
 Eindhoven University of Technology

MASTER

Information retrieval through optical character recognition

van Dien, T.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e3b6a319-7a54-4432-b1cd-e897ba094e79

Information retrieval
through optical character

recognition

Master Thesis

T. (Tijmen) van Dien, BSc

Department of Mathematics and Computer Science
System Architecture and Networking (SAN)

Supervisors:
T. (Tanir) Özçelebi, Ph.D.

G. (Geert) van de Weyer, Ph.D.
M. (Majid) Nabi Najafabadi, Ph.D.

v2.2

Eindhoven, April 2018

Abstract

This thesis is made as a graduation project for Bottomline. Bottomline is a company that builds,
sells, and uses software in the transportation planning industry. Bottomline’s goal is with this
thesis is to reduce errors in sales administration and to reduce the amount of human work involved
in the process of con�rming deliveries. Bottomline considers the project successful if at least 90%
of deliveries can be con�rmed automatically.

These goals are achieved by implementing optical character recognition (OCR) using arti�cial
neural networks. OCR is then used to �nd the quantity of a delivery by scanning the (legally
mandatory) delivery ticket printed by the truck making the delivery. The thesis proposes tech-
niques and results for preproccessing an image for OCR by correcting scan rotation and improving
image contrast, �nding the right shape and size of an arti�cial neural network, for the purpose
of performing OCR. Even though the thesis focuses on the application of OCR, the techniques
discussed are applicable to many other domains as well, especially within the use of convolutional
arti�cial neural networks in image processing. The accuracy of character recognition based on the
proposed ANN architecture and training parameters is 95%. The proposed arti�cial neural net-
work is as simple as it can be while still being capable of performing OCR with good performance.
This is important because the algorithm must run on device constrained in processing power and
battery life.

The text that is returned by the OCR algorithm is then postprocessed by a template engine
that extracts information, such as the delivered quantity of goods. This template engine functions
as a feedback loop that gives feedback to the OCR algorithm. With the help of this feedback loop,
the accuracy of OCR increases to 98%.

The thesis presents results on several items: rotation correction, character recognition, and
template correction. Rotation correction is tested on 45 di�erent delivery tickets, for 10 di�erent
rotation angles per ticket, for a total of 450 test samples. A large percentage of these delivery
ticket rotations were corrected enough for segmentation to work. Character recognition is tested
by printing 5039 characters and then scanning them. These 5039 characters are then processed by
the proposed OCR engine. 95% of the processed characters are recognized correctly. After post-
processing, the ratio of successfully recognized characters increases to 98%. The thesis concludes
with a test consisting of 149 delivery tickets, of which the correct information was extracted 96:6%
of the time, such that OCR could automatically verify the delivery ticket. This means the project
goals were successfully met.

Information retrieval through optical character recognition iii

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Context . 1
1.2 Arti�cial Neural Networks . 3
1.3 Problem statement . 6
1.4 Structure . 6

2 Formal problem description 7
2.1 Pre-processing . 7
2.2 OCR . 7
2.3 Post-processing . 8
2.4 Final accuracy . 8

3 Proposed methodology 9
3.1 Pre-processing . 9
3.2 OCR . 10

3.2.1 The bootstrap problem . 10
3.2.2 Training the arti�cial neural network . 11

3.3 Post-processing . 12
3.3.1 Feedback for OCR . 12

4 State of the art 13
4.1 Text recognition . 13

4.1.1 Commercially available OCR products . 13
4.2 Bottomline context . 14

5 Experimental setup 15
5.1 Pre-processing . 15

5.1.1 Finding the area of interest . 16
5.1.2 Getting rid of noise and hardware artifacts 17
5.1.3 Masking . 17
5.1.4 Rotation . 17

5.2 Segmentation . 18
5.2.1 Finding lines and letters . 18
5.2.2 Detecting problems . 19

5.3 Letter recognition . 20
5.3.1 Arti�cial neural network shape . 20
5.3.2 Training the arti�cial neural network . 21

iv Information retrieval through optical character recognition

CONTENTS

5.3.3 OCR training and testing . 22
5.4 Postprocessing . 22

6 Results and evaluation 24
6.1 Rotation correction . 24
6.2 Arti�cial neural network . 25

6.2.1 Fully connected layer size . 25
6.2.2 Convolutional kernel size . 26
6.2.3 Convolutional layer feature count . 26
6.2.4 Learning rate . 27
6.2.5 The resulting shape of the arti�cial neural network 28

6.3 OCR reliability and templates . 29
6.4 Execution time . 30

7 Discussion and conclusions 32
7.1 Preprocessing . 32
7.2 Arti�cial neural network con�guration . 32
7.3 Symbol recognition . 33
7.4 Templates and variable extraction . 33
7.5 Execution time . 33

Bibliography 34

Appendix 35

A Images 36
A.1 Bottomline delivery ticket . 36
A.2 Segmenting . 37

Information retrieval through optical character recognition v

List of Figures

1.1 High level overview of the Bottomline software suite 2
1.2 High level overview of the proposed changes to the Bottomline software suite . . . 3
1.3 McCulloch-Pitts model of a neuron with n inputs, calculating one output 4
1.4 The recti�ed linear unit (ReLU) activation function graph 4
1.5 The recti�ed linear unit (ReLU) activation function de�nition 4
1.6 The connections in a convolutional layer . 5
1.7 The connections in a pooling layer, shown by color 5

3.1 Flowchart of the proposed methodology . 9
3.2 OCR preprocessing ow . 10
3.3 OCR processing ow . 11

5.1 Preprocessing steps. Left: only the template; middle: dot matrix section; right:
without artifacts . 16

5.2 Contrast of artifacts (b and d) and area of interest (a and c) 16
5.3 De�nition of rotated lines . 18
5.4 Find lines state machine . 18
5.5 The shape of the neural network . 20

6.1 Hough Line transform (left), HLT + White line detection (right) 24
6.2 Correctly recognized symbols for neural nets with di�erent fully connected layer sizes 25
6.3 Correctly recognized symbols for neural nets with di�erent convolution kernel sizes 26
6.4 Correctly recognized symbols for neural nets with number of features in layer 1 . . 27
6.5 Correctly recognized symbols for neural nets with number of features in layer 2 . . 27
6.6 Correctly recognized symbols for neural nets with di�erent learning rates 28
6.7 Correctly recognized symbols for neural nets with and without template, split per

symbol group . 29
6.8 Correctly recognized symbols for neural nets with di�erent learning rates 30

A.1 A scan of a Bottomline delivery ticket . 37
A.2 Segmenting steps. Left: �nding lines and letters; right: merging and splitting. . . . 38

vi Information retrieval through optical character recognition

List of Tables

6.1 Variable extraction results . 30

Information retrieval through optical character recognition vii

Chapter 1

Introduction

This thesis explores the possibility of using Optical Character Recognition (OCR) in the fuel
transportation industry. The goal of the project is to reduce the amount of human labour involved
in verifying deliveries and sending invoices to customers. This is achieved by applying OCR to
delivery tickets printed by the ow meters aboard fuel delivery trucks. OCR is implemented
through the use of a neural net.

1.1 Context

Bottomline develops and uses a comprehensive software solution for scheduling optimal fuel de-
livery to service stations and retail customers around Europe. This solution consists of several
applications, of which the most important are BS (Bottomline Scheduling), BE (Bottomline Exe-
cution), and BC (Bottomline Con�rmation).

