the inconsistency problem.

As a tree model, E[f(x)|xS ] can be estimated by recursively computing the proportion of the
training samples matching the conditioning set S multiplied with the node values. However, run-
ning the algorithm for all 2M subsets for all the M features will cost O(TL2M ) time. Recall T
is the number of trees, L is the maximum number of leaves in any tree and M is the number of
features. Hence, the polynomial time tree SHAP is developed to reduce the runtime to O(TLD2).
The intuition behind this is to recursively track the proportion of all possible subsets flow down
into each of the leaves of the tree. The current version Tree SHAP has been merged into XGBoost,
LightGBM, CatBoost and scikit-learn tree models. The computation performance is more efficient
than Kernel SHAP, since it estimates E[f(x)|xS ] without building an extra linear model.
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3.1.4 Summary

We summarize the pros and cons of the LIME and SHAP methods and connect their advantages
to seek useful explanations. LIME provides selected explanations that can explain instances with
fewer important features. This meets the selected property in a good explanation, since humans
usually prefer sparse explanations. LIME is also capable of predicting the probability change of a
label based on the changing of an input feature, which provides a good contrast explanation.

On the other hand, SHAP provides a full explanation that is crucial for decisions that must
consider all effects, such as assisting doctors in clinical diagnosis and helping judges make careful
decisions regarding defendants. SHAP also provides contrast explanations that allow the user to
compare explanations on the group level. In addition, SHAP value cannot be considered as the
probability decreased after removing the feature as in LIME. The value should be interpreted as
the feature contribution to the difference between the actual prediction and the mean prediction.
We will show an example of the misinterpretation in Section 5.5.3.
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Chapter 4

FPs elimination framework

In this Chapter, we introduce the framework used in the FPs elimination experiment. The frame-
work contains two approaches: FPs elimination by SHAP values and FPs elimination from ex-
tracted rules. Then, we describe each component in detail.

As discussed in Chapter 2, fraud detection is a streaming process where alerts are generated con-
secutively. A more reasonable approach is building an ML model on training data in a small
interval and eliminating upcoming false alerts. Then, new ML models can be built for the next
time intervals. The performance of the new ML model should increase due to the increasing size
of the training set. However, training ML models and explanation models are time-consuming. To
reduce the problem size, in this thesis we built an off-line static ML model on one-year transaction
data from October 2016 to September 2017.

4.1 Framework

The framework for FPs elimination is illustrated in Figure 4.1. The proposed novel approaches are
shown in the grey frame. First, we start with pre-processing the transaction data. The transac-
tion dataset has a large number of features and is highly imbalanced. Under-sampling and feature
selection techniques are applied to deal with these problems. Secondly, we build an ML model on
the training set and predict on a test set. The cases predicted as a positive class are considered
as alerts, while the cases predicted as negative are non-alerts. Thirdly, we use the Tree SHAP
explanation model to obtain the explanations for the alerts. Each explanation of the alert consists
of the SHAP value for all features. After the SHAP values are obtained, we propose the following
two approaches to filter out FPs automatically.

In the first approach, SHAP values are applied to distinguish between FPs and TPs. Since the
SHAP value of each feature is the decomposition of output probability, the sum of SHAP val-
ues should reflect that TPs have a higher probability of being an alert than FPs. Furthermore,
SHAP values decompose this confidence; thus, we expect some features in this decomposition will
dominate the true positive classifications and other features of the false positive classifications.
Therefore, the SHAP values are considered as features to build another ML model for predicting
FPs and TPs.

In the second approach, SHAP values are applied to discriminate FPs and TPs on the original fea-
ture space. Therefore, the elimination process does not rely on the SHAP values and can filter out
FPs by the original features. We relate SHAP values with the original features by using clustering
and subgroup discovery techniques. Clustering is applied to find the structure in SHAP values.
After forming the clusters, the instances in each cluster are dominated by similar features. Then,
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Figure 4.1: The framework of FPs elimination.

the problem remains how to extract the pattern to distinguish FPs and TPs. Thus, subgroup dis-
covery is implemented to discover the rules to distinguish FPs and TPs in each cluster. To ensure
the extracted rules also fulfil a certain confidence in all the alerts, the support and confidence of
each rule are computed. Finally, the rules with higher FPs confidence and lower TPs support are
used in the filter.

The two approaches are evaluated on the performance metric ROC-curve with the ML model and
respective baseline (Section 6.2, Section 6.4). The extracted rules in the second approach are
presented to a domain expert to validate their genuineness.

4.2 Pre-processing

The transaction dataset has numerous features and imbalanced classes. A useful explanation re-
quires the ML model to have high accuracy; therefore, the pre-processing step is necessary.

The imbalanced class problem can be addressed on different levels: data level, algorithm level and
combining methods [5]. At the algorithm level, it adjusts the costs of various classes to balance the
classes. For example, different weights can be assigned to the respective classes in kNN, and the
bias can be developed in SVM such that the learned hyperplane is further away from the major
class. At the data level, there are many forms of re-sampling, such as random under-sampling,
random over-sampling and the over-sampling technique SMOTE [3]. Combining methods combine
the results of many classifiers, and each of them is built on under/over-sampling data with different
sampling ratios. To avoid building an extra model on the massive transaction dataset, we focus
on a data level algorithm. Over-sampling can induce an additional computational task since the
size of our fraud dataset is already large. We apply Random under-sampling in the experiments,
as it aims to balance class distribution through the random replication of minor class samples.
One major drawback is that this method can discard examples that could be important for the
performance metric.

The main feature selection methods are filter, wrapper and embedded methods [2]. Filter methods
examine each feature individually to determine the strength of correlation between the input fea-
ture and class labels. These methods do not rely on a learning algorithm and are computationally
light. However, finding a suitable algorithm can be relatively difficult since filter methods do not
take into account any classifier; ignoring the specific heuristics and biases of the classifier might
lower the classification accuracy. Additionally, important features are more informative when
combined with others that could be discarded and less important on their own. Wrapper methods
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use classifiers and evaluate the variable subset by the predicted performance. The main drawback
is the number of computations required to obtain the feature subset can become computationally
expensive. Embedded methods incorporate feature selection in the training process. Decision
trees, such as CART, have a built-in mechanism to perform feature selection. The coefficients of
regularized regression models are useful in selecting features. After the under-sampling, the size
of the transaction dataset is relatively small. Therefore, we apply wrapper feature selection using
a Random Forest classifier with 500 estimators.

4.3 ML model and explanation model

We select the ML model and the explanation model by their computation efficiency and model
accuracy. The kernel-based explanation models, e.g. LIME and Kernel SHAP, must build a linear
model for each instance; thus, they are unsuitable for our massive transaction dataset. Therefore,
we apply Tree SHAP to obtain the explanations, as its fast C++ implementation is supported for
eXtreme Gradient Boosting (XGBoost), LightGBM, CatBoost and scikit-learn tree model. We
chose Tree SHAP XGBoost implementation which is the same as the original paper published by
the author [8].

The XGBoost model is an implementation of the gradient boosting framework with the a highly
efficient design. Boosting is an algorithm that creates multiple weak learners instead of one single
powerful model. New models are added sequentially to correct the errors made by the existing
models. At each iteration, the misclassified instances are assigned a higher weight, while the
instances that were correctly predicted receive a lower weight. The process is repeated until no
improvement can be made.

Gradient boost creates a new model based on the difference between the current prediction ap-
proximation and the target value and then adds them together to make a final prediction. This
difference is usually called the residual or the residual vector. The name gradient boost refers to
the gradient descent algorithm that trains on the residual vector to minimize the loss when adding
new models.

