
 

A model-based design methodology for time-driven and data-
driven embedded applications
Citation for published version (APA):
Breaban, G. D. (2018). A model-based design methodology for time-driven and data-driven embedded
applications. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 27/11/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Sep. 2024

https://research.tue.nl/en/publications/f717fc07-50a9-41c8-a21e-758d9cf94fd9


A Model-Based Design Methodology
for Time-Driven and Data-Driven

Embedded Applications

proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor
een commissie aangewezen door het College voor Promoties in het openbaar te

verdedigen op dinsdag 27 november 2018 om 16.00 uur

door

Gabriela Doina Breabăn

geboren te Iaşi, Roemenië



Dit proefschrift is goedgekeurd door de promotor en de samenstelling van de
commissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders
1e promotor: prof.dr. K.G.W. Goossens
copromotor: dr.ir. S. Stuijk
leden: prof.dr.ir. C.H. van Berkel

prof.dr.ir. J.P.M. Voeten
prof.dr. I. Sander (KTH Royal Institute of Technology)
dr.ir. T.P. Stefanov (Universiteit Leiden)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.



A Model-Based Design

Methodology

for Time-Driven and Data-Driven
Embedded Applications

Gabriela Doina Breabăn



Doctorate committee:

prof.dr. K.G.W. Goossens Eindhoven University of Technology, promotor
dr.ir. S. Stuijk Eindhoven University of Technology, copromotor
prof.dr.ir. A.B. Smolders Eindhoven University of Technology, chairman
prof.dr.ir. C.H. van Berkel Eindhoven University of Technology
prof.dr.ir. J.P.M. Voeten Eindhoven University of Technology
prof.dr. I. Sander KTH Royal Institute of Technology
dr.ir. T.P. Stefanov Leiden University

© Copyright 2018, Gabriela Breabăn
All rights reserved. Reproduction in whole or in part is prohibited without the written
consent of the copyright owner.

Cover design by Waldo Ramírez Montaño, based on image from www.istockphoto.com
created by bubaone

Printed by Guildeprint – The Netherlands

A catologue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4636-7



Dedicated to my parents and

to Waldo, my love





Abstract

The complexity of modern embedded systems has increased considerably recently.
There is a vast variety of applications that have high performance requirements.
To implement such applications, we require sufficiently performant hardware
resources. Multi-core hardware platforms proved to be a promising solution.
Programming embedded applications on multi-core systems is a complex design
task that requires proper design methodologies. Model-Based Design (MBD)
emerged as a design methodology in which the system to be designed is captured
by models that are then used throughout all the phases. When the application
functions involve periodic sensing or actuation, or they have to be performed
within a predefined time, we say that the application is time-driven, as the
correctness of those application functions depends on their timing properties.
Furthermore, many modern applications also include data-driven functions that
involve processing streams of data as soon as they are received. While the type of
models to be used in MBD can vary in their degree of formalism, we advocate the
use of formal Models of Computation (MoCs), as they are built on mathematical
grounds and they can be analyzed to obtain performance guarantees.

The high-level problems that we address in this thesis are, first, the definition
of a MoC that offers an enhanced expressiveness of the key behavioral properties
of time-driven and data-driven applications, while also accounting for different
notions of time, as given by the limitations of the hardware implementation. The
second problem is devising proper implementation methods that are faithful to
the MoC properties, and finally a methodology that allows for gradual (top-down)
refinement of models and (bottom-up) incorporating information of the hardware
implementation. These problems mark the key requirements of MBD and ensure
a complete and correct design solution.

To address these research problems we first define a new unified MoC that
combines Dataflow and Time-Triggered execution semantics with both First In
First Out (FIFO)-based communication and over/under-sampling. The time-
driven and data-driven behavior is expressed through various properties such
as task periods, data consumption/production rates, while the non-functional
application requirements can be quantified through performance metrics such as
throughput, task periods. Models can be transformed to equivalent SDF models
and they can be statically analyzed to compute the previously mentioned metrics.

Second, we propose a set of implementation methods to realize the semantics
specified by the MoC. The methods target several types of hardware platforms
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that differ in their timing properties. We distinguish between Globally Asyn-
chronous Locally Synchronous (GALS) Multi-Processor System on Chip (MPSoC)
platforms on which the processor clocks are affected by skew and/or jitter and for
which a strictly time-driven operation of the application tasks is obtained through
either a distributed or a centralized time synchronization method. The second
type of platforms are GALS platforms that are only affected by clock jitter and
for which we propose a loosely time-driven operation of the application tasks.
To implement the MoC semantics, specific methods can be used depending on
the kind of (hardware) implementation platform. Our implementation methods
cover thus multiple platforms and offer to the user the flexibility of choosing the
appropriate platform based on the required type of operation of the application
tasks.

Third, we propose a design methodology that is a sequence of steps that
takes as input the model of a particular application and a specification of the
hardware implementation architecture. It assists the designer in gradually refining
the model by giving specific values to unspecified properties (e.g. task periods,
offsets, clock offset), computing and incorporating platform mapping details and
providing performance metrics at each intermediate design step.

We demonstrate our design methodology with a synthetic application, which
exhibits the above mentioned properties. Further, we use a FPGA prototype
of the CompSOC platform to evaluate the proposed implementation methods.
The application shows that our methodology properly handles the gradual model
refinement accompanied by performance analysis at each step, that allows the
designer to verify whether the temporal requirements are met.

In conclusion, in this thesis we offer a complete design solution, supported
by experimental results, for time-driven and data-driven embedded applications
following the MBD paradigm, that covers multiple hardware implementation
platforms.
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1
Introduction

An embedded system is a microprocessor-based system that is build to control
a function or a range of functions within a larger mechanical or electrical sys-
tem [31]. Embedded systems cover a large range of application domains from
industrial automation, automotive, multimedia, and Internet of Things. They
have penetrated almost every area of human activity. In the era of smart and
connected devices, embedded systems have the role of improving the quality of
life through enhanced consumer products and smart homes, they assist humans in
their professional activities in areas like healthcare, and offer increased safety in
transportation. Almost 100% of the world’s microprocessors are used in embedded
systems, with less than 1% being used for personal computers [72]. It is estimated
that an average (American) household contains around 40 embedded processors.
According to Radiant Insights, Inc., the overall market value was USD 140 billion
in 2013 and it is estimated to increase to USD 214 billion in 2020, due to the
growing demand in key sectors such as automotive, healthcare and IoT [3]. These
numbers provide a quantitative perspective on the presence of embedded systems
in our everyday life and their economic impact.

The complexity of modern embedded systems has increased considerably com-
pared to several years ago. First, the vast variety of applications and their
increasing user demands translate into higher performance requirements. In
consequence, the hardware resources had to scale accordingly. Traditionally,
embedded systems were designed to have a microcontroller or a single processor
as a computing device. A straightforward way to increase the performance was
then by increasing the processor frequency. This method hit its limitation due
the increased power consumption and thermal effects. To cope with this problem,
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multi-core hardware platforms were proposed instead [55]. These platforms offer
the opportunity to run multiple applications and their composing tasks in parallel
on processors running at a lower frequency.

Programming embedded applications on multi-core systems is a complex design
task that requires new design processes and methodologies. The V-model [52]
shown in Figure 1.1 is one of the most widely used design processes, which starts
with the application specification based on which the requirements are established,
followed by high-level design, low-level design, implementation (coding) and fi-
nally, verification and validation. One major shortcoming is the rigid sequential
flow in which the prototype is available for testing/verification only later on in
the process, thus pushing the detection of bugs to the very final phases. This
leads to long application design iterations, that are prohibitively inefficient for
large projects with high complexity.
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Figure 1.1: The V-model

Model-Based Design (MBD) (shown in Figure 1.2) emerged as a design method-
ology in which the application to be designed is captured by (a set of) models
that are systematically used throughout all the design phases [20, 21, 35, 55].
The models describe different parts of the system and evolve from a high level
of abstraction at the initial design phase to more detailed models, gradually
incorporating the design decisions taken at the following phases. The models can
be used to verify the application at each phase and to detect errors earlier. The
design process can be automated through tool sets that include the capability
of automatic code generation from the models, making the entire process less
error-prone than in the case of manual implementation (coding). In conjunction
with the V-model, MBD allows for incremental design through partial design
iterations, it enables continuous testing and verification, and leads to accelerated
development with less effort, improved time to market and decreased engineering
costs, as compared to the traditional V-model with manual implementation.
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Figure 1.2: Model-Based Design

1.1 Design Challenges for Embedded Systems
An embedded application consists of predefined functions implemented by the
application software that is closely tied to the underlying hardware. Unlike
general purpose software, embedded software interacts with specific hardware
and it is constrained by limited resources. Behaviorally, an embedded application
has functional and non-functional properties. The functional properties offer an
answer to the question ‘What does the application do?’. The non-functional
properties stem from the fact that it operates on limited hardware resources
and it interacts with non-computing components. They usually refer to timing,
power and energy consumption, thermal behavior, etc. and offer an answer to
the question ‘How does the application perform its functions?’. The functional
and non-functional properties of an embedded application are derived from the
application functional and non-functional requirements.

The functions performed by an embedded application often impact the physi-
cal environment and vice-versa. The physical environment can consist of physical
factors (e.g. air, water, light), mechanical parts, humans, that are in the close
proximity of the embedded system and are related to the embedded system
functionality. In this case, the embedded application has to be capable to interact
with the physical environment at its inputs and outputs. This is usually realized
via sensors and actuators. A sensor is a device that measures a physical quantity,
while an actuator is a device that alters a physical quantity [44]. In general, we
refer to any component that provides input data to the embedded application
as a source and to any component that receives or is controlled by the output
data produced by the embedded application as a sink. Sources and sinks are
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the interface between the embedded application and the (physical) environment.
Furthermore, the input and output data usually come as a stream of data samples.

When application includes functions that are executed at specific clock ticks
specified by a predefined schedule [59] we say that the application is time-driven,
as the quality and correctness of those application functions are measured with
respect to time. Furthermore, next to sensors and actuators, many modern
applications include functions that are executed when the input data is available.
We say that the application is data-driven [40] since the availability of data
controls the execution of these functions and the quality of those functions is
given by the speed with which the application can process data. When both
types of functions are present, then the application is both time- and data-driven.

To illustrate these time- and data-driven applications and motivate our con-
tribution, we chose two example applications from different domains, shown in
Figures 1.3 and 1.4: Adaptive Cruise Control (ACC) from the automotive domain
and Position-Based Visual Servoing (PBVS) from the robotics domain. The ACC
application consists of a number of sensors that periodically send data to the
central part (System Processing Module) where it is combined via data fusion
techniques (e.g. estimation Kalman filters) and processed to compute relevant
vehicle control properties (e.g. path determination). The processing results are
then sent as command signals to the actuators that control the vehicle and/or
generate warning signals for the driver. Sensor data fusion has been implemented
so far on different types of architectures including Time-Triggered Architecture
(TTA) [23] and event-triggered [37]. However, due to the increasing number of
sensors including image and audio sensors, the demands in terms of digital signal
processing also increase. This motivates us to propose the use of a data-driven
paradigm that enables the explicit modeling of data parallelism and the analysis of
real-time data processing performance (i.e. throughput). This is in contrast with
the event-triggered and time-triggered paradigms where the timing performance
of the application execution is not explicitly correlated with the flow of the data
throughout the system.

The PBVS application consists of a robot system controlled by a visual sub-
system composed of two Charged Coupled Device (CCD) cameras. The actuators
in this system are the robot Direct Current (DC) actuators and the step-by-
step actuators for the cameras, while the cameras act as visual sensors. In this
case the actuators have periodic time constraints and the camera performance is
given by the frame rate (throughput). The visual system acquires and processes
data periodically and involves data-driven functions such as image acquisition and
perspective transformation that can also benefit from the data-driven paradigm.

We see that both applications integrate time-driven components as well as
components that can benefit from the data-driven paradigm. Furthermore, sen-
sor data fusion involves simultaneous and distributed sampling of the sensors.
However, the sensor data includes precise time stamps that allows for subsequent
processing in a data-driven fashion. Hence, it makes sense to consider that time
and data are two fundamental underlying mechanisms that define the behavior of
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application components.
In general, the design process of an embedded system is the set of progressive

steps that consists of defining the set of requirements, specification, architecture
of the system, followed by the system verification and validation [75]. A design
methodology is a method of proceeding through levels of abstraction to complete
a design [75].

In MBD, the model is the central artifact [33]. A model is an abstract
representation of a system [35]. Models are initially created at a high abstraction
level and refined in subsequent design phases. To build a proper abstract model,
a solid knowledge of the application’s functional and non-functional properties is
required.

Embedded applications require one or more implementation platforms to ex-
ecute. Implementation platforms consist of the hardware and software infras-
tructure and can be realized with different architectures. To cope with the
high number of functions, physically distributed hardware platforms as well as
Multi-Processor System on Chip (MPSoC) platforms were proposed. To cope
with the timing requirements, different platform architectures were proposed that
tolerate different types of clock deviations. A clock offers a notion of time. Both
distributed hardware platforms as well as MPSoC platforms can include more
than one clock oscillator. Clock oscillators are affected by physical phenomena
that cause deviations in the clock behavior. When the notion of time provided
by the clock is used to trigger the execution of the application tasks, then the
clock deviations can impact the application behavior. Based on the tolerated
types of clock deviations we distinguish between different types of implemen-
tation platforms. The Time-Triggered Architecture (TTA) [39] was proposed
for physically distributed hardware platforms, each one having its own clock
oscillator. Clock deviations such as skew and jitter are tolerated by using clock
synchronization, while the communication and execution of the application tasks
is triggered by time. Loosely Time-Triggered Architecture (LTTA) [12] is a
weaker version of TTA that can tolerate at most clock jitter without using clock
synchronization. The execution of the application tasks is triggered by the local
clock. To counteract the potential loss or duplication of data that can occur due
to the unsynchronized clocks, a skipping mechanism is introduced that allows
the tasks to skip the reading of data at the current clock tick if no fresh data
is available. Globally Asynchronous Locally Synchronous (GALS) [70] platforms
consist of several synchronous islands that communicate asynchronously, e.g. by
using FIFOs. Depending on the type of timing requirements and on the behavior
of the application, the execution of the application tasks running on a GALS
platform can be triggered either by time or by the availability of the input data.

The inputs to the design process for embedded applications are:

1. the application I/O (input/output) interface with the physical environment

2. the application functional and non-functional requirements

5



CHAPTER 1. INTRODUCTION

���������	
��

��������	����������

���������	
��

��������	����������

�������������
��

������������������
������������������
������� ���


�������������
��

������������������
������������������
������� ���


����!�
�����	
��

��"�������������
��������	����������
��#�
��!�$��%��"�����%
����
���������"���

����!�
�����	
��

��"�������������
��������	����������
��#�
��!�$��%��"�����%
����
���������"���

&��!�$��%�����
��


����''�������%������
�������
��������������%��
��(�������
��

&��!�$��%�����
��


����''�������%������
�������
��������������%��
��(�������
��

�������!�$��%��&����'����)����������

���������������������������������������������!�
��%
��#�����������%����������������������������

�������!�$��%��&����'����)����������

���������������������������������������������!�
��%
��#�����������%����������������������������

�������!�$��%������*���
������������%
�����$�������������

�������!�$��%������*���
������������%
�����$�������������

#�
��!�$��%������*���
��!�$��%������%
�����$�������������

#�
��!�$��%������*���
��!�$��%������%
�����$�������������

&�����$��������&�����'�������
��&�����$����������
����������+
��&�����'��������,���%������

&�����$��������&�����'�������
��&�����$����������
����������+
��&�����'��������,���%������

�

�

���
����%%�
�����$������

�

���
������������%

�

�

���
����%%�
�����$������

�

���
������������%

&��!�$��%���	
��

��������������������
��-&�
�����������%
�������������.

&��!�$��%���	
��

��������������������
��-&�
�����������%
�������������.

�������
����������
���

�������!�$��%��������%
��/��*�
��������������������������������������$����%�
���������������������������

�������!�$��%��������%
��/��*�
��������������������������������������$����%�
���������������������������

�	
��������

���
����%�

-�����������.

���
��
 �-����������.

��������
 �-����������.

�
#
(
�
&
�
�
"

0
1
!
&
�
2
1
�
0
1
�

Figure 1.3: Functional Architecture of an Adaptive Cruise Control Application
(reproduced from [7])
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Figure 1.4: Functional Architecture of a Position-Based Visual Servoing
Application (reproduced from [71])
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1.1. DESIGN CHALLENGES FOR EMBEDDED SYSTEMS

3. the information about the implementation platform(s)

In the context of this thesis, the only type of requirements that are addressed
are the timing (non-functional) requirements while in terms of implementation
platforms, we consider MPSoC platforms.

1.1.1 Related Work
In terms of models, the Unified Modeling Language (UML) formalism has lately
gained popularity for creating models for embedded applications design [46]. It
was proposed as a general-purpose modeling language to be used for visualiz-
ing the design and to ease the exchange of concepts between different project
disciplines. The Modeling and Analysis of Real Time and Embedded systems
(MARTE) profile [73] was proposed to deal with the properties of real-time
embedded systems. One drawback of UML, including its various profiles, is that it
doesn’t define explicit semantics, which leads to possible inconsistent utilizations
of it. In order to deal with this issue, the Clock Constraint Specification Language
(CCSL) language is used as a companion of MARTE [58] and it serves to create
timing constraints. However, a model transformation is required to enable formal
timing verification.

Formal concurrent models of computation are build on rigorous mathematical
grounds and expose the implicit physical parallelism offered by distributed and
multi-processor hardware platforms. Their role is to establish the execution and
communication semantics of the application. Application models based on MoCs
can be simulated or analyzed to compute or check formal application properties.
They can be split into two main categories, based on the achieved order relations:
timed and untimed MoCs [43]. The order relations are assigned to the set of events
that form the model execution. Timed models realize a total order of the events,
while untimed MoCs realize a partial event order. Timed models are Discrete
Event, Discrete Time, Continuous Time, Metric Time etc. Untimed models are
Rendezvous of Sequential Processes, Petri Nets, Kahn Process Networks, Dataflow
etc. Dataflow [42] describes the application behavior through graphs that consist
of a set of actors communicating via FIFO channels. Several flavours of this
model have been proposed over time to capture different aspects of the application
behavior: Synchronous Data Flow (SDF), Homogeneous Synchronous Data Flow
(HSDF) [40], Cyclo Static Data Flow (CSDF) [13], Boolean Data Flow (BDF),
Dynamic Data Flow (DDF) [42] etc. While timed MoCs allow observing the total
order of application events, they do not include data as application execution
trigger. Dataflow models define data as the only possible trigger, on the other
hand.

In terms of methodologies and tools, Simulink/Stateflow [74] is frequently
used for modeling and simulating discrete event, continuous time and discrete
time systems based on state machines and flow charts. It includes run-time
design consistency and completeness checks, as well as code generation. Its major

7



CHAPTER 1. INTRODUCTION

disadvantage is the lack of formal semantics, as its semantics are given by the tool
and its configuration.

Ptolemy [22] is a scientific tool including a wide variety of models of computa-
tion that is used especially for designing, modeling and simulating cyber-physical
systems. This kind of systems are seen as being made of different components
that belong to different domains and require different types of models. The focus
is then on using existing MoCs, rather then defining new ones, and dealing with
the heterogeneity of the resulting system while ensuring that the composition of
different models leads to a well-defined system-level behavior.

Metropolis [9] is a system design environment that supports modeling, simula-
tion, formal verification and synthesis. It introduces a metamodel that can be used
to express all the facets of the design flow: functionality, architecture, mapping, re-
finement. It belongs to the Platform-Based Design (PBD) paradigm. PBD targets
specific hardware platforms and aims at reusing the platform for implementing
multiple applications. The main characteristics of PBD are the orthogonality
between functionality and architecture, the definition of clear abstraction layers
and unified design frameworks. The application modeling is inspired by threads
programming and it describes the application as a network of communicating
processes, while each process execution consists of a sequence of events.

ForSyDe [62] offers a heterogeneous and hierarchical system modeling library
for embedded systems by combining the functional programming paradigm with
models of computation. It is on based on four MoCs, SDF, Discrete Event, Con-
tinuous Time, and the Synchronous MoC and it allows for transformational model
refinement, simulation and synthesis. However it focuses on the heterogeneity at
sub-system level rather than within the application.

Daedalus [66] is a system-level design methodology for streaming applications
that aims to bridge the gap between the electronic system level specification and
the register transfer level implementation. It uses the functional specification and
the Polyhedral Process Network model of the input application to synthesize the
system on a MPSoC platform.

The Time-Triggered Architecture [39] provides a computing infrastructure for
distributed embedded systems with hard real-time constraints. It relies on a global
notion of time, shared across all the nodes connected to the network, that is used to
trigger the communication at predefined points in time. It enables composability
by facilitating independent development of the nodes together with constructive
integration, it includes fault-tolerance mechanisms and inherently supports scala-
bility. The principles proposed by the TTA motivated the emergence of analogous
models of computation such as Giotto [34], PTIDES [19], Timed Multitasking [45]
etc. Such MoCs are primarily meant for modeling cyber-physical applications
that are normally centered around control systems and their interfaces with the
computing platform. In terms of execution triggers, they define either time as the
only trigger (Giotto) or events (PTIDES).

The past attempts of creating combined models of computation that are
sufficiently expressive to capture the multiple facets of modern embedded ap-
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1.2. OVERVIEW OF THE SOLUTION

plications were mostly limited to the event-triggered paradigm and its newer
time-triggered flavour [19, 45]. This is understandable given, on one hand, the
traditional event-based view of embedded systems and on the other hand the
direct connection between their real-time properties and safety-critical aspects.
However, in the era of smart and connected devices, embedded applications
belonging to multiple domains [51, 65, 76] (multimedia, automotive, healthcare)
have to process considerable amounts of data usually in the form of streams and in
the same time satisfy real-time constraints. The data comes from the increasing
number of sensors or multimedia sources. Furthermore, the model by itself is
not sufficient and it requires an accompanying methodology including adequate
implementation methods for a complete design solution.

1.1.2 Problem Definition
The problem that we address in this thesis is the definition of a MoC capable of
handling the needs of modern time- and data-driven embedded applications, and
a corresponding design methodology leading to a physical implementation that
meets the application timing requirements.

The research questions that we answer in this thesis are:

1. What properties should the MoC include to capture and verify the key
characteristics of time-driven and data-driven embedded applications?

2. How to ensure that the implementation is faithful to the model while also
accounting for different implementation platforms with different types of
execution of the application tasks?

3. How to devise a design methodology that allows for both top-down refine-
ment of the model properties as well as incorporating information about the
implementation platform bottom-up?

1.2 Overview of the Solution
In this thesis we contribute a model-based design methodology for time- and data-
driven embedded applications. It targets MPSoC implementation platforms that
tolerate different types of clock deviations. It allows for model refinement as well
as annotation of the implementation platform properties while guaranteeing the
preservation of the model semantics at each design step.

First, to address the first research question, we define a new unified MoC.
The properties of the MoC are derived from the characteristics of time- and data-
driven applications. Such applications interact with a multitude of sources that
produce data samples, process the incoming data and then deliver their result
towards sinks. Our model combines time- and data-driven execution semantics
with FIFO-based communication and over/under-sampling. The time- and data-
driven behavior is expressed through various properties such as task read and
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CHAPTER 1. INTRODUCTION

write periods, data consumption/production rates, while the application timing
requirements can be quantified through performance metrics such as throughput,
and task read and write periods. Models in our MoC can be transformed to
equivalent SDF models and can be statically analyzed to compute the previously
mentioned performance metrics.

Second, to address the second research question, we propose a set of imple-
mentation methods that preserve the semantics defined by the MoC. The MoC
semantics consist of the time- and data-driven task execution and the inter-task
communication. The set of methods includes time synchronization methods that
allow for strictly time-driven execution of the application tasks on GALS MPSoC
platforms, and task execution and communication wrappers.

Third, to address the third research question, we propose a design methodology
that:

1. gradually refines the model by giving specific values to unspecified properties
(e.g. task periods, offsets)

2. annotates implementation platform details

3. verifies the application timing requirements at each design step

The implementation platform details include hardware resource details, such
as the computed sizes of the FIFO memories, the processor clock frequency,
the communication resource characteristics (Network on Chip (NoC) bandwidth
and latency), and software details, such as the performance cost of the time
synchronization methods, and the task schedules. At any step of the design,
the timing requirements can be verified based on the currently included details
by transforming the model into an equivalent SDF model and running the SDF
analysis. If the requirements are met, the design can continue with the subsequent
steps, otherwise the current design decision have to be changed, when possible,
to meet the requirements.

1.3 Contributions
We contribute a model-based design solution that consists of three major innova-
tions: (1) a unified time- and data-driven MoC for embedded applications [5] that
combines time- and data-driven semantics, presented in Chapter 3, (2) semantics-
preserving implementation methods [1–4] that consist of time synchronization
methods and methods that realize the execution and communication semantics
of the application tasks, presented in Chapter 4, and (3) an accompanying design
methodology that tries to find a design solution for an embedded application
described using our unified MoC to be implemented on an MPSoC platform,
presented in Chapter 5.
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Figure 1.5: Unified MoC

1.3.1 Contribution 1 - A time- and data-driven model of
computation

To answer the first research question, we propose a model of computation that
combines time and data-driven execution. While the time-driven execution se-
mantics expresses application timing requirements such as task read and write
periods, the data-driven execution is a natural way of expressing the processing
of data sample streams.

The model combines and extends a subset of the SDF model and a subset
of the single-mode Giotto model, as shown in Figure 1.5. The supported SDF
semantics exclude auto-concurrency. The supported single-mode Giotto subset
excludes non-harmonic task frequencies and the functional properties of the tasks.
Our model adds explicit time-driven execution semantics (i.e. task read and
write periods and offsets) to SDF. It adds data consumption/production rates,
and offsets for the tasks and communication via FIFOs to single-mode Giotto. It
allows defining different types of clocks: one reference clock, that is highly accurate
and it serves as a time reference for the application, and one or more secondary
clocks that have a specified relative accuracy with respect to the reference clock.
Each application task has then an allocated clock based on which all its time
properties are expressed. We define the notion of time consistency based on
the time properties of the tasks and of the task clocks. Time consistency is
defined at three levels: at the task level, at the inter-task communication level
and for the entire application. The degree to which time consistency is realized
determines the possible type of time driven task operation: strictly time-driven or
loosely time-driven. Associating the strictly and the loosely time-driven operation
with a corresponding communication time consistency requirement allows us to
transform our unified model into an equivalent SDF model.
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CHAPTER 1. INTRODUCTION

The type of applications that can benefit from our model are data-intensive
control applications (e.g. electron microscopy) and also any application that
combines the traditional period-centric constraints with data-driven behavior,
which can belong to domains like automotive (e.g. data stream management
systems, ACC), multimedia (e.g. audio/video stream processing), motion control
(e.g. PBVS), etc.

1.3.2 Contribution 2 - Time Synchronization and Task Ex-
ecution
Methods

To address the second research question, we propose a set of implementation
methods. They realize the MoC execution and communication semantics while
tolerating different types of clock deviations. In this thesis we consider multi-core
platforms for implementation. The following types of GALS MPSoC platforms
are supported:

• all the processor clocks have bounded offset - in this case the tasks can
execute in a data-driven or a loosely time-driven fashion, while a time
synchronization method is not required

• the processor clocks can have bounded as well as unbounded offset - in
this case the tasks can execute in either a data-driven, loosely time-driven
or strictly time-driven fashion, while a time synchronization method is
implemented for strictly time-driven execution

1.3.3 Contribution 3 - Design Methodology
To address the third research question, we propose a design methodology, shown
in Figure 1.6, that allows the user to start by specifying an application model
that includes the values for either a subset or a complete set of the possible model
properties, and an optional throughput requirement. The throughput requirement
has to be consistent with the specified task periods. The figure shows the sequence
of design steps from the top to the bottom. At each design step the current model
Mi can be transformed into an equivalent SDF graph that is analyzed to ensure
that the input requirements (throughput, task periods and offsets) still hold.