BS is used by a planner to schedule orders and routes for a eet of trucks. Next, BE is used
by truck drivers to see where they should collect fuel from and where to deliver fuel to. Finally,
BC is used by the same planner to verify that the right amount of fuel is delivered to the right
location.

The fuel delivery process is described in Figure 1.1. This project mainly focuses on the work
done by the driver, and the need to verify this work by the planner. The work of the driver outside
of driving and delivering fuel consists of printing delivery tickets, adding the delivery information
to the tickets, scanning these tickets, and entering the details of the delivery.

Since one planner can service many drivers, checking the data entered by the drivers can take
up a large portion of the time a planner has available each day. Checking the data entered by a
driver is important because this data is used in two ways. First, the data is used to create invoices.
Bottomline charges for its services based on delivered fuel volume. Secondly, the delivery data is
used in combination with sales numbers to forecast when the customer runs out of fuel. If the
delivery information is bad, fuel might not be delivered before the customer runs out, or might be
delivered too early, when their storage tanks are too full to accommodate a new delivery.

To reduce the time needed by the planner to do its work, the workow described in Figure 1.1
must be modi�ed. The new proposed workow is shown in Figure 1.2. By adding an automated
check between entering the delivery details and sending the details back to the system, the manual
check can be avoided. When the automated check fails, a planner still has to check the details
manually.

Bottomline has a number of requirements for this workow. First, 90% of all correct deliveries
must be validated automatically, while at most 10% may need further checks by planners. Incorrect
deliveries always require planner involvement. Secondly, the check must be performed on the device
used by the driver. Sending the data to a remote server is not allowed due to the lack of an Internet
connection at some customer sites, such as remote B2C customers in the north of Finland, Norway,
and Sweden. Thirdly, since the device used by the driver is an Android tablet, the automated

Information retrieval through optical character recognition 1

CHAPTER 1. INTRODUCTION

Figure 1.1: High level overview of the Bottomline software suite

check must run on the Android operating system. This hardware platform comes with certain
resource constraints, namely that limited energy and processing power are available.

2 Information retrieval through optical character recognition

CHAPTER 1. INTRODUCTION

Figure 1.2: High level overview of the proposed changes to the Bottomline software suite

1.2 Artificial Neural Networks

In this thesis, arti�cial neural networks (ANN) are used for determining what character is shown
in an image. A simple de�nition of an ANN is ’... a computing system made up of a number
of simple, highly interconnected processing elements, which process information by their dynamic
state response to external inputs’[1]. A neural net works by performing a computation on a set of
inputs, resulting in a set of outputs. The computation is speci�cally chosen such that the output
says something meaningful about the input.

An ANN consists of many nodes, called ’neurons’. Each neuron is a computational unit with
one or more inputs and one output. An example McCulloch-Pitts[2] model neuron is shown in
Figure 1.3. The inputs are generally combined using a weighted sum: s = x1 � w1 + x2 � w2 +
x3 �w3 + :::+ xn �wn. The output is calculated using some transformation f(s) on the weighted
sum. Such a transformation operation is called an activation function. Activation functions can
theoretically be any mathematical operation, but without certain properties, they will not yield
a useful neural net. Some desirable properties are non-linear[3], continuously di�erentiable [4],
monotonic [5], smooth with a monotonic derivative[6], approximate identity near the origin [7].

For computer vision problems such as OCR, it is common to use the recti�ed linear unit (ReLU)

Information retrieval through optical character recognition 3

CHAPTER 1. INTRODUCTION

Figure 1.3: McCulloch-Pitts model of a neuron with n inputs, calculating one output

Figure 1.4: The recti�ed linear unit (ReLU) activation function graph

activation function[8]. This function satis�es (shown in Figure 1.4) some of the desirable properties
listed above, such as being non-linear, being monotonic, and having a monotonic derivative.

f(s) =
�

0 for s < 0
s for s � 0

Figure 1.5: The recti�ed linear unit (ReLU) activation function de�nition

An ANN starts with a layer of input values. In the case of computer vision, the input layer
represents the pixels in an image. After the input layer, there can be several layers of neurons.
Each neuron uses all outputs in the previous layer as inputs. The output of each neuron is then
used as the input for the neurons in the next layer. The outputs of the last layer in the neural net
are called the output layer. All layers together form the architecture of the ANN.

What an ANN computes depends on the weights of all connections. Finding a computation
that extracts certain information from the set of inputs is done by training the ANN. In this
process of training the ANN, a large number of example input and output combinations are used
in a process called gradient descent [9]. This technique changes the weights of all connections in
the graph, such that the given inputs result in an output as close to the training data as possible
as measured by a cost function.

The total computational cost of such a training step can be very large, especially with huge
training sets. In order to speed this up, a variation of gradient descent, called stochastic gradient
descent[10] can be used. Stochastic gradient descent breaks the training set up into smaller
subsets, and computes the desired change in weights for each subset separately. By repeatedly
changing the weights towards the desired solution for each subset, the computed weights converge
towards the values that would be computed by normal gradient descent with signi�cantly reduced

4 Information retrieval through optical character recognition

CHAPTER 1. INTRODUCTION

computational cost.

Figure 1.6: The connections in a convolutional layer

An ANN can consist of di�erent types of layers. For the problem of optical character recogni-
tion, convolutional layers, pooling layers, and densely connected layers are commonly used.

Convolutional layers[11] are special layers that do not fully connect to the previous layer, but
instead connect to a few neurons in the previous layer that are spatially related to it. This is
shown in Figure 1.6, where a neuron in the right layer connects to 9 spatially relevant neurons in
the left layer.

Figure 1.7: The connections in a pooling layer, shown by color

Pooling layers reduce the number of nodes in a layer relative to the previous layer. This e�ect
can be achieved in a number of ways. The method used in this thesis is called max-pooling. A
max-pooling layer of size 2 is twice as small in each spatial dimension as the previous layer. The
connections in a max-pooling layer are shown in Figure 1.7, where the left layer precedes the right
layer. Max-pooling layers take the maximum value of its connected nodes as its output, which
means that any feature found in the group of connected neurons is preserved by the pooling layer.
In addition to max-pooling, other strategies such as average pooling, and L2-norm pooling are
also possible[12].

Densely connected layers are layers in which each neuron uses the output of each neuron in
the previous layer as its input. Where a convolutional layer is capable of �nding local features, a
densely connected layer is capable of combining all features globally.

For the problem of optical character recognition, a common shape for an ANN is one with two
convolutional layers following the input layer. After each convolutional layer is a pooling layer.
Finally, there is a fully connected layer followed by the output layer. In this layout, the input
layer represents the gray-scale values of each pixel in an input image. The output is a vector in
which each element corresponds to a certain symbol. A high element value means that the input
image looks like the corresponding output symbol.

An ANN has a number of parameters that must be optimized in order for the training process
to be e�ective. Most of these parameters de�ne the size of the neural net. For example, the size
of the fully connected layer and the size of the kernel used for the convolutional layers. Another

Information retrieval through optical character recognition 5

CHAPTER 1. INTRODUCTION

parameter of interest is the learning rate for the training process. The learning rate determines
how big the steps taken in the gradient descent technique are.

1.3 Problem statement

In order to achieve the goals laid out in Section 1.1, a reliable OCR system must be designed.
The challenges that must be overcome for this involve preprocessing images such that they can be
broken up into symbols, recognizing the separate symbols, determining which line of text contains
what information, and �nally, extracting said information.