4.4 Clustering

The clustering algorithm is mostly divided into the partitioning method and the hierarchical
method. The partitioning method usually assumes a certain number of clusters in advance, while
the hierarchical method does not have a priori assumption. The hierarchical method is again
divided into two types: agglomerative and divisive. The agglomerative type uses a bottom-up ap-
proach, starting with individual data points. Then, the two most similar data points are merged
into one cluster. On the contrary, the divisive type uses a top-down approach, treating all the
data points as one big cluster and then divides it into small clusters.

We chose a hierarchical agglomerative algorithm since the number of clusters was unknown. The
intuition behind the algorithm is to repeatedly merge the two most similar groups, as measured
by linkage. We use Wards method as the linkage function, which is defined to be the squared
Euclidean distance between points. There is little theory regarding how to find the correct num-
ber of clusters; it is even unclear what the correct number of clusters means. Hence, we visualize
each merge step and decided the cut off distance in a hierarchical clustering dendrogram. The
dendrogram visualization also helped us in capturing the structure of features.
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4.5 Subgroup discovery

In the FPs elimination task, we try to filter out false alarm cases while retaining most true pos-
itives. This can be done by using descriptions to distinguish between the TPs and FPs groups.
The main objective of the following three techniques is extracting descriptive knowledge from the
data of a property of interest: contrast set mining, emerging pattern mining and subgroup dis-
covery. Contrast set mining is a data mining technique for finding differences between contrasting
groups. Emerging pattern mining is defined as item sets whose support increases significantly from
one dataset to another. Subgroup discovery is aimed at finding descriptions of interest subgroups.
The terminology, task definitions and rule-learning heuristics of those three mining techniques have
been proven to be compatible [15]. Contrast set mining and emerging pattern mining communities
have primarily addressed only categorical data, whereas the subgroup discovery community also
considers numeric and relational data. Hence, we apply subgroup discovery techniques to discov-
ery description for FPs.

Subgroup discovery is a data mining technique aimed at discovering interesting relationships
between a set of instances with respect to a target variable. The patterns extracted are rep-
resented in the form of rules called subgroups. This is suitable for our framework since we aim to
find small numbers of descriptive rules with high coverage on the FPs. The subgroup discovery
can be divided into three categories: extensions of classification algorithms, extension of associ-
ation rule and fuzzy evolutionary systems. We apply the extensions of classification algorithms
CN2-SD, which is implemented in the open source tool Orange [17]. CN2-SD is obtained by ad-
opting a rule-learning classifier CN2 to subgroup discovery. A standard CN2 tends to generate
highly specific rules due to using an accuracy heuristic. CN2-SD uses weighted relative accuracy
(WRAcc) to optimize a trade-off between rule accuracy and coverage.

WRAcc optimizes two factors of rule X ⇒ Y : rule coverage P (X) and distribution unusualness
p(Y |X) − p(Y ). Rule coverage is the size of the subgroup. The distribution unusualness is the
difference between the proportion of positive examples in the describing rule and the entire example
set. The algorithm starts by selecting the best rule with the highest WRAcc. In each iteration,
after the best rule is selected, the weights of positive examples are decreased according to the
number of rules covering each example c(e), where w(e) = 1/c(e). Let p denotes positive examples
correctly classified as positive by rule, n denotes negative examples wrongly classified as positive
by rule, and P and N are the numbers of all positive and negative examples in the dataset.
p′ =

∑
TP (X,Y ) w is the sum of the weights of all covered positive examples, and P ′ is the sum of

the weights of all positive examples. WRAcc is computed as

WRAcc(X,Y ) =
p′ + n

P ′ +N
·
(

p′

p′ + n
− P

P +N

)

Since our objective is to discover the rule with higher coverage on global FPs, we measure the
rule quality by global support and confidence. The support is defined as the proportion of total
positive examples covered by the rule. The confidence is defined as the proportion of positive
examples in all examples covered by the rule. The coverage of the rule can be illustrated in Figure
4.2. The rectangular represents the global alerts dataset divided into FPs and TPs. The ellipse
represents the subgroups defined by rule X. Due to the classes imbalanced in the generated alerts,
the discovered rules might have relative high FP confidence than TP confidence. However, the
lower TP confidence does not assure the lower coverage of TPs. Imagine the ellipse in Figure 4.2
enlarges twice, then the rule still has the same FP and TP confidence, but both of FP and TP
support are increased and might describe too many TPs. Therefore, lower TP support is preferred
in the rule quality measurement for an imbalanced dataset.

The support and confidence can be computed as follows:
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Figure 4.2: Quality measures of the rule [14].

Support(X ⇒ TP ) =
|TP ∧X|
|TP |

=
|TPX |
|TP |

Support(X ⇒ FP ) =
|FP ∧X|
|FP |

=
|FPX |
|FP |

confidence(X ⇒ TP ) =
|TP ∧X|
|X|

=
|TPX |
|X|

confidence(X ⇒ FP ) =
|FP ∧X|
|X|

=
|FPX |
|X|

4.6 Filter

Once the rules are extracted from subgroup discovery for each cluster, the FP confidence in the
whole alerts population is computed. The rules are firstly selected by FP confidence higher than
TP confidence. Then, the rules are selected by TP support threshold to restrict the amount of
TPs. The selected rules are used to filter out the FPs.

4.7 Evaluation metrics

Area Under the Receiver Operating Characteristic (AUC-ROC) is the most common metric and
recommended in handling class imbalance problems. It does not emphasize one class over the
other, thus is not biased against the minority class. The ROC-curve is a plot on a two-dimension
graph in which the y-axis is the TP rate, and the x-axis is the FP rate. TP rate denotes the
correctly classified positive cases, and FP rate denotes the percentage of misclassified negative
cases. The point (0, 1) is the optimal classifier with perfect prediction. The diagonal dash line
corresponds to a random classifier with the same TP rate and FP rate. The performance of the
ML model is measured by

TPRML =
TPML

(TPML + FNML)

FPRML =
FPML

(TNML + FPML)

In our two approaches, the performance of ML model and filters are considered as a single model.
The filters only perform on threshold 0.5, which corresponding to a single point on the ROC-curve.
We denote the performance from ML model as TPML and FPML, and the remain TPs and FPs
after filtering are TPF and FPF . The performance of the filter is measured by

Application-grounded evaluation of predictive model explanation methods 17



CHAPTER 4. FPS ELIMINATION FRAMEWORK

TPRF =
TPF

(TPML + FNML)

FPRF =
FPF

(TNML + FPML)
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Chapter 5

Experiments on explanation
utility

In this chapter, we investigate the useful information that an explanation can provide to domain
experts. In the first experiment, we try to define an accuracy threshold such that the local ex-
planation is interpretable. In the second experiment, we identify the utility of the explanation in
aggregating the local explanation into the group and global levels on a public dataset. Finally, we
summarize the results and discuss the possible explanation utility for domain experts.

5.1 Experiment on model accuracy

In this experiment, we investigate the utility of explanation on different ML model accuracies.
The first goal is to evaluate the interpretability of explanation by soundness of the explanation.
The relation between model accuracy and the soundness of the explanation can be considered
as useful information to domain experts. The explicit accuracy threshold for interpretable ML
model may also be defined and assist domain experts in making a decision on the interpretable
ML model. We compare the following six models which are: a) perfect b) moderately accurate
c) random d) imbalanced e) high-dimensional and f) low-dimensional. The imbalanced, high-
dimensional and low-dimensional models have the same setting as the perfect model but have
different pre-processing strategies. The imbalanced model is trained on the imbalanced training
set. The high-dimensional model is built on the dataset without feature selection and contains all
the 506 features, whereas the low-dimensional model is built with only two selected features a and
b.