Throughout the design process, the current model Mi can be modified through
refinement and annotation to obtain model Mi+1. By refinement we mean as-
signing new values to model properties. The refinement adds a property that
was unspecified in the previous design steps and it is specific to the platform-
independent phase. The annotation can either give an implementation-aware
value to a model property which is already specified (e.g. clock (relative) accuracy)
or it can add other implementation costs (e.g. storage sizes, communication
bandwidth, task schedules) that impact the timing properties of the model (tasks
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1.4. THESIS STRUCTURE

periods, offsets). The annotation is specific to the platform-aware design phase.
Several of the annotation steps in the platform-aware design come from existing
design methods that our methodology makes use of [53,69].

When the user specifies an application throughput and only a subset (possibly
empty) of the application tasks have a specified period and offset, then in the
platform-independent model refinement step a period and offset can be added for
a set of selected tasks. The resulting application model M2 includes the feasible
task periods and offsets.

In the platform-aware design, implementation-specific details are considered
(using existing design methods), such as the allocated processors (including the
task schedules), storage sizes, communication resources (NoC) and related pa-
rameters (NoC bandwidth). Our contribution consists in the definition and
the annotation of the implementation methods that realize the semantics of the
unified model. These methods are the time synchronization methods and the
task wrappers that implement the execution and communication semantics. At
the beginning of the platform-aware design phase the user can chose for one of the
previously described types of GALS platforms. An implementation platform that
allows for data-driven and loosely time-driven task execution is build on top of a
GALS MPSoC including multiple clocks with bounded offset. An implementation
platform that allows for data-driven, loosely and strictly time-driven is build
on top of a GALS MPSoC with multiple clocks with possibly bounded and/or
unbounded offset.

1.4 Thesis Structure
The following chapters are organized as follows.

Chapter 2 introduces the background concepts. First it presents the oper-
ational semantics of the two MoCs, SDF and Giotto, that represent the foun-
dation of our unified MoC. Next, it presents the types of clock deviations and
the proposed related solutions for the application tasks execution. Finally, it
describes the multi-processor hardware architecture that our methodology uses
as an implementation platform.

Chapter 3 presents the unified Model of Computation (MoC). First, the
unified MoC is described informally, including the data-driven, the strictly and
loosely time-driven operation and the notions of time consistency. Then, we
specify how to convert our model into an equivalent SDF graph. Finally, we
provide formal proofs to show that SDF and single mode Giotto with harmonic
task frequencies are each a subset of our unified model.

Chapter 4 presents the proposed implementation methods. They comprise
time synchronization methods and task execution and communication wrappers.
The time synchronization can be realized by two types of methods: distributed
time synchronization and centralized time synchronization. Distributed time
synchronization is realized by performing clock synchronization on the Controller
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Figure 1.6: Design Methodology
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Area Network (CAN) network. Centralized time synchronization is realized by
the barrier and the token methods.

Chapter 5 presents the design methodology for our MoC, that is, the methods
and steps that allow us to obtain an implementation for a given application model
along with the intermediate platform-independent refinement and platform-aware
annotation possibilities.

Chapter 6 presents the experiments. They consist of a synthetic application
that includes all the relevant MoC properties, which we use to demonstrate our
design methodology. Additionally, the proposed time synchronization methods
are evaluated on a GALS FPGA prototype of the CompSOC multi-processor
platform.

Finally, Chapter 7 concludes the thesis and gives insights into possible future
work.
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2
Background

In this chapter we introduce existing concepts that are used throughout the thesis.
In Section 2.1 we provide the formal definition of the two models of computation
that represent the pillars of our unified MoC (presented in Chapter 3): SDF and
Giotto. In Section 2.2 we introduce the types of clock deviations and we propose
two solutions for the execution of application tasks running on a platform with
multiple clocks that have at most bounded offsets. Finally, in Section 2.3 we
describe the architecture of the hardware multi-processor platform that is used
by our design methodology.

2.1 Concurrent Models of Computation for Em-
bedded Systems Design

A MoC defines the execution and communication semantics of an application.
Formal MoCs are build on mathematical grounds and can be analyzed to com-
pute performance guarantees. Concurrent MoCs have the capability to express
parallelism in terms of execution. This is a key property for modern embedded
applications that are implemented on either independent platforms interconnected
by a network or on MPSoC platforms including multiple processors on the same
System on Chip (SoC).
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CHAPTER 2. BACKGROUND

2.1.1 SDF - A Data-Driven MoC
Synchronous Data Flow was first introduced by Lee and Messerschmitt in [41] to
model streaming applications (such as digital signal processing), which process
streams of digital data samples called tokens. An application is modeled by
a graph consisting of actors connected by communication channels. SDF was
originally defined as an untimed model in which the execution of the actors was
instantaneous and thus took zero time. However, in order to provide timing
performance guarantees, the model was later extended [27] to include a finite
execution time for the actors that can be higher than zero.

Definition 1. (Actor) An actor a is a tuple (Ia, Ua, ea) consisting of a set Ia
of input ports, a set Ua of output ports with Ia \ Ua = ;, and an execution time
ea 2 N�0.

Definition 2. (Port Rate) The rate of a port ρ of actor a is an integer number
denoted r(ρ), where r : P ! N>0 is a function that returns the rate of a port
ρ 2 P , P = Ia [ Ua.

The execution of an actor is called firing. Every time an actor fires it consumes
a number of tokens from its input ports and produces a number of tokens on its
output ports. The number of tokens consumed/produced on each port is given
by the port rate.

Definition 3. (Channel) A channel γ is a tuple (a, b, ρo, ρi) consisting of actors
a = (Ia, Ua, ea) and b = (Ib, Ub, eb), and ports ρo and ρi, with ρo 2 Ua and ρi 2 Ib.
We refer to a as the source actor of channel γ and b as the destination actor of
channel γ and we write src(γ) = a and dst(γ) = b. Furthermore, we say that γ
is an output channel of actor a and an input channel of actor b. Let Γ denote a
set of channels.

An SDF channel is a FIFO queue. The tokens written into a FIFO are read
in the same order in which they were written.

Definition 4. (Channel Quantity) The channel quantity is a mapping κ : Γ !
N�0 on a set of channels Γ. If κ1 is a channel quantity on Γ1 and κ2 is a channel
quantity on Γ2, with Γ1 � Γ2, we write κ1 � κ2 if and only if for every γ 2 Γ1,
κ1(γ) � κ2(γ). κ1 + κ2 and κ1 � κ2 are defined by pointwise addition respectively
subtraction of κ1 and κ2 respectively κ2 from κ1; κ1�κ2 is only defined if κ2 � κ1.

An actor firing is enabled when a number of tokens at least equal to the port
rate is present on each of the channels connected to all its input ports. Depending
on the amount of tokens present on its input channels, multiple firings of the
same actor can be enabled simultaneously. To exclude this possibility (called
auto-concurrency) for an actor a, a self-channel for which src(γ) = dst(γ) = a
containing one token can be added to the SDFG. This channel ensures that all
the actor firings are sequential, thus at most one firing can be enabled at a time.

18



2.1. CONCURRENT MODELS OF COMPUTATION FOR EMBEDDED SYSTEMS
DESIGN

In the remaining part of this thesis we will only consider SDFGs that include non-
auto-concurrent actors. Therefore the SDF semantics presented in the following
part of this section exclude auto-concurrency.

Given a set of input ports Ia, the set that specifies the number of tokens
read from each input channel by actor a when it fires is given by the mapping
Rda : Γin 7! fr(ρ) j ρ 2 Iag, where Γin = fγ j dst(γ) = ag. Similarly, the set
that specifies the number of tokens written to each output port by actor a when
it fires is given by Wra : Γout 7! fr(ρ) j ρ 2 Uag, with Γout = fγ j src(γ) = ag.

Definition 5. (SDF Graph) An SDF graph (SDFG) G is a tuple (A,Γ, κ0) where
A is a finite set of actors, Γ is a finite set of channels, and κ0 associates with
each channel in Γ the number of initial tokens present in that channel. Each port
of each actor is connected to precisely one channel and all channels are connected
to precisely two ports.
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Figure 2.1: Example SDF graph

Figure 2.1 shows an example SDF graph containing three actors, a, b, and
c, interconnected by the channels ch0, ch1, ch2 and ch3. Each actor has a self-
channel containing an initial token. Channel ch1 contains 7 initial tokens, and
channel ch3 contains 2 initial tokens. The execution time of the actors is shown
in square parentheses. The actors in our example SDFG are non-auto-concurrent,
as they all have self-channels.

An important property of SDF graphs is consistency, and it is defined based
on the notion of balance equation.

Definition 6. (Balance Equations, Repetition Values) A balance equation is
defined for a communication channel γ = (a, b, ρo, ρi) as follows:

r(ρo) � f(a) = r(ρi) � f(b) (2.1)

Given a set of channels, we refer to the smallest nonzero values of the quantities
f(a),f(b) that are part of a solution to the set of balance equations as the repetition
values of actors a, b.

Definition 7. (Consistency) Given a SDFG (A,Γ, κ0) and a set of balance equa-
tions for all channels γ 2 Γ, we say that the SDFG is consistent iff a strictly
positive integer solution can be found to the set of balance equations.
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Figure 2.2: Corresponding APG of the Example SDF graph

A particular type of SDF graph in which all the port rates are equal to
1 is called an Homogeneous Synchronous Data Flow (HSDF). Any consistent
SDF graph can be converted into an equivalent HSDF graph. Furthermore, by
removing all the channels that contain initial tokens from the equivalent HSDF
graph, we obtain an Acyclic Precedence Graph (APG). The APG corresponding
to our example SDFG is shown in Figure 2.2.

Definition 8. (Iteration) A graph iteration is a sequence of actor firings consist-
ing of exactly f(a) firings for each a 2 A.

After one iteration, the number of tokens on the channels is unchanged. This
is because the total number of tokens produced on each channel is equal to the
total number of consumed tokens if each actor a fires f(a) times.

We will now introduce the operational semantics of SDFG that represent the
basis of the state-space performance analysis.

Definition 9. (State) The state of a SDFG (A,Γ, κ0) is a pair (κ, υ). The
channel quantity κ associates with each channel the total number of tokens present
in the channel in that state. An actor status υ : A! N [ ; is a partial map that
associates with an actor a 2 A a number representing the remaining execution
time of the currently enabled firing of a. The initial state equals (κ0, υ0), where
υ0 = ; means that no actor firings are enabled.

The behavior of an SDFG is described by transitions.

Definition 10. (Transition) A transition of a SDFG (A,Γ, κ0) from state (κ1, υ1)
to state (κ2, υ2) is denoted by (κ1, υ1) β! (κ2, υ2) where label β 2 (A�fstart, endg)
denotes the type of transition.
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Figure 2.3: State Space of the Example SDF graph

• Label β = (a, start) corresponds to the firing start of actor a = (Ia, Ua, ea).
Given a set of input channels Γin such that 8ρi 2 Ia, 9 γ = (ρo, ρi) 2 Γin,
this transition is enabled if κ1(γ) � r(ρi), 8γ 2 Γin and it results in κ2 =
κ1 � Rda, υ2 = υ1 [ f(a, ea)g.

• Label β = (a, end) corresponds to the firing end of actor a = (Ia, Ua, ea).
This transition is enabled if f(a, 0)g 2 υ1 and it results in κ2 = κ1 + Wra,
υ2 = υ1 n f(a, υ1(a))g.

• Label β = clk denotes a clock transition. This transition is enabled if no end
transition is enabled and results in κ2 = κ1, υ2 = f(a, υ1(a)� 1)ja 2 Ag.

Definition 11. (Execution) An execution of a consistent SDFG is an infinite
alternating sequence of states and transitions (κ0, υ0) β0! (κ1, υ1) β1! ... starting
from an initial state (κ0, υ0), such that 8n � 0, (κn, υn) βn! (κn+1, υn+1).

Definition 12. (Self-timed Execution) An execution is self-timed if and only if
clock transitions occur only when no start transitions are enabled.

The execution of a SDFG results into a state-space. Furthermore, when the
SDF graph is strongly connected, the state-space consists of a transient phase and
a periodic phase. A graph is strongly connected if for any pair of actors (a, b),
a 6= b, there exists a path (i.e. a set of channels) from actor a to actor b and there
exists a path from actor b to actor a. Usually, application graphs that are not
strongly connected initially, become so by modeling the finite buffer sizes. This is
realized by adding for each channel a backward channel with the same production
and consumption rates and containing a number of tokens equal to the buffer size
minus the amount of initial tokens on the original channel.

Definition 13. (Corresponding Strongly-Connected Graph) Given a SDF graph
G = (A,Γ, κ0), Gs = (A0,Γ0, κ0) is the corresponding strongly-connected graph if
A = A0 and if 8γ = (a, b, ρo, ρi) 2 Γ, 9γ0 = (a, b, ρo, ρi) and γ00 = (b, a, ρ0o, ρ0i)
such that r(ρ0o) = r(ρi) and r(ρ0i) = r(ρo).

In our example SDFG (Figure 2.1), channels 1 and 3 model the buffer sizes
of 7 and 2 respectively for the channels 0 and 2. The throughput of an actor
as well as of the entire SDFG can be computed from the periodic phase of the
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state-space. The buffer sizes can be computed using methods such as the one
presented in [26]. The method finds the minimal storage distributions that meet
a given throughput constraint.

Figure 2.3 shows the state-space for our example SDF graph, where the peri-
odic state that marks the periodic phase is shown on top of the actors execution
trace. The state consists of the channel quantities in the order ch0 to ch6, followed
by the remaining actor execution times in the order a, b, c.
Definition 14. (Actor Throughput) For every consistent and strongly connected
SDFG (A,Γ), the throughput Thr(a) of an actor a 2 A is equal to the average
number of firings per time unit in the periodic phase of the self-timed state-space.
Definition 15. (Graph Throughput) The throughput of a consistent and strongly
connected SDFG G = (A,Γ, κ0) is defined as Thr(G) = Thr(a)

f(a) for an arbitrary
actor a.

2.1.2 Giotto - A Time-Triggered MoC
Giotto is a programming model inspired by the TTA architecture [39] introduced
by Henzinger [34]. It targets control applications that communicate periodically
with sensors and actuators. Its main contribution is the concept of the Logical
Execution Time (LET), by which the program tasks read their inputs and write
their outputs at fixed points in time. Next to this, it also defines the notion
of application modes to capture the dynamic behavior of control applications.
However, in the context of this thesis, we will only focus on single-mode Giotto
programs.
Definition 16. (Port Declaration) A port declaration (w,Type, init) includes a
port name w, a type Type and an initial value init.

We distinguish between: sensor ports, actuator ports, task input ports, task
output ports and task private ports.
Definition 17. (Valuation) A valuation for a set of ports W is a function that
maps to each port w 2 W a value in Type[w]. We write Vals[W ] for the set of
valuations of W . We write W for the set of Giotto ports.
Definition 18. (Task Declarations) A task declaration (g, In,Out,Priv, func)
includes a task name g, a set In of input ports, a set Out of output ports, a
set Priv of private ports and a function func : Vals[In[Priv]! Vals[Out[Priv].

The set of private ports Priv are only accessible to the task and their purpose
is to model the state of the task. We write G for the set of Giotto tasks. Our
unified MoC presented in Chapter 3 also consists of tasks. However, as explained
in Section 3.4, the definition of the tasks in our MoC is partially equivalent to the
definition of the Giotto tasks. More specifically, the tasks in our MoC omit the
function func and the task state is modeled by a self-channel containing initial
data sample(s).
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Definition 19. (Driver Declarations) A driver declaration (drv,Src, grd,Dst, h)
includes a driver name drv, a set Src of source ports, a driver guard grd :
Vals[Src] ! ftrue, falseg, a set Dst of destination ports and a driver function
h : Vals[Src]! Vals[Dst].

When a driver is called, its guard grd is evaluated and if the result is true, the
function h is executed. We write D for the set of Giotto drivers.

Definition 20. (Mode Declaration) A mode declaration (pm, Invokes,Updates)
that includes a mode period pm2 Q+, a set Invokes of task invocations and a set
Updates of actuator updates.

1. a task invocation (fg, g, drv) includes a task frequency fg2 N, a task d 2 G
and a task driver drv 2 D such that Dst[drv] = In[g]. The invoked task only
updates output and private ports, and the task driver drv only reads output
and sensor ports and updates the input ports of task g.

2. an actuator update (fa, drv) 2 Updates includes an actuator frequency fa 2
N and an actuator driver drv 2 D. The actuator driver drv reads only
output ports, no sensor ports, and updates only actuator ports.

Definition 21. A single-mode Giotto program consists of the following compo-
nents:

1. a set of port declarations

2. a set of task declarations

3. a set of driver declarations

4. a mode declaration

The execution of a Giotto program consists of an indefinite sequence of pro-
gram configurations. A program configuration is defined as PC = (v,Gactive, ts),
where v 2 Vals[W ] is a valuation of all ports, Gactive is a set of active tasks, and
ts2 Q is a time stamp. For the initial program configuration Gactive = ; and
ts = 0.

A program execution starts with an initial configuration that is afterwards
updated every time step, whose duration is equal to pm/fmax, where fmax is the
maximum of all task and actuator frequencies. At each time step, the successor
configuration PCsucc of the current configuration PC is computed by the following
successive steps:

1. [Update Task Output Ports and Private Ports] Let Gcompleted � Gactive be a
subset of tasks such that for each g 2 Gcompleted, the current time step ts at
configuration PC is a multiple of pm/fg. For each port w 2 Out[g][Priv[g],
define vg(w) = func[g](PC [In[g] [ Priv[g]])(w). This gives the new values of
all task output and private ports. The new program configuration becomes
PCtask .
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2. [Update Actuator Ports] Let Actenabled be a set of actuators for which at con-
figuration PCtask the time step ts is a multiple of pm/fa. If w 2 Dst[drv] for
an actuator update in Actenabled, then define vact = h[drv](PCtask [Src[drv]])(w).
This gives new values of all actuator ports. The new program configuration
becomes PCact .

3. [Update Sensor Ports] For every sensor port w, let vsens be a value in
Type[w]. That is, sensor ports are non-deterministically updated by the
environment, not by the Giotto program. The new program configuration
becomes PCsens.

4. [Update Task Input Ports] Let Invokesenabled be a set of enabled task invo-
cations (fg, g, drv) for which at configuration PCsens the time step ts is a
multiple of pm/fg and grd(drv) = true. If w 2 Dst[drv] for some task invoca-
tion in Invokesenabled, then define vinput = h[drv](PCsens [Src[drv]])(w). This
gives new values for all task input ports. The new program configuration
becomes PCinput .

5. [Update Active Tasks] Let Genabled be the set of tasks g such that a task in-
vocation of g is enabled at configuration PCinput . The new set of active tasks
G0active = (Gactive nGcompleted) [Genabled. The new program configuration
becomes PCactive .

6. [Advance time] The next time stamp is tssucc = ts + pm/fmax. The new
program configuration becomes PC = PCsucc .

To illustrate the above concepts, let us consider the example Giotto program
shown in Figure 2.4.

The program includes two tasks, g1 and g2, an actuator port, a sensor port
and four drivers: drv1 from the sensor port to the input port of g1, drv2 from
the output port of g2 to the actuator port, drv3 from the output port of g1 to
the input port of g2 and drv4 from the output port of g2 to the input port of g1.
The mode period is 4 and it includes an invocation of task g1 with a frequency
of 1, an invocation of task g2 with a frequency of 2 and an actuator update with
a frequency of 2. In the figure we can observe the under-sampling between the
ports w4 and w7, since port w4 is updated with half of the frequency with which
w7 is updated. Similarly we can observe the over-sampling between the ports w6
and w5 since port w5 is updated twice as frequent as w6.

Figure 2.5 shows the time line of the example Giotto program over one mode
period. The sequence of program configurations at each time step is as follows:

PC0 = (�, ;, 0)

PC1 = (�, fg1, g2g, 2)
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sensor port w1 type R
actuator port w2 type R init 0
input port w3 type R
input port w4 type R
input port w5 type R
output port w6 type R
output port w7 type R
output port w8 type R

task g1 input w3 , w4 output w6 function func1

task g2 input w5 output w7 , w8 function func2

driver drv1 source w1 guard grd1 destination w3 function h1

driver drv2 source w8 guard grd2 destination w2 function h2

driver drv3 source w6 guard grd3 destination w5 function h3

driver drv4 source w7 guard grd4 destination w4 function h4

mode period 4
frequency 1 invoke g1 driver drv3

frequency 2 invoke g2 driver drv4

frequency 2 update drv2

Figure 2.4: Example Giotto Program
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Figure 2.5: Time Line of the Example Giotto Program
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PC2 = (�, fg1, g2g, 4)

...

For each program configuration, the valuation of the ports was left unspecified,
while the contents of Gactive and ts are the ones that result after performing all
the steps listed above.

2.2 The Notion of Time
An application including time-driven behavior (i.e. functions/tasks that are either
required to be started at predefined points in time or finished at predefined points
in time) requires a notion of time to realize this behavior.

In a digital system, the notion of time is primarily given by physical clocks.
A physical clock consists of an oscillator that generates periodic ticks, which are
counted by a clock counter. The duration between any two consecutive clock
ticks is called the clock period. The number of ticks per second is called the clock
frequency. The clock period is used to derive the notion of time, i.e. how much
time has passed since the system has started.

When the application is implemented on a hardware platform that uses a
single clock, the notion of time is implicitly realized, since time is given by a unique
source, however imperfect it is. When the hardware platform uses multiple clocks,
then due to physical factors, the period of each individual clock can deviate over
time from its nominal values. In this case the notion of time is no longer unique
but it is distributed across the different clocks, each one independently affected
by deviations. These deviations have to be taken into account when constructing
the notion of time that the application will use.

2.2.1 Physical Clock Deviations
Physical clock oscillators can suffer from different types of deviations. These
deviations refer to the difference between the actual value of the clock period and
the nominal value of the clock period. We distinguish between two types of clock
deviations: period jitter and skew. Clock period jitter is the short term variation
of the clock period.A clock’s skew, in the context of clock synchronization, is the
difference between the nominal frequency and the actual frequency (also called
true frequency) of the clock [2, 48]. Clock jitter is a random variation with a
Gaussian distribution and it is non-cumulative. Skew and jitter are determined by
several factors such as aging, power supply variations, environment temperature,
mechanical factors, etc. Note that the definitions of clock jitter and clock skew
used in this thesis conform with the precision clock (or time) synchronization
discipline and they are usually meant for distributed systems. Hence, they differ
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from the definitions used in the implementation of physical clocks, clock domains,
and the data transfer across a single chip [47].

To qualify clock jitter and skew an accurate reference clock is used. This
reference clock can be either wall clock or another chosen accurate clock. The
wall clock suffers from no deviations and it is an absolute time reference.

A clock c reports the current time at any instant of the reference clock. Wall
time is continuous time, therefore its values belong to the set R�0 of real numbers.
A clock used in a digital system is a discrete device that returns the number of
ticks elapsed, therefore its value belongs to the set of natural numbers N. The
reported time at each tick is equal to the total number of elapsed ticks multiplied
by the nominal clock period. Let c(k), c : N ! R�0 denote the reported time
value at the clock tick k 2 N of clock c. To qualify a clock, we measure the
difference between the reference clock time value and the reported time value at
a tick k. This difference is called clock offset, denoted oc(k) for a clock c.

We hereby introduce the definitions of absolute and relative clock offset based
on the clock synchronization terminology presented in [2].

Definition 22. (Clock Offset) The offset oc(k) : N ! R of a clock c is equal to
jzc(k) � c(k)j, where zc(k) is the reference time value at the k-th tick of clock c
and c(k) is the reported time value of clock c at the k-th tick.

The maximum value of the offset of a clock c (over a set of ticks of interest)
is also referred to as the accuracy of clock c. When the reference clock is the wall
clock then the accuracy is referred to as absolute accuracy. Otherwise, when the
reference clock is a clock other than the wall clock then the accuracy is referred
to as relative accuracy.

The relative clock offset between any two clocks c1 and c2 is the time difference
between the k-th tick of clocks c1 and c2 measured by the reference clock z. It is
defined as follows:

Definition 23. (Relative Clock Offset) Given a reference clock z, the relative
offset oc1c2(k) : N! N between a clock c1 and a clock c2 is equal to jzc1(k)�zc2(k)j,
where zci(k) is the reference time value at the k-th tick of clock ci, i 2 f1, 2g.
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Figure 2.6: Bounded Clock Offset
Caused by Clock Jitter
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Figure 2.7: Unbounded Clock Off-
set Caused by Clock Skew
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Clock jitter and skew can cause a nonzero clock offset at a given point in time.
Jitter causes a bounded and usually small clock offset, while skew causes a larger
possibly unbounded clock offset.

Figure 2.6 illustrates clock jitter and Figure 2.7 illustrates clock skew. In the
figures it can be noticed that the relative clock offset caused by the skew increases
indefinitely, while the offset caused by the jitter stays within certain (lower and
upper) bounds.

2.2.2 Clock Synchronization Protocol on the CAN Network
Clock skew leads to an increasing difference between the time reported by individ-
ual clocks. A clock synchronization protocol is used to build logical clocks with
bounded relative offset.

In general, time synchronization protocols select a reference clock, called the
master clock, and periodically resynchronize the other clocks, called slave clocks,
with it. The synchronization updates the current time value c(k) of each clock
with the value shown by the reference, therefore reducing the relative clock
offset to (ideally) 0. When the clock synchronization protocol is implemented
in software, the time value that is being updated by the protocol is a logical
value, rather then the physical one given by the clock hardware counter. In
consequence, for each physical clock we obtain a corresponding logical clock that
is updated by both the hardware counter of the physical clock as well as by the
clock synchronization protocol. The physical clock skew is therefore compensated
by applying the clock synchronization protocol. For a set of synchronized logical
clocks, the relative clock offset between any two clocks, c1 and c2, is bounded at
any point in time by the clock synchronization precision π:

π = max
k�0

8c1,c22C

oc1c2(k) (2.2)

To synchronize a set of physical clocks we use a clock synchronization protocol
over the Controller Area Network (CAN) network.

The clock synchronization protocol for the CAN network is a simplified version
of the PTP protocol [6]. The PTP protocol consists of four messages exchanged
between the time master and the time slave. First, the master sends a SYNC
message containing an estimate of the current time, then it sends a Follow Up
(FUP) message containing a precise value of the current time, taken as close
as possible to the physical network layer. In the second part, the slave sends
a Delay Request message to which the master replies with a Delay Response
message containing the receipt time of the Delay Request message. Based on
these exchanged messages, the slave estimates the master-slave link delay and
computes the offset. The computed offset is then used to correct the local clock.

For the CAN network, the clock synchronization protocol is reduced to the first
part of PTP, that is, only the SYNC and the FUP messages are being used. PTP
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Figure 2.8: Coarse-grain Logical Clocks

can use several communication protocols such as Ethernet, PROFINET, UDP,
etc. One fundamental difference between PTP and CAN Time Synchronization
is that PTP does not rely on a MAC level means to detect the correct reception
of a message at the slave side during its transmission. For Ethernet, when a
collision happens on the bus, the sender backs off and retransmits the message
later. Instead, a CAN message includes an acknowledgement field in the message,
driven by the slave, by which the master can detect whether the message was
correctly received. For PTP, the local time at the slave is computed from the
transmitted timestamps and the link delay. The clock synchronization on CAN,
on the other hand, relies on the bit timing which is designed to compensate for the
signal propagation time for the longest link in the network. Thus, the link delay
doesn’t have to be computed by the slave through bidirectional communication,
as in the case of PTP. Furthermore our CAN controller design which implements
the Media Access Layer (MAC) layer in software allows us to reduce the number of
CAN synchronization messages to 1. This will be explained in detail in Chapter 4.