This thesis contributes to image preprocessing, character segmentation, the actual OCR pro-
cess, and a feedback loop from a postprocessing mechanism back to the OCR algorithm. This
postprocessing mechanism is used to extract information from the scanned text. The main focus
is OCR and postprocessing. To achieve this, the sub problem of segmenting must be solved as
well.

This leads to the following list of research questions:

� What are the optimal layout and parameter settings for a neural network with respect to
accuracy of OCR?

� How much can the accuracy be increased via post-processing the data extracted with OCR?

Note that there is no such thing as an optimal neural net con�guration for OCR. What is
optimal depends largely on the use case and requirements.

For �nding the optimal layout, the advice in papers such as [13] and [14] is followed. These
papers lay out a strategy for exploring what properties for an ANN are important to achieve
certain goals. The second question is answered by using a novel templating system that can be
used to give hints to the OCR engine. This template engine is also used to extract data from
loosely structured text found in an image.

1.4 Structure

This thesis opens with an introduction, followed by a formal problem description. In Chapter 2, a
methodology for solving the problem is given. In Chapter 3, the state of the art is explored. The
thesis continues by describing the experimental setup and its results in Chapters 4 and 5. Finally,
the results are discussed in Chapter 6 and a conclusion is given in Chapter 7.

6 Information retrieval through optical character recognition

Chapter 2

Formal problem description

The three areas of interest that are discussed in this paper, must now be formally speci�ed.
Globally, the goal of the project is to �nd a function that transforms a set of input images to a
set of a set of output variables with an accuracy that is as high as possible. Given a set of input
images I = fi0; i1; :::; ing and a desired set of outputs V = fV0; V1; :::; Vng where each Vi is a set
of variables, a function

X : I ! V

must be found. Note that in the context of this paper, i is an image containing many lines of
symbols, and Vi is a set of variables containing information extracted from i. Given the nature of
image processing algorithms, such a function cannot achieve an overall accuracy of 100%. As a
result, the goal is to �nd a function X which has a maximized accuracy. Let A(X) represent the
accuracy of function X, the goal is to �nd an X for which A(X) is as high as possible. In this
context, ’accuracy’ is de�ned as the percentage of images i, from which certain information was
successfully extracted.

In order to explore how high A(X) can be, the internal workings of function X must be
analyzed. X consists of three steps, each of which contributes heavily to A(X). These steps are
pre-processing, OCR, and post-processing.

2.1 Pre-processing

OCR requires separate symbols as input, so each input image i must be transformed into a list of
m lines, where each line contains a list of o images of symbols. Let S = fL0; L1; :::; Lmg, and let
Li = fs0; s1; :::; sog, where S is the set of lines, and Li is the set of symbol images line i. Note that
not every image contains the same amount of lines, and not every line contains the same amount
of symbols, so o is in fact a function of i. Formally, the pre-processing can be represented as

P : I ! S

The accuracy of P , A(P), depends on how well the image is cleaned up before segmentation is
attempted, and on the quality of the print. In this context, ’accuracy’ is de�ned as the percentage
of input images i for which all symbols are correctly segmented.

2.2 OCR

Given a set of lines, where each line contains a set of symbol images, OCR should output a list of
lines, where each line is a list of symbols. Let S

0
= fL

0

0; L
0

1; :::; L
0

ng, and let L
0

i = fs
0

0; s
0

1; :::; s
0

ng
Note the di�erence between a symbol image and a symbol. OCR can then be describes as a
function

O : S ! S0

Information retrieval through optical character recognition 7

CHAPTER 2. FORMAL PROBLEM DESCRIPTION

The accuracy of O, A(O), depends on how well segmentation is performed, and on the per-
formance of the arti�cial neural network that performs the OCR task. More speci�cally, the
performance of the arti�cial neural network depends on the quality of its training data, the dura-
tion of training, the basic shape of the net, the size of each layer in the arti�cial neural network,
and the learning rate used to train the net. Finally, since the type of arti�cial neural network used
is a convolutional neural network, the size of the convolutional kernel matters as well.

2.3 Post-processing

The goal of post-processing is to turn a set of lines, where each line is a set of symbols, into a set
of output variables. Formally, this is described as

T : S0 ! V

The accuracy of T , A(T), depends on how well OCR worked. Post-processing should aim to
increase the accuracy of the OCR mechanism. Given a perfectly segmented image on which OCR
was performed without errors, it should yield the correct variables. When the input image is less
than perfectly segmented, or OCR was not performed entirely correctly, it should still result in
an output that is as correct as possible.

2.4 Final accuracy

Now that the function X has been analyzed, a list of parameters of interest can be constructed.
In order to maximize A(X), three separate objectives can be set:

(1) An image must be correctly segmented. This means that the coordinates and size of each
symbol must be found;

(2) The shape, size, and other parameters of the arti�cial neural network that performs OCR
must be optimized;

(3) A post-processing algorithm with some error-correcting probabilities must be constructed.

In order to answer the research questions set out in Section 1.3, the focus of the project must
lie on objectives (2) and (3). Since (1) is also a requirement for maximizing A(X), it is also briey
explored.

8 Information retrieval through optical character recognition

Chapter 3

Proposed methodology

The following approach is proposed for achieving the three goals set out in Chapter 2. First, a brief
look is taken at the problem of segmentation. The problem itself is solved, and any deal-breaking
sub problems are taken care of as well. Next, the workings of the neural network that performs
OCR is explored. A strategy is devised to �nd the optimal combination of parameters for the OCR
problem: by optimizing for one parameter at a time, and cycling over all possible parameters, a
locally optimal solution is eventually found. Finally, a method for extracting variables from the
output of the OCR algorithm is created, along with a feedback loop to further improve the accuracy
of OCR. This mechanism is shown in Figure 3.1

Figure 3.1: Flowchart of the proposed methodology

3.1 Pre-processing

The objective for pre-processing is to transform an input image into a set of smaller images
such that each small image contains exactly one symbol. Additionally, character order and line
structuring should be saved. This process is called segmentation. In order to go from an image
to segmented letters while retaining character order and line information, several actions must be
performed. The actions listed below are also shown in Figure 3.2.

� Find the part of the image that contains relevant text. This is done by �nding certain
features in the input image, and �nding the correct location relative to these features;

� Improve the quality of the remaining image. Initially, the image might contain too much
noise, or the print might not have enough contrast. Image processing techniques such as
adaptive Gaussian thresholding;

� Find all lines of text in the image. By �nding white space between rows of text, the separate
lines of text in an image can be found;

Information retrieval through optical character recognition 9

CHAPTER 3. PROPOSED METHODOLOGY

� Find all symbols in each line. Analogously, by �nding white space between the pixels that
form symbols in a line, all symbols can be isolated;

� Cut out small images from the large image at the positions where symbols were found so
that all found symbols can be fed into an OCR engine separately.

Figure 3.2: OCR preprocessing ow

3.2 OCR

The goal of OCR is to transform a set of input symbol images into a set of symbols. The basic
list of steps that is needed per symbol is the following:

� Transform an input image into a vector of numbers. Each number represents the gray scale
value of a single pixel in the input image. OCR engines do not typically know how to deal
with high-level data structures such as images. It is more likely that they expect a at array
of numbers, also known as a vector;

� Feed the vector to the ANN. Once the input image is transformed to a vector, the vector
must be fed to the input layer of the ANN;

� Read the output layer of the ANN. Once the ANN has processed the input image in vector
format, the output layer must be read as a vector. Each element in this vector represents
the likelihood that the input vector represents a certain symbol;

� Return the most probable symbol that is represented in the input image. The element with
the highest value in the output vector corresponds to a speci�c symbol. This symbol is
selected as the result of the OCR engine.