5.1.1 Dataset description

To investigate high dimension and class imbalance problems, we create a binary synthetic dataset
by using the following strategy: the dataset has six attributes related to the class and 500 irrel-
evant ones. (Table 5.1). The instances are classified as positive if all the following conditions are
satisfied: (a ∗ b > 55)∧(c > 7)∧(d < 7). The dataset contains 10, 000 instances with an imbalance
ratio of 30. The imbalance ratio is defined as the ratio of the number of instances in the majority
class to the number of examples in the minority class.
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Feature Description Values

a, b, c, d, 1-500 random variables [1, 10]
a*b [1, 100]
a/b [0.1, 10]

Table 5.1: The description of the synthetic dataset.

5.1.2 Pre-processing

Random under-sampling and wrapper feature selection are applied to deal with class imbalance
and high-dimensional data. The under-sampling ratio is set as the default, which results in equal
numbers of majority and minority instances. Feature selection is performed by a Random Forests
classifier with 100 estimators.

5.1.3 The ML model and the explanation model

The data are stratified split into the training and test sets; 80% of the data is used as the training
set, and 20% is used as the testing set. To achieve diverse accuracies, we chose Support Vector
Machines (SVMs) and Random Forests (RFs) in the experiment.

Both LIME and Kernel SHAP are model agnostic and can provide a local explanation for the
SVMs and RFs models. However, it is difficult to judge the relation between the local explanation
and the ML model accuracy from an explanation of a single instance, as it only reflects the local
behaviour of the model, and the result is highly depended on the chosen instance. LIME does
not guarantee a perfect distribution of the effects. Therefore, Kernel SHAP is the only suitable
explanation model for the experiment. We group the local explanation to model the level and
visualize the result.

5.2 Experiment results on model accuracy

In this section, we first show the AUC-ROC of each model and then use iml [10] to generate the
force plot for visualizing the SHAP explanation result.

The force plot for a single instance is shown in Figure 5.1, where the features pushing the out-
put probability higher are shown in red and the features pushing the output probability lower
are shown in blue. The length of each colour block represents the SHAP value and the text be-
low is corresponding feature value. The sum of the SHAP values equals the difference between
the expected model output (averaged prediction of the training set) and the current model output.

Figure 5.1: The SHAP explanation of a single instance.

To gain a balanced view of both classes, we sub-sample the instance in the negative class to
the same number as the positive class in the force plot. The force plot rotates every single ex-
planation 90 degrees in counter-clockwise direction and stacks all the explanations of the samples
horizontally; the first half consists of the positive instances. The vertical length of the colour block
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separated by a white line indicates the importance of each feature. The middle point between two
colours represents the prediction probability of the instance. The value of the original feature will
be displayed when hovering over each sample.

Table 5.2 and Figure 5.2 show the AUC-ROC of each model and the corresponding explanation.
When the model has higher accuracy, the main decision of the model decision made by a ∗ b can
be observed clearly. When the model has moderate accuracy, there are more instances that are
close to the decision boundary and the model decision made by a∗ b becomes less clear. When the
model is close to random guessing, the model does not make the decision (the output probability
is equal to 0.5), so the positive effects are equal to the negative effects.

(a) The SHAP explanation of the perfect model.

(b) The SHAP explanation of the moderately accurate model.

(c) The SHAP explanation of the random model.

Figure 5.2: The model-level explanation of the ML models with different AUC-ROC.
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Perfect Accurate Random Imbalance High-dimensional Low-dimensional

AUC-ROC 1.000 0.789 0.510 1.000 0.955 0.929

Table 5.2: The AUC-ROC of the synthetic dataset.

Figure 5.3 shows the models with different biases and the corresponding explanations. When the
model is biased towards the negative class because of class imbalance, the model considers c more
important than a∗b for the decision making and returns misleading information. The base value is
moved from 0.5 to around 0, as it is the expected prediction from the training set. This increases
the positive effects of positive predictions, as the SHAP values need to sum up to the output
probability.

(a) The SHAP explanation of the imbalance model.

(b) The SHAP explanation of the high-dimensional model.

(c) The SHAP explanation of the low-dimensional model.

Figure 5.3: The model-level explanation of the models with different biased.
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(a) The SHAP explanation of higher complexity model with AUC-ROC=0.996.

Figure 5.4: The model-level explanation of the models with higher complexity.

When the model is biased because of high-dimensional features (model contains both relevant and
irrelevant features), the model output probability becomes less certain than the perfect model,
as there are also many irrelevant features that contribute both positively and negatively to the
prediction. When the model is biased because of low-dimensional features (model does not contain
all the features of decision-making), the model makes a decision on features a and b because the
decision of ground truth is made by a ∗ b.

5.3 Conclusion of the experiment on model accuracy

From the above experiment results, we can observe that the soundness between each explanation
decreases with the accuracy score in the simple models. The accuracy threshold of interpretable
model seems possible to derive. However, when the model becomes more complex and biased,
the threshold might also change, and the following questions emerge: How sound should the
explanations be in order to be understandable to humans? If the accuracy scores are identical
but model complexity arises (Figure 5.4), can humans still understand all the model decisions?
When we encounter class imbalance and different dimensional data, can the accuracy threshold
still hold? These questions make it challenging to define the ML model accuracy threshold on
interpretability. Therefore, we conclude the experiment with an unknown threshold and move to
the utility of different levels of explanations.
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5.4 Experiment on explanation utility at different levels

The goal of this experiment is to determine the utility of the explanation for domain experts. The
explanation derived from local explanation methods can be locally accurate. However, users need
to have a specific instance that they are interested in. The model behaviour is also difficult to
estimate from a local explanation. To help domain experts extract useful explanations, we show a
process for understanding the model from aggregating the explanations to the model, group and
local levels. The Rabobank transaction dataset is not intuitive in explaining informatively because
of anonymous feature names and normalised feature values; therefore, we first conduct the experi-
ment on the UCI bank marketing dataset. Then, we discuss the possible utility for domain experts.

To achieve this goal, we use the explanation models SHAP and LIME in order to identify explan-
ations from the model, group and local levels. The data visualization tools Altair [1], iml [10] and
Seaborn [11] are applied to combine the views from the original features, explanations and model
predictions.

We consider the following sub-questions in the following experiment:

1. Which type of good explanations can be obtained from each level of explanation?

2. Can we change the output prediction with the knowledge extracted from the explanations?

5.4.1 Dataset description

The UCI bank marketing dataset consists of telemarketing phone calls to sell long-term deposits
from May 2008 to November 2010. The data are related to the direct marketing campaigns of a
Portuguese banking institution. In the campaign, a human agent makes phone calls to a list of
clients to sell the deposits. If the clients call the contact centre for any other reason, they are
asked to subscribe to the deposit. Thus, the result is a binary unsuccessful (“no“) or successful
(“yes“) contact.