The values of the synchronized logical clocks can go either forward or backward
in time as a result of the synchronization. Such a behavior is undesired when the
logical clock is used to generate time-driven events, since it can cause the events
to be either skipped or repeated. This can be avoided by creating a logical clock
of a coarser granularity that is strictly higher than the clock synchronization
precision π. The coarse ticks are generated each time the synchronized logical
clock counts a completes granule. When the logical clock goes forward in time
as a result of clock synchronization, the granule becomes shorter and the next
tick occurs earlier. When the logical clock goes backwards in time as a result
of clock synchronization, the granule becomes larger and the next tick occurs
later. This can be visualized in Figure 2.8 which illustrates the coarse ticks of
a master clock and two slave clocks. Clock synchronization is applied at master
clock times 2.5 and 5. Slave clock ck1 is slower than the master clock, therefore
its coarse ticks 1 and 2 occur after the corresponding ticks at the master clock.
After synchronization, the granule becomes shorter and the subsequent coarse
tick 3 is aligned with tick 3 of the master clock. Slave clock ck2 is faster than the
master clock and its coarse ticks 1,2, and 3 occur before the corresponding ticks
at the master clock. After synchronization, the granule becomes larger and the
subsequent coarse tick 4 is aligned with tick 4 of the master clock.
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2.2.3 Synchronizing Time-driven Events
A time-driven application consists of periodic tasks that communicate data via
time-driven read and write events. When a pair of time-driven read and write
events are related, meaning that the time-driven read is supposed to read the data
written by the time-driven write event, then the time-driven write event has to
precede the time-driven read event. When this event order cannot be guaranteed,
the application might exhibit undesired behavior. We will illustrate this using an
example.

Let us consider two periodic communicating tasks that are each driven by
distinct local clocks that have the same nominal period. We assume that the
communication is realized via a shared, initially empty FIFO of infinite size.
Figure 2.9 shows the times of the write and events generated by the two tasks as
seen by their local clocks. Each task has a period equal to 10 clock periods.
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Figure 2.9: Task Communication as seen by the local clocks

The writer task generates the write events at local times 9,19,29,39,... and the
reader task generates the read events at local times 10,20,30,... Each read event
is supposed to access the data generated by the previous write event. Since local
clocks have independent absolute offsets (with respect to a given reference clock),
the local times cannot be related to each other. In order to compare the write
and read times we need to use a reference clock. Let us assume that each local
clock has an absolute accuracy of 2.

Figure 2.10 shows the case in which local clock ck1 experiences a positive
offset equal to the maximum value, while local clock ck2 experiences a negative
offset equal to the maximum value. The reference clock counts the nominal clock
periods. It can be seen that the relative offset between the local clocks oc1c2 is
equal to 3, as measured by the reference clock. Hence the relative clock offset
causes the read event to occur too early, before the write event is generated.

There are two possible solutions to ensure the correct order of the read and
write events when the relative clock offset violates it. The first one is to statically
increment the time of the read events such that they always occur after the
corresponding write events. The second one is to add a blocking mechanism that
allows the reading task to wait for the data if it is not present at the predefined
time (as seen by the local clock) of the read event.
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Figure 2.10: Task Communication as seen by the reference clock

The first solution can be applied to preserve the time-driven generation of
the write and read events and the non-blocking communication. This can be
especially beneficial for the interaction with the physical environment, i.e. with
the sensors and actuators that are usually time-driven. The modified times of the
read events can be computed based on the maximum relative offset between the
local clocks. The minimum required values of the read events for our example
are 14,24,34,..., as seen by the local clock ck2. The corresponding times of the
modified values as seen by the reference clock considering the maximum clock
offset are 12,22,32,... These modified times ensure the proper order between the
read and write events.

The second solution can be applied when the offset of the local clocks is most
of the time constant and only occasionally it changes. This is usually the case
when the offset is caused by clock jitter, which is a random, short-term clock
deviation. Due to its Gaussian distribution, on average the clock period is equal
to the nominal one. The blocking mechanism causes an implicit adjustment of
the relative offset between the local clocks such that right order between the read
and the write events is established. Afterwards, as long as the clocks are periodic
the write and read events can be generated in a time-driven fashion and the event
order is maintained.

Figure 2.11 shows an example task execution and communication when apply-
ing the blocking mechanism. ck2 has a maximum clock offset of 2. The blocking
mechanism causes the reader task to read the data after it was written. After
that the events are generated periodically.

These solutions will be defined and used in the following chapters.

2.3 The CompSOC Multi-Processor Platform
Our design methodology targets predictable multi-processor hardware platforms
for which real-time performance guarantees can be computed. CompSOC [6] is
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Figure 2.11: Task Communication using Blocking Mechanism

a template-based multi-processor SoC that can execute embedded applications
in a predictable manner. Its predictability comes from the type of arbitration
strategies applied to the shared resources. In this section we present the structure
and the resource arbitration methods of the CompSOC platform template used
in our design methodology.

2.3.1 Hardware Architecture Components
Figure 2.12 shows the structure of an example CompSOC platform. It comprises
three tiles, a NoC and an embedded CAN. A tile consists of a processor (Proc),
an instruction memory (IMEM), a data memory (DMEM), a Timer Interrupt and
Frequency Unit (TIFU), a Direct Memory Access unit (DMA), a communication
memory (CMEM) and a CAN PHY module. The TIFU acts as a programmable
interval timer and it issues periodic interrupts to the processor. Timer interrupts
are required for inter-application scheduling. The DMA decouples the inter-
processor communication from the computation and allows for the data transfers
to occur in parallel with the task execution on the processor. The communication
memory is used to pass data to be written by the DMA and to retrieve the data
read by the DMA.

The NoC is used for inter-tile communication and it comprises several sub-
components such as network interfaces, buses, shells and routers. The NoC
performs point-to-point communication from an initiator port to a target port.
Therefore, the allowed connections across tiles are explicitly specified at design
time as a list of communication connections. Finally, the embedded CAN is
mainly used for performing clock synchronization, but it can also serve as inter-
tile communication medium. Its main disadvantage, compared to the NoC is the
low communication bandwidth. The design of the embedded CAN is presented
in detail in Chapter 4.

At design time, the time and space properties of each of the above mentioned
architecture components have to considered. The timing properties refer to any
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Figure 2.12: The CompSOC Hardware Architecture

Table 2.1: Timing and Space Properties of the CompSOC Platform Components

Component Timing Property Space Property
Processor clock frequency -
Timers clock frequency -
DMA write/read transfer time queue size

NoC maximum latency -
minimum bandwidth

Network Buses and Shells delay data transfer sizes
Communication Connections - data transfer size
Local Data/Communication Memory RD/WR delay size

CAN Bus maximum latency -
minimum bandwidth

time-related properties that impact the overall timing performance metrics of the
application. They consist of the frequency for the clocks, the transfer time for the
DMA, the latency and bandwidth for the NoC and the CAN bus, the read/write
delay for the data and communication memories, and the delay introduced by the
network shells and buses. The space properties, on the other hand, refer to any
data storage and transfer properties. Within a complex hardware architecture
such as a MPSoC data processing and communication makes use of different
types of memories, and the data transfers on networks and buses have predefined
lengths. The finite size of the memories and the predefined transfer lengths also
impact the overall application timing performance by the so-called back-pressure.
Table 2.1 lists these component properties.
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Figure 2.13: Example TDM Schedule

2.3.2 Resource Allocation and Arbitration
Implementing an application on a MPSoC platform such as CompSOC requires
designing a software architecture that provides the infrastructure required by the
application (such as communication, time synchronization) on top of the MPSoC
hardware. A minimal software architecture includes a top layer consisting of the
application itself and a bottom layer that directly interacts with the hardware.
The infrastructure provided by the software architecture is seen as a (set of)
concurrent application(s) that have to share the MPSoC resources with the given
application. The resources to be shared are the processor, the data memory and
the NoC.

The processor is shared both between concurrent applications as well as be-
tween the given application tasks. In addition, when an application requires
the CAN, the CAN MAC driver is also treated as a concurrent application. A
task schedule specifies how the processor is shared between the application tasks,
while an inter-application schedule specifies how the processor is shared between
concurrent applications.

A static order schedule is a task schedule that consists of a finite (possibly
empty) set of tasks that is executed once, followed by a finite set of tasks that
is repeated indefinitely. Such a schedule can be constructed if all the inter-task
data dependencies are static and known at design time. It is a non-preemptive
schedule, since every task τi in the list can only start its execution after the
previous task τi�1 has finished its execution. The worst-case time duration of the
schedule can be computed by adding the Worst-Case Execution Time (WCET)
of each task in the list.

A Time Division Multiplexing (TDM) schedule is a time-driven schedule that
consists of a set of time slots fslot1, slot2, ..., slotng, each of a fixed duration ws
that are repeated indefinitely. The set of n slots is called a frame. Given a set of
concurrent applications fApp1,App2, ...,Appmg, the TDM schedule allocates each
slot sloti to a particular application Appj , 1 � i � n, 1 � j � m, such that each
application has one or multiple slots allocated to it.

To better illustrate the TDM schedule concepts, we shall use Figure 2.13. The
schedule (i.e. the TDM frame) consists of 5 slots (n = 5) allocated to applications
App1, App2, App3 and App4. Each application has one slot allocated, except for
App2 which has two slots (n2 = 2). For App2 the number k is equal to 2, which
is the number of slots that separates the forth and the second slot in the frame,
both allocated to App2.
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On the CompSOC platform the inter-application TDM schedule is realized
with clock cycle-level accuracy by the CoMik microkernel [54].

The NoC uses also a TDM schedule to arbitrate the access for all the defined
communication connections.

The local data memory is shared by allocating separate locations to each
individual application.

One final aspect that has to be decided when implementing an application on
a multi-processor platform is the task to processor binding, that is, which task
(set of tasks) is executed on each processor. This set of tasks can also be empty
for a given processor. For this, different strategies can be generally used [67]. The
design methodology for the CompSOC platform uses a greedy type of heuristic
that tries to globally optimize the task allocation.

The CompSOC platform can be either synchronous or GALS. A synchronous
platform uses a single clock oscillator for the processors and therefore the clocks
have at most a fixed offset that can be higher than the clock period, while a GALS
platform uses multiple clock oscillators that are affected by clock skew. To imple-
ment a time-driven application that uses a precise notion of time on the CompSOC
platform it is needed to have either a synchronous platform that doesn’t require
time synchronization or a GALS platform that uses time synchronization method
to obtain logical clocks with bounded and small clock offset.

2.3.3 Hardware and Software Synchronization in Comp-
SOC

Typically, a GALS CompSOC platform that includes multiple clock oscillators
offers data synchronization as the only synchronization mechanism.

In hardware, data synchronization is obtained by exploiting the atomicity of
the read and write transactions. This applies for the communication within and
across processor tiles [6].

In software the data synchronization is realized by two mechanisms: the barrier
synchronization and the FIFO queues [6]. The barrier is a mechanism through
which multiple client tasks synchronize by updating individual counters located
in a shared memory. Each task increments its individual counter and then it polls
the counters of the other tasks until their values become equal to the current value
of its individual counter. Afterwards it unblocks and continues its execution. The
FIFO queues offer a blocking communication mechanism between a producer and
a consumer. The queue has a finite size and it is located in shared memory.
The data is communicated in the form of tokens. The read and write operations
are governed by the C-Heap protocol [56]. The producer can only write data in
the queue if sufficient space is available. The consumer can only read data from
the queue after it has been written by the producer. The space occupied by the
written data is freed when the data is read.
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All the above data synchronization mechanisms are used within the implemen-
tation methods that we contribute in Chapter 4, namely within the centralized
time synchronization and the task execution and communication wrappers.

2.4 Summary
In this chapter we present the SDF and Giotto models of computation that
form the base of our proposed unified MoC. We them present the types of clock
deviations and the proposed solutions for the application task execution when
the application runs on a platform with multiple clocks that have bounded offset.
Finally we present the architecture of the CompSOC MPSoC that is used by our
design methodology.
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3
A Unified Time-Driven and Data-Driven

MoC

The types of models used in the design process can vary in terms of degree of
formalism. However, for a model to be used by teams of engineers, there has to
be a consensus with regard to the meaning of the concepts included in the model.
In general, the model semantics specify the meaning of each model component.
In other words, the mapping between the model component and the entity that
it represents [64]. Furthermore, operational semantics specify how the individual
computation and communication steps occur [32]. In the context of MBD models
are used at each phase to verify the current result of the design in terms of behavior
and performance and to check whether the application requirements are met.
This can be achieved through either simulation or analytical models. Simulation
models typically require long simulation run times to cover all the input values and
system states, as defined by the designer, and they do not offer definite guarantees.
Analytical models, on the other hand, are founded on mathematical grounds and
do have the capability to offer guarantees about the modeled behavior in an
automated manner. This motivates us to use analytical models in our approach.

In this chapter we introduce a new model of computation that subsumes the
time-triggered Giotto model and the Synchronous Dataflow model. The model
structure is first given, followed by an informal description of the model operation.
We then show how our model can be converted into an equivalent SDF graph
and we prove formally that both single-mode Giotto as well as SDF models can
be expressed in our unified model. Section 3.5 presents the related work and
Section 3.6 concludes.
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3.1 Model Structure
The components of our MoC are: tasks, sources, sinks, communication channels,
and clocks. The tasks, sources and sinks communicate data in the form of samples.
We will exemplify each component using the example model in Figure 3.1.

A clock is a time source that provides an infinite series of clock ticks, separated
by the clock period. A clock that is a component of a model is called a model
clock. We distinguish between two types of model clocks: reference clocks and
secondary clocks.

Definition 24. (Reference Clock) A reference clock c (prc , 0) is a component that
has a nominal clock period prc and an absolute accuracy equal to 0.

Definition 25. (Secondary Clock) A secondary clock c (n, oc) has a nominal
clock period prc = n � prc, n 2 N>1 and an relative accuracy oc with respect to the
reference clock, where oc is a multiple of prc.

The reference clock provides a time reference for the entire model and it is
used to qualify the period and accuracy of the secondary clocks. An application
can have at exactly one reference clock and zero or more secondary clocks. The
example application shown in Figure 3.1 includes only a reference clock CK1 with
a period prc of 1 time unit.

The processing components in our model are called tasks.

Definition 26. (Task) A task is a tuple τ = (I, U, e, p, or, ow, cτ ), where I is a
finite set of input ports, U is a finite set of output ports, e is the execution time,
p2 fpr, pw, prwg is a period, or and ow are read and write offsets, and cτ is the
task clock. e, p, or, ow 2 Q+ are multiples of the nominal period of clock cτ .

The read/write period and offsets are optional and they only need to be
specified when the task is required to read or write data periodically with/without
an initial offset. We write px = ?, oy = ?, x 2 fr, w, rwg, y 2 fr, wg to mean
that the read/write period and offset are not defined.

The period can be defined for either reading the input data, writing the output
data or both. Therefore, a task period p can be of three types:
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Figure 3.1: Running Example Model
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1. a read period pr

2. a write period pw

3. a read and write period prw

When specifying the properties of a task, the user has to mention to which of
the three types the period p belongs.

When a read period is defined, but a read offset is not defined, then the default
value of the read offset is 0. When a write period is defined, but a write offset is
not defined, then the default value of the write offset is equal to the write period.
When a write period is not defined, the default value of the write offset is equal
to the task execution time e.

Definition 27. (Port Rate) The rate of a port ρ of task τ is a positive integer
number that specifies the number of data samples that are being read (in the case
of an input port) or written (in the case of an output port) by the task τ . Given a
set of ports P , let r : P ! N>0 be a function that returns the rate r(ρ) of a port
ρ 2 P . Further, we will write ρ 2 τ to mean that port ρ belongs to a task τ .

The example application in Figure 3.1 contains four tasks, t1 to t4. Task t1
has a read period of 6 and read offset of 1. Task t3 has a write period of 9 and
write offset of 12, and task t4 has a read write period of 6 and read and write
offset of 2 and 4 respectively. The time unit is given by clock CK1. Task execution
times are shown between square brackets.

The application receives data in the form of samples from sources, it processes
it and sends the resulting output samples to data sinks. We assume that all
sources and sinks are periodic and their period and offset are known.

Definition 28. (Source) A source s is a task for which I = e = or = ? and
p = pw 6= ?.

The period and offset (potentially 0) are mandatory properties for a source.

Definition 29. (Sink) A sink d is a task for which O = e = ow = ? and
p = pr 6= ?.

Similar to the source, the sink period and offset are mandatory properties.
Figure 3.1 shows a source s1 with a period of 6 and offset 0, source s2 with

the period of 6 and offset 1, and a sink d1 with a period of 9 and an offset of 16.
For the remaining part of this thesis we will use the term ‘task’ to refer to

any type of task, including sources and sinks, the term ‘source’ to refer only to
tasks with no input ports and the term ‘sink’ to refer only to tasks with no output
ports.

The tasks, sources and sinks communicate data via channels. In general, a
channel expresses a data dependency between two task ports.
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Definition 30. (Channel) A channel is a tuple γ = (ρo, ρi), γ 2 Γ where ρo is an
output port and ρi is an input port, such that 8γk = (ρki , ρko , ) 2 Γ, γk 6= γ =)
ρko 6= ρo ^ ρki 6= ρi.

The above channel definition allows an input/output port to be connected to
only a single communication channel. In our model the communication channels
are FIFOs.

Definition 31. (Current Channel Content) Given a channel γ, the channel
content q(γ, k) represents the number of data samples present in the channel at
the k-th tick of the reference clock. Further, let q(γ, 0) denote the number of initial
samples present in γ.

Our running example includes an initial sample on the channel between t3 and
d1.

Let us now define the notion of an application:

Definition 32. (Application Specification) An application specification A is a
tuple A = (T,Γ, Q0, C, Si, So), where T is a set of concurrent tasks, Γ is a set
of communication channels, Q0 is the initial samples distribution for the set of
channels Γ, C is a set of clocks, Si is a set of sources and So is a set of sinks.

3.2 Model Operation
The model operation consists of events generated by the model components. An
event can be one of the following: data read, data write and a clock tick. The
components that generate events are the tasks and the clocks. The channels do
not generate events. The events belonging to the same component, i.e. the data
read and data write events of tasks occur in the order given by the task execution:
first the data read and then the data write. For the events generated by pairs
of communicating tasks we impose a write-before-read order, which means that
the read event has to occur at least one reference clock tick after the write event.
This order ensures that the reading task will see the latest data written in the
channel.

The operation of a task basically consists of three main phases: read the data
on the input ports, process the data and write the output data on the output
ports. The sequence of these three phases is called task execution. The task
phases are decoupled from each other, therefore the phases of the same task can
be scheduled immediately after each other or they can be interleaved with task
phases belonging to different tasks. The amount of data samples read or written is
regulated by the corresponding port rates. The amount of data samples that were
read are removed from the channel as a result of the read phase. The read and
write phases require an enabling condition in order to take place. The enabling
conditions for the read/write phase are derived from the task properties and are
defined as follows:
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Definition 33. (Read (Write) Enabling Condition) Given a task τ = (I, U, e, p, or, ow, cτ ),
we say that:

• τ has a data-driven read enabling condition if p = pw _ p = ?

• τ has a data-driven write enabling condition if p = pr _ p = ?

• τ has a time-driven read enabling condition if (p = pr _ p = prw) ^ p 6= ?

• τ has a time-driven write enabling condition if (p = pw _ p = prw) ^ p 6= ?

Furthermore, for the task read phase we distinguish between strictly and
loosely time-driven enabling conditions. When the read enabling condition is
strictly time-driven the task starts the read phase at the time determined by the
read offset and period. When the read enabling condition is loosely time-driven
the task starts the read phase at the time determined by the read offset and period
if the input data is present, otherwise it waits until the input data is available.
This is captured formally by the notion of communication time consistency, which
is presented in subsection 3.2.2.

In general, the tasks belonging to a given application can have any combination
of data-driven and strictly or loosely time-driven semantics.

The operation of a clock comprises only the generation of the clock ticks
according to the defined nominal period and relative accuracy. The reference
clock is a mandatory component and it serves as the primary time reference for
the entire application with respect to which the times of all the data read and
write events are analyzed.

The channels serve as communication medium between pairs of tasks. They
are FIFO queues that store data samples between a writer task and a reader task.
The communication semantics in our model are given by the FIFO semantics. The
size of a FIFO is assumed to be infinite in the model. Two types of operations can
be performed on a FIFO: write and read. In a write operation a number n of data
samples is placed in the FIFO. In a read operation a number m of data samples
is removed from the FIFO. A read operation is allowed if there are at least m
samples present in the FIFO. A write operation is always allowed since the FIFO
size is infinite. A write operation is performed by the writer task connected to
the FIFO during the write phase, and a read operation is performed by the reader
task connected to the FIFO during the read phase.

3.2.1 Minimal Data-driven Operation
In a minimal data-driven model none of the components have specified periods or
offsets. In other words, a minimal data-driven model contains no sources and sinks
and the tasks have no periods and offsets. In the minimal version of our running
example (shown in Figure 3.2) there are no sources and sinks and the tasks t1,
t3 and t4 have no periods and offsets specified. Hence, they are characterized by
input and output data rates and execution times.
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Figure 3.2: Minimal Version of the Running Example Model

Tasks without periods and offsets operate in a data-driven fashion (as defined
in SDF): their read phase is enabled as soon as the number of samples present
on each input channel is at least equal to the corresponding port rate, and their
write phase is enabled as soon as their process phase completes.

We use the SDF operational semantics as defined in Section 2.1.1 to formalize
the application execution. Section 3.3 shows how to convert each component in
our model into an equivalent SDF subgraph and how to connect all the SDF
subgraph to form a SDF graph that is equivalent to our application model.

3.2.2 Strictly Time-driven Operation
By defining read and write periods and offsets for tasks, we impose that the
reading and/or writing of data is done at fixed clock ticks. We say then that
the tasks are time-driven, rather than data-driven. Hence the corresponding read
phase is enabled by the task clock at the ticks or, (or + p), (or + 2 � p) etc., where
p 2 pr, prw is its read (and write) period. The same holds for the write phase.

As explained in Section 3.1, we allow for three types of periods in a task
specification. Figures 3.3, 3.4 and 3.5 show the execution of a task for each
type of period. All three figures show the case in which the task phases are
scheduled immediately after each other. Figure 3.3 illustrates the execution of a
task for which p is a read and write period and for which or and ow are defined.
The vertical arrows labelled ‘RD’ and ‘WR’ represent the read and write events,
respectively. Figure 3.4 illustrates the execution of a task for which p is a read
period and for which only or is defined. The task generates the write events in
a data-driven fashion as soon as the output data is available, immediately after
the processing phase. Figure 3.5 illustrates the execution of a task for which p is
a write period and for which only ow is defined. In this case the read events can
happen at different task clock ticks since the read phase is data-driven. In this
figure ts(0) represents the start time of the read phase for the first task execution
and ts(1) is the start time of the read phase for the second task execution. In
all the cases the successive executions of the task are sequential. This means
that the write phase of execution k occurs after the read phase of execution k,
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Table 3.1: Task Time Consistency Condition

p
Task Time Consistency Condition
(measured by the task clock)

p = prw
or + e � ow
or + p � ow

p = pr tf (k) � or + (k + 1) � p
p = pw ow + k � p � ts(k + 1)
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Figure 3.3: Execution of a time-driven task - p = prw
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Figure 3.4: Execution of a time-driven task - p = pr
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Figure 3.5: Execution of a time-driven task - p = pw

and the read phase of execution k+ 1 occurs after the write phase of execution k.
These constraints are translated into the task time consistency conditions listed in
Table 3.1. In the table, ts(k) represents the start time of the k-th task execution,
measured by the task clock and tf (k) represents the finish time of the k-th task
execution, measured by the task clock.

When a time-driven read phase is enabled, the number of data samples present
on each of the input channels has to be at least equal to the corresponding input
port rate, as required by the FIFO communication semantics. This translates into
the following communication time consistency condition:

Definition 34. (Communication Time Consistency) Given a writer task τ1 =
(I1, U1, e1, p1, or1 , ow1 , c1) that communicates with a reader task τ2 = (I2, U2, e2, p2,
or2 , ow2 , c2) with p2 6= ? via a channel γ = (ρo, ρi), ρo 2 U1 and ρi 2 I2, then
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1. if p1 6= ? then the communication between τ1 and τ2 is time consistent iff:

ow1+oc1+l�p1 < or2�oc2+k�p2, 8k �
�
q(γ, 0)
r(ρi)

�
, l =

�
(k + 1) � r(ρi)� q(γ, 0)

r(ρo)

�
�1

2. if p1 = ? then the communication between τ1 and τ2 is time consistent iff:

trf (l) < or2�oc2 +k �p2, 8k �
�
q(γ, 0)
r(ρi)

�
, l =

�
(k + 1) � r(ρi)� q(γ, 0)

r(ρo)

�
�1

where oc1 and oc2 are the relative accuracies of the task clocks c1 and c2
respectively, and trf (l) is the finish time of the l-th task execution measured
by the reference clock.

In the definition above the symbols l and k have the following meaning: the
r(ρi)-th sample read by τ2 during its k-th execution is written by the l-th execution
of τ1.

When the model contains only the reference clock, then c1 = c2 and oc1 =
oc2 = 0.

The communication time consistency is expressed in terms of the reference
clock ticks as we can only relate the read/write times of the tasks driven by
different task clocks by using a common time reference, which is the reference
clock in our model. Note that we can always translate a relation expressed in
terms of the task clock into reference clock ticks by taking into account the relative
accuracy of the task clock.

The read and write periods make the reading and writing of data samples by
the tasks equidistant in time. The solution for the balance equations (as defined
by SDF) gives us the exact number of task executions inside an iteration (the
task repetition values). The application iteration (as defined by SDF) starts at the
start time of the read operation of the first task execution and ends with the write
operation of the last task execution. Since a task τ has fixed number of executions
f(τ) during the iteration, it follows that it can only read/write periodically with a
period equal to PI

fτ , where PI is the (average) iteration duration. Both PI and the
resulting read/write period are multiples of the reference clock period prc . This
translates into the following application time consistency condition:

Definition 35. (Application Time Consistency) Given an application (T,Γ, C, Si, So)
such that 9 Tp 6= ; such that Tp = fτijτi = (Ii, Ui, ei, pi, ori , owi , cτi) 2 T^pi 6= ?g,
then the application is time consistent iff:

p1 � f(τ1) = .. = pn � f(τn),8τi 2 Tp,81 � i � jTpj (3.1)

Figure 3.6 illustrates the iteration and the task periods for our running ex-
ample. The vertical arrows represent task read and write events. The reference
clock tick events were omitted to prevent image clutter. The contents of the first
iteration are marked by the two vertical dashed lines. All the events in between
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the two lines are included in the first iteration (e.g. the read event of t1 at tick 6
in included in the first iteration, while the write event of s1 at tick 6 is excluded
from the first iteration). The iteration duration is 18 reference clock ticks. It can
be seen that the time-driven events happen periodically, while the data-driven
ones (the read events of t3 and the read/write events of t2) happen at irregular
points in time.

In our example, all the read and write periods for the tasks are valid, meaning
that they are no more and no less than PI

fτ . In consequence, all the tasks can con-
tinue to execute in the same manner leading to an infinite sequence of iterations,
all identical to the one shown in Figure 3.6.

Let us now show the effect of defining invalid task periods. We will consider
task t1 in our running example and illustrate the effects of both a smaller as well
as of a larger read period. First, let us consider that the task t1 has a lower period
pr = 5. This is illustrated in Figure 3.7. We can observe two types of effects.
First of all, as t1 reads the data from source s1, at the read times given by the new
period, its input data is not available yet, leading to a FIFO underflow. Second
of all, we also see that the time distance between the read times of t1 and the
write times of the source s1 is increasing indefinitely. That is because the number
of executions of s1 per time unit is strictly lower than the number of executions
of t1 per time unit.

Now let us consider an opposite example in which the read period of t1 is higher
than the valid one: pr = 7. Figure 3.8 illustrates this. In this case, as opposed
to the previous one, the read time of t1 always occurs after the write time of s1,
thus there is always at least one sample available for reading. However, due to the
fact that the task read times occur ever later than the source write times there
is an infinite accumulation of samples in the channel between s1 and t1. This is
because the number of executions of s1 per time unit is strictly higher than the
number of executions of t1 per time unit. In practice, such a situation would
require an infinite memory for this channel, which is not feasible. In addition,
the increasing distance between the read and the write events causes an infinite
increase of the iteration duration, since an iteration has to comprise a number of
executions equal to the task repetition, for each task.