3.2.1 The bootstrap problem

One of the core problems in machine learning, is the bootstrap issue. Before a ANN can be trained
to perform a task, a lot of training material is needed to ’teach’ the ANN what to do. But without
an algorithm that detects and interprets symbols, how can such a data set be obtained? For this
thesis, the problem is solved in the following manner:

� Use the pre-processing algorithm to segment a large number of images;

� Store the segmented images into a database that can be accessed through an API;

� Create a front-end to the database mentioned above that can show an image symbol and
allow a user to input what symbol is shown on screen

� Use the front-end mentioned above to classify a large number of symbols;

� Divide the created data set into a training set, a test set, and a validation set.

10 Information retrieval through optical character recognition

CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.3: OCR processing ow

3.2.2 Training the artificial neural network

Now that a training set for the neural network has been made, the optimal con�guration for the
neural network must be determined. The parameters to optimize, from back to front in the visual
representation of the neural network, are:

� Fully connected layer size. This parameter controls how noise resistant the neural network
is [15];

� Number of features in each convolutional layer. This variable inuences the number of
di�erent symbols that can be di�erentiated by the neural network;

� Size of the convolutional kernels used. This parameter controls the size of the features that
can be found by the neural network;

� (Initial) learning rate for the network. This con�guration inuences how quickly the network
can learn, and how accurately the network can learn.

Since the total search space for all of these parameters is large, and testing a combination of
parameters takes quite a while, a quick strategy is needed to actually �nd a good combination
of parameters. This is done by initially making an educated guess about the values for each
parameter, followed by training and testing the network in this standard con�guration. The
parameters are then improved using the following scheme:

(1) Pick a parameter to optimize;

(2) Choose a number of points in the range for this parameter;

(3) Train and validate a neural network using each of these points for the chosen parameter;

(4) If one of the maximum points chosen still shows an improvement in performance, increase
the range and go to step (3);

(5) Choose the point at which the performance is best and save it as the current value for the
chosen parameter;

(6) If the network improved in performance, go back to step (1).

This strategy will yield a local optimum for a combination of parameters. This means that the
chosen parameters are not necessarily optimal. Given the large size of the total search space,
and the time it takes to train a network, this process gives a good balance between speed and
performance.

Information retrieval through optical character recognition 11

CHAPTER 3. PROPOSED METHODOLOGY

3.3 Post-processing

With the ANN up and running, the last problem that must be solved is transforming a set of lines,
where each line contains a set of symbols into a set of variables. Since each line can contain zero
or more variables, it is useful to look at this from the perspective of lines of symbols. In order to
be able to transform a line into zero or more variables, a library of possible lines, and the variables
that they contain is created. Using this library, the following steps are needed for each line to
achieve the goal of post-processing:

(1) Compute which line in the library is the best match for the current line;

(2) If the current line is not a close enough match, discard it;

(3) If the line in the library contains variables, extract it from the current line.

After this process, all extracted variables must be returned.

3.3.1 Feedback for OCR

After matching a line with a line in the library, extra information about that line is available.
This information includes what kind of symbols each symbol can be. By dividing the symbols into
letters, numbers, and punctuation, the accuracy of OCR can be improved. Instead of the OCR
engine returning the symbol that scored highest for a given input image, it can instead return the
symbol that scored highest among the subset that is in the expected group. Since most variables
that must be extracted consist of either letters or numbers, this can greatly increase the accuracy
of the entire process.

12 Information retrieval through optical character recognition

Chapter 4

State of the art

4.1 Text recognition

OCR has been around for many decades, with commercial implementations going back as far as
the 1970s. Today, there exist many products that are capable of extracting text out of images.
Many of these products are not suitable for Bottomline because they o�oad computational work
to external server. Using external servers is not acceptable for two reasons. The �rst reason is the
lack of an Internet connection at more remote delivery locations. The second reason is an issue of
con�dentiality and security: it is not acceptable to send all delivery information to a third party.
A large portion of the remaining products is not suitable due to not running on mobile devices.

4.1.1 Commercially available OCR products

After all these decades of OCR being around, there are of course many commercial products
available. Most of these products are not suitable for Bottomline due to the limiting factors
described above. Here is a short and incomplete list of commercial OCR products available today.

ocr.space[16] is an OCR tool written in C# that is available on the Microsoft Windows plat-
form, and as a web service. free-ocr[17] is an OCR tool that is available as a web service; RWTH
OCR[18] is an OCR engine written by Aachen University. It is available for non-commercial use,
but commercial use is limited.

When the limiting factors for the Bottomline use case are taken into account, there are two
viable solutions remaining. The �rst option is to use the Tesseract OCR Engine [19], which
was originally developed by Hewlett-Packard between 1985 and 1995. In 2005, HP published
Tesseract’s source code, after which Google took over development. The second option is to use
TensorFlow [20] to implement an arti�cial neural network for character recognition. TensorFlow
is also developed by Google as a high-performance numerical operation tool based on data ow
graphs. TensorFlow has binaries available for many modern platforms, among which Android and
iOS. This makes the TensorFlow platform very suited for the Bottomline use case. A combination
of availability on each platform, the option to train on a fast desktop graphics processing unit
(GPU), and the ability to run entirely o�ine is very important to satisfy the requirements for this
project.

The primary reason for choosing TensorFlow over Tesseract is that TensorFlow allows the use
of the cutting-edge approach of neural nets for optical character recognition. Tesseract, while
very e�ective, uses a more outdated approach of hand-de�ning classi�ers for character identi�ca-
tion. Hand-de�ned classi�ers are outdated because machine learning is more e�ective at �nding
classi�ers than humans are. [21]

Information retrieval through optical character recognition 13

CHAPTER 4. STATE OF THE ART

4.2 Bottomline context

The core of this project consists of data retrieval and data extraction. In the context that Bot-
tomline is facing, this means somehow getting data from the delivery system of a fuel truck.
Bottomline has experimented with direct M2M links between trucks and Android tablets, but has
concluded that such systems fail frequently due to bad connectivity due to the large amounts of
metal in the truck. Additionally, nearly every truck manufacturer uses di�erent hardware with
di�erent communication protocols, causing a lot of development work to be required when �nding
new customers. Another disadvantage of an M2M system is that third party hardware is required
to facilitate the communication. These third party devices can communicate with the truck using
a serial RS-232 or RS-485 connection to retrieve data, while o�ering this data over a Bluetooth or
WiFi connection to the drivers Android tablet.

Click and Find[22] supplies a device that interfaces with many popular truck systems and
uses a dedicated mobile connection to store delivery information directly on the suppliers servers.
This system is not suited for Bottomline because the software suite o�ered by Bottomline allows
for adding deliveries to trucks that are already en-route, which is unsupported by the hardware
supplied by Click and Find.

Since all trucks are mandated by EU law to print delivery information on paper tickets, OCR
is a viable solution. Bottomline is not currently aware of any competitors attempting to solve the
data retrieval problem in this manner.

There are many suppliers for OCR software on Android that would �t the purpose of Bottom-
line. The majority of these systems do not rely on the processing power of the device itself, but
o�oad the computational work to the suppliers server parks. This is great for casual OCR uses.
For business purposes however, it is not necessarily �tting, because the delivery data must remain
con�dential. Sending images to a third party company for processing is therefore not an option.
Additionally, one the requirements stated by Bottomline is that processing must happen locally
on the device, because deliveries must be validated by the driver immediately after a delivery
regardless of current network connectivity. Even though network coverage in the Netherlands is
reliable almost everywhere, there are still many coverage gaps throughout Europe. For example,
at remote locations such as rural farms in the north of Scotland, or B2B customers in the Alps,
coverage can be nonexistent.