The original dataset contains 20 input features on four categories: bank client data, the last con-
tact of the current campaign, other attributes and attributes of the social and economic contexts.
The binary target label is if the client subscribed to a long-term deposit. The description of the
variables is listed in Table 5.3. There are 41, 188 cases in total. The target labels are imbalanced
because only 12.7% of the instances have “Yes“ responses.
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Feature Description Values

bank client data

age [17, 98]

job type of job

admin., blue-collar, entrepreneur,
housemaid, management, retired,
self-employed, services, student,
technician, unemployed, unknown

marital marital status divorced, married, single, unknown

education education level
basic.4y, basic.6y, basic.9y, high.school,
illiterate, professional.course,
university.degree, unknown

default has credit in default? no, yes, unknown
housing has housing loan? no, yes, unknown
loan has personal loan? no, yes, unknown

last contact of the current campaign

contact contact communication type cellular, telephone
month last contact month of year jan, feb, mar, ..., nov, dec
day of week last contact day of the week mon, tue, wed, thu, fri
duration last contact duration in seconds [0, 4918]

other attributes

campaign number of contacts performed [1, 56]

pdays
number of days passed by
after previous campaign

[0, 999]

previous
number of contacts performed
before this campaign and for this client

[0, 7]

poutcome outcome of the previous campaign failure, nonexisten, success

social and economic context

emp.var.rate employment variation rate [-3.4, 1.4]
cons.price.idx consumer price index [92.201, 94.767]
cons.conf.idx consumer confidence index [-50.8, -26.9]
euribor3m euribor three month rate [0.634, 5.045]
nr.employed number of employees [4963.6, 5228.1]

output variable
y has the client subscribed a term deposit yes, no

Table 5.3: The description of the UCI bank marketing dataset.
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5.4.2 Pre-processing

The pre-processing steps for the bank marketing dataset are applied to deal with categorical
attributes and unknown values. There are 10 categorical attributes, and 6 attributes contain
unknown values. To prevent XGBoost from wrongly interpreting categorical features that have a
numeric relationship, we simply convert each category into a dummy variable. There are several
methods of handling the missing values, such as by deleting rows, replacing with the mean or
median, and predicting the missing values by complete features. We do not discuss each method
in detail because it is outside the scope of the study. The following are the pre-processing steps:

1. Convert the categorical attributes into dummy attributes except for “education“.

2. Convert the “education“ attribute to an integer by the education level in the range [1, 6].

3. Delete rows when the number of unknown values is less than 500. Predict unknown values
with a Random Forests model when the number of unknown values is larger than 500.

The attribute “duration“ is discarded because it is highly correlated to the output target. The
author of the dataset suggests that it should only be included for benchmarking purposes. To
focus more on general aspect of explanation, we select one social and economic context attribute,
“euribor3m“, which is the three-month Euribor rate computed by the European Central Bank
(ECB); the rest of the 14 attributes serve as the features in this experiment.

5.4.3 The ML model and the explanation model

The data are stratified split into the training, validation and test sets; 60% is used as the training
set, 20% is used for validating the parameters and 20% is used as the testing set for evaluating
model performance.

To deal with class imbalance, we first apply Random under-sampling on the training set in order to
balance two classes into an equal sample size. Then we build an XGBoost model on the training
set and validate the parameters on the validation set. The AUC-ROC score on the test set is
0.803. Because of the characteristic of the explanation model, only the SHAP values are applied
in global and group levels explanations. As the categorical attributes are converted into dummy
attributes, the SHAP value of the categorical attributes is the sum of the SHAP values from all
categories.

5.5 Experiment results on explanation utility at different
levels

5.5.1 Explanation at the model level

We show that the model-level explanation can provide both general and abnormal explanations.
In the scenario of selling the deposit, the first type of question might be ”Why is the sell predicted
as Yes?”. We start by showing the importance of each feature. Figure 5.5 shows the feature
importance computed by the mean of the absolute SHAP values. The most important features
are “euribor3m“, “month“, “contact“, “pdays“ and “age“. Then, we further explore how these
important features make the outcome predicted as “Yes“.

We first observe the global explanation of the four most important features in the model. Figure
5.6, 5.7 shows the scatter plot between the original feature value (x-axis) and its SHAP value
(y-axis). The joint distribution of the two classes is shown on separate axes. This plot can be used
to identify which feature values have a higher contribution to the target class and derive general
explanations. For example, the value of “euribor3m“ is lower than 2 has a higher probability of
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Figure 5.5: The feature importance for the XGBoost model.

being classified as “yes“. The generality can easily be measured by computing the support of the
feature. We can measure generality by computing the support of the feature in each class, which
is the number of instances covered by the rule in each class. The support in both classes are:

support((euribor3m < 2)→ “yes“) =
|((euribor3m < 2)

⋂
“yes“)|

|“yes“|
=

1720

1747
= 0.98

support((euribor3m < 2)→ “no“) =
|((euribor3m < 2)

⋂
“no“)|

|“no“|
=

974

6641
= 0.15

The support is relatively higher in the “yes“ class than in the “no“ class, so a lower euribor3m
value has a higher probability of being a successful sell, which is a very general and simple explan-
ation. This also explains why “euribor3m“ has such high feature importance —it separates most
of the cases.

(a) The scatter plot of ”euribor3m”. (b) The scatter plot of ”month”.

Figure 5.6: The scatter plot of ”euribor3m” and ”month”.
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(a) The scatter plot of ”contact”. (b) The scatter plot of ”pdays”.

Figure 5.7: The scatter plot of ”contact” and ”pdays”.

In contrast to a general explanation, humans also prefer abnormal causes. Abnormal causes can
be related to some features with infrequent values and have a strong influence on the prediction.
The unusual values can be captured in the boxplot. Figure5.8 shows that “age“, “campaign“,
“pdays“, “euribor3m“ and “month“ have some outliers with higher SHAP values. In particular,
”campaign” does not have a high rank in the feature importance of the model and can easily be
ignored.

Figure 5.8: The boxplot of the SHAP values for the XGBoost model.

We again illustrate these features in the scatter plots (Figure 5.7). As shown in the figure, there
is a small group of instances that have “pdays“ larger than 0, and most of the instances have a
value −99 which means that there is no previous contact from the other campaigns. The value
is the number of days that passed after the client was last contacted by the previous campaign.
It shows that the previous contact has a high positive impact on the prediction, although such
values rarely occur in the dataset. The same situation also happened in the two other features
“age“ and “campaign“.

When the “age“ is over 60 or under 25, the feature has a higher positive impact on the prediction,
whereas the age in between has some negative impact (Figure 5.9). In the feature “campaign“, the
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majority of positive cases occur when the feature value is less than 5. When“campaign“ is larger
than 18, the feature has significant negative effects on the prediction. This is no surprise, as it is
the number of contacts performed during this campaign and for this client. The aforementioned
results show that the global explanation can also capture an abnormal value and derive a useful
explanation.

(a) The scatter plot of “age“. (b) The scatter plot of “campaign“.

Figure 5.9: The scatter plot of “age“ and “campaign“.

5.5.2 Explanation at the group level

After gaining general insights from the model, we can further delve into some sub-groups. First,
we show that group-level explanation can provide contrastive explanations between groups. For
example, we need to provide a solution to increase the success probability of sales. Instead of one
specific customer, we start by targeting a specific age group of customers. We may think “How
would the prediction change if the client age is changed from range 30-40 to range 20-30?“. This
question can be answered by using an interactive multi-facets scatter plot and histogram (Fig-
ure 5.10). We can select a different group of instances by moving the grey rectangular selector.
After comparing the predicted distribution between two groups, we can immediately identify if
the probability of predicting “yes“ is increased, and one of the explanations is the positive contri-
bution by “age“. We can also focus on the relation between “age“ and other features that we are
interested in, such as “education“, between two groups. The scatter plot of “education“ shows
that an education level higher than 5 has a positive impact on the prediction. After comparing
the scatter plot between the two groups, we find that the education level has a higher impact on
customers’ age between 20 and 30 than the customers’ age between 30 and 40. The difference is
not significant in this example; but the plot can be applied to identify different feature interactions.
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(a) The scatter plot between “age“ and “education“ for subgroup 20-30.