For a write period, the effects would be similar. A too small period would
eventually lead to the situation in which the writing of data would need to occur
before the corresponding process phase would be finished. In addition, if the
task had output channels, it would eventually cause an infinite accumulation of
samples, since the number of write events per time unit would be strictly higher
than the (average) number of read events per time unit (regardless of whether
the other task has a data- or a time-driven read). A too large period can lead
to FIFO underflow situation if the task communicates with another task that
has a time-driven read. Additionally, it would lead to an infinite increase of the
iteration duration, as explained before.

In conclusion, invalid task periods can affect the channels by an infinite ac-
cumulation of samples as well as the proper operation of the tasks, by either
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Figure 3.6: Iteration for the Running Example

���������������������������������������	�����
����� ������������������������������������	����
��������� ����������������������������������
�

� �

� �

� �

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� ��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��������

���

����
����� �

����
����� �

����
����� �

����
����� �

����
���� �

����
���� �

����
���� �

����
���� �

����
�� �

����
�� �

����
�������� �

����
�� �

�� ��

����
����� �

Figure 3.7: Example of Too Small Read Period

46



3.2. MODEL OPERATION

���������������������������������������	�����
����� ������������������������������������	����
��������� ����������������������������������
����

� �

� �

��

��

��

� �

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� ��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��������

� � �����
����� �

����
����� �

����
����� �

����
����� �

����
���� �

����
���� �

����
���� �

����
���� �

����
�� �

����
�� �

����
�� �

����
�������� �

Figure 3.8: Example of Too Large Read Period

preventing them to successfully read the required amount of samples (underflow
situation) or by preventing the correct sequence of task execution phases. Finally,
too large periods also cause an infinite increase of the iteration duration.

3.2.3 Loosely Time-driven Operation
In a loosely time-driven operation, if the input data is not available at the
beginning of the time-driven read phase as defined by the task period and offset,
then the read phase is delayed until sufficient data is present on each of the task
input ports. A time-driven read is augmented with a blocking mechanism and it
becomes a time- and data-driven read.

The loosely time-driven operation is an extension of the strictly time-driven
operation that tolerates the occasional and bounded relative clock offset between
the communicating tasks, that would otherwise violate the order of the write
and read events, if the tasks were operating in a strictly time-driven fashion.
The communication time consistency is required, but it does not account for the
relative accuracy of the clocks in this case. In other words, for loosely time-driven
operation the inequalities in Definition 34 hold when oc1 = oc2 = 0 and do not
hold when including the relative accuracy of clocks. This is formalized as follows:

0 < or2 + k � p2 � (ow1 + l � p1) < oc1 + oc2

0 < or2 + k � p2 � trf (l) < oc2

(3.2)
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where the meaning of the terms is the same as in Definition 34.
The first inequality expresses the fact that when the write phase of the writer

task is time-driven and the current value of the relative clock offset between the
communicating tasks is 0 or less than or2 + k � p2 � (ow1 + l � p1), then the read
phase of the of the reader task is time-driven. Otherwise, if the current value of
the relative clock offset is higher than or2 +k �p2�(ow1 +l �p1), then the read phase
of the of the reader task is data-driven. The seconds inequality expresses the fact
that when the write phase of the writer task is data-driven and the current value
of the clock offset of c2 is 0 or less than or2 + k � p2� trf (l), then the read phase of
the of the reader task is time-driven. Otherwise, if the current value of the clock
offset of c2 is higher than or2 + k � p2 � trf (l), then the read phase of the of the
reader task is data-driven.

When the input data for the k-th task execution is not present at the task
clock time or+p �k, the read phase is data-driven and its start time is determined
by the maximum arrival time of the input data samples, as expressed below:

ts(k) = max
1�j�jIj

ftρij g, tρij =
(

owj + ocj + lj � pj , k �
j
q(γj ,0)
r(ρij )

k

0, otherwise

where
lj =

� (k + 1) � r(ρij )� q(γj , 0)
r(ρoj )

�
� 1

γj = (ρoj , ρij ) is the channel connected to the input port ρij , and owj , pj and ocj
are the offset, period and relative clock accuracy of the writer task connected to
γj .

In the equation above, the symbols l and k have the same meaning as in
Definition 34, and j is the index for the input ports of the reader task.

In the opposite case, when the input data is present, then the read phase is
time-driven and the task operates as in the strictly time-driven type of operation,
i.e. is starts at task clock time or + p � k.

Although the communication time consistency condition 34 may occasionally
be violated, the application and task time consistency conditions (listed in Ta-
ble 3.1) still have to hold. Thus when the task has a write period then it has to
write the output data in a strictly time-driven fashion, regardless of whether the
read phase was delayed or not.

3.2.4 Model Consistency
Based on the model operation properties presented in the previous subsections,
we can conclude that the model consistency is verified at different levels: at the
task level, for pairs of communicating tasks, and for the entire application. This
is summarized in Table 3.2.
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Table 3.2: Model Consistency

Consistency Level Time Data
Task Periods and Offsets Clock Offsets

Task Table 3.1 - -
(offset consistency per task)

Pair of Communicating Tasks Definition 34 - Definition 6 (Chapter 2)
(task and clock offset consistency for pairs of tasks) (balance equations (SDF))

Application Definition 35 Definition 7 (Chapter 2)
(task periods consistency) (application data consistency (SDF))

Figure 3.9 shows how the presented types of model operation relate to the
consistency conditions.
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Figure 3.9: Consistency Conditions for Model Operation

3.2.5 Extending the Model with Over and Under-Sampling
The operation of our model components, as described so far, in conjunction with
the FIFO channels ensures that each data sample is written and read exactly once.
None the less, for communicating time-driven tasks we allow for two particular
cases in which the data samples on a certain channel can be either read more than
once or read zero times (i.e. dropped). The former case is called over-sampling,
while the latter is called under-sampling.

The concept of over- and under-sampling is inspired by the Giotto program-
ming model in which communicating pairs of tasks can have periods that are a
multiple of each other. This allows for the same written data value to be read
multiple times when the read period is a multiple of the write period. In the
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opposite case, when the write period is a multiple of the read period, the reader
task sees the latest written data value.

For the corresponding channel, we define an over-sampling factor, denoted
σo, or an under-sampling factor, denoted σu, that specifies how many times each
sample is read or which part of the samples is dropped, respectively.

Given a channel between an output port ρo and input port ρi, an over-sampling
factor σo specifies that each sequence of r(ρo) written data samples is read σo times
successively.

Definition 36. (Over-sampling Factor) Given a channel γ = (ρo, ρi) between
a writer task with a period p1, p1 2 fpw, prwg, and a reader task with a period
p2, p2 2 fpr, prwg such that r(ρo) = r(ρi) = n ^ p1

p2
2 N, an over-sampling

factor σo = p1
p2

transforms a sequence of samples δi, .., δi+n�1 into a sequence
δ1
i , .., δ

1
i+n�1, δ

2
i , .., δ

2
i+n�1, .., δ

σo
i , .., δσoi+n�1, 8i 2 f1, 1+n, 1+2n, ...g, where δji+k =

δi+k, 1 � j � σo, 0 � k � n� 1.

Similarly, an under-sampling factor σu specifies that out of each sequence of
σu � r(ρo) written data samples all but the last r(ρo) are discarded and thus not
read.

Definition 37. (Under-sampling Factor) Given a channel γ = (ρo, ρi) between
a writer task with a period p1, p1 2 fpw, prwg, and a reader task with a period
p2, p2 2 fpr, prwg such that r(ρo) = r(ρi) = n ^ p2

p1
2 N, an over-sampling

factor σu = p2
p1

transforms a sequence of samples δi, .., δi+σu�n�1 into a sequence
δi+σu�n�n+1, .., δi+σu�n, 8i 2 f1, 1 + σu � n, 1 + 2σu � n, ...g.

Both definitions specify that an over- or under-sampling factor is only defined
when the corresponding port rates are equal (r(ρo) = r(ρi)) and that its value is
always equal to the ratio of the task periods.

In both cases, an auxiliary task τaux = (ρ0i, ρ0o, 0,?,?,?,?) that realizes the
duplication or the dropping of the data samples is added to the model in between
the two communicating tasks. In consequence, the original channel is replaced
by two corresponding channels that connect the auxiliary task with the original
communicating tasks.

Figure 3.10 shows an example of two communicating tasks that have an over-
sampling factor σo = 3 and the read and write rates equal to 2, while Figure 3.11
shows an example of two communicating tasks that have an under-sampling
factor σu = 3 and the read and write rates equal to 2. The original channel
in both examples contains N initial samples before over/under-sampling. The
data samples are denoted δi, i 2 N

The role of the auxiliary task and the newly introduced channels is to ensure
the application time and data consistency of the resulting application model.

The definition of the over- and under-sampling factors and the addition of
the auxiliary tasks have to be realized as a pre-processing step that provides an
application model that follows the structure defined in Section 3.1.
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Figure 3.10: Over-sampling Example
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Figure 3.11: Under-sampling Example

3.3 Semantics of the Unified MoC by Transfor-
mation to SDF

To provide worst-case timing guarantees, we use the SDF model of computation.
In this section we present a translation of an application written in our model to
an analyzable SDF graph. We use the timed SDF formalism, in which actors have
an allocated Execution Time (ET). Within the SDF MoC, the data samples are
called tokens, the computational components that correspond to the tasks in our
model are called actors and their execution is called firing. SDF actors include
input and output ports, thus our component ports can be directly translated to
actor ports. The communication channels in our model correspond to graph edges.
We use the resulting timed SDF graph to formalize the operational semantics of
our unified MoC.

We will discuss the transformation of the following types of tasks:

1. data-driven task

2. strictly time-driven task connected to the reference clock

3. strictly time-driven task connected to a secondary clock

4. loosely time-driven task connected to a secondary clock

Note that a loosely time-driven task connected to the reference clock becomes
strictly time-driven since the reference clock has zero accuracy. Therefore this
combination is not applicable.

The equivalent SDF graph shows the application execution as measured by
the reference clock.

A task is modeled by a chain of three actors: ‘Rd’, ‘Proc’ and ‘Wr’. Figure 3.12
shows the model for an example task τ = (I, U, e, cτ ) with cτ = (prc , 0), where the
set I of input ports contains two ports, one with the ratem and the other with the
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Figure 3.12: SDF model for a data-driven task

rate n (m,n 2 N>0), the set U of output ports contains two ports, one with the
rate p and the other with rate q (p, q 2 N>0). As no period or offsets are defined, it
follows that the read and write phases of the task are both data-driven. The ‘Rd’
actor models the read phase, including its data-driven enabling condition. The
evaluation of the read condition is implicitly realized by the SDF firing rules, that
allow the actor to fire as soon as a sufficient number of tokens are present on each
input channel. By default, the Rd actor has an execution time of 0, but it can be
modified to reflect a higher read time. Next, the ‘Proc’ actor models the process
phase, which takes e � prc time units (the same time unit used to specify prc), and
finally, the ‘Wr’ actor models the write phase, including its enabling condition,
which in the case of a data-driven write is the completion of the previous process
phase. The edge from the ‘Wr’ to the ‘Rd’ actor models the sequential behavior
of the task execution.

Figure 3.13 shows the SDF model for a time-driven task τ = (I, U, e, p, or, ow, cτ )
with cτ = (prc , 0). Similar to the previous example task, τ has two input ports
with the rate m and n respectively and two output ports with the rates p and q
respectively. In addition, τ has a write and read period of p, a read offset or and
a write offset ow, all multiples of prc . The ‘Clock Period’ actor models the period
of the task clock. The ‘RdOff’ and ‘WrOff’ actors model the read and write
offset respectively. The p initial tokens on the channel between ‘Clock Period’
and ‘RdOff’ will enable the ‘Rd’ actor to start its first firing at the reference time
or � prc . The following firings will start at times or � prc + k � p � prc , k � 1. The same
holds for the ‘WrOff’ actor.

A task that has only a read or a write period and offset can be easily modeled
following the same principals by connecting the ‘Clock Period’ and ‘RdOff/WrOff’
actor to either the ‘Rd’ or ‘Wr’ corresponding actor.

A source is a special case of a time-driven task that has only a time-driven
write phase. Similarly a sink is a special case of a time-driven task that has only a
time-driven read phase. Their SDF models can be easily derived from the model
of a time-driven task by removing the read and write part respectively, and the
‘Proc’ actor.

All the SDF models of the application components are then interconnected
via SDF channels that correspond to the original channels of the application.
When an original channel has a specified over/under-sampling factor σo(u) that is
different than 1 then an auxiliary task is added as explained in Section 3.2 before
the transformation to SDF.
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Figure 3.13: SDF model for a time-driven task

For a given application A = (T,Γ, C, Si, So), its associated SDF graph G(A) =
(V,E,Q00) is constructed by representing each source, task and sink by its desig-
nated SDF model and each inter-task communication channel by a graph edge.
V represents the set of resulting SDF actors, E the resulting edges and Q00 the
resulting distribution of initial tokens.

Algorithm 3.1 shows all the steps required to transform an input application
into an SDF graph. The algorithm calls the function ModelClocks shown in
Algorithm 3.2 with the set of application clocks C given as input parameter.
The function can model either only the reference clock or the reference clock and
a set of secondary clocks.

Figure 3.14 shows the SDFG that results by applying Algorithm 3.1 to the
running example shown in Figure 3.1 in Section 3.1. Note that the offset actor
for source s1 was omitted, as it is equal to 0, and in consequence the actor s1
was directly connected to the ‘Period’ actor. Also note that since the sink d1 has
no period and offset specified, its corresponding actor is directly connected to the
‘Wr’ actor of task task t3.

When the application has a strictly time-driven operation and it includes
one or more secondary clocks in addition to the reference clock, then the SDF
model will capture the relative accuracy of each secondary clock with respect to
the reference clock. This is realized by adding one ‘SecCkPeriod’ actor for each
secondary clock, as shown in Algorithm 3.2. Figure 3.15 shows an example for
two secondary clocks. The figure shows two secondary clocks: c1 with a period
equal to n1 �prc and a relative accuracy of oc1 , and c2 with a period equal to n2 �prc
and a relative accuracy of oc2 . The period of the secondary clocks is modeled
by the input port rates of the actors ‘SecCkPeriod’ and the execution time of
the actor ‘RefCkPeriod’, which enables the ‘SecCkPeriod’ actors to fire at the
reference clock ticks oci , oci + ni � prc , oci + 2 � ni � prc , ... where i = f1, 2g.

When the application has loosely time-driven operation, then the SDF model
will capture the worst-case timing properties measured by the reference clock,
hence the relative accuracy of the writer and reader task clocks. The same
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Algorithm 3.1 Create SDF graph for application A = (T,Γ, Q0, C, Si, So)
for all task ti = (I, U, e, p, or, ow, cτ ) in T do

Create a SDF actor tiRD with the set of input ports I
if or 6= ? then

Add SDF actor tiRdOff with ET = or � psc
. psc is the nominal period of clock cτ

Connect tiRdOff to tiRD via an edge with unitary port rates
Create a SDF actor tiProc with ET = e � psc
Create a SDF actor tiWR with the set of output ports U
if ow 6= ? then

Add SDF actor tiWrOff with ET = ow � psc
Connect tiWrOff to tiWR via an edge with unitary port rates

Add an edge with unitary port rates from tiRD to tiProc
Add an edge with unitary port rates from tiProc to tiWR
Add an edge with unitary port rates from tiWR to tiRD with one initial

token
for all source si = (U, p, ow, csi) in Si do

Create a SDF actor si with set U of output ports
Add SDF actor siWrOff with ET = ow � psc
Connect siWrOff to si via an edge with unitary port rates

for all sink di = I, p, or, cdi in So do
Create a SDF actor di with set I of input ports
if or 6= ? then

Add SDF actor diRdOff with ET = or � psc
Connect diRdOff to di via an edge with unitary port rates

ModelClocks(C)
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Algorithm 3.2 Function that models the application clocks
function ModelClocks(set of clocks C)

Create a SDF actor RefCkPeriod with ET = prc
Add a self edge to actor Ref Ck Period with one initial token
for all clock ci = (n, oci) in C do

Create actor SecCkPeriodi with ET = oci
Add an edge from RefCkPeriod to SecCkPeriodi
Set rc to n . rc is the consumption rate
Set rp to 1 . rp is the production rate
Add n initial tokens to the edge

for all task ti in fT [ Si [ Sog for which p 6= ? do
Add an edge from SecCkPeriodi or RefCkPeriod to tiRdOff and/or

tiWrOff
Set rp to 1
Set rc to p
Add p initial tokens to the edge

s2Off t4Offr t4Offw t3Offw

t1Rd t1Proc t1Wr t3Proct3Rd t3Wr

t4Rd t4Proc t4Wr

t2

d1

s2

s1

2 3

[1]

[1]

[2]

[11]

[1][3]

[1] [3]
t1Offr

[0]

Period
RefCk

[1]

6

6

6 6 6 9

6

6

6 6 6 9

Figure 3.14: SDF Graph for the Running Example

transformation algorithm is used.

3.3.1 Performance Analysis
The SDF analysis model allows us to compute the minimum throughput for a
given application and also check the task read and write times measured by the
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Figure 3.15: SDF model for Secondary Clocks

reference clock.
The SDF analysis method that we use is the state-space analysis [27], which

consists of simulating the SDF graph that results by modeling the application
according to the techniques described previously.

3.4 The Unified MoC is a Union and Extension
of SDF and Giotto

We claim that our MoC unifies the notions defined by the timed SDF MoC and
the single-mode Giotto MoC. We will prove this formally by showing that there
exists a structural as well as an operational equivalence between each of these
models and a subset of our model.

Let us first define the notion of structural and operational equivalence between
models of computation.

Definition 38. (Structural Equivalence) Given a model of computation A that
consists of the set of distinct components CA and a model of computation B that
consists of the set of distinct components CB, we say that component a 2 CA
is structurally equivalent to component b 2 CB if a fulfills the same function in
model a as the function that b fulfills in model B.

In the models of computation within the scope of this thesis the main func-
tions that their components fulfill are those of processing data, storing data and
communicating data.

Definition 39. (Operational Equivalence) Given a model of computation A that
consists of the set of distinct components CA and a model of computation B that
consists of the set of distinct components CB, we say that component a 2 CA
is operationally equivalent to component b 2 CB if the timing properties of the
execution of a are the same as the timing properties of the execution of b.
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The executable components in the models of computation discussed in this
thesis are the components that process data and the timing properties of their
execution are the start and finish times of their execution.

3.4.1 SDF is a Subset of the Unified MoC
Lemma 1. A non-auto-concurrent SDF actor a = (Ia, Ua, ea) where Ia is a set
of SDF input ports, Ua is a set of SDF output ports and ea is the ET of actor
a, such that Ia 6= ; ^ Ua 6= ; is equivalent to a task τ = (I, U, e, p, or, ow, cτ ) for
which p = or = ow = ? and Ia = I, Ua = U , ea = e, cτ is the reference clock.

Proof. Structurally task τ is transformed to a SDF sub-graph as specified by
Algorithm 3.1. Since p = or = ow = ?, it follows that τ is a data-driven task.
Hence its equivalent SDF sub-graph consists of the interconnected actors ‘Rd’,
‘Proc’ and ‘Wr’, as shown in Figure 3.12.

In terms of operation, the firing of a SDF actor is atomic, i.e. it reads the
data on the input ports, it processes it for a duration of ea time units and then it
writes the output data on the output ports. This is equivalent to having the ‘Rd’,
‘Proc’ and ‘Wr’ SDF actors scheduled immediately after each other. When the
data-driven task is connected to a reference clock which provides the time unit,
then the execution of actor ‘Proc’ takes ea time units.

Theorem 1. All valid timed SDF application models including non-auto-concurrent
actors are valid models in our formalism.

Proof. The proof follows directly from the Lemma 1 and the equivalence between
SDF edges and the channels in our model, both assumed to be FIFO memories.

3.4.2 Single-Mode Giotto is a Subset of the Unified MoC
The components of a (single-mode) Giotto program include both functional as
well as non-functional properties. The functional properties are the port types,
the task functions, and the driver guards and functions. The non-functional
properties are the timing properties: the mode period and the task and actuator
frequencies. Our unified MoC, on the other hand, has only components with
time and data properties, which are both non-functional properties. Therefore
the equivalence between a (single-mode) Giotto program and our MoC is strictly
limited to the non-functional properties.

The time and data properties require a unit. The time unit of is the second
based on which the mode period is specified. Our MoC uses clocks characterized
by a nominal period, which is also specified as a multiple/sub-multiple of a second
and which serves as a unit for all the time properties. For the equivalence with
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Giotto we consider that all the components in our model are connected to the ref-
erence clock and that the nominal period of the reference clock is equal to the unit
of the Giotto mode period. For data, Giotto uses ports that have only functional
properties (such as the type) and no non-functional properties. Our MoC uses
data samples whose non-functional property is that they are quantifiable. The
unit of data is the required memory size, which is a platform-specific property. In
Giotto port sizes can be added as a platform-specific annotation. Similarly, in our
MoC the size of a data sample can be added during the platform-aware design.
Since data samples are agnostic of the content they carry, we can consider that a
Giotto port is equivalent to a task port with rate 1 in our MoC.

Only single-mode Giotto programs with harmonic frequencies can be converted
into equivalent models in our unified MoC. Our MoC can be extended in future
work to support non-harmonic frequencies.

Based on the information provided above we define the valid Giotto subset
that can be transformed into an equivalent model in our unified MoC.

Definition 40. (Valid Giotto Subset) A valid Giotto program that can be trans-
formed to an equivalent model in the unified MoC consists of:

• ports declarations, such that each port declaration omits the properties Type
and the initial value init

• task declarations, such that each task declaration omits the property task
function func

• driver declarations, such that each driver declaration omits the property
guard grd

• a single mode declaration (pm, Invokes,Updates), such that all the task fre-
quencies in Invokes are harmonic

We start by showing the equivalence between a Giotto task and a task in our
unified MoC.

Lemma 2. Given a Giotto program including a task declaration (g, In,Out,Priv,
func) and a mode declaration (pm, Invokes,Updates) such that (fg, g, drv) 2 Invokes
and an application specification A = (T,Γ, Q0, C, Si, So) that includes task τ =
(I, U, e, prw, or, ow, cτ ) 2 T for which:

• cτ = reference clock

• prw = ow = pm
fg

and or = 0

• 8ρ 2 I [ U, r(ρ) = 1

• jIj = jInj+ jPrivj

• jU j = jOutj+ jPrivj

58



3.4. THE UNIFIED MOC IS A UNION AND EXTENSION OF SDF AND GIOTTO

� �
� �

� �

�

� � �	�
 ��

��  �� �

�

� �

� �

���
�� �� ���� � �	�
 ��

Figure 3.16: Equivalence between a Giotto task and a task

• Γ0 2 Γ, Γ0 = fγ = (ρo, ρi) j ρo 2 U ^ ρi 2 I ^ q(γ, 0) = 1g, jΓ0j = jPrivj

Then Giotto task g is equivalent to task τ .

Proof. Structurally, we convert each private port of a Giotto task into a pair of
input and output ports connected by a self-channel containing one initial sample
(as expressed by the last three bullets above). In this way the equivalent task
can update and read its state by updating and reading the output and input port
respectively, which are only accessible to the task itself. The equivalence can be
visualized in Figure 3.16, where the Giotto port w2 is a private port.

Since prw 6= ?, it follows that it is a time-driven task for which the read
offset and the write offset have the implicit values (i.e. or = 0 and ow = prw).
The execution of the equivalent task in our MoC is periodic: it reads its input
ports at (reference) times 0, prw, 2 � prw, ... and writes its output ports at times
prw, 2 � prw, ..., just as the Giotto task. Note that for the execution equivalence it
is sufficient to show that the read and the writes times of the tasks are the same.
Therefore the execution time e can be ignored in this respect.

The equivalence between a Giotto sensor port and a source and between a
Giotto actuator and a sink are subsets of Lemma 2.

We now show the equivalence between pairs of communicating tasks in Giotto
and in our MoC. For the next lemma we consider that all task properties listed
in the previous lemma hold, therefore we will not repeat them.

Lemma 3. Given a Giotto program including the task declarations (g1, In1,Out1,
Priv1, func1) and (g2, In2,Out2,Priv2, func2), the driver declaration (drv,Src, grd,
Dst, h) such that 9w1 2 Src \ Out1 and 9w2 2 Dst \ In2 and a mode declara-
tion (pm, Invokes,Updates) such that (fg1 , g1, drv’) 2 Invokes and (fg2 , g2, drv) 2
Invokes and an application specification A = (T,Γ, Q0, C, Si, So) that includes
tasks τ1 = (I1, U1, e1,

pm
fg1
, 0, pmfg1

, cτ1) and τ2 = (I2, U2, e2,
pm
fg2
, 0, pmfg2

, cτ2) connected
by channel γ = (ρo, ρi), ρo 2 U1, ρi 2 I2 such that:

• cτ1 = cτ2 = reference clock

• if fg2 > fg1 we define oversampling factor σo = fg2
fg1

for channel γ
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Figure 3.17: Equivalence for Communicating Giotto tasks

• if fg1 > fg2 we define undersampling factor σu = fg1
fg2

for channel γ

Then the tuple (g1, g2, drv) is equivalent to the tuple (τ1, τ2, γ).

Proof. The transformation to our MoC requires a pre-processing step for the
over/under-sampling factor for channel γ, as described in Section 3.2.5. Tasks τ1
and τ2 read and write data periodically according to the specified period, as the
Giotto tasks. Figure 3.17 illustrates the equivalence for an example Giotto pro-
gram containing two communicating Giotto tasks g1 and g2, where the frequency
of g2 is twice the frequency of g1.

Theorem 2. All valid single-mode Giotto application models with harmonic fre-
quencies are valid models in our formalism.

Proof. The proof follows directly from the Lemmas 2 and 3.

3.5 Related Work
Eker et al. propose in [22] a hierarchical modeling framework that tackles the
heterogeneous nature of cyber-physical systems at subsystem level. The system
to be designed is seen as a composition of subsystems residing in different domains,
modeled by distinct MoCs, that interact via communication interfaces. The
authors address the problem of semantic compatibility of the composed MoCs
at the communication level to ensure a well-defined model behavior. Our work,
by contrast, does not aim at combining existing MoCs hierarchically. We propose
a single model that combines data-driven semantics with different flavours of time-
driven semantics (strictly and loosely time-driven) and thus allows for expressing
the heterogeneity of time and data-driven behavior within the same application
rather than at subsystem level.

Arumi et al. propose in [8] an extension of the SDF MoC for the so-called
callback-based architecture in which the application receives its input data through
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time-triggered interrupts. The extension consists of explicitly distinguishing be-
tween time-triggered input actors, deadline-based output actors and untimed
actors. Similarly, our model distinguishes between sources, sinks and intermediate
tasks. However, it is not restricted to a specific execution architecture, and it
allows for time- and data-driven semantics for all types of components, not only for
the sources and sinks. Furthermore it expresses the notion of time through clocks
characterized in terms of relative accuracy with respect to a chosen reference
clock.

The integration of timing requirements into the Dataflow MoC has been pre-
viously addressed in works such as [50]. Moreira et al. [50] define a maximum
production period for each actor and propose a scheduling strategy that improves
the processor usage while meeting the maximum period constraints per actor.
However, all actors are started based solely on the presence of data while the
notion of time is not explicitly considered, as in our model. Similarly, the task
periods in our model are consistent with the application throughput. However,
our model offers a continuum between data-driven and time-driven operation (by
defining the strictly and the loosely time-driven operation) and it allows defining
fixed periods and offsets for either the read and/or the write phase of the task
execution. This gives more flexibility to the user for defining timing requirements
for the application tasks.