14 Information retrieval through optical character recognition

Chapter 5

Experimental setup

Since OCR will be performed on a per-symbol basis, the symbols that must be recognized must be
found �rst. It is important to note that not all information on a delivery ticket must be recognized,
only the area between the second and third horizontal black line in A.1 is of interest. All other
information is either already known, or is present in the QR code between the �rst and second
black line.

Before and after �nding the area of interest, some pre-processing steps must occur in order to
improve the quality of the delivery ticket, and thus improve the accuracy of OCR. Once the quality
of the area of interest is optimal, the area must be segmented such that the exact location of each
symbol is known. The resulting symbols can then be fed into a neural network. The accuracy
of OCR can then be further improved with post processing. After all symbol interpretations are
�nalized, the variables in the delivery ticket that are of interest can be extracted. Finally, the
resulting accuracy of OCR and variable extraction are evaluated. All of these steps are described
in more detail below. The pre-processing and segmentation steps are split in the next chapter, as
this increases the clarity of the text.

5.1 Pre-processing

In order to properly segment an image into letters, the area of interest must be found, and some
noise must be cleaned up. This section describes the steps required before segmentation can be
performed on Bottomline delivery tickets. The basic steps of this process are shown in Figure 5.1.

As seen in Figure A.1, there are a number of vertical lines that are not on the actual paper
but are visible in the scan. These lines are there because the delivery ticket is only half the width
of a normal A4 page. The visible lines are the edges of the paper and the wheel the scanner uses
to pull paper through itself.

Unfortunately, the half-width page is a requirement since this is the only format the ow meter
aboard the trailer can print in. The delivery ticket is printed twice on one A4 page and then split
in two. Both sheets are put in the dot matrix printer at the same time on top of each other.
Because a special type of carbon-style paper is used, both copies contain the same dot matrix
print. Since this problem is unavoidable, a solution must be found. This section describes how
this problem is solved.

It is important to note that the contrast of the scan artifacts can be both higher and lower
than the contrast of the text in the area of interest. This is shown in Figure 5.2. It is therefore
not possible to simply use a threshold �lter to get rid of it. Additionally, simply de�ning a �xed
set of coordinates to �nd the dot matrix part of the print is unreliable, since there is no guarantee
that the user puts the sheet of paper in the center of the scanner.

Information retrieval through optical character recognition 15

CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.1: Preprocessing steps. Left: only the template; middle: dot matrix section; right:
without artifacts

Figure 5.2: Contrast of artifacts (b and d) and area of interest (a and c)

5.1.1 Finding the area of interest

To �nd the right section, it is interesting to get a version of the scan without the dot matrix part,
and without the scanner artifacts. Since the template for the delivery ticket has a much higher
contrast, this can be �ltered out fairly easily with a threshold �lter. This higher contrast is due to
the characteristics of the di�erent types of printers used: inkjet and matrix printer. The resulting
image is much cleaner to work with. Now in order to �nd the di�erent sections in this image,
the Hough Lines [23] algorithm can be used to �nd the horizontal bars. This algorithm can be
used to �nd thick line segments. Unfortunately it tends to break the lines into multiple segments.
This can be �xed by using a simple clustering and combining technique based on the y-coordinate
of the line segments. After this, every tested image contains 4 horizontal bars. The dot matrix
part is between the second and the third bar, so these y-coordinates are selected. Note that this
selection is in the original image again, and not in the thresholded version.

16 Information retrieval through optical character recognition

CHAPTER 5. EXPERIMENTAL SETUP

5.1.2 Getting rid of noise and hardware artifacts

Next up it is very helpful to correct for noise. Since a type of carbon-paper is used to print on,
the scans can be a bit ’dirty’. They can contain some pixels that aren’t actual ink. They have
about the same contrast as the text from the matrix print, so just thresholding to get rid of them
does not work.

Instead, the image is smeared out by applying an image convolution with a 3x3 kernel contain-
ing all 9’s. This is followed by a very friendly threshold iteration that turns almost all contrasts
into black. This �lters out small patches of pixels, but leaves letters (and the hardware artifacts)
intact.

Now that the correct part of the image is selected, only the hardware artifacts besides the dot
matrix section remain. These can easily be removed by detecting vertical lines and drawing thick
white lines over them.

5.1.3 Masking

At this point, all noise is gone, but the letters have been smeared out. This was great for getting
rid of noise, but is terrible for the segmentation algorithm described later in this report. To �x
this, the current image is used as a mask on the original image. With only the dot matrix segment
remaining, all pixels that are non-white in both the original scan and the current image need to
be black in the �nal result.

5.1.4 Rotation

The �nal step required before segmentation can be done, is making sure the image is not rotated.
Rotation can be introduced by not properly aligning the paper in the printers and scanner. Because
of how the segmentation algorithm works, a rotation of more than a few vertical pixels per row
of letters can have serious negative e�ects on the results. The following methods are implemented
to correct for rotation.

Since letters are mostly horizontal and vertical lines, the Hough Line Transform algorithm can
be used to �nd all tiny line segments in letters. When the found lines are clustered by angle, two
major clusters should remain: horizontal lines and vertical lines. Whichever one is closest to true
horizontal can be used correct the rotation of the whole image. This works fairly well, correcting
rotations of -45 to +45 degrees back to a range of -2 to +2 degrees.

Let a document with a straight horizontal line with a length of p pixels be rotated by d
degrees. De�ne the vertical distance between the left and right side of the horizontal line after
rotation as o = dtan(d�) � pe. This is shown in Figure 5.3. For a document with p = 1000 pixels,
d = 2�, o = dtan(2�) � 1000e = 34 pixels. Tests show that this is still too much rotation for the
segmentation algorithm to deal with.

To improve this performance, a score is assigned to a document by counting the number of
rows with only white pixels. A correctly oriented document contains more white lines than a
rotated one. This is true because a single horizontal line in a document without rotation a�ects
the white pixel count of only one row, while the same line in a rotated document a�ects the white
pixel count of many rows. To sketch a comparison to the example using Figure 5.3, o represents
the number of rows a�ected by the single black line. For a document with a height of 100 pixels
and one straight horizontal line, the number of rows with only white pixels is 99. If the image is
rotated by the aforementioned 2�, the number decreases to 100� o = 66.

By assuming that the previous algorithm corrected the rotation to within two degrees, this
algorithm can be used to assign a score to a number of di�erent rotations within -2 to +2 degrees
rotation of the current image. By calculating the score at 0.2 degree intervals, and selecting the
image with the highest score, the rotation can be reduced to only 3 pixels per line. This is su�cient
for the segmentation algorithm. It is technically possible to use this algorithm directly on the -45
to +45 degree range of rotational errors, but in practice assigning these scores takes too much
time to be able to do this quickly. A combination of the two algorithms is much more performant.

Information retrieval through optical character recognition 17

CHAPTER 5. EXPERIMENTAL SETUP

In order to test the algorithms described above, a set of 45 delivery tickets is manually oriented
correctly so that they are not rotated. These tickets are then rotated to various orientations,
namely -45, -35, -25, -15, -5, 5, 15, 25, 35, and 45 degrees. All 450 resulting tickets are then fed
into the rotation algorithms. The rotation suggested by these algorithms is stored for analysis in
Chapter 6.