(b) The scatter plot between “age“ and “education“ for subgroup 30-40.

Figure 5.10: The interactive multi-facets scatter plot of feature “age“ and “education“.

The group-level explanation can also provide contrastive explanations within the group. In the
age group between 20 and 30, we can further ask, “Why are there some instances predicted as no,
whereas others are predicted as yes?“. The answer can be found in the full explanation within
the subgroup. Figure 5.11 shows the explanation of all instances in the subgroup ordered by Hier-
archical Clustering.
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(a) The force plot of all the features in the subgroup.

(b) The force plot of “euribor3m“ in the subgroup.

(c) The force plot of “month“ in the subgroup.

Figure 5.11: The force plot of SHAP value in the subgroup age 20− 30.

We can see that there are roughly four clusters in the subgroup. The dominant features are
“euribor3m“ and “month“. The first and fourth clusters are dominated by ”euribor3m”. The
first cluster is predicted as “yes“ because “euribor3m < 2“, which is consistent with the previous
global explanation. The second cluster is with “euribor3m“, which is close to 2 and dominated by
“month“.
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5.5.3 Explanation at the local level

After knowledge from the previous two levels is obtained, it is easier to derive a useful explanation
at the local level. We show that LIME can provide contrastive and selected explanations at the
local level. As mentioned in Chapter 3, LIME allows users to select the number of features to be
perturbed and to predict the output probability for a different input value. We first target one
customer who is predicted as “no“. Then, we modify the features to some counterfactual values
in order to change the outcome. Figure 5.12 shows the explanation for a customer with age 39,
education level 3 and has not been contacted by other campaigns before. The original output
probability for the “yes“ label is 0.26. Basing on the previous knowledge from the global- and
group-level explanations, we can boost the output probability by tuning the input features. Table
5.4 shows the change in input features and the corresponding output probability. After the input
features are changed, the output probability is increased to 0.56.

Figure 5.12: The local explanation from LIME. The left figure is prediction probabilities of two
classes. The middle figure is the LIME explanation of selected features. The representation of
numerical features are discretized features. The right table shows the original feature values.

change of input feature output probability

age = 20 0.39
age = 20 ∧ pdays = 5 0.49
age = 20 ∧ pdays = 5 ∧ education = 7 0.56

Table 5.4: The relation between the change of input features and output probability

To show the reason why SHAP cannot provide a selected explanation, we present another ex-
ample. Figure 5.13 shows that the output probability for the case is 0.88 and the SHAP value of
“age“ is 0.31. When the explanation is wrongly interpreted, one might think that after the feature
“age“ is removed, the output probability will decrease to 0.31. However, when we rebuild a model
without the feature “age“, the output probability for the same instance is actually increased to
0.90. As discussed in Chapter 3, the SHAP value is the total contribution of the feature value
to the difference in the actual prediction and the mean prediction. Therefore, when we rebuild a
model, the actual prediction and the mean prediction might also change.
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(a) The SHAP explanation with feature “age“.

(b) The SHAP explanation without feature “age“.

Figure 5.13: The local explanation from SHAP.

5.6 Conclusion of the experiment on explanation utility at
different levels

We have shown the explanation utility from the model, group to local levels on a public dataset.
To answer the sub-questions in this section, we summarize the properties of useful explanations
obtained on each level in Table 5.5. At the local-level explanation, we also show that the output
probability can be boosted by prior knowledge obtained from the explanations. The possible util-
ity for domain experts when they deal with fraud detection will be discussed in Section 6.6.5.

model group local

SHAP general, abnormal contrastive contrastive
LIME x x contrastive, counterfactual, selected

Table 5.5: The useful explanations on different explanation level
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Chapter 6

Experiments on FPs elimination

We conduct an application-grounded evaluation experiment based on the Rabobank transaction
dataset. The primary goal is to develop strategies to assist domain experts in fast processing
alerts and reducing the FPs. We proposed two approaches for the automatic elimination of FPs.
In the first approach, we build an additional ML model filter in which we substituted the SHAP
values for the original values. We expect that some characteristics of FPs and TPs are reflected in
the explanations. In the second approach, we clustered the SHAP values into several groups and
observed the dominant features in each group. Then, we apply the subgroup discovery technique
in each cluster to find subgroups that are as large as possible and have the most unusual distribu-
tional characteristics. Afterwards, the extracted rules that have a high concentration of FPs are
used to filter out FPs.

6.1 Experiment setup

6.1.1 Dataset description

The Rabobank transaction dataset is composed of the transactions occurring from October 2016
to September 2017. The dataset contains 585 features, which including 394 categorical features,
174 numerical features, and 17 textual features. All the feature values are normalized between 0
and 1. The feature and label names are anonymous. The labels cover five classes with four types
of fraud (Mo1, Mo2, Mo3, Mo9) and one class of non-fraud (Mo0). The class Mo9 fraud cover
unknown fraud, and alerts for this class sometimes belongs to the other three types of fraud. In
this thesis, we focus primarily on fraud types Mo1 and Mo2, since the majority of cases belongs
to those two classes. This experiment is considered a multiclass classification problem since some
of the features are shared among different types of fraud.

The dataset contains 1, 796, 979 cases in total and equally partition into training, validation and
test set. The distribution of fraud cases to training, validation and test set is 60%, 20% and
20% respectively. To deal with class imbalance, the training set contains higher percentage of
fraud cases in comparison with the validation and test set. In addition, the sampling method also
applied in the pre-processing to further balance the training set. The number alerts in each class
are listed in Table 6.1.

6.1.2 Pre-processing

In order to deal with class imbalance and the large number of features, random under-sampling
and a wrapper method of feature selection are applied. The under-sampling ratio(ratio between
majority class and minority class) is set to 15. Wrapper feature selection is performed using a
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Fraud type Mo0 Mo1 Mo2 Mo3 Mo9
training 597,593 1,236 1,149 62 51
validation 597,573 420 379 20 18
test 597,645 409 384 18 22
Total 1,792,811 2,065 1,912 100 91

Table 6.1: Number of alerts in each class in the transaction dataset

random forests classifier with 100 estimators. We use 5-fold stratified cross-validation on the train-
ing set to select the number of features. The accuracy gradually decrease as more features are
removed. To ensure adequate visualization for each feature, the number of features is limited to 20.

6.1.3 ML model and explanation model

A grid search is applied with 5-fold cross-validation to tune the hyperparameters for the XGBoost
model. The objective function is chosen as ”multi:softprob” to train five classes of labels. The
result contains the predicted probability of each alert belonging to a particular class. The predic-
tion is the class with the maximum probability. As the classes are still imbalanced in the dataset
after under-sampling, the samples of the minor classes are assigned different weights. The weight
of the minor class is the ratio between the sum of the major class and sum of the corresponding
minor class. The chosen parameters for the model are shown in Table 6.2. The training time of
both ML model and explanation model are in the order of minutes. The AUC-ROC scores of each
class and the confusion matrix are shown in Table 6.3 and Figure 6.1. Afterwards, the output
predicted probability from the ML model is used as input for the Tree SHAP explanation model.
The SHAP values can be considered as the feature importance of each class.

n estimators max depth min child weight subsample colsample bytree learning rate

100 3 3 0.7 0.5 0.1

Table 6.2: The chosen parameters of the XGBoost model.