Benveniste et al. propose in [12] two protocols to tolerate clock jitter while
preserving synchronous execution semantics. The first protocol is based on elastic
circuits and the notion of back-pressure and the second one is time-based and
allows for non-blocking communication. The loosely time-driven semantics of
the model we propose in this thesis are inspired by the back-pressure protocol,
as it introduces a blocking mechanism that waits for the input data if it is not
available at the beginning of the read period. However our model operates at a
higher granularity as it allows for defining different port rates and for defining a
different period for each time-driven task. Furthermore the physical limitations
of the clocks are expressed by the relative accuracy rather than the minimum and
maximum clock period, which allows us to statically verify the time consistency
of communicating tasks (i.e. the order of time-driven read and write events).

Bamakhrama et al. propose in [10,11] an analytical framework for computing
real-time task parameters and minimum buffer sizes for the actors and channels,
respectively, in an acyclic CSDF graph. The task parameters are: the start time of
the task, the period and a constrained or implicit deadline. These parameters are
similar to the time-driven task properties proposed by our model, namely the read
offset, the read and/or write period and the write offset and they can be computed
for applications modeled by CSDF graphs (CSDF is a superset of SDF). The time-
related properties of our model are inspired by the TTA and LTTA architectures
and the main objective of the model is to offer the designer a means to express
the timing behavior of the application tasks together with the clock deviations
(expressed by the clock offset) encountered on these architectures, which can then
be analyzed by conversion to SDF. The tasks in our model can read and/or write
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from their ports either in a data-driven fashion, at fixed points in time (in line
with the LET paradigm used on the TTA) rather than before a given deadline, or
they can wait for the input data if it is not available at the specified fixed point(s)
in time (similar to the back-pressure protocol for the LTTA). In addition, our
Theorem 1 that refers to the SDF model as being a subset of our model (presented
in Section 3.4) follows also from the results shown in [11] where the authors prove
formally that for any acyclic CSDF graph a periodic schedule can be derived, for
which the previously mentioned task parameters can be analytically computed.
Thus, while the work presented in [11] allows the designer to derive the previously
mentioned task parameters for an application modeled using an acyclic CSDF
graph, such that it can be scheduled using hard real-time scheduling algorithms,
our model allows the designer to model both data-driven as well as time-driven
behavior of a given input application for which the task timing parameters are
known (e.g. are given as requirements).

A recent contribution from Graillat et al. [30] proposes a code generation
method for synchronous programs mapped on many-core platforms. The gener-
ated code uses a time- and data-triggered execution model for the tasks extracted
from a Lustre program that highly resembles the semantics of our unified MoC.
Just as in our MoC, the tasks can be executed in data-triggered manner, in a
time-triggered manner or in a combined time- and data-triggered manner that
corresponds to our loosely time-driven semantics. However our model supports
multiple data rates as well as over- and under-sampling. Our proposal was
published first in [5].

3.6 Summary
In this chapter we introduce a unified model of computation that combines data-
driven with strictly and loosely time-driven semantics. We describe the model
operation, we provide an algorithm to convert our model into an equivalent SDF
graph and we offer formal proofs that show that the SDF model and the single
mode Giotto with harmonic task frequencies are subsets of our unified model.
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4
Model Implementation Methods on a

MPSoC

Model-based Design for embedded applications consists of a design phase and
an implementation phase (see Figure 1.2). After a design solution is found,
the application model used in the design phase is implemented using a model
implementation method in the implementation phase. Multiple model implemen-
tation methods can be explored and analyzed during the design phase in terms
of performance. A model implementation method is a software and/or hardware
realization of the model semantics on a selected MPSoC platform and it requires a
software and/or hardware infrastructure. In the implementation phase the design
solution is deployed on the implementation platform. The deployment consists
of writing the software code for the model implementation methods and for the
software infrastructure and synthesizing the hardware infrastructure.

In this chapter we introduce the semantics-preserving model implementation
methods and the required software infrastructure that realize the semantics of our
unified MoC presented in the previous chapter. In the context of this thesis, a
semantics-preserving implementation method explicitly enforces the operational
semantics (i.e. time- and data-driven task execution and the FIFO-based com-
munication) of the model of computation used to describe the application and it
counteracts any phenomenon that would otherwise violate those semantics. Our
methods consist of time-synchronization methods and task execution methods.
We propose two types of time synchronization: centralized and distributed. These
two types of methods offer a trade-off between performance and scalability. The
distributed time synchronization consists of clock synchronization on a CAN
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implemented on a MPSoC. For this, we first present the design of a CAN network
on a synchronous and a GALS MPSoC in Section 4.1, followed by the description
of the clock synchronization method for a GALS MPSoC in Section 4.2.1. Sec-
tion 4.2.2 presents the centralized time synchronization methods that comprise
the Barrier and the Token-based method. Section 4.2.3 presents the comparative
analysis of the proposed time synchronization methods. Section 4.3 presents
the implementation of the task wrappers that realize the task execution and
communication semantics. Section 4.4 presents the related work and Section 4.5
concludes the chapter.

Figure 4.1 shows an overview of the model implementation methods for a
GALS MPSoC platform. The top layer (1) illustrates the application model with
all types of task execution, the associated task clocks and inter-task communi-
cation. The middle layer (2) illustrates the corresponding software architecture
that consists of four sub-layers. The first and second sub-layers comprise the
task execution and communication wrappers that realize the task execution and
communication semantics. The third sub-layer consists of the logical clocks that
are used as task clocks. The fourth sub-layer illustrates the infrastructure used to
implement the logical clocks. This is the clock synchronization protocol for the
coarse-grain logical clocks (first introduced in Section 2.2.2) and the barrier/token-
based time synchronization method for the case when the reference clock is used
for all the time-driven tasks. Finally, the bottom layer (3) shows the physical
clocks on a GALS platform. A GALS platform contains a reference physical
clock, a set of physical clocks with bounded offset (caused by clock jitter) and a
set of clocks with unbounded offset (caused by clock skew). The task clocks on
the bottom layer correspond to the task clocks in the middle layer. The processor
clocks on the bottom layer are the clocks connected to the processor to which the
tasks are bound.

We will now explain Figure 4.1 for each type of task execution. The task clock
of a data-driven task is used only to specify the task execution time. Since a
data-driven task has no time-driven read/write conditions it does not use logical
clocks. Hence the task clocks are not specified for this type of task execution in
layer (2), nor in layer (3). However, a data-driven task is bound to a processor
which can be connected to either the reference physical clock or a physical clock
with bounded or unbounded offset. Note that the clock offset does not impact the
operation of data-driven tasks. Nevertheless the maximum period of the physical
clock determined by the clock skew does impact the execution time of the task
when it is expressed in terms of local clock cycles. This has to be taken account
when specifying the task execution time in the model such that it captures the
worst execution time of the task.

The task clock of a loosely time-driven task is always a secondary clock. The
task clock is implemented by a fine-grained logical clock, that is provided by a
physical clock with bounded offset.

For strictly time-driven tasks we illustrate two sub-cases. On the left column
we show the centralized time synchronization where the task clock is the reference
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Figure 4.1: Overview of the MoC Implementation Methods

clock and the task is bound to a processor that is connected to another clock with
unbounded offset. In this case the reference fine-grained logical clock is the clock
used for the time-driven read/write conditions of the tasks and the tasks synchro-
nize via the barrier or token-based method with the processor connected to the
reference clock. On the right column we show the distributed time synchronization
where the task clock is a secondary clock and the task is bound to a processor
that is connected to a clock with unbounded offset. In this case the task clock
is implemented by a coarse-grained logical clock that is given by the CAN clock
synchronization method. In layer (3) we can see that the corresponding task clock
(a physical clock with unbounded offset) is the same as the processor clock.

4.1 CAN Design for Distributed Time Synchro-
nization

We chose the CAN to provide a proof of concept of clock synchronization on an
MPSoC platform. CAN is a popular communication technology that has been
widely used for many years in fields such as automotive and automation. The
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CAN bus has several properties that are desirable for clock synchronization.
We first propose a design methodology for the CAN on a MPSoC. It allows

multiple applications to use the CAN bus in an isolated manner. Next, we show
how clock synchronization can be implemented on a GALS MPSoC platform.

We propose a method to design a CAN bus on a MPSoC (shown in Figure 4.2)
that consists of defining different platform configurations that trade off the number
of supported applications and CAN ports with the bit rate of the CAN bus.
The MPSoC platform consists of a set of processor tiles, each one embedding a
processor, the local memories and the CAN modules. Each CAN module provides
a CAN port. The main design parameters that we vary are:

1. the number of applications sharing each processor

2. the number of CAN ports per processor tile

3. the number of applications sharing a CAN port

4. the bit rate of the CAN bus
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Figure 4.2: Embedded CAN bus Architecture for a MPSoC

The CAN parameters (bit rate and number of ports) are used for hardware
synthesis, while the others are part of the software design. Table 4.1 gives an
overview of the exact values of the parameters for each of the four example
configurations.

Each configuration ensures a complete temporal isolation between applica-
tions [6]. Spatial isolation is logically ensured in the sense that each application
gets assigned its own stack, heap and data memory, but the proposed configura-
tions do not include a memory protection unit to enforce this separation.

Each CAN port is connected to an individual hardware module that imple-
ments the physical layer of the CAN protocol. The MAC layer is implemented in
software. We refer to this implementation as a software emulated CAN device since
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Table 4.1: Virtualization and Emulation Platform Configurations

Configuration E1 E2 V1 V2
CAN Bus Baud Rate [kbit/s] 4 2 2 100

Number of (applications + controllers) per core Cores 1-4 Cores 1-4 Cores 1-4 Cores 1-3 Core 4
1+1 2+2 2+1 2+0 0+1

Number of CAN ports per tile Tiles 1-4 Tiles 1-4 Tiles 1-4 Tiles 1-3 Tile 4
1 2 1 0 1

Number of applications per CAN port 1 1 2 6

it implements the functionality of a hardware CAN device in software. Further,
if a single CAN port is used by multiple applications such that the integrity of
the data sent and received on CAN by each one of them is not affected, we say
that the CAN device is virtualized. Our CAN emulation and virtualization design
methods were proposed as a lightweight solution for sharing a CAN interface
between multiple software applications running on a MPSoC platform.

Given the design parameters presented above, we defined four platform config-
urations: two configurations for which the CAN device is emulated but not virtu-
alized, denoted E1 and E2 and two others for which the CAN device is emulated
and virtualized, denoted V1 and V2. In configuration E1 a single application is
using the processor and a dedicated CAN controller is allocated to the application.
In configuration E2 two applications use the processor and each application has
a dedicated CAN controller. In configuration V1 two applications run on the
same processor and share the same CAN controller. Finally, in configuration V2
the CAN controller is implemented on a dedicated processor and the applications
running on the other processors send and receive the CAN messages to/from the
CAN controller via the NoC. As the CAN device is implemented in software, the
maximum achievable bit rate in each case depends on whether the processor on
which it runs is shared with other applications or not.

In the remainder of this section we will describe and evaluate each of the four
configurations.
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Figure 4.3: CAN Configu-
ration E1 - System Architec-
ture of a tile
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Figure 4.4: CAN Configuration E2 - Sys-
tem Architecture of a tile
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Platform Configuration E1

This configuration is the simplest one, in the sense that the value of each of
the design parameters mentioned above is equal to 1. We have one application
on each processor using a local CAN port. The bit rate of the CAN bus is 4
kbit/s. Subsection 4.1.1 explains how the CAN bit rate is computed for each
configuration.

The system architecture for this configuration is shown in Figure 4.3. This
configuration as well as the other ones, comprises four processor tiles. In configu-
ration E1 there is one application and one CAN controller running on a processor.
On the software side, we can see that the sequence of function calls starts from
the application layer, where the message is created. Then the AUTOSAR driver
API [1] is called, that further calls the C-HEAP library [56] to transfer the message
into the controller’s buffer. The C-HEAP library allocates a separate transmit and
receive message buffer (not shown). The application places the CAN messages to
be sent on CAN in the transmit buffer and the CAN controller polls the buffer
to detect the newly placed messages. Similarly, for reception, the CAN controller
places the received CAN messages in the receive buffer and the application polls
the buffer to detect newly received messages. On the bottom software layer, the
CoMik microkernel [54] creates the TDM partitions in which the tasks (application
and CAN controller) can run without interference. Thus the CoMik microkernel
realizes the temporal isolation between the application and the CAN controller.

The main advantages of this configuration are the spatial isolation between
applications, as they are mapped one-to-one to the processor cores and the use of
the local data memory on the tile for the communication between the application
and the CAN device, which implies a low timing overhead. The disadvantage is
the low scalability in terms of number of supported applications.

Platform Configuration E2

In this configuration, we increase both the number of applications and CAN
ports per core to two, such that each application accesses its own emulated CAN
device. Since the number of software entities running on the same processor is
higher, the CAN bit rate decreases to 2 kbit/s.

The advantages of this configuration are the increased number of applications
running on each core, the physical isolation between the CAN ports used by each
application and, as in the previous case, the use of the local memory for the
application to CAN device communication. The number of increased applications
and CAN ports come at the expense of the reduced CAN bit rate and extra area
for the second CAN module.

Platform Configuration V1
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Figure 4.5: CAN Configuration V1 - System Architecture of a tile
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Figure 4.6: CAN Configuration V2 - Using one tile as a CAN gateway

Configuration V1 has two applications running on each core that share the
same CAN controller. Each application has its own transmit and receive buffer
and the arbitration between them for transmission is done in software based on
the message ID. For the reception each application implements a reception filter
that specifies the IDs of the CAN messages to be received. The controller forwards
each received CAN message to either one or both applications if the message ID
is included in the corresponding message filter. The bit rate of the CAN bus
is 2 kbit/s. Figure 4.5 illustrates the system architecture for this case. The
multiplexer/demultiplexer inside the CAN Controller symbolizes the ID-based
arbitration and the forwarding of the received messages.

Compared to E1, the main advantage of this configuration is the improved
scalability of the CAN device, which comes at the price of using the same physical
CAN port for all applications on the core.

Platform Configuration V2

Configuration V2 uses a dedicated core to implement a CAN device, which
operates as a CAN gateway at 100 kbit/s bit rate. As this core is not shared with
other applications, the CAN controller runs bare-metal (i.e. without the CoMik
microkernel). Each of the other cores runs two applications. To send and receive
CAN messages, the cores use the C-HEAP over the NoC for the communication
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with the dedicated CAN core. Each CAN application has a separate transmit
and receive FIFO in the CAN controller.

Figure 4.6 illustrates the system architecture for this configuration. For sim-
plicity, the arrows illustrate the sequence of function calls only for the transmission
of messages from the applications to the gateway through the NoC and omit the
multiplexer/demultiplexer in the CAN controller.

4.1.1 Implementation on a Synchronous MPSoC
We have implemented the physical layer of the CAN interface as a hardware
module that functions as a bidirectional bridge, receiving on one side the data
to be transmitted on CAN from the Microblaze processor and on the other side
putting it on the onchip CAN bus. The CAN PHY module can be instantiated
multiple times on each processor tile and the resulting CAN line is a wired AND
between all the CAN ports present on the platform. In the platform architecture
shown in Figure 4.2 each processor tile has a single CAN PHY module, shown as
a green rectangle. The CAN bit duration in hardware is realized by dividing the
processor clock frequency. All the tiles, the NoC, and the CAN run synchronously
on the same clock domain.

Software Emulation of the CAN Controller

The CAN MAC layer was implemented in software in the C programming
language and it consists of creating the CAN frame in the 2.0A format, as defined
by the ISO 11898 standard [4], including bit stuffing, CRC computation and
filtering of the received messages. We call the software implementation of the
CAN MAC layer emulation since it acts as a CAN controller, which transmits
the CAN messages sent by the application and returns back to it the received
messages according to the configuration of the reception filter. To transfer the
data between the application and the controller the C-HEAP is used, as explained
previously. Further, we have implemented the driver Application Programming
Interface (API) according to the AUTOSAR standard.

Implementing a CAN Controller in a TDM Partition

To be able to run the software CAN controller together with other applications
on the same processor, we use the CoMik microkernel. CoMik divides the physical
processor into multiple virtual processors scheduled in TDM fashion. A virtual
processor is a fraction of the physical processor that receives a number of allocated
TDM slots and it is fully temporally isolated from the other virtual processors.
The TDM slot allocation determines the maximum sustainable CAN bit rate, as
the TDM slot allocated to the software controller has to run at least once in each
CAN bit period.
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Figure 4.7: Timing Diagram for configuration E1 - Emulated CAN on top of
CoMik

Each software controller accesses a unique physical CAN port. In order to
provide CAN access to multiple applications, we need to either instantiate in
hardware the same number of CAN ports as the number of applications, or
share a lower number of CAN ports. Both options imply creating a TDM table
that accommodates all the applications and their software CAN controllers and
defining the maximum CAN bit rate based on the maximum delay between two
successive TDM slots allocated to the same controller, for all the controllers. Thus
the minimum CAN bit duration, Tbitmin is:

Tbitmin = max
0<i�NCAN

f max
0<j<2�Mi

(tij+1 � tij )g (4.1)

where NCAN refers to the total number of CAN controllers running on the
platform, Mi represents the number of TDM slots within a TDM frame allocated
to the controller i and tij ,tij+1 denote the start times of slots j and j + 1 of
controller i. To detect the maximum delay between any two successive slots of
controller i, we need to consider two successive TDM frames, which is why the
upper bound for the second max operator is 2 �Mi. Hence, the maximum CAN
bit rate BRmax is:

BRmax = Tbitmin
�1 (4.2)

The start of the CoMik microkernel is synchronized with the start of the CAN
bit period in the PHY layer to ensure that all the controllers on all tiles read and
write in the same bit period.
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Figure 4.7 shows the TDM schedule for configuration E1 and the CAN signals.
A TDM frame consists of three slots. On tile 1 the second slot is allocated to
the CAN controller and the other slots are allocated to the application (App1).
On tile 2 the second slot is allocated to application (App2) and the other slots
are allocated to the CAN controller. Each TDM slot contains a CoMik sub-slot
(denoted MK in the figure) and an application/CAN sub-slot. In the CoMik sub-
slot the context switch operations are performed. In the figure, the maximum
delay between any two consecutive CAN slots is two slots. We chose the CAN
bit period Tbit of three TDM slots, thus higher than the minimum value. We can
see that each application writes a transmit message in its corresponding buffer at
times twrMsg1 and twrMsg2 respectively. The C-HEAP library is not shown in the
figure for the sake of simplicity. Each CAN controller starts its execution by first
waiting for the next bit period start. For this it polls the CAN PHY which signals
the start of each bit period and provides the bit value from the previous period.
In the figure we can see that each CAN controller reads at time R0 the value
of the previous bit value on the bus, IDLE. Afterwards each controller detects
the incoming message within the same slot and since the bus is idle it starts
to drive the allocated CAN output port immediately. The resulting CAN line,
CAN_IN is updated synchronously by the CAN PHY at the start of every CAN
bit period and it reflects the result (Wired AND) of all the CAN output lines on
the platform from the previous CAN bit period. In the figure both controllers
drive their local CAN output lines during the CAN bit period Tbit(1) with the
values Msg_1_bit0 and Msg_2_bit0 respectively and the bus line (CAN_IN) is
synchronously updated with the resulting value Msg_r_bit0 during the next bit
period, Tbit(2).

When the controller is shared, as in configuration V1, separate buffers are allo-
cated to each client application and the messages to be transmitted are arbitrated
based on their IDs. Note that the minimum CAN bit period, as explained above,
is computed based solely on the distance between the TDM slots allocated to the
CAN controller and it is thus independent of whether the controller is shared or
not.

Bare-metal Implementation of the CAN Controller

Configuration V2 illustrates the possibility of allocating the entire processor
to the CAN controller. As mentioned before, we use the C-HEAP library to send
the CAN messages across the NoC. Each sending application has its own FIFO
transmit buffer allocated by C-HEAP in the local memory of the CAN gateway
tile. In the current configuration each transmit/receive FIFO has space for one
CAN message. When writing a message into a remote FIFO, the sender first
sends the message and then the value of the updated write counter via the NoC.
While the CAN bus is idle, at the start of every CAN bit period the CAN gateway
reads the write counter of each transmit FIFO of each CAN client. Hence the
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CAN gateway does not poll for incoming messages from each application, but it
only checks for new messages by reading the write counter once. This is because
the CAN gateway has to listen to the bus during each bit CAN period and the
period with which each application sends its message is not known to the CAN
gateway, thus polling can take more than one CAN bit period. If a new message
is found, it is transmitted right away on the CAN bus.

Since in this case the processor is not virtualized, the performance bottleneck
determining the CAN bit rate is no longer given by the TDM table, but by the
worst case execution time needed to send one CAN bit, which is given by the
CRC computation time. The communication time via the NoC does not impact
the CAN bit period since the CAN gateway only reads the write counters, as
explained above, and does not block until the messages arrive. When receiving
a CAN message, after the reception of the message contents is completed, the
reception FIFOs are updated according to the reception filters.

4.1.2 Implementation on a GALS MPSoC
The design solution for a GALS platform follows the same hybrid hardware/soft-
ware structure as for an synchronous MPSoC. The only difference is that the PHY
layer is compliant with the Bosch standard [5] and the software accounts for clock
skew.

MPSoC Hardware/Software Architecture

The hardware architecture for GALS MPSoC platform is the same as shown
in Figure 4.2. The only difference with respect to a synchronous platform is that
tiles 1 and 2 are connected to a clock oscillator running at 100 MHz, while tile 3
is connected to a separate clock oscillator running at 64 MHz.
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Figure 4.8: Hardware-Software Bit Timing for the CAN Controller

The CAN controller design for a GALS platform is shown in Figure 4.8. The
design shown here corresponds to the V1 configuration introduced in the first part
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of the current section. At the bottom, the CAN PHY hardware implements the
bit timing logic according to the standard. The CAN bit period is made of 3 time
segments: SYNC, SEG 1 and SEG 2. The bus is driven with the new bit value at
the end of SEG 2 (TX point) and the value of the current bit is sampled at the
end of SEG 1 (sampling point). We will explain further the role of these segments
in the following paragraph. In software, the TDM table on each processor has
three slots, two of them allocated to applications 1 and 2, respectively, and one to
the CAN MAC layer. Both applications share the CAN controller. In the CAN
slot, the value of the last sampled bit is read and the value of the next bit to be
transmitted is provided to the CAN PHY hardware.

Accounting for Clock Skew in the Hardware-Software Design
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Figure 4.9: Alignment of TDM slots based on CAN PHY Layer

The CAN PHY hardware has the following design parameters that are set by
the user:

1. the duration of the time quantum TQ

2. the base duration of SEG 1

3. the base duration of SEG 2

4. the value of the synchronization jump width SJW
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Figure 4.10: Clock Offset Compensation in CAN PHY Bit Timing

TQ is the basic time unit that is used as a sub-multiple of all the other design
parameters (SEG 1, SEG 2, SJW). The SYNC segment has a fixed duration of
one time quantum and it is the time during which each controller expects a new
CAN bit value. SEG 1 and SEG 2 have quasi-static timing: they have a fixed
base duration, given by the design parameters, and a minimum and maximum
adjustment value given by SJW. SEG 1 and SEG 2 compensate for the signal
propagation delay and for the clock offset caused by the clock skew. The clock
offset is compensated by adding or subtracting at most SJW local clock cycles.
SJW is illustrated in Figure 4.10.

There are two types of synchronization performed in the CAN PHY to com-
pensate for clock offset and signal propagation delay. The first type is hard
synchronization and the second type is resynchronization. Hard synchronization
occurs on the Start of Frame (SOF) bit and it is driven by the first CAN controller
that initiates the communication. During hard synchronization all the CAN slaves
immediately restart the timing of the SYNC segment as soon as they receive
the SOF bit. Hard synchronization is not limited by SJW. Then, during the
message transmission, resynchronization is performed on every negative signal
edge (transition from a a ‘1’ bit to a ‘0’ bit) by adjusting SEG 1 or SEG 2. If
the negative edge comes during SEG 1 (meaning that the slave is faster than the
master), as shown in part (a) of Figure 4.10, then SEG 1 is lengthened with R
clock cycles. If the negative edge comes during SEG 2 (meaning that the slave
is slower than the master), as shown in part (b) of Figure 4.10, then SEG 2 is
shortened with R clock cycles. R has to be at most equal to SJW. Otherwise, an
adjustment of +/- SJW clock cycles is applied.

Figure 4.9(a) illustrates the effects of the clock skew in the platform shown in
Figure 4.2. In the figure tile 3 is the CAN master and tile 1 is the CAN slave. The
CAN bit segments on tiles 1 and 3 are initially misaligned (circle 2 in the figure)
and the clock offset is equal to R local clock cycles (on tile 1). Then tile 3 starts
driving the bus and as a result tile 1 performs a hard synchronization and the
local CAN bit timing restarts and in consequence the sampling point is aligned
on the two tiles.

In software, the CAN MAC layer has to follow the PHY layer for the controller
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to function properly. For this, the software aligns the sampling point in the CAN
PHY with a fixed point inside the CAN TDM slot, as seen in Figure 4.9(b) for
the second sampling point. The software alignment is done by decreasing or
increasing the duration of the CoMik sub-slots. The application sub-slots keep a
constant duration but they will shift to the left or right as a result of the CoMik
slot adjustment. The CoMik adjustment is equal to the clock offset compensation
done in the CAN PHY and it is computed based on the hardware timestamp taken
at the TX point. This can be seen in Figure 4.9(b) that illustrates 3 successive
TDM periods corresponding to 3 CAN bit periods. In the first bit period, when
the CAN bus is IDLE, we can see that the CAN bit sampling points of the two
tiles have a relative offset equal to R (circle 2), which is also reflected in the offset
between the TDM tables (shown above in circle 2). In the second bit period, tile 3
sends a negative edge causing the CAN PHY modules to synchronize and as a
result the bit time for the second bit starts at the same moment on both tiles.
Tile 1 takes a hardware timestamp TS of the negative edge which is then read
in the CoMik slot (MK) preceding the application sub-slot App1 (circle 3). The
offset R is computed in the CoMik slot as follows:

MKstarti+1 = TS + SEG1 �OFS� C
R = MKstarti+1 �MKstarti � (C + P) (4.3)

where Mkstarti represents the time when CoMik slot i starts, SEG1 is the value
of the design parameter SEG 1 of the CAN bit, C is the CoMik sub-slot duration,
P is the application sub-slot duration and OFS is the CAN bit sampling point
offset with respect to the application sub-slot start time (shown in Figure 4.9).
All these parameters are measured in local clock cycles.

As a result of correcting the offset, the duration of the CoMik sub-slot preced-
ing the CAN slot becomes C-R. The offset correction is applied once, after which
the CoMik duration is restored to its design time value, C.

While a positive offset results in an increase of the CoMik slot, which has no
upper bound, a negative offset results in a decrease of the CoMik slot, which does
have a lower bound. This lower bound is determined by the minimum duration
that CoMik needs to perform the context switch and to update the TDM schedule.
This is established by the implementation and it is equal to Cmin. Thus the applied
offset correction R has to satisfy the following inequality:

C� R � Cmin (4.4)

During normal operation, CoMik ensures temporal isolation between applica-
tions by starting each application sub-slot with a precise period of (C+P) clock
cycles and then the application is swapped out precisely P cycles later. Thus
no application can interfere with any of the other applications running on the
same processor, a property that we call composability. The offset correction does
not alter the number of cycles received by each application, P, but it impacts
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Figure 4.11: Time Synchronization Implementation for configuration V1

the absolute moment in time when the application sub-slot starts, such that the
application sub-slots become aligned among the processors.

The CAN PHY is agnostic of the clock synchronization. The CAN bit seg-
ments of the CAN slaves will align with any node that starts the communication
and becomes CAN master. In consequence the CAN MAC will align with the
CAN PHY, as explained above. However, synchronizing the local time at the
time slaves with the time master will only occur when the received CAN message
is a clock synchronization message.