Figure 5.3: De�nition of rotated lines

5.2 Segmentation

Now that the image is cleaned up and only contains the relevant parts, the image can be segmented
into letters. This section explains how the segmentation algorithm works, and which problems
were encountered while creating it.

5.2.1 Finding lines and letters

The initial segmentation is done in two steps: �nding lines with characters, and �nding characters
in those lines. Both of these steps can be implemented with a simple state machine that reads the
input image. This state machine is shown in Figure 5.4. This algorithm uses the histogram of the
density of a row of pixels to determine where lines are [24].

Figure 5.4: Find lines state machine

The state machine starts in the ’Not reading a character line’ state. The state machine will
then make a transition for each row of pixels in the image. The direction of the transition is based
on whether the number of black pixels in that row is greater or smaller than some threshold � .
Only the ’Line ended’ state is slightly more complex. It has the same transitions, but the Black
< � transition exists twice. One of these transitions will be taken up to N times. After that, the
other one will be executed.

Once a transition is made from ’Line ended’ to ’Not reading a character line’, a new line is
added to the list. A similar algorithm is then executed to �nd all the characters in each line.

18 Information retrieval through optical character recognition

CHAPTER 5. EXPERIMENTAL SETUP

Di�erent values for � and N are used, and the number of black pixels per column in the line is
used are used instead of the number per row.

The result of this algorithm is shown in Figure A.2 (left). The gray lines are added by the
state machine described above.

5.2.2 Detecting problems

The existing literature on the subject [25] [24] [26] mostly discusses using the pitch of the characters
in one or multiple lines to improve the results of the histogram based character segmentation
algorithm. The character pitch is de�ned as the distance from the start of a letter to the start
of the next letter on the line. Since the last character per line doesn’t have a next character to
calculate a pitch with, the pitch of the last character is de�ned as the width of that character.
Alternatively, the last character could be skipped when calculating the median.

The next question then is how to �nd out what the character pitch is. The chosen approach is
to calculate the median character pitch per line. There are four types of problems that can cause
the median to show the wrong number. These cases are wrongly merged characters, wrongly split
characters, white spaces, and the last character on each line.

Merged characters and white spaces could increase the median. Split characters and the last
character per line can decrease the median. As long as there are more correctly identi�ed character
pitches than errors per line and as long as the errors are distributed similarly on both sides of the
distribution, the median will represent the actual pitch. Unfortunately it is not possible to just
group the document in a ’median pitch’-sized grid, since the pitch is rounded to pixels and the
actual pitch might not align with the resolution of a scanner.

Once the median pitch is computed, the pitch of all characters before white space can be
corrected. When the found pitch of a character is more than 1.5 times the median pitch of the
line, the pitch of the character can be adjusted to the median pitch of the line. One exception to
this rule is when the width of a character is bigger than the median pitch. In this case, the width
should be used as the pitch to prevent a small part of the letter being missed.

Now that the median pitch is established, the misclassi�cations can be found. When the
calculated pitch of a character is out of the range m

2 < p < 3m
2 , where m is the median pitch, and

p is the pitch of the character. Why these metrics are chosen is described in the next sections.
The result of this method is shown in Figure A.2 (right). All problems are successfully found,
but there is one false positive: the dot on the second line. It is possible to just ignore the last
character of a line, but this would give problems with one of the other true positives found.

Merging the splitters The �rst type of problem to address is when a character is detected as
two separate characters. These cases can be found by looking for all characters where the found
pitch is smaller than or equal to half the median pitch. Using this classi�er, it does not matter
where the character is split. One part will always fall within this range, which is enough to detect
these issues.

Once a misclassi�cation is found, the best candidate for merging needs to be chosen. Two
metrics are used to determine which neighbouring character is a candidate for merging, and which
one of the candidates is best. The metrics used are the distance between the merge candidates,
and the resulting pitch or width of the resulting character. The distance counts more, because a
big gap is very unlikely to happen in an actual character.

Based on these two metrics, a score is calculated for each neighbour. If both neighbours score
zero, no merge takes place.

Splitting the mergers The second problem resolves around sets of multiple characters that
are segmented as one character. These cases can be found by looking for all characters with a
pitch that is larger than or equal to 1.5 times the median pitch. This metric is less mathematically
sound than the one used for merging. It is imaginable that two combined characters are less than

Information retrieval through optical character recognition 19

CHAPTER 5. EXPERIMENTAL SETUP

1.5 times the median pitch when combined. It is possible that this metric needs to be adjusted
when more test material becomes available.

Where to split a set of merged characters is the next problem. The initial strategy was to
raise the maximum value of the histogram at which splits happen, but depending on the letters
that have accidentally merged, problems might arise with this. Instead an approach based on the
median pitch is chosen. The image is split into two sections. The �rst section has the median
pitch as width, the second section is just the rest of the original image. If this second section is
still larger than 1.5 medians, the process happens again.

5.3 Letter recognition

After segmenting delivery tickets into rows of image sections, the separate image sections must be
interpreted as characters. This is done using a neural network trained for this speci�c purpose.
First, the shape of the neural network is explained. Followed by a description of how training the
neural network works. Finally, the test setup for the neural network is described.

When observing the ANN as a black box, there is an image containing a symbol that must be
recognized as input. The output is in the form of a vector of numbers, where each number in the
vector represents the probability that the image contains a speci�c symbol. The highest number
in the vector corresponds to the symbol that the input image is most likely to contain.

5.3.1 Artificial neural network shape

When attempting to recognize characters using a neural network, convolutional neural nets are
typically used[27]. In this case, a convolutional neural network consisting of an input layer, two
convolutional layers each followed by a pooling layer, a fully connected layer, and �nally an output
layer. The complete shape is shown in 5.5.

Figure 5.5: The shape of the neural network

The input layer consists of a two dimensional array of 20x52 oats that represent the pixels
in the image of a symbol. It is important to notice that the value of a pixel is the intensity
of a symbol at a given position, with 255.0 being a black pixel with ink, and 0.0 being a white
pixel without ink. The size of 20x52 pixels is chosen because it is the smallest multiple of four
in both dimensions that is higher than the largest symbol in the test set used for training the
neural network. Choosing a multiple of four for each dimension of the resolution is useful because
it matches up nicely with having two max-pooling layers in the neural network.

The input layer is connected to a convolutional layer using a kernel size of 3x3 pixels to �nd
32 simple features in the input image. This layer uses padding with zero-bytes to deal with edges
and corners. This layer is connected to a pooling layer that uses a kernel size of 2x2 pixels to
shrink the image by a factor two across the x and y dimensions. This shrinks the number of pixels
by a factor 4. The pooling algorithm used is max-pooling.

20 Information retrieval through optical character recognition

CHAPTER 5. EXPERIMENTAL SETUP

The pooling layer of the �rst convolutional layer is connected to a second convolutional layer.
This layer uses a kernel size of 3x3 pixels as well, but this time it �nds 64 more complex features
based on the combinations of the simple features found earlier. The same padding strategy as
the �rst convolutional layer is used. This layer is connected to another max-pooling layer with a
kernel size of 2x2 pixels. This reduces the number of pixels by another factor 4.

The pooling layer of the second convolutional layer is then attened such that all 64 feature
maps with a resolution of 5x13 pixels are spread out into a long line of 64*5*13=4160 nodes. This
attened layer is then connected to a fully connected layer of 128 nodes. This layer is capable of
drawing conclusions based on all pixels in all feature maps of the previous layer.