Fraud type Mo0 Mo1 Mo2 Mo3 Mo9
AUC-ROC 0.992 0.984 0.996 0.998 0.924

Table 6.3: The AUC-ROC of each class in the XGBoost model.

Figure 6.1: The confusion matrix of the XGBoost model.
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6.1.4 ML model filter

The parameter settings used for the ML filters are the same as for the ML models. The ML filter
is trained on the SHAP values of the output alerts from the ML model. In this experiment, we
only consider the instances with output probability over 0.5 as alerts. Since the number of alerts
and the SHAP values from each class are different, the ML filter is trained separately for each
class. The features are the SHAP values of each type of fraud. When the prediction is consistent
with the specific fraud type, it is labeled as TP; when the prediction wrongly classified a non-fraud
(Mo0) class as a specific type of fraud, it is labeled as FP. We train the ML filter using the same
training set that was used for the ML model and predict on the test set for fraud types Mo1 and
Mo2 respectively. Once the ML filter predicts an alert is false, the alert is filtered out. The per-
formance of the ML filter is computed based on the remaining alerts using the evaluation metric
described in Section 4.7.

6.2 Experiment on FP elimination using ML filter

To evaluate the performance of FP elimination based on SHAP values, we compare the ML fil-
ter with two baselines: the performance of the original ML model and that of the ML filter built
based on the original features. We expect that training the ML filter based on SHAP values results
in better performance than just tuning the output probability threshold. Moreover, the perform-
ance of the ML filter build on a combination of the original features and SHAP values is also tested.

The following sub-questions are considered in the experiment:

1. What are the dominant features in each type of fraud?

2. Can we visualize the difference between SHAP values in FPs and TPs?

3. What is the performance of filtering FPs with the ML filter built on SHAP values?

6.3 Results on FP elimination using ML filter

6.3.1 Visualization on SHAP values

In order to understand the model’s decision, feature importances of each type of fraud are il-
lustrated in Figure 6.2. The feature importance is computed using the mean of absolute SHAP
values for each featur. The length of each colour block represents the feature importance of the
corresponding class. We can observe that the dominant features in Mo1 fraud, such as C 083,
N 143, N 046, N 148, and N 045, are also the major features in Mo0. In contrast, Mo2 has fewer
features that overlap those of Mo0, and the dominant features are N 000, N 159, and C 206.
As a result, Mo1 performs the worst out of the four types of fraud and many alerts predicted as
Mo1 are actually belong to Mo0 (Figure 6.1). In addition, Mo3 and Mo9 fraud also have many
dominant features similar to those of Mo0.

In the multiclass classification model, each instance has a different prediction probability for each
different class. From the probability of each class, the corresponding SHAP values can be derived.
The SHAP values of all the alerts sorted by TPs and FPs can be seen in the heatmap (Figure 6.3,
6.4). The first column shows their corresponding labels.

In Mo1 fraud, we can observe that for alerts that are classified as TPs, C 224, N 000, and N 143
have relative higher positive effects when compared to other features. For those classified as FPs,
the features with negative effects are increased. Features with less impact on the prediction might
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Figure 6.2: The feature importance of each type of fraud.

Figure 6.3: The heatmap of SHAP values of Mo1 fraud.
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be considered as redundant features, for example, C 117, C 303, C 357 and C 362.

In Mo2 fraud, the difference of in the SHAP values between the two classes is more clear. Fea-
tures C 206, C 216, N 000 and N 159 clearly had higher positive effects on alerts labeled as TPs
(Figure 6.4). For FPs, most of those features have a negative impact on the prediction.

Figure 6.4: The heatmap of SHAP values of Mo2 fraud.

6.3.2 Evaluation in the ROC-plane

In this experiment, we only apply the ML filter on output probability threshold equal 0.5, which
is the dot of corresponding model in the figure. Without the ML filter, the FPR can also be
reduced by tuning the threshold of the ML model, which means we simply move the blue dot
towards lower left of the ROC-curve. The idea behind is when the output probability threshold
increase, the instances need to reach higher probability to be classified as alert. Hence, both TPR
and FPR dropped with increased output probability threshold. We show that the ML filter can
return better FPR while the TPR is the same as the ML model.

From the ROC-curve plot of Mo1 fraud (Figure 6.5a), we find the FPR of the ML filter with the
SHAP value (red dot) is 0.0076 while the FPR of the ML model is 0.0132 with the same TPR.
From the ROC-curve plot of Mo2 fraud (Figure 6.5b), we find the FPR of the ML filter with
the SHAP value and the FPR of the ML model is 0.0026 and 0.0038 respectively. The ML filter
trained on the original features performs slightly better than the proposed ML filter. The ML
filter performs the best when both type of features are combined.
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(a) The performance of ML filter for Mo1 fraud. (b) The performance of ML filter for Mo2 fraud.

Figure 6.5: The performance of the original ML model and ML filters in the ROC-plane. The
dots represent the performance of each model on the threshold 0.5.

6.3.3 Conclusion on FP elimination using ML filter

The first sub-question is addressed in Figure 6.2 which shows a bar chart indicating the feature
importances for each type of fraud. Results indicate that the important features in fraud Mo1 and
non-fraud (Mo0) cases are similar, making it harder for the ML model to distinguish these two
cases compare to the other types of fraud. In contrast, fraud Mo2 has fewer important features in
common with non-fraud cases, and fraud Mo2 shares some common features with Mo1.

The second sub-question is addressed in Section 6.3.1, where we illustrate the feature importances
determined by the SHAP values. For both Mo1 and Mo2 fraud, some of the dominant features
have different SHAP values for alerts labelled FPs and TPs. Especially for Mo2 fraud, the main
dominant feature of FPs and TPs has a significantly different values. Based on the above results
we suggest FPs and TPs can be distinguished by SHAP values.

The third sub-question is addressed in Section 6.3.2, where we compare the AUC-ROC perform-
ance on ML filter with baselines. The ML filter based on SHAP values in both Mo1 and Mo2
fraud have better performance than the ML model. The result indicates that the ML filter based
on the SHAP values can efficiently detect and filter out FPs. Moreover, the ML filter trained
on a combination of original features and SHAP values performs even better. This experiment
demonstrate the future possibility of using SHAP values as extra features for domain experts.

6.4 Experiment on FPs elimination using rule-based filter

The goal of this experiment is to filter out FPs using the extracted rules from the original features.
In order to associate SHAP values with the original features, clustering and subgroup discovery
techniques are applied. In this experiment, we first perform clustering on SHAP values. In each
cluster, a subgroup discovery technique is applied to extract the rules that have highest coverage.
We then set a threshold to reduce the rules based on the support of TPs to ensure that most of
TPs are retained. The remain rules are then used in a rule-based filter to eliminate FPs. We con-
sider two baselines: one baseline where no clustering on SHAP values is performed, and another

Application-grounded evaluation of predictive model explanation methods 39



CHAPTER 6. EXPERIMENTS ON FPS ELIMINATION

where no filtering is done at all. For the results, we first investigate the patterns of features after
clustering on SHAP values. Then, we present the FPs rules derived from subgroup discovery.

The following sub-questions are considered in the experiment:

1. Can we visualize the rule structure based on the clustered SHAP values and their corres-
ponding feature values?

2. Can discovered rules represent each cluster?

3. How well does a rule-based filter perform?

6.5 Subgroup discovery parameters

We use a grid search to select optimal parameters for subgroup discovery. The tuning parameters
in CN2-SD are gamma, beam width and the minimum coverage of examples. In order to preserve
the interpretability of the rules, the length of a rule is restricted to between 3 and 5. The cover
value is set as the percentage of the whole that the individual clusters size represent or the total
alert size. After the rules are extracted, we apply different TP support threshold to select the best
rules. The parameters are listed in Table 6.4.

parameters gamma beam width cover TP support

{0.6, 0.7, 0.8} {10, 20, 30} {0.1, 0.2} {0.05, 0.1, 0.15}

Table 6.4: The parameters used in Gridsearch for subgroup discovery.