4.2 Time Synchronization Methods
We propose two types of time synchronization methods: distributed and cen-
tralized. Clock synchronization is a distributed time synchronization method in
which a set of slaves clock are synchronized with a master clock. The barrier
and the token-based methods are centralized time synchronization methods in
which the time-driven tasks do not use their local processor clock to detect the
start of the period but they synchronize with the processor connected to the
reference clock using barrier/token-based synchronization when they execute the
time-driven read/write phase.

4.2.1 Clock Synchronization Method on CAN
We implement the clock synchronization protocol that uses a single CAN message
and a hardware timestamp to synchronize the fine-grain logical clocks with the
reference fine-grain clock. The coarse-grain logical clocks are obtained from the
fine-grain logical clocks that are synchronized by the protocol.

Figure 4.11 shows the software architecture for configuration V1. The CAN
device is now used by the application App 1 and by the CAN Time Synchro-
nization application. The Time Synchronization Manager (TSM) implements the
API for updating the value of the fine-grain clock when the clock synchronization
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occurs and for reading the current value of the coarse-grain clock. The application,
denoted as App 1, can read the value of the coarse-grain clock by using the Time
Synchronization Manager API, while the CAN Time Synchronization starts the
clock synchronization periodically and sets the fine-grain clock using the time
stamp received in the clock synchronization CAN message.

The clock synchronization protocol for our CAN implementation requires a
single message sent by the time master to the time slave(s). While the stan-
dardized PTP protocol [6] requires 4 messages for each synchronization round
(Sync, Follow-Up, Delay Request and Delay Response), due to the favorable
timing properties of the CAN protocol, they can be reduced to the first two
messages. Furthermore, our specific design that implements the MAC layer in
software makes it possible to use only a single Sync message.

The structure of the CAN bit timing can easily be exploited to obtain precise
clock synchronization [60]. First, a highly precise clock synchronization requires a
small variation of the network physical propagation delay. By properly configuring
the CAN bit segments in the CAN PHY to account for signal propagation and
clock offset correction, this variation can be bounded to a small percentage of the
bit time. Second, the CAN MAC layer features arbitration for collision resolution
and includes an acknowledgement field driven by the slave which render the
link delay detection redundant. With no link delay detection needed, the clock
synchronization protocol on CAN comes down to the Sync and the Follow-Up
message.

The Sync message signals the start of the clock synchronization and the Follow-
Up includes the master time stamp, taken as close as possible to the physical layer.
Both messages are required when the entire CAN protocol stack is implemented
in hardware and the software interacts with it at the message level. Our design
however implements the MAC layer in software which offers the advantage of a
bit level interaction with the hardware. This gives the possibility of modifying the
content of a message while it is being sent. The time master can then easily insert
the time stamp in the data field after it wins arbitration. Hence the Follow-Up
message is no longer needed.
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Figure 4.12: Time Synchronization Frame Structure

Figure 4.12 shows the structure of the clock synchronization CAN message.
We use a 64-bit hardware time stamp which is captured at the beginning of SEG
1 of every bit. This creates a payload of 8 bytes (DLC = ‘1000’).

After winning the arbitration, the time master reads the hardware time stamp
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after the first bit of the DLC field is sent, as seen in the figure and it inserts it
in the following DATA field. The time slave counts the total number of bits N
transmitted between the first DLC bit, when the master took the time stamp,
and the first negative edge (a ‘1’ to ‘0’ bit transition) following the DATA field
and corrects its local time. This total number of bits can vary due to bit stuffing.
Two important choices are made here: the one of reading the time stamp after the
arbitration finished on the master side and that of applying the time correction
at a negative edge at the slave side. Both have the role of maximizing the clock
synchronization precision. After the arbitration finishes, during the DLC and
DATA fields, the CAN bus is solely driven by the time master, which is the only
one dictating the bit timing in this interval. This makes it possible for the slave
to precisely synchronize the local fine grain clock by adding the duration of the N
counted bits to the received timestamp. The obtained new fine-grain clock value
at the time slave is given by the following equation and it is expressed in clock
cycles:

Ckfnew = TS +N � Tbit
off = Ckfnew � Ckfprev

where Tbit is the CAN bit length in local clock cycles, TS is the hardware time
stamp taken by the time master during the DLC field. The equation assumes
that the nominal frequency of the time slave and time master are the same.
Otherwise a conversion is required to transform the time stamp taken by the
master into a multiple of local clock cycles. off is the relative clock offset of the
time slave with respect to the time master given by the difference between the
new value of the fine-grain clock Ckfnew and previous value, Ckfprev , right before
the synchronization.

Figure 4.14 shows the detailed implementation of the task clocks in the ap-
plication model on a GALS MPSoC. The clock synchronization protocol uses a
hardware timestamp, thus the clock values synchronized by the protocol use the
raw format given by the hardware clock counter. For creating the coarse-grain
clock the data structure shown in Figure 4.13 is used. The structure contains
a fine-grain clock, a fine-grain clock time stamp and a coarse-grain clock time
stamp. Ckf represents the fine-grain clock that is updated by the local physical
clock and by the clock synchronization protocol. TSc is the time stamp of the
coarse-grain clock taken right before the clock synchronization updates the fine-
grain clock. The coarse-grain clock counts with a granularity g that set by the
user and that has to be strictly higher than the clock synchronization precision.
The time unit of g is thus a (sub)multiple of a second.

When the application execution begins the fine-grain clock and the coarse-
grain clock are aligned before the first clock synchronization occurs. Thus if the
clock synchronization occurs at the n’th tick of the coarse-grain clock, then at the
(n-1)’th coarse grain tick the value of the fine-grain clock is (n � 1) � gc, where
gc is the value of g in local clock cycles. After the clock synchronization the
value of the synchronized fine-grain clock is updated. If the relative clock offset
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typedef struct {
uint64 Ckf ;
uint32 T Sc;

} CoarseGrainClkStruct ;

Figure 4.13: Coarse Grain Clock Data Structure
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Figure 4.14: Model Clocks Implementation on a GALS MPSoC

of the time slave with respect to the time master is negative then the value of the
synchronized fine-grain clock becomes n � gc � off. If the relative clock offset of
the time slave with respect to the time master is positive then the value of the
synchronized fine-grain clock becomes n � gc + off.

The current value of the coarse-grain clock crtCoarseTime is given by the Time
Synchronization Manager (TSM) and it is computed as follows:

crtCoarseTime =
( j

Ckf
gc

k
, Ckf � TSc � gc � 0

TSc, Ckf � TSc � gc < 0

where Ckf is the current value of the synchronized fine-grain clock. Thus if the
fine-grain clock goes backwards in time and the current coarse time is requested
before the updated value of the fine-grain clock has passed the coarse-grain tick
TSc then the latest coarse-grain tick value is returned (i.e. TSc). Thus the coarse-
grain clock does not go back in time. Otherwise the total number of currently
elapsed coarse-grain ticks is returned (i.e.

j
Ckf
gc

k
). Note that the coarse-grain

clock cannot skip ticks since the maximum positive adjustment of the fine-grain
clock (the current relative clock offset off) is strictly less than the value of gc.
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4.2.2 Centralized Time Synchronization Methods
The centralized time synchronization methods can be used when the task clock
of the time-driven tasks in the application model is the reference clock and the
tasks are bound to a processor driven by a clock other than the reference physical
clock on the MPSoC.

The Barrier Method

This method targets a single GALS MPSoC platform and it selects the processor
with the most reliable clock as the time-aware processor with which all the proces-
sors that need to access the time, synchronize, using blocking data communication.

The method receives three inputs: the first input is an ordered set O compris-
ing the write and read offset instants corresponding to the time-driven write/read
conditions of the application tasks, the second input is the application offset oa
and the third input is the application period pa. This ordered set of offsets
is given by the values of the read/write offsets of the task in the application
model. The application offset and the application period are given by the timing
analysis. The ordered set of read/write offsets is further composed of two subsets,
O1 = fo1, o2, .., ong and O2 = fon+1, on+2, .., on+mg. The first subset O1 includes
the read/write offsets that correspond to the transient phase of the application
execution. This subset is only executed once by the time-aware processor. The
second subset O2 starts at the application offset oa and it is repeated periodically
with a period equal to the application period pa.

A barrier synchronization library is used to achieve the time synchronization.
The barrier synchronizes a predefined number of clients in a blocking manner:
each client updates its location in the barrier data structure and blocks until all
the other clients update their locations. We use barriers for time synchronization
by allocating one individual barrier for each time-driven write task condition
and each time-driven read task condition. One barrier client will be the time-
aware processor and the other client will be the task. For a time-driven read
condition, the time-aware processor will wait for the given task read instant,
update the barrier and block. The processor running the time-driven task should
have finished any previous activity and be waiting for the time barrier update (this
has to be ensured by the schedule). For a time-driven write condition, the time-
aware processor will wait for the given task write instant (which was previously
computed by the design methodology based on the worst case bounds for the
communication time, see Section 5.3), update the barrier and block. Similar to
the previous case, the processor running the time-driven task updates the time
barrier and unblocks the time-aware processor.

Figure 4.15 shows an example of the barrier implementation for our running
application example shown in Figure 3.1 in Section 3.1. In the figure, the barrier
is shown by blue vertical bars connected by a vertical blue line. Tasks t1 and t4
have time-driven read conditions, and tasks t3 and t4 have a time-driven write
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Figure 4.15: Running Example - Barrier Method

condition. The ordered set of offsets consists of subsets O1 = f1, 2, (4�w1)g and
O2 = f0, 1, (3� w1), (5� w2), 6, 7, (9� w1), 13, (14� w2), (15� w1)g, where the
symbols w1 and w2 represent worst case communication times. The application
offset is 7 and the application period is 18.

Our barriers make use of the MPSoC shared or local processor memories for
the synchronization mechanism. When all the barrier clients are software tasks,
they can make use of the platform communication resources to access the barrier
memory. However, when at least one barrier client is an external entity, such
as a sensor or actuator, for the barrier method to work, we require external
communication interfaces to connect the sensors/actuator with the on-chip barrier
memory.

The advantage of this method is that we don’t need to run a clock synchroniza-
tion algorithm on each processor. The disadvantage is that such a technique can
only be applied if the communication latency is relatively low, to be able to obtain
a reasonable synchronization precision. This is possible on a multi-processor
platform, but for an actual distributed system consisting of a higher number
of computation nodes connected by a network, the communication latency will be
considerably higher and a distributed clock synchronization algorithm would be
a better option.

The Token-based Method

This method is based on the same concept as the Barrier method, i.e. it uses
an a priori selected processor to synchronize in time all the other processors
that execute time-driven tasks. As opposed to the Barrier method, the time
synchronization is realized via data tokens, rather than barriers. The tokens
are produced by an SDF graph that is executed by the time-aware processor.
To construct this graph, the method requires the following inputs: the set of
read/write offsets for the tasks and the application time step, i.e the greatest

82



4.2. TIME SYNCHRONIZATION METHODS
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Figure 4.16: SDF Graph for the Time-Aware Processor

common divisor of the task periods. The SDF graph executed by the time-aware
processor uses implementation-aware values for the offset actor execution times
that account for the worst-case communication times.

Figure 4.16 shows the graph executed by the time-aware processor for the
running example application in Figure 3.1. For clarity, we have included in the
figure the actors that model the read and write task phases, to show how the
graph connects with the external tasks.

To execute this SDF graph, the time-aware processor has to schedule the
Period and offset actors using a static order schedule. The schedule resembles the
one used by the Barrier method, as it is derived based on the same timing con-
straints given by the time-driven task conditions. The static order schedule for the
example graph consists of the subschedule ft1Offr, t4Offr, t4Offwg that is executed
once, followed by the subschedule fPeriod,Period, t1Offr, t4Offr, t4Offw,Period,
t3Offw,Period, t1Offr, t4Offr, t4Offw,Period,Period,Period, t1Offr, t4Offr, t3Offw,
t4Offwg that is repeated indefinitely.

4.2.3 Comparative Analysis of the Time Synchronization
Methods

We presented so far two types of methods for time synchronization: one dis-
tributed method that uses clock synchronization on the CAN network imple-
mented on a GALS MPSoC (Section 4.2.1) and two centralized methods that
uses a time barrier and tokens, respectively, to realize the time synchronization
(Section 4.2.2). In this section we provide a qualitative and quantitative analysis
of the above mentioned methods that a designer can use in order to decide which
method is better suitable for a given application.
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Qualitative Comparison

We consider as quality-related all the metrics that directly impact the performance
of the time synchronization methods. Therefore, we include the following:

1. precision - defined in Equations 4.5, 4.6, 2.2

2. jitter - defined in Equations 4.7, 4.8, 4.9, 4.10

3. convergence time - defined in Equations 4.5, 4.6, 4.11

The time synchronization precision is a crucial metric as it has a direct impact
on the values of the write and read periods and offsets of the application tasks.
The precision of the centralized time synchronization determines the minimum
distance between successive time-driven write and and read events. The precision
of the distributed time synchronization determines the granularity of the coarse-
grain clocks. The jitter, in the context of time synchronization, represents the
maximum variation of the total time required to synchronize all slave clocks or
all concurrent time-driven tasks. Convergence time represents the total amount
of time required to synchronize all the time clients, where the time clients can
be either the processors executing the time-driven tasks for centralized synchro-
nization, or the time slaves in clock synchronization. We will define each of these
notions further on for each type of synchronization.

For both the time barrier as well as the token-based method, the precision
is defined as the maximum duration from the instant when the task read/write
period starts until all the corresponding task time-driven read/write phases have
started execution. Recall that for a set of concurrent tasks that have their
write/read period starting at the same point in time, the barrier synchronizes
with them sequentially. The mechanism itself comprises two parties: the time-
aware processor that initiates the synchronization and the processor executing the
task that completes the synchronization. Therefore the time-aware processor only
becomes free to proceed with the next barrier in the sequence after the previous
barrier completed. We assume that the processor executing the task follows a
static order task schedule. This can introduce an additional delay for the barrier
synchronization depending on the exact task that the processor is executing at
moment when the barrier is started.

The precision of the time barrier pb is given by the following formula:

pb = max
1�j�NTc

(wb + wti) (4.5)

where wb represents the execution time of the barrier API, wti represents
the worst case time difference between the start time of the read/write period
(including the task read/write offset) of task ti and the start time of the read/write
barrier at the processor running the task ti, Tcj is a set of concurrent tasks (that
have the same write/read offset in the application model) and NTc is the total
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Figure 4.17: Barrier Precision for Two Concurrent Tasks

number of sets of concurrent tasks of the application. The precision is measured
by the reference clock. For visualization, Figure 4.17 shows an example where
the time-aware processor Ptime synchronizes two concurrent tasks t1 running on
processor P1 and t2 running on processor P2, that have their k-th read phase
starting at or + k � pr.

The barrier precision as given by the above equation imposes the minimum
time distance between any two successive time-driven read/write events, as given
by the corresponding read/write periods and offsets and taking into account the
worst-case communication times for the write events.

The precision pt of the token-based method is computed similarly:

pt = max
1�j�NTc

(wc + w0ti) (4.6)

where wc represents the token communication time and w0ti represents the the
worst case time difference between the token communication finish time and time
when the processor running the task ti starts executing its time-driven read/write
phase.

The terms wti and w0ti include the static order schedule overhead for the cases
when the processor running the task ti is busy executing other tasks when the
time barrier/token for task ti starts.

The jitter for the barrier method represents the difference between the maxi-
mum and minimum duration from the specified task read/write offset and period
(from the application model) until the finish time of the barrier API at the
processor running the read/write condition. For a time-driven read condition
the jitter jbrd is expressed by the following formula:

jbrd = max
8k�0

1�i�jTpj

(tibf � oi + k � pi)� min
8k�0

1�i�jTpj

(tibf � oi + k � pi) (4.7)
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where oi and pi are the read/write offset and period of a task ti, tibf is the
finish time of the barrier API for the k-th read/write phase of task ti, and Tp is
the set of application tasks for which p 6= ?.

For a time-driven write condition, the jitter jbwr is:

jbwr = max
8k�0

1�i�jTpj

(oi + k � pi � wccti � tibf )� min
8k�0

1�i�jTpj

(oi + k � pi � wccti � tibf )

(4.8)
where wccti is the worst-case communication time for the write phase of task

ti (see Section 5.3).
The jitter of the token-based method is defined similarly. The time-driven

synchronization time is in this case the time when the processor running the
time-driven task starts executing its k-th read/write phase. The token jitter jtrd
for a time-driven read condition is:

jtrd = max
8k�0

1�i�jTpj

(tits � oi + k � pi)� min
8k�0

1�i�jTpj

(tits � oi + k � pi) (4.9)

where tits is time when the processor running the time-driven task starts
executing its k-th read/write phase.

The token jitter jtwr for a time-driven write condition is:

jtwr = max
8k�0

1�i�jTpj

(oi + k � pi � wccti � tits)� min
8k�0

1�i�jTpj

(oi + k � pi � wccti � tits)

(4.10)
Similarly to the formula for computing the precision, the terms tibf and tits

include the static order schedule overhead for the cases when the processor running
the task ti is busy executing other tasks when the time barrier/token for task ti
starts.

The convergence time of the barrier/token-based method represents the max-
imum amount of time required to synchronize all the time-driven tasks at any
time during the application execution and it is equivalent to the barrier/token
precision.

The jitter of the clock synchronization represents the maximum variation of
the total synchronization time, from the instant the time master initiates the
synchronization at the beginning of the synchronization interval until each time
slave updates its local fine-grain clock based on the communicated time stamps.
This variation is given the polling time of the function that reads the value of the
local fine-grain clock of the master and waits for the start of the synchronization
interval. In the worst case, the timer is read right before its hardware value
becomes equal to the start time of the synchronization interval, causing one
additional function call.
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Table 4.2: Qualitative Comparison of Time Synchronization Methods

Metric Barrier Token GALS CAN
Clock Sync

Precision Eq. 4.5 Eq. 4.6 Eq. 2.2
Jitter Eq. 4.7, 4.8 Eq. 4.9, 4.10 Fine-grain clock read duration
Convergence same as same as Eq. 4.11Time precision precision

The convergence time ca of the clock synchronization represents the duration
from the moment when the time master detects the start of the synchronization
interval until the last time slave updates its local fine-grain clock. Its worst-case
value for the design configuration V1 (presented in Section 4.1) is given by the
following formula:

ca = wst + 3 � tTDM + (N � Tbit) (4.11)
where tTDM represents the TDM slot duration (in clock cycles), Tbit is the

CAN bit duration, N is the maximum number of bits in the SYNC CAN message.
wst is the worst-case number of clock cycles from the start of the synchronization
interval until the end of the TDM slot (the slot ends right before the SYNC
message is written in the driver buffer). The quantity 3 � TS account for inter-
mediate TDM slots between the CAN driver slot up to and including the time
synchronization manager slot.

In terms of scalability, the precision of the centralized method scales linearly
with the total number of concurrent time-driven WR/RD conditions, while the
precision of the distributed method is independent of the network size. For the
CAN network, the maximum number of nodes is (211 � 1) (given by the size of
the ID field in the CAN message).

Table 4.2 summarizes the qualitative comparison of the three methods.

Resource Consumption Comparison

We consider the following types of resource consumption:

1. number of dedicated physical/virtual processors

2. memory consumption

3. software cost

4. network overhead/communication resources

The virtual processor represents the set of TDM slots in the TDM schedule
of a physical processor that are allocated to an individual application. In this
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Table 4.3: Resource Consumption Comparison of Time Synchronization Meth-
ods

Metric Barrier Token GALS CAN
CK Sync

# Dedicated 1 physical 1 physical 1 virt. proc.
Processors processor processor per time M/S
Memory 8B 96B 32BConsumption
Software Cost 257 cycles 1580 cycles 206 cycles
Network OH / 1 DMA per 1 DMA per 1 CAN msgComm. Res. comm. comm.

context an application represents any independent software entity: it can be a
CAN driver, the time synchronization manager or the higher-level application
itself (given by the MoC). By network overhead we mean the number of dedicated
messages, while by communication resources we mean dedicated resources such
as DMAs.

The time barrier requires one dedicated physical processor. Its memory con-
sumption is 8B per barrier and it is given by the barrier data structure that
the barrier clients update and poll in order to synchronize. The software cost
represents the minimum execution time of the barrier API, thus assuming that
both processors that need to update the barrier are free and there is no additional
overhead caused by the static order schedule. The software cost of the barrier is
257 clock cycles, measured by the reference clock. In terms of communication, it
requires one DMA for each pair of time-driven write and read conditions.

As compared to the barrier, the token-based method uses 96B of local memory
for each time-driven task condition and it represents the size of the data structure
used for each FIFO administration. The software cost is the minimum execution
time of the token communication that includes sending the token itself together
with the FIFO write counter across the NoC, and it is equal to 1580 clock cycles,
measured by the reference clock.

The CAN clock synchronization on a GALS MPSoC requires one dedicated
virtual processor per time master/slave. The memory consumption is 32B and it
includes the synchronization data structure plus the additional variables used in
the CAN driver for computing the master-slave offset. In terms of communication,
it requires only one CAN message (SYNC). The software cost is 206 cycles and
it represents the execution time of the function used to update the coarse-grain
clock.

Table 4.3 summarizes the quantitative comparison of the three methods.

88



4.3. TIME-DRIVEN AND DATA-DRIVEN TASK EXECUTION AND COMMUNICATION

4.3 Time-Driven and Data-Driven Task Execu-
tion and Communication

The task wrappers implement the task execution and communication semantics
specified by the application model. This means that they realize the glue between
the time synchronization methods and the time-driven task conditions, they per-
form the data-driven task conditions and the FIFO administration operations.

We split the task wrappers into the following sub-types:

• time wrappers

• data wrappers

• time and data wrappers

The time wrappers implement the timed part of the task conditions in con-
junction with the chosen time synchronization method. When the time syn-
chronization is achieved via the Barrier method, then the time wrapper consists
of the corresponding barrier client, that updates the time barrier and waits
until the time-aware processor synchronizes by updating the barrier. When the
time synchronization is achieved via the Token-based method, then the time
wrapper blocks until it receives the token from the time-aware processor. Finally,
when clock synchronization is used, then the time wrapper uses the value of the
write/read offset together with the read/write period to periodically start the task
read/write phase.

The data wrappers implement the data reading and writing for the set of
input/output ports of each task, including the FIFO administration. For the
input ports they block until the number of samples present on each input FIFO
channel becomes at least equal to the corresponding port rate. For the output
ports they block until sufficient space is available in the channel. The FIFO
administration consists of reading/writing the data samples according to the port
rates and updating the FIFO read and write counters to reflect the read and
written samples.

The time and data wrappers combine the functionality of the above described
time and data wrappers needed for the loosely time-driven semantics. This means
that they they first wait for the time-driven read/write condition to become
enabled and if there is insufficient data on the input channels then they block
until number of samples present on each input FIFO channel becomes at least
equal to the corresponding port rate. For the output ports, the functionality is
similar.

4.4 Related Work
Related contributions for semantics-preserving implementation methods for time
and/or data-driven models of computation comprise hardware and software meth-
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ods that support specific model semantics, code generation for specific target
platforms and clock synchronization methods.

Ptolemy II is a modeling and simulation framework that supports a variety of
MoCs, including SDF and Giotto. Code generation methods for Giotto models
were proposed in [24, 25]. The method presented in [24] generates C code from
Giotto models and it targets systems capable of running the FreeRTOS operating
system, while the method described in [25] generates C code for the PRET
architecture. The former method implements the Giotto time-triggered semantics
by using the FreeOS API that executes the tasks periodically, while the latter
makes use of the dedicated instruction set allowing for precise control of the
timing behavior. Both methods, however, target only single-processor platforms
and therefore do not address the problem of time synchronization. To the best
of our knowledge, no comparison has been provided between the two methods
that would enable the user to chose the method that best suits his/her objective.
We offer a range of model implementation methods that offer a trade-off between
precision, scalability and cost for the time synchronization and cover time- and
data-driven semantics.

The LET paradigm introduced by Giotto was only recently addressed for
multi-core systems. Kluge et al. present in [38] an OS extension that supports the
LET communication semantics, while the time synchronization is achieved via the
NoC. The OS extension is similar to our time task execution wrappers. For time
synchronization we offer centralized and distributed methods, all implemented in
software except for the clock synchronization for a GALS platform that uses a
hardware timestamp. We argue that the clock synchronization on the CAN is a
more generic time synchronization method. This is because the NoC is an MPSoC-
specific resource while the CAN can be extended for off-chip communication.

We will now address the related work on CAN virtualization. Herber et
al. propose software CAN controller virtualization methods inspired from server
environments [36]. The software method consists of paravirtualization. However,
the presented results show the performance of the method only in an interference-
free scenario. Moreover, to avoid an increase of the performance overhead involved
by scheduling, only one Virtual Machine was mapped to each core, leading to a
limited scalability. As a comparison, in one of our four CAN design solutions
we also use a dedicated core as a CAN gateway. The main differences are that
we use the CoMik microkernel [54] to schedule multiple applications on the CAN
client cores and communicate the CAN message to the CAN gateway using C-
HEAP FIFOs [56] via a contention-free NoC. The C-HEAP protocol ensures a safe
synchronous communication. On the CAN gateway core, the arbitration between
the incoming messages is done using a round-robin schedule.

To reduce the performance overhead, Sander et al. offer the solution of
hardware controller virtualization [63], based on Single Root I/O virtualization
(SR-IOV). SR-IOV is an extension of the Peripheral Component Interconnect
Express (PCIe) protocol and it is the state-of-the-art hardware I/O virtualization
method for Ethernet. The implementation is done by extending a CAN controller
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to add virtualization support and connecting it to a multi-core processor via a
PCIe interface. Unlike the software method, the hardware one has the downside
that the PCIe interconnect affects the temporal isolation between the serviced
VMs leading to a performance degradation. This is caused by the fact that all
VMs share the same interconnect and the contention on the bus cannot be avoided.
In comparison, our CAN design solution does not target the enhancement of
existing Commercial-Off-The-Shelf (COTS) platforms. It rather proposes a com-
bined software and hardware design method for a platform based on a template
hardware architecture, whose instance could afterwards be taped out for a specific
automotive system.

In terms of emulation, the CAN interface has been integrated in the TTA
architecture by implementing it on top of the TTP/C interface [57]. Apart from
providing the functionality of the CAN protocol, the emulated CAN adds new
services such as membership information, global time, temporal composability
and increased dependability. The reported implementation uses the embedded
real-time Linux operating system to integrate CAN applications and real-time ap-
plications. However, the CAN applications are allocated to the non-real-time part
of the kernel and are competing with standard Linux applications for resources.
In our case, we do not implement the CAN protocol on top of another protocol,
but we simply lift the implementation of the CAN MAC layer from the hardware
to the software on top of a hardware module that realizes the CAN physical layer
and use the CoMik microkernel to schedule real-time CAN applications.

Before discussing the related work on clock synchronization on CAN, it is
worth mentioning that the synchronization problem in the context of increased
clock speed requirements is not new and has been addressed in the past. Messer-
schmitt presents in [47] several fundamental timing concepts in digital systems
together with the hardware synchronization solutions used for different types
of interconnect (such as synchronous, anisochronous, mesochronous) within the
digital communications and digital system design communities. While the signal
synchronization problem might still need to be addressed in hardware, depending
on the chosen type of interconnect, we can regard the precise time synchronization
solutions as addressing the problem of obtaining a (sufficiently precise) notion of
time at a higher level, in the application, when independent clock sources are used
in hardware.

Rodrigues et al. propose in [60] a new fault tolerant software algorithm that
exploits the unique properties of the CAN protocol related to reliability and
tightness. It can achieve a synchronization precision of maximum 50µs, but it
has the side effect of causing an additional accuracy loss of several ms/hour. Our
hybrid hardware/software clock synchronization solution on a GALS platform
improves the synchronization precision while minimizing the hardware/software
cost, but it does not address faults.

Rodriguez-Navas et al. offer in [61] a hardware solution that extends a CAN
node with a dedicated module called clock unit. The clock unit consists of an
enhanced CAN controller and a synchronization submodule. The synchronization
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submodule generates a synchronized clock. Our clock synchronization solution on
a GALS platform also uses a hardware time stamp mechanism and a similar syn-
chronization protocol consisting of a single CAN message but it has a significantly
lower hardware cost. The hardware cost of our technique per CAN node is given
by the PHY layer implementation of the CAN controller, while the one proposed
by Rodriguez-Navas et al. adds the CAN MAC layer and the clock unit described
above.