The �nal layer is the output layer. This layer is fully connected to the previous layer, and
contains 51 nodes. Each node returns a value between -128.0 and 128.0 and corresponds to a
possible symbol in the output alphabet. The symbol relating to the node with the highest value
is chosen as the recognized character.

5.3.2 Training the artificial neural network

With the design of the neural network in place, the next step required to do OCR is to train the
network. Before diving into this, a de�nition of what a ’trained’ neural network looks like must
be given. A neural network is considered trained when a certain cost function is minimized. The
value of this cost function is calculated by feeding the neural network a test set, and taking the
square of the di�erence between the actual output, and the desired output for each element in the
test set. All of these squared di�erences must then be summed together to �nd the actual cost of
the network.

When a neural network is initialized, all of its weights and biases are set to random values.
When feeding a test set to this freshly initialized neural network, the outputs are essentially
random. A method must be found for changing these weights and biases to decrease the cost
function mentioned above. This is done by �nding a negative gradient of this cost function which
tells how to change these weights and biases to decrease the cost function as e�ciently as possible.
This is done using an algorithm called backpropagation[9].

In order to explore a single gradient descent step using backpropagation, an example with
only one image in a training set is used. When feeding this symbol into the neural network, an
essentially random set of outputs is generated on its n output nodes. Since the symbol in the
training set also contains an expected output, the error for each output node can be computed.
For n�1 of the output nodes, the desired value is 0:0, where the actual output is a random number
between 0:0 and 1:0. The other output node has a desired value of 1:0, and an actual output of
a random number between 0:0 and 1:0. This means that the network must be changed such that
the output value of n� 1 output nodes lowers, and the value of the other output node increases.

The output value of all the output nodes depends on three things: the weight of the connection
with each node in the previous layer of the network, the output value of each node in the previous
layer of the network, and the bias of this node. Since the goal is to �nd the most e�ective gradient
descent step possible, the changes in these parameters must be chosen in a speci�c way. This
is done by changing the weights of the connections in proportion to the activation value of the
connected nodes, and changing the activation value of the connected nodes in proportion to the
weights. The result of these changes is that for output nodes with a desired output of 1:0, get
their output value enlarged, while output nodes with a desired output of 0:0 have their values
decreased.

Unfortunately, there is no direct control over the output value of each node in the previous
layer of the network. Instead, a similar calculation must be made for that node, while keeping the
desired e�ect in mind. E�ectively, the same calculation is recursively made for each layer, starting
from the output layer, hence the name backpropagation.

In the example above, only a single training image was used. A single gradient descent step
using backpropagation should take into account every element in a training set. This can be done
by computing the desired changes for each weight and bias for each element in the training set, and

Information retrieval through optical character recognition 21

CHAPTER 5. EXPERIMENTAL SETUP

calculating the average change requested by each training element. This set of average requested
changes is, essentially, the negative gradient of the cost function of the neural network.

This is however, computationally unfeasible. Instead, the training set is randomly sorted, and
a small subset is selected for each step. This is called stochastic gradient descent. The result is not
the actual gradient descent of the cost function of the neural network, but rather a signi�cantly
faster approximation.

In summary, backpropagation is the algorithm that determines how a single training example
wants to adjust the weights and biases of the neural network. An optimal gradient descent step
would then be the average of the desired changes to the weights and biases for all training examples
in the training set. Unfortunately, this is too slow, so the training set is divided into randomly
sorted smaller subsets. Each gradient descent step is now calculated based on the average desired
change calculated using backpropagation on each element in a smaller subset. This is called
stochastic gradient descent, and will converge to a local minimum of the cost function.[10]

5.3.3 OCR training and testing

In order to apply the theory explained in Section 5.3.2, a training and test set must be generated.
The network can be trained using the training set, and veri�ed using the test set.

Generating these sets is done by feeding a large number of delivery tickets through the seg-
mentation algorithm, and storing the resulting segmented symbols in a database.

This database is then accessed through a piece of software that shows an, and asks a user to
enter what symbol is shown in the image. This was done for 18636 symbols. This set was then
doubled in size by making a copy of each symbol that was moved by 1 pixel in the X and 1 pixel
in the Y direction.

This set of roughly 37000 symbols was than split into two groups, with the �rst group containing
roughly 6 in 7 elements, and the second group containing the other 1 in 7 elements. This is in
accordance to the ratio used by MNIST.

Now that OCR has been set up, a test must be devised to verify the accuracy of the neural
network. This can be done using the test set. Looking beyond just the percentage of correctly
identi�ed symbols, and into the percentage per symbol yields more interesting results. Namely
that errors are not uniformly distributed over the symbol set.

This leads to the �nal part of the experiment: by making templates for the expected lines in
the full set of delivery tickets

5.4 Postprocessing

To extract data from the text returned by OCR, a novel template system is used. As an example
let a line be detected by OCR as ’Vo1ume: 19O2L’ that should have been interpreted as ’Volume:
1902L’. Note that there are two substitutions in this interpretation: the letter ’l’ was read as the
number ’1’, and the number ’0’ was read as the letter ’O’. The �rst substitution can be corrected
using a dictionary system since the dictionary word ’volume’ is very close to the detected phrase
’Vo1ume’. The second substitution is more challenging. One might consider adding all numbers in
the range of the variable to the dictionary, and while this works for the ’Volume’ parameter which
is limited to at most 40000, it is less convenient for other variables such as the total amount of
liters ever delivered by a ow meter, or the license plate of the trailer. Instead, it is more e�ective
to use a library of possible types of lines, and indicate at which positions in a line letters are
expected, and at which positions numbers are expected. If an entry in this line library is de�ned
as the following regular expression: ’Volume:([0-9]+)L’, the Levenshtein [28] distance between this
regular expression and the read line is only two. By calculating the Levenshtein distance between
a read line and all lines in the library, the closest match can be used to re-read the line in a second
pass. By now using the matched line from the library, the line can be reread as ’Volume: 1902L’,
and the number 1902 can be extracted as the variable of interest.

22 Information retrieval through optical character recognition

CHAPTER 5. EXPERIMENTAL SETUP

Another reason for using TensorFlow is that the output given by a neural network is a prob-
ability distribution of all possible characters. For a circle-shaped input symbol, this means that
the 0o0;0O0; and 000 characters will have a heightened probability in the output distribution. Using
the entire per-symbol output distribution, and the context of the characters around it, allows
accurately choosing between categories such as letters and numbers. While this would technically
be possible in Tesseract as well, it would require completely taking the OCR engine apart to add
this functionality, even though it would be a simple layer added to TensorFlow.

Information retrieval through optical character recognition 23

Chapter 6

Results and evaluation

In this section, results of the setup described in Section 5 are explored. Most interesting are the
results of the variable extraction, however earlier steps such as rotation correction and separate
character recognition are shown as well. All sections are shown to perform well enough to reach
the goals for this thesis.

6.1 Rotation correction

Rotation correction consists of two steps: Hough Line Transform, and white line detection. The
results are shown in Figure 6.1. On the left, the results using only the HLT algorithm, while the
boxplot on the right is the result of HLT + white line detection.

Figure 6.1: Hough Line transform (left), HLT + White line detection (right)

The threshold for correct segmentation is 1 degree. Using only the HLT algorithm, only the
�rst and part of the second quartile satis�es that requirement. When combining HLT with white
line detection, the �rst, second, third, and most of the fourth quartile are within the needed range.