6.6 Results of FPs elimination using a rule-based filter

6.6.1 Visualization of clustering SHAP values

Hierarchical clustering is performed on the SHAP values to discover the dominant features in each
cluster. After clustering, the structure of SHAP values can be observed clearly. As shown in
Figure 6.6a, the most significant groups are dominated by C 083, C 224 and N 046. In order to
understand the relationship between SHAP values and corresponding original features, the cluster
groups made by SHAP values are mapped back to the original feature space (Figure 6.6b). The
feature values are scaled by mean normalization for visualization purposes. Let x be an original
feature value, x′ = (x− average(x))/(max(x)−min(x)) is the normalized feature value. A com-
parison of the two heatmaps reveals a similar pattern in the original feature space.

From the clustermap of Mo2 fraud (Figure 6.7a), we observe that the distribution of SHAP values
is more even than for Mo1 fraud. In other words, the prediction is affected by more distinctive
features. Most of the clusters are leaded by C 048, C 206, N 000, N 045, and N 159. We also
observe that some combination of features result in TPs, for example, C 048, C 206 and N 000.
From both types of fraud, similar pattern to that of the clustermap are found in the original
feature spaces. Therefore, we suggest subgroup discovery can be applied to reveal the rules for
subgroups within each cluster.
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(a) The clustermap of SHAP values. (b) The heatmap of normalized original features clustered
by SHAP values.

Figure 6.6: The cluster heatmap for Mo1 fraud.

(a) The clustermap of SHAP values. (b) The heatmap of normalized original features clustered
by SHAP values.

Figure 6.7: The cluster heatmap for Mo2 fraud.

6.6.2 Rules discovered from each cluster

After Hierarchical clustering, fraud Mo1 and Mo2 are clustered into 6 and 7 groups respectively.
The subgroup discovery is applied to discover the rules within each cluster. We present the rules
with highest coverage of each cluster, which means the rule cover most of alerts within the cluster.
Local FP support and TP support within each cluster are computed. Table 6.5 shows that most
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of rules have FP support higher than 0.5, meaning the rule represents at least 50% of FP cases in
the cluster.

Rules FP support TP support Coverage

(C 048 ≤ 0.146) ∧ (C 212 ≤ 0.104) ∧ (N 143 ≥ 0.105) ∧ (N 158 ≤ 0.104) 0.82 0.19 0.82
(C 083 ≥ 0.102) ∧ (C 303 ≤ 0.102) ∧ (N 157 ≤ 0.114) 0.62 0.25 0.59
(N 000 ≥ 0.111) ∧ (N 000 ≤ 0.188) ∧ (N 045 ≤ 0.178) ∧ (N 159 ≤ 0.126) 0.33 0.00 0.33
(C 048 ≤ 0.102) ∧ (N 046 ≤ 0.166) ∧ (N 143 ≤ 0.154) 0.66 0.19 0.64
(C 117 ≤ 0.102) ∧ (N 143 ≤ 0.163) ∧ (N 159 ≤ 0.118) 0.63 0.33 0.63
(C 117 ≤ 0.100) ∧ (C 303 ≤ 0.102) ∧ (N 148 ≥ 0.159) 0.42 0.20 0.42

Table 6.5: Rules discovered from each cluster in Mo1 fraud. The rule with the highest coverage
in each cluster is listed.

6.6.3 Rule-based filter

The discovered rules from clusters and global alerts are shown in Table 6.6 and Table 6.7 respect-
ively. The global support and confidence of each rule are computed to ensure the quality of the
rules in all the alerts. The FP confidence of all the rules are higher than 0.99 and is therefore
not included in the tables. In Mo1 fraud, the results show that some rules discovered both within
clusters and globally have the same FP and TP support. However, the other rules discovered
within clusters have lower FP support but equivalent TP support.

Rules FP support TP support

(C 303 ≤ 0.102) ∧ (N 046 ≤ 0.159) ∧ (N 143 ≤ 0.154) 0.40 0.08
(C 303 ≤ 0.106) ∧ (C 083 ≥ 0.102) ∧ (N 143 ≤ 0.18) 0.19 0.08
(C 083 ≥ 0.102) ∧ (C 303 ≤ 0.102) ∧ (N 157 ≤ 0.114) 0.16 0.08
(C 303 ≤ 0.124) ∧ (N 046 ≤ 0.137) ∧ (N 148 ≤ 0.168) 0.14 0.03

Table 6.6: Rules discovered from clusters in Mo1 fraud.

Rules FP support TP support

(C 303 ≤ 0.104) ∧ (N 046 ≤ 0.159) ∧ (N 143 ≤ 0.154) ∧ (C 117 ≤ 0.102) 0.40 0.08
(C 083 ≥ 0.102) ∧ (N 045 ≥ 0.158) ∧ (N 148 ≤ 0.166) 0.14 0.02

Table 6.7: Rules discovered globally in Mo1 fraud.

In fraud Mo2, the rules discovered within clusters also have lower FP support but not significantly
lower TP support. Only one rule discovered globally has good support quality for both, with FP
support of 0.74 and TP support of 0.08.

Rules FP support TP support

(N 045 ≤ 0.173) ∧ (N 143 ≥ 0.101) ∧ (N 157 ≤ 0.112) 0.50 0.05
(C 048 ≤ 0.102) ∧ (N 000 ≥ 0.124) 0.19 0.06

Table 6.8: Rules discovered from clusters in Mo2 fraud.
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Rules FP support TP support

(N 157 ≤ 0.119) ∧ (N 000 ≥ 0.101) ∧ (C 303 ≤ 0.2) 0.74 0.08

Table 6.9: Rules discovered globally in Mo2 fraud.

To observe the rule coverage for each cluster, the cluster confidence of each rule is computed. As
shown in Figure 6.8, each rule has the higher confidence within the specific cluster. Two rules
have the highest confidence in Cluster 3. However, not all the cluster can find such a rule. The
reason is again because the discovered rules exceed the threshold of TP support.

Figure 6.8: The cluster confidence of each rule.

6.6.4 Evaluation in the ROC-plane

From the ROC-curves (Figure 6.9), we can observe that the filter build on global rules perform
at a similar level to the ML model. However, the proposed filter has a lower TPR, resulting in a
worse performance.

(a) The performance of filter for Mo1 fraud in ROC-
plane.

(b) The performance of filter for Mo2 fraud in ROC-
plane.

Figure 6.9: The performance of the original ML model and rule-based filters in the ROC-plane.
The dots represent the performance each model on the threshold 0.5.

Application-grounded evaluation of predictive model explanation methods 43



CHAPTER 6. EXPERIMENTS ON FPS ELIMINATION

The results are consistent with the support of rules that proposed filter removing too many TPs.
We observe that some rules in proposed filter (Table 6.6, 6.8) have less difference between FP
support and TP support. If the threshold of the filter is well defined, the proposed filter might be
made to perform as well as the filter build on global rules.