4.5 Summary
In this chapter we present semantics-preserving implementation methods for our
unified model of computation. They consist of time synchronization methods
and task execution and communication wrappers. The time synchronization
methods are of two types: distributed and centralized. The distributed time
synchronization is realized by clock synchronization on the CAN network. The
centralized time synchronization is realized by two methods: the barrier and
the token. First we show how a CAN network can be designed on synchronous
and on a GALS MPSoC platform. Then we provide a clock synchronization
protocol on CAN for a GALS platform. We continue by presenting the barrier
and token time synchronization methods. We provide a comparative analysis for
the proposed time synchronization methods that includes a qualitative comparison
and a resource consumption comparison. Finally we present the task execution
and communication wrappers.
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5
A MoC-based Design Methodology

Model-Based Design advocates the use of models throughout the entire design
phase. When designing embedded applications, the designer starts by specifying
the application requirements and the application behavior at a high level of
abstraction. In addition, a hardware platform for implementing the application
needs to be chosen. Then, as the design advances, specific design decisions are
taken at each design step until the design is complete and the implementation
phase can be started. The sequence of design steps that takes as input the
application specification, the application requirements and the hardware plat-
form specification and produces (at least) a design solution is called a design
methodology.

In this chapter we contribute a design methodology that takes an embedded
application modeled using the MoC presented in Chapter 3 and tries to find a
design solution for a given GALS MPSoC platform. The methodology consists
mainly of two parts: the platform-independent design and the platform-aware
design. In each part we use SDF as an analytical model to verify the model
behavior against the timing requirements of the application. In the platform-
independent design the input application model is refined to add additional time
properties to the application tasks. In the platform-aware design the possible
model implementation methods are explored and analyzed within the timing
analysis. Since a model implementation method requires a software and hardware
infrastructure, additional design decisions related to the sharing and arbitration
of the platform resources are taken. The platform-aware decisions are annotated
to the application model and analyzed. When at least one design solution that
satisfies the application requirements is found, then the methodology produces the
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inputs for the selected model implementation method and the (set of) application
to MPSoC mapping(s).

In the following sections, we will present the design methodology in detail.
We start by describing the inputs to the methodology in Section 5.1, followed by
the platform-independent design in Section 5.2 and the platform-aware design in
Section 5.3. Section 5.4 presents the related work and Section 5.5 concludes the
chapter.

5.1 Design Inputs
As mentioned previously, the design methodology has three inputs:

1. the application specification

2. the timing requirements of the application

3. the hardware platform architecture

The application is specified using the proposed MoC. The input application
specification can either be minimal, partial or complete, as defined below.

Definition 41. (Minimal Application Specification) A minimal application spec-
ification is a tuple Am = (T,Γ, Q0, C, Si, So) such that Si = So = ; ^ 8τ =
(I, U, e, p, or, ow) 2 T , p = or = ow = ? and jCj = 1.

A minimal specification includes only tasks that have only data properties (i.e.
port rates) and the execution time defined and the set of clocks C includes only
the reference clock.

Since the sources and sinks have mandatory write and read periods respec-
tively, they are not included in a minimal specification that only has data-driven
properties. The input data samples to be processed by the tasks are in this case
written by data-driven tasks that have only output ports. Such tasks are the data-
driven equivalent of the sources. Similarly, the output data samples produced by
the tasks are read by data-driven tasks that have only input ports. Such tasks
are the data-driven equivalent of the sinks.

Definition 42. (Partial Application Specification) A partial application specifi-
cation is a tuple Ap = (T,Γ, Q0, C, Si, So) such that Si 6= ;, So 6= ; and 9T 0 6= ;
such that T 0 = fτ jτ = (I, U, e, p, or, ow) 2 T ^ p 6= ?g.

A partial specification includes sinks and sources and at least a subset of the
tasks have defined periods and offsets. The set C of clocks can include either only
the reference clock or also secondary clocks.

Definition 43. (Complete Application Specification) A complete application spec-
ification is a tuple Ac = (T,Γ, Q0, C, Si, So) such that 8τ = (I, U, e, p, or, ow) 2 T ,
p 6= ? and Si 6= ;, So 6= ;.
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5.2. PLATFORM-INDEPENDENT MODEL REFINEMENT

A complete specification is the opposite of a minimal specification: it includes
sources and sinks and the time properties for all the tasks are specified. Similar
to the partial application specification, the set C of clocks can include either only
the reference clock or also secondary clocks.

A data-driven application is therefore not a complete application specification.
The timing requirements of the application consist of:
1. the (read/write) periods and offsets of the sources, tasks and sinks (when

defined)

2. application throughput
The offsets and periods of the tasks in the set T can be either defined as

part of the input application specification (in a partial or complete specification)
or they can be defined later during the platform-independent design. In both
cases they are treated as requirements for the platform-aware design. Thus the
read offsets defined in the application specification represent a lower bound for
the implementation-aware task read offsets, while the write offsets represent an
upper bound for the arrival time of the written data samples on the input port of
the reader task. The data arrival time is equal to the implementation-aware task
write time plus the communication time. Both the lower and the upper bounds
are expressed in terms of the reference clock. This is explained in more detail in
Section 5.3.

The application throughput is a data-driven timing requirement that is (op-
tionally) specified apart from the application specification. When the application
specification is minimal then it must be accompanied by a throughput require-
ment.

5.2 Platform-independent Model Refinement
The platform-independent design is an optional part of the methodology desig-
nated for extending a minimal or partial application specification by providing
values to task properties that were initially left undefined by the user. More
specifically, this phase assigns values to the read/write offsets and periods of a set
of selected tasks. It is thus the responsibility of the user to select the tasks and
channels. The methodology offers a technique that takes the selected tasks as an
input and derives the values of the offsets and periods so that the selected tasks
become strictly time-driven. The new offsets and periods are then only applied if
they do not violate the application timing requirements and the time consistency
of the input application.

The set of steps involved in the platform-independent as well as platform-
aware design were not yet automated and transformed into a design flow. This is
part of future work.

Figure 5.1 shows the platform-independent design. It comprises three inputs,
depicted as blue trapezes on the top, the main methodology steps shown on the left
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Figure 5.1: Platform-independent Design
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5.2. PLATFORM-INDEPENDENT MODEL REFINEMENT

side and the underlying SDF transformation and analysis steps on the right side
of the figure. Most of the main steps require SDF analysis and transformation
techniques to derive the correct values for the added model properties and to
ensure that these values do not violate the timing requirements.

Definition 44. (Platform-independent Design Inputs) The inputs to the platform-
independent design consist of an application specification A = (T,Γ, Q0, C, Si, So),
where A 2 fAm, Apg, a set Tp = f(τ, p)jτ 2 T ^ p 2 fpr, pw, prwg ^ cτ = (prc , 0)g
of pairs of selected tasks for which read, write or read and write period is to be
specified, and a fixed throughput requirement Thr 2 Q+.

The set Tp contains data-driven application tasks connected to the reference
clock for which no period is already specified in the original application specifi-
cation A. For this set of tasks valid offsets and periods will be computed and
verified whether they satisfy the timing requirements and the time consistency of
the input application specification. The throughput requirement Thr is equal to
the reciprocal of the average duration of the application iteration (given by the
equivalent SDF graph) [27].

The throughput requirement can also be implicitly derived from the sources
periods when the application specification includes sources [49]. Intuitively this
comes from the fact that the average processing speed (i.e. the throughput) of
an application cannot be higher nor lower than the average speed with which the
amount of input data required for a complete application iteration comes. In other
words, if an application iteration requires a given amount of data samples from
a source s that are produced during ps � f(s) time units (where ps is the source
period and fs is the repetition value of the source) then the average application
iteration duration is ps � f(s). It cannot be higher than this value because the
required amount of input data samples does not come faster than this value. And
it cannot be lower because this would lead to an infinite accumulation of data
samples, which in turn would require an infinite amount of memory. Nevertheless,
event though the average iteration duration is determined by the source periods,
subsequent application iterations can overlap due to the data-driven semantics,
leading to iteration pipelining.

The output of the design is the subset of selected tasks T fp � Tp that sat-
isfy the timing requirements and the time consistency of the input application
specification.

In the remaining part of this section we will refer to the computed offsets and
periods for the user selected tasks as refined offsets and periods respectively.

The refined read offset is equal to the start time of the first firing of the
corresponding actor tRd and the refined write offset is equal to start time of the
first firing of the corresponding actor tWr. The value of the task period is derived
from the throughput requirement Thr and it is equal to 1

Thr�f(tRd) . After adding
a new refined task period and offset, the resulting application specification has to
satisfy the MoC consistency conditions defined in Section 3.2.
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Figure 5.2: Input Application Specification for the Platform-independent Design

� � ��
���

��
���

��
���

� �

�	
���

�





� �





� �





�








�





�

�




�




���

�� �

�


 


�




� �

�




�




��� ��� ��� ���

���

���

��	


�
�
�
�
�


�
�
�
�
�

��� �
���

��� �
���

�





	�




�
��
 ���

 �
�
�
� �
�
�

 � 
�
�
� � 
�
��

 �� 
�
�
� �
�
�
� � 
�
	

 �
�
�
� �
�
��

Figure 5.3: Refined Specification of the Running Example Application

Let us explain the individual steps based on an example application. For
consistency, we will use a modified version of the running example presented
in Chapter 3, previously shown in Figure 3.1, now shown in Figure 6.1. The
modification consists of removing the periods and offsets defined for tasks t3 and
t4. The modified example also contains a pre-processed over-sampling factor of 2
for the channel that connect s1 to t1. As a result of the pre-processing the period
of t1 is divided by 2 (thus it becomes 3) and the auxiliary tasks aux1 and aux2
are added. aux1 duplicates each data sample produced by s1. aux2 drops the first
two samples out of each successive sequence of 4 samples. Both auxiliary tasks
ensure the time and data consistency of the application, i.e. that decreasing the
period of t1 to 3 does not impact the existing data and time properties of the
remaining tasks.

As the input application specification doesn’t include explicit throughput
requirements, the implicit throughput requirement is given by the periods of the
sources s1 and s2, which impose an average application iteration duration of 18
time units. This value is obtained by multiplying the period of the source, 6,
by its repetition value, 3. Satisfying this requirement means that none of the
future allocated values for currently undefined offsets and periods should affect
the implicit throughout. Let us select task t3 for a refined write offset and period
and task t4 for a refined read and write offset and period.
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5.2. PLATFORM-INDEPENDENT MODEL REFINEMENT

Step M 2.1 of the main methodology has four preceding underlying SDF steps.
The first one is the transformation of the input application specification into an
equivalent SDF graph. This can be achieved by applying Algorithm 3.1. Further,
in order to obtain the corresponding strongly-connected SDF graph, we compute
in the second SDF step the minimal buffer sizes of each communication channel in-
cluded in the input application specification using the method defined in [26]. The
method explores the throughput-buffer size trade-offs and computes the minimal
buffer size distributions for all the possible throughput values. The minimum
buffer size distribution that satisfies the throughput (implicit) requirement is
selected. Due to the property of application time consistency (see Definition 35)
satisfying the throughput requirement means that all the task periods are satisfied.
In our running example channels ch2, ch3 and ch8 have a size of 4, channel ch2
has a size of 2, and all other channels have a size of 1. The unit is given by the
token size, which is not relevant in the platform-independent design. In the third
step, the buffer sizes are incorporated into the SDF graph. Modeling the buffer
sizes consists of adding a backward channel for each of the existing application
channels. This transform the corresponding SDF graph into a strongly-connected
one. Finally, the self-timed execution of the strongly-connected SDF graph is
analyzed and the values of the offsets and periods for the selected tasks are
computed. The computed write offset for task t3 is 15 and its write period is
9. The computed read offset of t4 is 2, its write offset is 4 and its period is 6.

In step M 2.2 the selected tasks are ordered topologically. The topological
order helps us find the proper order for assigning the offsets and periods to the
selected tasks such that we can detect as early as possible the values that violate
the application timing requirements or the time consistency of the input applica-
tion. Note that the time consistency is checked at all levels: task, communication
and application (see Table 3.2).

A topological order for a directed acyclic graph (DAG) is a ordered list of
the nodes such that for each edge between node a and node b, b follows a in the
ordered list. In our case, an DAG is obtained by deriving the acyclic precedence
graph (APG) of the equivalent SDF graph. The APG is obtained from from the
equivalent HSDF graph. After computing the topological order of the selected
tasks from the APG, we process the HSDFG edges containing initial tokens to
see if they include new information about the task order that is not already
reflected by the obtained topological order. This means that for every edge with
initial tokens between two HSDF actors for which no order of the corresponding
application tasks has been previously found, we specify the task order based on
the direction of the HSDF edge. If multiple edges with initial tokens exist for
a set of HSDF actors, they are processed in increasing order of their number of
initial tokens.

Topologically ordering a given DAG can result into a single total order or into
multiple partial orders. For our running example in Figure 6.1 one valid topo-
logical partial order is {s1,s2,t1,t4,t2,t3,d1}. Also, another equally valid partial
order is {s2,s1,t4,t1,t2,t3,d1}. That is because s1 is independent from s2, and t1 is
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CHAPTER 5. A MOC-BASED DESIGN METHODOLOGY

independent from t4. Therefore no predefined order exists between them (hence
it is a partial order). In this case, their periods can be applied at the same time as
they do not impact each other’s behavior. Since we want to exploit this property,
we use a modified version of Kahn’s algorithm for topological sort, that instead
of producing a single list including all the selected tasks, produces a set of lists of
independent tasks. The set contents follow the topological order, while the tasks
in each list are independent. The set for our example is {t4},{t3}. The algorithm
is listed in 5.1.

The algorithm uses the HSDF graph equivalent to the SDF graph. For each
actor a in the SDF graph a number of actors equal to its repetition value f(a)
is created in the HSDF graph. Therefore for each SDF actor a the HSDF graph
will contain actors a0 to af(a), where the index of the HSDF actor represents the
firing index of actor a. In the algorithm pseudocode the firing index of an actor
ai is i. ‘MaxFiringIdx’ represents the maximum firing index value of all HSDF
actors.

Given the set of lists computed in step M 2.2 using Algorithm 5.1, in step M
2.3 the periods and offsets of the independent tasks in each list are assigned at the
same time. Then the time consistency is checked and the state-space analysis is
run to check whether the timing requirements are still met. Then the tasks in the
next list are modeled and the analysis is run again, and so on. In each iteration,
the task periods and offsets that violate the requirements or the time consistency
are removed from the list and discarded in the future iterations. This is because
the objective of this design phase is to maximize the number of tasks that the
user selected to be refined, rather than simply returning a positive or negative
response (i.e. either all the selected tasks are refined or none are refined). In our
example all the periods and offsets can be applied. Thus the updated application
specification includes them all. The resulting refined application specification is
shown in Figure 5.3.

5.3 Platform-aware Design
Figure 5.4 shows the platform-aware design. The platform-aware design explores
the model implementation methods, including the software and hardware infras-
tructure. In each step the resulting model is labelled Mi. The index i starts
from 3 since the platform-aware design is preceded by the platform independent
design, which generates model M2, while M1 is the input model given to the
platform-independent design.

In the first two steps the hardware infrastructure for the inter-task com-
munication is designed. This consists of annotating the FIFO sizes (i.e. the
storage distributions) and the bandwidth and latency of the NoC and CAN
bus. Then, in the next step, the application tasks are bound to the processors.
In the fourth step the task clocks are refined depending if a distributed time
synchronization method is chosen. Within the same step the cost of the task
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Algorithm 5.1 Create topological order of the tasks selected to be periodic
Require: input graph G is an APG obtained from a HSDF graph

function RemoveRedundantEdges(graph G)
for all edges e in G do

if another edge e’ exists between the same src and dst actor then
remove e’

function HsdfTopologicalOrder(graph G)
for all edges in G do

increment InDegree[dstActor]
. Create StarterActors queue with all actors with InDegree 0

for all actorId in InDegree do
if InDegree[actorId] == 0 then

add actor to StarterActors queue
while StarterActors is not empty do

Create new list Layer
add first actor to list Layer and remove it from StarterActors

. Iterate through actor’s children and decrease their InDegree with 1
for all output port of actor do

decrement InDegree[dstActorId]
if InDegree[actorId] == 0 then

add actor to StarterActors
if size of StarterActors is 1 then

add Layer to set of lists LayeredTopOrder
function SdfTopologicalOrder(graph G)
RemoveRedundantEdges(G)
HsdfTopologicalOrder(G)

. Traverse all actors in LayeredTopOrder according to their firing index
CrtFiringIdx = 0
while CrtFiringIdx < MaxFiringIdx do

for all Layers in LayeredTopOrder do
for all HSDF actors ai in current Layer do

if i == CrtFiringIdx then
if crtFiringIdx == 0 then

add SDF actor a to FinalTopOrder
else

find Layer Lm in FinalTopOrder that includes actor a
if Layer Lm contains more than one actor then

remove actor a from Layer Lm
added actor a to Layer L(m+1)
insert Layer L(m+1) after Layer Lm

increment CrtFiringIdx
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execution wrappers is annotated. In the fifth step the TDM schedule together with
the static order schedule of the application tasks are computed. If a distributed
time synchronization method was chosen in the previous step then the clock
synchronization precision has to be taken into account when dimensioning the
CoMik sub-slot such that Equation 4.4 is satisfied. This is because the maximum
value of R in Equation 4.4 is equal to the maximum relative offset between any two
synchronized physical clocks (i.e. clock synchronization precision). In addition
a TDM slot has to be reserved for the Time Synchronization application (see
Section 4.2.1). In the sixth step the implementation values for the task read
and write offsets are computed. The fourth and the sixth step (highlighted in
Figure 5.4) are the main contributions presented in this section.

The structure of our platform-aware design follows the steps of the SDF-based
design flow proposed in [53, 69], except for the fourth and sixth steps, which we
contribute.

Each annotation performed in steps M3 to M8 is modeled in the corresponding
SDF graph. For steps M3, M4, M t5 and M7 the SDF modeling techniques
described in [53, 67] can be used. We will not present them here as they are not
part of our contribution. In step M6 the refinement of the task clocks is captured
in the SDF model by the execution times of the RefCkPeriod and CkOff actors
(see Section 3.3). The performance cost of the task execution and data wrappers
is is captured in the SDF model by the execution times of the corresponding Rd
and Wr actors for each task (see Section 3.3). For time-driven tasks the execution
time of the Rd/Wr actor is equal to the sum of the time and data wrappers costs
for the read/write phase, while for data-driven tasks the execution time of the
Rd/Wr actor is equal to data wrappers cost for the read/write phase. In step M8
the refinement of the write offsets is captured in the SDF model by modifying
the execution time of the corresponding WrOff actor that models the task write
offset. The refined read offsets serve as a performance metric that shows how
close the actual time when the data is read is with respect to the read offset in
the application model. They are already captured in the SDF model by the cost
of the task wrappers.

Since illustrating the results of the design steps M6 and M8 that we contribute
in this section requires deploying the application on the hardware platform, we
will not show the corresponding results for our running example. A synthetic
application highly similar to the running example is demonstrated in Chapter 6
and the results of these design steps are presented there.

5.3.1 Task Clocks Refinement and Annotation of the Task
Execution Wrappers

The details of this design step are shown in Figure 5.5. The inputs are the
(previously refined) application specification and the specification of the physical
clocks (included in the MPSoC resources). The set of physical clocks includes at
least a reference clock and one or more secondary clocks. As in the MoC, the
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Figure 5.4: Platform-aware Design

reference clock is chosen as the time reference with respect to which the other
clocks (i.e. the secondary clocks) are qualified. Each physical clock has the same
properties as a model clock, i.e. a period and a relative accuracy.

The application specification components that are relevant for this design step
are the tasks that include time properties (periods and offsets). Recall that the
periods and offsets of the tasks are specified as a multiple of the nominal period
of the task clock. The task clock can be either the reference clock or a secondary
clock that has a relative accuracy with respect to the reference clock.

In sub-step (1) each time-driven task is bound to a physical clock. The physical
clock is the clock connected to the processor to which each particular task was
bound in the third platform-aware design step. We distinguish between three
types of physical clocks:

1. the reference clock CR

2. secondary clocks with bounded relative accuracy (included in the set CB)

3. secondary clocks with unbounded relative accuracy (included in the set CU )

If there exists a set of tasks bounded to secondary clocks with unbounded
relative accuracy, then a time synchronization method is chosen. The choice
belongs to the user. If a distributed time synchronization method (CAN clock
synchronization) is chosen, then a set of identical coarse-grain logical clocks are
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Figure 5.5: Platform-aware Refinement of Task Clocks and Wrappers (M6)
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defined for the corresponding tasks. In sub-step (2) the period of the logical
clocks is chosen as the lowest common divisor of all the corresponding task periods
that is strictly higher than the clock synchronization precision. The CAN clock
synchronization precision depends on the chosen synchronization interval (decided
by the user). Given a set of physical clocks to be synchronized and the value of
the synchronization interval, the clock synchronization precision can be measured
independently from the input application. If a centralized time synchronization
method is chosen then the refined task clock is the reference clock, since the
task will not use its local clock to detect the period and offset, but is will be
synchronized using either the barrier or the token method with the processor
connected to the reference clock.

In sub-step (3) the clock of each task is refined, that is, a fine- or a coarse
logical clock is allocated to it. If the task is bound to the reference physical clock
or to a secondary clock with bounded accuracy, then the properties of the logical
clock are identical to the properties of the physical clock. In this case the logical
clock is fine-grained. Otherwise, the task clock is bound to one of the previously
defined coarse-grain clocks. The relative accuracy of each coarse grain clock is
the maximum relative offset of the coarse-grain clock with respect to the reference
clock.

In sub-step (4) the communication time consistency of the resulting application
specification is checked (see Definition 34). Depending on the relative accuracies
of the refined task clocks, the communication time consistency might be violated
for particular pairs of communicating tasks. In this case, for these specific pairs
the user has the choice to refine the read offsets of the reader tasks such that
the communication time consistency is satisfied again. For this the read offset is
increased in step (5) with the minimum amount that satisfies the communication
time consistency condition. If a throughput requirement is specified, this might
potentially lead to its violation, therefore the resulting application throughput
must be verified in the SDF analysis. The tasks are then strictly time-driven.
When the offset is not refined, the task is loosely time-driven.

In sub-step (6) the proper task execution wrappers are allocated to each task.
The tasks for which the communication time consistency holds use a time wrapper,
while the loosely time-driven tasks use a time and data wrapper. The performance
cost of each type of wrapper is annotated in the application specification.

Finally in sub-step (7) the data wrappers are allocated to the strictly time-
driven tasks and annotated in the application specification.

5.3.2 Refinement of the Task Offsets
The task read and write offsets and periods in the application model prescribe
the points in time when the task has to perform the read and/or write operation.
Ideally, the application should read and/or write the data precisely at these points
in time. However, due to the performance cost of the implementation and the
non-zero communication times, the exact times at which the task reads and writes
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the data cannot be identical to the times prescribed by the model. The purpose
of this design step is to provide implementation-aware values for the task offsets
that take into account the inter-task communication times, the execution time of
the task wrappers and the performance cost of the chosen time synchronization
method such that the actual times when the time-driven tasks finish reading
and/or writing the data on all their input/output ports are as close as possible
to the times prescribed by the application specification.

We distinguish between implementation-aware task read offset ori and imple-
mentation aware task write offset owi . An implementation aware read task offset
is the point in time measured by the reference clock when the task finishes the
read operation. An implementation-aware write task offset is the point in time
measured by the reference clock when the task starts the write operation. The
implementation-aware read offset ori is higher than the read offset or given by
the application specification. The write offset ow in the application specification
represents an upper bound for the implementation-aware write offset. This means
that all the output data written on the output ports should not arrive at the
corresponding reader tasks at a point in time later than the one given by the
application specification. These semantics come from the time-triggered paradigm
(see Giotto [34]).

Given a task τ = (I, U, e, p, or, ow, cτ ), the maximum arrival time measured
by the reference clock of the data samples written on the output port ρo for the
k-th execution of task τ is:

tmaxρo = owi + p � k + ocτ + ttmax + tdmax + cmaxρo (5.1)

where cmaxρo is the maximum communication time of the data samples from
the output port ρo to the input port of the corresponding reader task and ttmax is
the maximum execution time of the time task wrapper and tdmax is the maximum
execution time of the data task wrapper.

cmaxρo depends on the rate of port ρo, the size of each data sample and maximum
execution time of the communication resources. When both the writer and reader
tasks are bound to the same processor, then the data samples are written on the
local memory and arrival time is given by the memory write delay. When the
tasks are bound to different processors, then various communication resources are
involved, such as the DMA and the NoC. Then the arrival time is given by the
write transfer time of the DMA and the bandwidth and the latency of the NoC.
The value of cmaxρo is derived within the second step of the platform-aware design
(M4) by using the SDF design flow presented in [53]. For the communication
between tasks bound to different processors, the SDF flow replaces each com-
munication channel in the application specification with the corresponding SDF
models of the NoC and DMA and computes the maximum communication time
based on the design parameters of the DMA and NoC. When the communicating
tasks are bound to the same processor, the local memory write delay is modeled.
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When a task has multiple output ports (i.e. |U| > 1) and given that the
write operations on the output ports are performed sequentially then the sum of
the maximum communication times on all the ports has to be considered when
deriving the value of owi . The value of owi is given by the following equation:

ow + ocτ = owi + ocτ + ttmax + tdmax +
j�jU jX

j=1
cmaxρoj

(5.2)

The value of owi is the value used in the implementation to trigger the write
phase of the task.

The implementation-aware value of the read offset is given by:

oir = or + ocτ + ttmax + tdmax (5.3)

In the implementation, the task starts the read operation at the time given by
the application specification and finishes when the tasks wrappers have completed
their execution.

When the distributed time synchronization is used the value of owi has to be
normalized based on the coarse clock period since the tasks cannot use the fine-
grain clock for the offsets and periods. The normalized value can then be used to
start the time-driven write phase of the tasks.

When the barrier synchronization is used then ttmax becomes wb, that is
the execution time of the barrier API. An additional factor to be added to the
Equations 5.3 and 5.3 is in this case wti which accounts for the static order
schedule overhead (see Section 4.2.3). The equations for owi and ori become:

ow + ocτ = owi + ocτ + wb + tdmax +
j�jU jP

j=1
cmaxρoj

+ wti

oir = or + wb + tdmax + wti

(5.4)

where wb and wti are given by Equation 4.5. The task clock offset ocτ is not
included since in the centralized synchronization the tasks don’t use their local
clocks for the read/write offsets.

Similarly, for the token synchronization, the equations for owi and ori become:

ow + ocτ = owi + ocτ + wc + tdmax +
j�jU jP

j=1
cmaxρoj

+ w0ti

oir = or + wc + tdmax + w0ti

(5.5)

where wc and w0ti are given by Equation 4.6.
The value of oiw is used in the implementation by the time aware processor to

start the barrier/token synchronization for the corresponding task write condition.
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5.4 Related Work
SDF3 [68] is a Dataflow-based design flow that maps applications described using
Dataflow models on a multiprocessor platform while providing a throughput
guarantee for the mapped application. The flow computes the buffer sizes for the
channels in the application graph. It binds the application actors to processors.
It computes the schedule for the application actors. When a processor is shared
between multiple applications, it computes the TDM schedule for the processor.
Finally it maps the communication channels in the application to the platform
communication resources. Each design decision is modeled in the application
graph and the resulting application throughput is checked against the throughput
constraint. The design methodology that we present in this thesis is based on
the SDF3 flow. Our methodology includes the SDF3 design steps and adds two
additional steps that allow for refining the properties specific to our model (the
task clocks and the task offsets) and incorporating the performance cost of the
task execution wrappers.

Metropolis [9] is a system design environment supporting modeling, simula-
tion, formal verification and synthesis that adheres to the PBD paradigm. It
introduces a metamodel that can be used to express all the facets of the design
flow: functionality, architecture, mapping, refinement. In PBD a platform is
a set of designs and it has specific constraints that refer to the realizability of
the designs. The common characteristic with our design methodology is the
gradual refinement towards a physical implementation. However, in platform-
based design the input application, which is a point in the application space, is
mapped to subsequent platforms whose degree of abstraction decreases gradually.
Hence the platform is the main citizen and the emphasis is on the refinement of
platforms belonging to different abstraction layers, while the system requirements
are captured by the platform constraints. In a MBD methodology, as the one
we propose, the model is the main citizen that has the capability to capture
implementation aspects and it can be used to verify the application requirements.

Ptolemy II is a system modeling and synthesis framework for cyber-physical
systems that uses actor-oriented MoCs. Its key characteristic is the hierarchical
heterogeneity that allows the designer to model the system from different views.
Each view uses a distinct MoC and the views are composed hierarchically. The
refinement then combines the actor specifications provided by different models and
generates a physical implementation that preserves the semantics. However the
composition of different models for the same application complicates the refine-
ment towards a physical implementation. Our model offers a more limited view on
the application (i.e. it captures the data and time properties) but the associated
refinement-based design methodology is rather simple and straightforward. In
addition we target MPSoC platforms and explicitly address the specific challenges
that include time synchronization and the order of the read and write operations
performed on the shared memory.

ForSyDe [62] offers a heterogeneous and hierarchical system modeling library
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for embedded systems based on the functional programming paradigm. It encom-
passes four MoCs, SDF, Discrete Event, Continuous Time, and the Synchronous
MoC and it allows for refinement and simulation. The ForSyDe design process
consists of transformational design refinement, that on one hand preserves the
timing and functional semantics of the model, and on the other hand changes
the model semantics by adding implementation-specific details. Furthermore the
system specification can be exported to external tools for analysis and synthesis.
This is similar to our model that can be transformed into an equivalent SDF
graph, which is used for analysis. While synchronous models can capture time-
triggered systems, they do not have a quantitative notion of time. The objective of
ForSyDe is rather close to the one of Ptolemy, in the sense that they both target
the heterogeneity of embedded systems rather than the heterogeneity within a
single application.

Daedalus [66] is a system-level design methodology for streaming applica-
tions targeting MPSoC platforms. It takes an input the functional specification
of the application together with a corresponding Polyhedral Process Network
application model and high level models of a set of library IP components, it
generates intermediate electronic system level specifications and then synthesizes
the system. The main objective is to bridge the gap between the electronic system
level specification and the register transfer level implementation As compared to
our methodology, it only targets traditional streaming applications that do not
include read/write task periods.

5.5 Summary
In this chapter we present a MoC-based design methodology that takes as input
a time- and data-driven application described using our unified MoC and tries
to find a design solution for a GALS MPSoC platform. The design methodology
consists of two parts: platform-independent design and platform-aware design.
We start by presenting the platform-independent design that refines the input
application specification by adding feasible task periods and offsets to a set of
user selected application tasks. Finally we describe the platform-aware design
that explores the model implementation methods including the required hardware
and software infrastructure, and we show how to refine the task clocks and task
offsets and how to annotate the performance cost of the task wrappers.
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6
Experiments

6.1 Case study - Synthetic Application
The synthetic application that we use to demonstrate our design methodology
shown in Figure 6.1 . It is highly similar to the running example used throughout
the thesis. The difference is the reduced execution time of the tasks. The
values were reduced to obtain a feasible static-order schedule. We will illus-
trate the platform-aware design for this application specification. The platform-
independent design steps for this application were already explained in Chapter 5.
Therefore the refined model shown in Figure 6.1 includes the periods and offsets
for tasks t3 and t4 that were added during the platform-independent design. The
run time of Algorithm 5.1 that creates the topological order of the tasks is 1 ms.
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Figure 6.1: Input Application Specification
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For the platform-aware design we chose a 3-tile CompSOC platform synthe-
sized on the Xilinx ML605 FPGA. Two of the processor tiles are connected to
a clock oscillator running at 100 MHz, while the third one is connected to a
separate clock oscillator running at 64 MHz. The 100 MHz clock is chosen to be
the reference clock.

The first step is the annotation of the storage distributions, i.e. of the buffer
sizes. In our running example channels ch2, ch3 and ch8 have a size of 4, channel
ch2 has a size of 2, and all other channels have a size of 1. We chose a token size
of one 32-bit word.

The inter-tile communication is realized via the NoC. We chose a NoC with
a 4 x 4 mesh topology connected to the 100 MHz clock. The NoC has a read
and write bandwidth of 100 Mbits/s, while the CAN network has a bandwidth
of 4 kbit/s. The inter-tile communication time via the NoC was determined
empirically rather than analytically, as proper worst case execution times were
not available for all the hardware communication components. The measured
communication time is included in the measurements done for the task data
wrapper for the corresponding task write phases.

We chose the following mapping of the tasks to tiles: s1, s2, aux1, aux2, t1Rd,
t1Proc, t1Wr, t4Rd, t4Proc, t4Wr are mapped to processor tile 1 running at 100
MHz, while tasks t2, t3Rd, t3Proc, t3Wr and d1 are mapped to processor tile 3
running at 64 MHz.

We will demonstrate the fourth and the sixth step of the platform-aware design
for all three types of time synchronization methods: the barrier method, the
token-based method and the clock synchronization on CAN.
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Figure 6.2: Static Order Schedule for Tile 1

The static order schedule on tile 1 is composed of an initial sub-schedule
followed by a repetitive sub-schedule. The initial sub-schedule is executed once
when the application starts and it is followed by the repetitive sub-schedule that
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Figure 6.3: Static Order Schedule for Tile 2

is then repeated indefinitely. On tile 3 the schedule has only the repetitive part.
Both schedules are graphically shown in Figure 6.2 and Figure 6.3.

The TDM schedule together with the CAN are only used for the distributed
time synchronization method. Therefore the corresponding design decisions will
be explained in Subsection 6.1.3.

All the design decisions explained above are common for all types of time
synchronization methods. In the following subsections we will present the design
decisions and results for steps M6 and M8 and the qualitative evaluation results
for each method.

For all three methods the periods of the periods of the time-driven tasks have
been measured and checked for correctness.

6.1.1 Experimental Results for the Barrier Synchronization
For both centralized synchronization methods we select the processor on tile 2 as
the time-aware processor that implements the time barriers and the corresponding
SDF subgraph for the token synchronization.

Within step M6, the time-driven tasks are bound to physical clocks. The
physical clocks are the local clocks connected to each tile. We define thus a
reference clock with a period prc of 10 ns and a secondary clock c1 = (20000 �prc , 0)
that is directly derived from the reference clock. Clock c1 is used for the time-
driven task conditions by both the barrier as well as for the token synchronization
experiments. The communication time consistency is always satisfied for the
centralized communication since the clock used for the time-driven task conditions
is directly derived from the reference clock.

The task execution wrappers in this case consist of the barrier API that takes
precisely 257 clock cycles (measured by the reference clock). Hence the same value
is used to refine the execution wrapper of all time-driven tasks: t1, t3 and t4.

The worst case execution times of the data wrappers are shown in Table 6.1.
The values are measured in local clock cycles. These values were measured by
running the application on the FPGA platform for 10 minutes. The execution time
of the data wrappers consists of the execution time of the API that administrates
the input and output communication FIFO. The execution time depends on the
number of input/output ports of each task and it includes the local or inter-tile
communication overhead. In the table we can see that the execution time for the
wrappers of the tasks that are involved in inter-tile communication, such as t2,
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Table 6.1: Worst Case Execution
Time of the Task Data Wrappers

Task Read Data Write Data
Wrapper Wrapper

s1 n.a. 490
s2 n.a. 363
d1 412 n.a.
t1 573 457
t2 749 579
t3 924 457
t4 756 726
aux1 668 457
aux2 955 719

Table 6.2: wti of the time-driven
tasks

Task wti

s1 868
s2 1828
t1 read 3564
t4 read 0
t4 write 0
t3 write 0
d1 0

t3, t4 and aux2 is in a higher range of 700-900 cycles, while for the other wrappers
the execution time is within a lower range of 360-570 cycles.

For the qualitative evaluation, the value wb is the barrier API maximum
execution time (257 reference clock cycles) and the individual values of wti are
given in Table 6.2 (measured by the reference clock). A value of 0 means that
there is no schedule overhead, while the values different from 0 are given by the
schedule overhead. The highest schedule overhead is experienced by t1 for the read
condition. The value of 3564 cycle comes from the fact that there are 3 concurrent
tasks and the read phase of t1 is the last one scheduled in the sequence. This
happens for the fifth occurrence of t1rd in the repetitive part of the static order
schedule. Note that the time barrier was also implemented for the sources and
the sink since this is a synthetic application that has no real external sources and
sinks.

The precision of the barrier method computed according to Equation 4.5 is
equal to 6163 reference clock cycles.

The jitter of the barrier method for the read conditions jbrd (given by Equa-
tion 4.7) is in this case equal to the value of wti for task t1, which is 3564 reference
clock cycles. The jitter for the write conditions jbwr is 0, since both the minimum
and the maximum synchronization time for all tasks with a time-driven write
condition (t3 and t4) is equal to wb.

The convergence time is equal to 3821, which is the sum of the maximum value
of wti and wb.

The implementation-aware write and read offsets are computed based on
Equation 5.4. owi for t3 is computed as follows:

114



6.1. CASE STUDY - SYNTHETIC APPLICATION

ot3wi = ow � wb � tdmax +
j�jU jX

j=1
cmaxρoj

� wti =

15 � 20000� 257� 457� 0 = 299286

Task t3 has a single output port, therefore the sum includes a single term.
Furthermore the value of cmaxρoj

is included in the maximum execution time of the
task data wrapper tdmax .

owi for t4 is computed as follows:

ot4wi = 2 � 20000� 257� 726� 0 = 79017

ori for t1 is computed as follows:

ot1ri = or + wb + tdmax + wti =

20000 + 257 + 573 + 3564 = 24394

ori for t4 is computed as follows:

ot4ri = 2 � 20000 + 257 + 756 + 0 = 41013

6.1.2 Experimental Results for the Token Synchronization
For the token synchronization the binding of the task to physical clocks and the
task clock refinement is the same as for the barrier method.

Figure 6.4 shows the SDF graph executed by the time-aware processor. Each
synchronized task (including the sources and the sink) has a corresponding Off
actor on the time-aware processor that sends the synchronization token to the
corresponding task running on a remote processor.

The task execution wrapper consists in this case of the data wrapper used to
send the synchronization token from the time-aware processor to the processor
running the time-driven task, hence the data wrapper used by the corresponding
Off actor. The execution time of this wrapper is 1580 clock cycles (measured by
the reference clock). The data wrappers are the same as the ones presented for
the barrier method.

For the qualitative evaluation, the value wc is the execution time of the data
wrapper used to transfer the synchronization token, hence it is equal to 1580.
The individual values of w0ti are given in Table 6.3 (measured by the reference
clock). The values were computed by subtracting the communication time of
the synchronization token from the total measured synchronization time for each
task. The total synchronization time for t1 read and s2 is almost the same as for
the barrier method. This is because in this case there is an overlap between the
schedule overhead and the communication of the synchronization token. Therefore
the communication time of the synchronization token does not increase the total
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Figure 6.4: SDF Graph for the Time-Aware Processor

Table 6.3: w0ti of the time-driven tasks

Task w0ti

s1 563
s2 308
t1 read 1986
t4 read 1688
t4 write 788
t3 write 1508
d1 1088

synchronization time. However for the other tasks the value of w0ti is higher than
the corresponding wti . The large value for t4 read comes from the third instance
of t4rd in the repetitive part of the static order schedule on tile, whose offset is
one task clock period (i.e. clock c1) higher than the offset of s2. However the total
execution time of the sequence of tasks s2, t1wr, t1rd, aux2, t1proc that precedes
t4rd takes longer than the period of c1 (20000 reference clock cycles), which causes
t4rd to synchronize later. For t3wr and d1 the higher value of w0ti compared to wti
is given by the execution time of the task data wrapper (for the synchronization
token) that is measured by the reference clock, which is 1.5625 times faster than
the local tile clock (recall that the reference clock runs at 100 MHz, while the
clock for tile 3 runs at 64 MHz). One common factor that contributes to the
total synchronization time for all tasks is the index of the port on which the
synchronization token is received. Since the ports are read in the order given by
their index, it follows that a higher index leads to a later synchronization time.
All the tasks in our application receive the synchronization token on the last input
port, thus the port index has the highest value for all the tasks.
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The precision of the token method computed according to Equation 4.6 is
equal to 8122 reference clock cycles.

The jitter of the token method for the read conditions jtrd , computed according
to Equation 4.9 is 1740 reference clock cycles. This value is obtained for t1rd,
for which the minimum synchronization time is 1826 and the maximum is 3566
reference clock cycles. The jitter for the write conditions is 662 reference clock
cycles and it is obtained for t3wr, for which the minimum synchronization time
is 2426 and the maximum is 3088 reference clock cycles.

The convergence time is equal to 3566, which is the sum of the maximum value
of w0ti and wc.

The implementation-aware write and read offsets are computed based on
Equation 5.5. owi for t3 is computed as follows:

ot3wi = ow � wc � tdmax +
j�jU jX

j=1
cmaxρoj

� w0ti =

15 � 20000� 1580� 457� 1508� 0 = 15 � 20000� 3545 = 296455

The value 3545 corresponds to the term w1 in Figure 6.4.
owi for t4 is computed as follows:

ot4wi = 2 � 20000� 1580� 726� 788 = 2 � 20000� 3094 = 36906

The value 3094 corresponds to the term w2 in Figure 6.4.
ori for t1 is computed as follows:

ot1ri = or + wc + tdmax + w0ti =

20000 + 1580 + 573 + 1986 = 24139

ori for t4 is computed as follows:

ot4ri = 2 � 20000 + 1580 + 756 + 1688 = 44024

6.1.3 Experimental Results for the CAN Clock Synchro-
nization

Within this method we perform clock synchronization for the clocks on tile 1 and
3 respectively. For this we select the clock on tile 1 as the master clock and the
clock on tile 3 as the slave clock. The clock on tile 3 has a skew of 15.6 µs/s
relative to the clock on tile 1, given by the oscillator specification.

We design a CAN bus with a bandwidth of 4 kbps. The hardware design
parameters are as follows: the time quantum TQ is 250 ns and the synchronization
jump width SJW is 16 µs. The CAN bit period is 240 µs. We chose to perform
the clock synchronization once per second. Thus the maximum relative offset

117



CHAPTER 6. EXPERIMENTS

between the physical clocks is 15.6 µs, which is lower than the maximum offset
that can be compensated by the CAN hardware (equal to SJW).

The CAN clock synchronization precision using the above parameters was
measured in a dedicated experiment independent from the application. The
precision was measured using the oscilloscope by toggling the signal value of
two GPIO (General Purpose Input Output) wires, one at the master and one
at the slave, at predefined points in time. The predefined points in time were
chosen relative to the start of the clock synchronization interval: one point
immediately after the synchronization and another one at 999 ms, right before
the synchronization. Both the master and the slave use their fine grain logical
clock to detect the given points in time. At the given points in time the master
and the slave toggle the GPIO wire and the relative time difference between the
two signals is measured on the oscilloscope. The precision is 16.6 µs. The value
comes from the relative offset of the physical clock on tile 3 at 999 ms, which is
around 15.58 µs, and the polling of the local timer at the slave, which takes 65
clock cycles (i.e. 1 µs).

The jitter of the CAN clock synchronization as defined in Section 4.2.3 is equal
to 65 local clock cycles, the read time of the fine grain clock. The convergence
time ca as defined by Equation 4.11 is computed as follows:

ca = wst +3 � tTDM +(N �Tbit) = 218.32µs+3 �80µs+135 �240µs = 32.85ms (6.1)

Given the clock synchronization precision of 16.6 µs in step M6 of the platform-
aware design we chose the period of the coarse-grain clock to be 20 µs. The
refinement of the task clocks (substep (3) of M6) is done as follows. We chose the
physical clock on tile 1 to be the reference clock. It’s period prc is 10 ns and it has
an absolute accuracy of 0. We define two secondary clocks c1 = (288000 � prc , 0)
and c2 = (288000 �prc , 1660 �prc). The value 288000 �prc represents the period of the
secondary clock and it was chosen to accommodate the processor budget (that
results from the TDM schedule) allocated to the application. The value 1660 � prc
represents the relative accuracy of the secondary clock on tile 3 and it is equal to
clock synchronization precision. Clock c1 is used as a task clock for all the tasks
bound to tile 1. Clock c2 is used as a task clock for the tasks bound to tile 3. The
period of both c1 and c2 is a multiple of the chosen coarse-grain clock period. The
timing properties of the tasks (the read and/or write period p, the read offset or,
the write offset ow, and the execution time e) are given by the values shown in
Figure 6.1 which are multiples of the task clock period.

The task execution wrappers are the time-driven wrappers used by the time-
driven tasks to detect the read/write offset and period. The time-driven task
wrapper reads the current value of the coarse-grain clock and waits until it
becomes equal to the task read or write time of the current task execution. We
have implemented a software function that computes and returns the current value
of the coarse-grain clock. The computation is in line with Section 4.2.1. Both the
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fine-grain as well as the coarse-grain clocks are represented as 64-bit variables.
The execution time of the software function is 206 clock cycles, which equals 2060
ns for tile 1 and 3218 ns for tile 3.

In step M7 of the platform-aware design, the TDM frame duration is given
by the CAN bit duration, i.e. 240 µs. This means that the TDM frame duration
is 24000 clock cycles on tile 1 and 15360 clock cycles on tile 3. The minimum
value of the CoMik slot Cmin is 2732 clock cycles. To account for the clock offset
correction R of maximum 1000 cycles at the slave (on tile 3), the CoMik slot was
set to 3732 clock cycles on tile 3. The partition slot on tile 3 was set to 1388 clock
cycles. On tile 1 the same time durations for the CoMik and the partition slot
were used, expressed as multiples of the local clock cycles. A TDM frame has three
slots: the first slot allocated to the time synchronization manager, the second slot
allocated to the CAN driver, and the third slot allocated to the application.

The implementation-aware task read and write offsets are computed based on
the Equations 5.3 and 5.2. owi for t3 is computed as follows:

ot3wi =

6666664

ow � ttmax � tdmax �
j�jU jP

j=1
cmaxρoj

1280

7777775
� 1280 =

�
15 � 184320� 206� 457

1280

�
� 1280 = 2159 � 1280 = 2763520

where 184320 and 1280 are the period of clock c2 and the coarse-grain clock
period respectively expressed as a multiple of the local clock cycles. t3 has only
one output port, therefore the sum only contains one term.

The implementation-aware write offset for t4 is:

ot4wi =
�

4 � 288000� 206� 726
2000

�
� 2000 = 575 � 2000 = 1150000

The implementation-aware read offset for t1 is:

ot1ri = or + ocτ + ttmax + tdmax =
4 � 288000 + 0 + 206 + 573 = 1152779

The implementation-aware read offset for t4 is:

ot4ri = 2 � 288000 + 0 + 206 + 756 = 576971

6.1.4 Discussion on the Obtained Results
Table 6.4 shows the qualitative comparison results for the three time synchroniza-
tion methods. The jitter values for the centralized methods are the maximum
between the jitter for the read condition and the jitter for the write condition.
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Table 6.4: Qualitative Comparison of the Time Synchronization Methods

Methods Precision Jitter Convergence Time
Barrier 38.21 µs 35.64 µs 38.21 µs
Token 35.66 µs 17.40 µs 35.66 µs
CAN Clock Synchronization 16.6 µs 0.65 µs 32.85 µs

The best precision is achieved by the CAN clock synchronization. The pre-
cision of the clock synchronization depends mainly on the duration of the time
synchronization interval and it is not influenced by the specific time properties
of the application tasks, which is the case for the centralized synchronization
methods. The precision of the centralized methods is about twice as low as
the precision of the distributed method for this specific application. However,
if there were more concurrent time-driven tasks, the precision would degrade
proportionally. If we compare the barrier and the token in terms of precision,
they are comparable. This is because the main factor that influences the precision
is the static order schedule overhead, which is the same for both methods.

In terms of synchronization jitter, it is also the CAN clock synchronization
that performs the best since the jitter in this case is cause by the read time of
the fine-grain logical clock at the master side, while for the centralized methods
it is influenced by the static order schedule overhead. If we compare the barrier
and the token in terms of jitter, the token performs better. This is because the
maximum synchronization time for both methods is mainly determined by the
same factor, the static order schedule overhead, while the minimum synchroniza-
tion time is given by the performance cost of each method. Since the barrier has
a lower cost than the token (257 reference clock cycles versus 1580 reference clock
cycles), it follows that the difference between the maximum and the minimum
synchronization time is lower for the token than for the barrier.

In terms of convergence time the three methods show similar results. However,
recall that the convergence time for the CAN clock synchronization depends on
the CAN bandwidth and on the resulting TDM slots duration. Therefore, a lower
CAN bandwidth would lead to a higher convergence time and in that case the
centralized methods could perform better.

Table 6.5 shows the tightness of the refined task offsets. The values for the
read offsets represent the difference between the value of the task offset given in
the application model and the refined value of the offset obtained in the platform-
aware design. The values for each write offset are equal to ow � otiwi � tdmax . For
the write offset the tightness measures how close the arrival time of the data is to
the write offset ow specified in the application model. All the values are expressed
in terms of reference clock cycles.

We can see that the refined offsets are tighter for the CAN clock synchroniza-
tion. For this method the main factor that influences the tightness of the offsets
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Table 6.5: Tightness of the Refined Task Offsets

Task Offset Barrier Token CAN Clock Synchronization
t1 read 4394 4139 779
t4 read 1013 4024 971
t3 wr 257 3088 1285
t4 wr 257 2368 1274

Table 6.6: Task Periods

Task Period Barrier/Token CAN Clock Synchronization
t1 600 µs 8640 µs
s1,s2,t4 1200 µs 17280 µs
t3,d1 1800 µs 25920 µs

is the period of the coarse grain clock (equal to 2000 reference clock cycles) which
can be observed for the refined write offsets. For the centralized methods the less
tight offsets are caused by the static order schedule overhead.

Table 6.6 shows the task periods for the centralized and distributed synchro-
nization methods. They result from the chosen period of the secondary clocks for
each type of time synchronization method. For the centralized synchronization
the minimum achievable task period is 200 µs, while for the distributed time
synchronization the minimum achievable task period is 2880 µs.

One final observation to be made when comparing the three methods is that
even though the CAN clock synchronization performs better for most of the
evaluation metrics, recall that due to the fact that the processor is shared between
the application, the time synchronization manager and the CAN controller, the
achievable task periods are one order of magnitude higher (for this application)
than for the centralized methods. This can be an important factor to take into
account when deciding which method to chose.

6.1.5 Discussion on the Deployment of the Loosely Time-
Driven Task Execution

Demonstrating the loosely time-driven task execution requires a hardware plat-
form with multiple physical clocks that have a relative bounded offset sufficiently
large to cause the violation of the communication time consistency of the applica-
tion. Generating such a platform using the Xilinx FPGA is rather difficult, as the
generated platforms are typically either totally synchronous or GALS. However
such hardware architectures, also called quasi-periodic, do exist (see [12]) and can
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benefit from our approach. They consist of distributed systems communicating
over shared memories.

The software infrastructure required for the loosely time-driven execution has
been deployed in the previously presented experiments. It is almost identical to
the infrastructure used for the strictly time-driven execution. The only difference
is that the loosely time-driven execution only requires the (unsynchronized) fine
grain clocks instead of the coarse grain clock. The task wrappers required are
the time and data wrappers and are used in a similar way as for the time-driven
operation, i.e. first wait for the period and offset and then poll until the input
data is available. Clearly, for the time-driven operation polling for data is not
required as the data is always present at the start of the period.

6.2 Summary
In this chapter we demonstrate our proposed platform-aware design using a syn-
thetic application that combines time- and data-driven operation. We first de-
scribe the result of each step of the platform-aware design. We then show how the
same application can be implemented using all three proposed time synchroniza-
tion methods. We evaluate each time synchronization method using the metrics
presented previously in the qualitative analysis. We provide the performance costs
of the task wrappers and we show how the task offsets are refined for each time
synchronization method. Finally we discuss the obtained results and we provide
insight into the deployment of the loosely time-driven task execution.
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7
Conclusions

This chapter concludes the thesis with regard to the proposed contributions and
gives insight into possible future work.

7.1 Contributions

Model-Based Design (MBD) is a design paradigm for embedded systems that
aims at coping with the ever increasing complexity of such systems through the
systematic use of models throughout all the design phases. In this context the
quest for better models that capture the relevant aspects of the system, and for
proper accompanying design methodologies, is still ongoing.

In this thesis we contribute a complete model-based design solution that
comprises a unified model of computation for time- and data-driven applications,
accompanied by semantics-preserving model implementation methods and by a
design methodology that targets MPSoC platforms.

The thesis addresses three major research questions. The first question targets
the definition of a Model of Computation (MoC) capable of expressing the key
properties of time- and data-driven embedded applications. The second question
aims at devising semantics-preserving model implementation methods that are
faithful to the model properties. The third question concerns the definition of
an accompanying design methodology that allows for both top-down refinement
of the model properties as well as bottom-up incorporation of implementation
platform details.
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We address the first question in Chapter 3 by proposing a MoC that unifies
and extends the SDF model and the single mode Giotto with harmonic frequencies
and supports loosely time-driven operation of the application tasks. It adds task
port rates to Giotto and task periods and offsets to SDF. The model expresses
time- and data-driven applications as a set of tasks that communicate via FIFO
channels. Time is captured by a set of task clocks that consists of a reference
clock, which serves as a time reference, and one or more secondary clocks that
have a specified relative accuracy with respect to the reference clock. We define
the notion of time consistency. We show how our model can be converted into
an equivalent SDF graph and we provide formal proofs that show that the SDF
model and the single mode Giotto with harmonic frequencies are a subset of our
model.

The second research question is addressed in Chapter 4 that proposes semantics-
preserving model implementation methods. They consist of distributed and cen-
tralized time synchronization methods and task execution and communication
methods. The distributed method consists of clock synchronization over a Con-
troller Area Network (CAN) network. The centralized methods consist of the
barrier and the token method. We define evaluation metrics for all three methods
that allow for qualitative comparison as well as in terms of the resource consump-
tion. The task execution and communication methods consist of time and data
task wrappers.

The third research question is addressed in Chapter 5 that proposes a design
methodology that takes as input an application described using our unified model
and tries to find a design solution for a MPSoC platform. The methodology
consists of two phases: platform-independent design and platform-aware design.
The model properties such as the task read and write offsets and periods and the
task clocks are refined within both design phases, while implementation platform
details are incorporated during the platform-aware design phase.

Chapter 6 demonstrates empirically the model implementation methods and
the design methodology using a synthetic application that combines time- and
data-driven operation. We evaluate the three time synchronization methods using
the proposed metrics, we show the performance cost of the task wrappers and we
show the results of the design methodology steps.

7.2 Future Work
We identify two major possible extensions for our proposed contributions.

The first one is the extension of our unified MoC in terms of the covered Giotto
semantics. The model can be made more expressive by adding support for non-
harmonic task frequencies. This can be achieved by using cyclo-static port rates
for the tasks. This is inspired from Cyclo Static Data Flow (CSDF). CSDF is a
Data Flow variant that is more expressive than SDF, as it allows for specifying the
port rates of the actors as a sequence of integer values that is repeated cyclically.
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At each firing a firing index iterates through the sequence of predefined port rates
and the actor consumes/produces a number of tokens equal to the rate indicated
by the current firing index. Furthermore it provides the possibility of defining zero
rates, which is especially useful for modeling the reading of the data produced in
the latest execution of the writer task.

The second extension concerns the automation of the proposed design method-
ology. First, a XML representation of our model needs to be devised. Second,
the platform-aware design steps need to be fully automated and integrated with
the existing SDF design flow [28].
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