6.6.5 Explanation utility at different levels

We further discuss the possible utility of explanation at each level for domain experts. At the
model level, the relation between the original feature values and the SHAP values of the important
features can be visualized. For example, Figure 6.10a shows the important feature N 143 for all
the alerts in fraud Mo1. We can observe that the model considers this feature to have a positive
impact on the prediction of an alert when the feature value is 0.1 or higher than 0.155. In addition,
the plot can also observe the feature that has an abnormal behaviour and a higher impact on the
prediction, such as IP addresses and multiple failed login attempts. The abnormal behaviour can
be observed in Figure 6.10b. When the feature value of N 046 is less than 0.13, the negative effect
is higher than −0.2.

(a) The scatter plot of “N 143“. (b) The scatter plot of “N 046“.

Figure 6.10: The scatter plot of the original feature value with its SHAP value and the joint
distribution at model level.

At the group level, the visualization can be used to refine the rule identified from the FPs elimina-
tion framework. We plot the first rule from Table 6.6, which is (N 046 ≤ 0.159)∧(C 303 ≤ 0.102)∧
(N 143 ≤ 0.154). From Figure 6.11 we can observe that most of the TPs are discarded when
N 046 ≥ 0.15 and N 143 = 0.10. Then, the rule can be further refined to reduce the decrease in
TPR.
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(a) The scatter plot of “N 046“ covered by the rule.(b) The scatter plot of “N 143“ covered by the rule.

Figure 6.11: The scatter plot of the original feature value with its SHAP value and the joint
distribution at group level.

6.6.6 Conclusion on FPs elimination using rule-based filter

The first sub-question is addressed in Section 6.6.1. From the clustermap of SHAP values, we were
able to visualize the relationship between SHAP values and the original feature values. When the
clusters formed by the SHAP values were applied to the original feature space, similar structures
were found in both spaces. The clustermap illustrates the most important features for each type of
fraud and identifies some subsets of features which usually occur at the same time. These subsets
of features represent different rules for each type of fraud. As a result, the clustermap could assist
a domain expert in confirming consistency between the subsets of features and the attributes of
rules in the rule-based system. Once the subsets of features are found to be meaningful, a domain
expert can further check the discovered rules from each cluster.

The second sub-question is addressed in Section 6.6.2. We extracted the rule with highest cov-
erage to represent each cluster. The result shows that the coverage of alerts by discovered rules
varied from 33% to 82%. Moreover, some redundant features occurred in the rules and should be
removed to allow more insight into the fraud. If the discovered rules were meaningful, the trust
between the ML model and a domain expert could be established.

The third sub-question is addressed in Section 6.6.4. Although the extracted rules covered too
many TPs, they could still be used to describe the behaviour of FPs. Due to the class imbalance
between FPs and TPs, we might further consider support threshold based on the ratio between
FP support and TP support. This consideration would ensure we do not discard too many TPs
while filtering out FPs. For example, if we set threshold as a ratio of FP support to TP support
larger than 4, only the first and fourth rules will be used in the rule-based filter in Table 6.6. The
performance of the filter could therefore be improved. However, the problem of how to define the
ratio in each type of fraud still remains. Moreover, some redundant features can be observed in
the clustermap of the SHAP values. Those features could be removed during the rule discovery
process, making the discovered rules more precise.
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Conclusions

In this thesis, we evaluated the quality of explanations for determining the utility of different
approaches and assisting domain experts in eliminating FPs. The first goal was to define an ac-
curacy threshold such that the local explanation would be interpretable. The second goal was
to determine the utility of the explanation for aggregating local explanations into groups and at
global levels. The third goal was to apply explanations to assist domain experts in automatically
eliminating FPs while retaining most TPs. In the first part of this chapter, we present the re-
search questions and summarize the achieved goals. We then discuss limitations and suggestions
for future work.

7.1 Research questions

The research questions are as follows:

1. Will interpretability drop as the reference model become less accurate / biased?

In the experiment discussed in Section 5.1, we compared the explanation of six models with
different accuracy and biases. We observed that the soundness of explanations decreases with the
accuracy score in the simple models. However, the behaviour of the explanations became diverse
when we encountered different model complexities, class distributions and dimensions of features.
These results made it challenging to relate ML model accuracy with soundness and define the ML
model accuracy threshold regarding interpretability. Hence, we concluded the experiment with an
unknown threshold and move to the utility of aggregating explanations at different levels.

2. Which type of useful information can be obtained at the model-, group- or local-level ex-
planations?

In the experiment discussed in Section 5.4, we determined that explanations that are good to
humans are useful. Hence, we started by defining the types of good explanations. We then in-
vestigated the utility of two state-of-art model-agnostic explanation models SHAP and LIME.
Based on their strengths and weakness, we aggregated the explanations on different levels and
applied visualization techniques to derive useful explanations. We also demonstrated the possible
utility for domain experts. The properties that can be fulfilled at each level of explanation are
summarized in Table 5.5.

3. Can the explanation help a domain expert to post process fraud alerts?

In the experiment discussed in Section 6.2, we proposed two approaches for eliminating FPs auto-
matically. In the first approach, we built an additional ML model filter and substituted the
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explanation feature values for the models original values. The performance of the ML filter for
both Mo1 and Mo2 types of fraud was better than that of the ML model. With the same TPR
rate, the FPR of the ML filter was 40% less and 32% less than the ML model in Mo1 and Mo2
respectively. Moreover, the ML filter trained on the combination of original features and SHAP
values performed even better. This experiment demonstrated the future potential for using SHAP
values as extra features for the domain experts. Hence, the goal was achieved, and SHAP values
are recommended for future in automatic post-processing of fraud alerts.

4. Can the explanations indicate the structure of different fraud detector rules?

We addressed this question with the second approach in Section 6.4. This approach used visu-
alization methods to illustrate clustered SHAP values and then extracted rules using subgroup
discovery for each cluster. The extracted rules were subsequently used to filter out FPs. The
visualization illustrated the structure of the dominant features in each cluster. Similar patterns
occurred in both SHAP values and in the original features. The extracted rules from each cluster
were found to represent the general rule of some clusters. Those rules, therefore, can help domain
experts establish the reliability of the ML system. However, most of the rules still affected too
many TPs. As a result, the rule-based filter did not outperform any baseline. We further discussed
two possible future solutions including changing the threshold and removing redundant features.

7.2 Limitations and future work

The future tasks with respect to the explanation methods:

• The local explanation methods LIME and SHAP only ensure the explanation is local faithful,
which means when the ML model is highly non-linear the explanation may not be faithful.
We can estimate the faithfulness of the explanation and present the information to domain
experts in the future.

• Tree SHAP explanation model is applied in the framework for the sake of computational
efficiency. Therefore, the framework is not model-agnostic. In addition, we only tested the
explanation using an XGBoost model. There are several alternative tree models which could
also be applied, for example, LightGBM, CatBoost, and scikit-learn tree models. The Kernel
SHAP could also be considered for use with other ML models.

The future tasks with respect to the FPs elimination framework:

• The framework was based on one statistic ML model. This offline setting might be too
optimistic and unable to capture the characteristics in a real online system. In addition,
the false alerts generated by the ML model might be different from those of the rule-based
system.

• The ML filters only performed on output probability threshold equal 0.5. Future experiment
could perform the ML filters on different thresholds to obtain more conclusive results.

• The baselines only considered model accuracy for FPs elimination. Future experiment could
perform a real or simplified task to measure the improvement in time efficiency.

• There are many techniques involved in the framework. Due to the limitation of time, not
all parameters were well-tuned. Parameter settings can have a strong impact on the results.
For example, an under-sampling ratio may affect the distribution of data, the cut-off length
in clustering and the rule coverage in subgroup discovery.
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