24 Information retrieval through optical character recognition

CHAPTER 6. RESULTS AND EVALUATION

Further exploring this problem can yield better results. However, since this is only a sub-
problem that must be solved in order to perform OCR on real-world data, it is not explored any
further.

6.2 Artificial neural network

There are a number of variables that can be explored when designing a neural network for OCR.
For example, the size of the fully connected hidden layer, the size of the convolution kernel, and
the learning rate. The search space for exploring all possible combinations of these parameters
is large, while training a network is very time consuming. Therefore, they are explored one
at a time in the order mentioned above. The next parameter is explored using the discovered
optimum of the previous parameter. The starting parameters are a fully connected layer of 64
nodes, a convolutional kernel size of 5x5 pixels, and a learning rate of 0.001. The �rst and second
convolutional layers calculate 32 and 64 features respectively. After the fully connected layer size
test, the size of this layer remains 64 nodes. The starting parameters are based on the MNIST
standard con�guration. The �nal goal is to have a neural network that has an as short as possible
running time, while still performing optimally.

After the convolutional kernel size test, the size of the kernel is adjusted to 3x3 pixels. After
the learning rate test, the learning rate is adjusted to 0.0001. The number of calculated features
for the two convolutional layers remains the same at 32 and 64.

6.2.1 Fully connected layer size

Figure 6.2: Correctly recognized symbols for neural nets with di�erent fully connected layer sizes

Reducing the size of the fully connected layer in the neural network is very important for
improving the performance of the neural network, since this layer has a signi�cant impact on the
number of connections in the network. This layer connects the �nal convolutional layer with the
output layer. For a neural network with 64 features consisting of 5 � 13 pixels, 64 nodes in the
fully connected layer and 51 nodes in the output layer, there are 5 � 13 � 64 � 64 + 64 � 51 = 269504
connections. Figure 6.2 shows that increasing the size of the fully connected layer improves after-
training performance until the 64 node mark. Increasing the node count further results in a slightly
faster learning curve for the network, but evens out in the long run. The selected fully connected
layer size is therefore set to 64.

Information retrieval through optical character recognition 25

CHAPTER 6. RESULTS AND EVALUATION

6.2.2 Convolutional kernel size

Figure 6.3: Correctly recognized symbols for neural nets with di�erent convolution kernel sizes

With the size of the fully connected layer set to 64 nodes, the size of the convolutional kernel
is investigated. The convolutional kernel determines the size of the features found in an image.
The results of varying the kernel size is shown in Figure 6.3. Lowering prevents the network from
�nding large features, but improves performance. The standard setting of a 5x5 pixel convolutional
kernel means that a 5x5 matrix is multiplied by a 5x5 pixel section of an image for each pixel of
the image. The numbers in the resulting 5x5 matrix are then added together and saved as a pixel
in a feature map. Since a 5x5 matrix multiplication requires the summation of �ve multiplications
for each of the 25 cells in the output matrix, and another 24 additions are needed to get the output
value, 125 multiplications and 124 additions are needed per pixel. For a 20x52 pixel image, this
means 20�52 = 1040 5x5 matrix multiplications are performed. This equals 130000 multiplications
and 128960 additions.

Since there is no accuracy di�erence between a 5x5 pixel kernel and a 3x3 pixel kernel, the
latter is chosen as the kernel size for the next sections. A 3x3 matrix multiplication requires
signi�cantly less arithmetic operations: the summation of three multiplications for each of the
nine cells in the output matrix, and another eight additions to get the output value. This adds
up to 27 multiplications and 26 additions per pixel, or 28080 multiplications and 27040 additions
for a 20x52 pixel image. In other words, 78% fewer multiplications and 79% fewer additions than
the 5x5 pixel kernel size in the �rst convolutional layer.

6.2.3 Convolutional layer feature count

Now that the convolutional kernel size is con�gured, the number of calculated features per convo-
lutional layer can be analyzed. The number of features for the MNIST example is 32 features in
the �rst layer and 64 features in the second layer. It is reasonable to expect that more features
are needed in this network, since it must distinguish more symbols. Nevertheless it is unwise to
signi�cantly increase the number of features the network looks for, since it will negatively impact
performance. The results in Figure 6.4 show that there is no improvement beyond 32 features in

26 Information retrieval through optical character recognition

CHAPTER 6. RESULTS AND EVALUATION

the �rst layer, and no improvement beyond 64 features in the second layer.

Figure 6.4: Correctly recognized symbols for neural nets with number of features in layer 1

Figure 6.5: Correctly recognized symbols for neural nets with number of features in layer 2

6.2.4 Learning rate

The �nal parameter to explore is the learning rate of the neural network. Since the Adam Op-
timizer is used instead of a normal gradient descent backtracking solution, the learning rate is
automatically adjusted during learning without external supervision. The initial learning rate,
however, still has an impact on the learning performance of the neural network. A high learning

Information retrieval through optical character recognition 27

CHAPTER 6. RESULTS AND EVALUATION

rate means that the algorithm takes big steps towards the ’correct’ con�guration, which can cause
the algorithm to over-step the optimal result. A low value for the learning rate means that the
steps taken by the gradient descent algorithm are very small, resulting in a very long training
time. The results are shown in Figure 6.6, and show that high learning rates such as 1 and 0.1
cripple the nets learning ability beyond usable levels. A learning rate of 0.01 yields fast learning,
but after training the accuracy of the network falls short of lower learning rates. Both 0.001 and
0.0001 perform well, with 0.0001 resulting in a slightly higher accuracy after training. Finally, a
learning rate of 0.00001 causes the network to learn too slowly. While longer training times are
not necessarily a problem, it is still inconvenient. Since a learning rate below 0.0001 does not show
any bene�t in the long term, a rate of 0.0001 is chosen for the �nal network.

Figure 6.6: Correctly recognized symbols for neural nets with di�erent learning rates

6.2.5 The resulting shape of the artificial neural network

After all tests in the sections above have been performed, the �nal shape of the ANN is as follows.

� The input layer, consisting of 20x52 input variables, where each variable represents the gray
scale value of a pixel in an input image;

� A convolutional layer with a convolutional kernel size of 3x3 pixels that can learn 32 features.
The kernel size indicates how big a recognized feature can be, while the number of features
inuences the amount of di�erent properties the ANN can recognize.

� A max-pooling layer with a size of 2x2 pixels. This layer reduces the size of the subsequent
layer by a factor four, by halving it’s size in both the x and the y dimension.

� Another convolutional layer with a kernel size of 3x3 pixels, but this time capable of learn-
ing 64 features. The increase in the number of features allows the ANN to learn more
combinations of features found in the previous convolutional layer.

� Another max-pooling layer, again reducing the number of connections needed to the next
layer.

28 Information retrieval through optical character recognition

CHAPTER 6. RESULTS AND EVALUATION

� A densely connected layer with 64 neurons. This layer allows the ANN to �nd relations
between all detected features in the entire image, thus allowing the ANN to determine which
symbol is shown in an input image.

� The output layer, where each neuron relates to a possible output symbol. A high output
value for a neuron indicates a high probability that the symbol represented in the input
image is the symbol corresponding to this neuron.

6.3 OCR reliability and templates

In order to evaluate the e�ectiveness of using templates on top of OCR, a test is set up that
compares the number of wrongly classi�ed symbols with and without templates. The results are
shown in Figure 6.7 and show a signi�cant reduction in the number of wrongly classi�ed symbols.
Out of a total 5039 symbols used in this test, 268 are wrongly classi�ed without using templates.
This is a success rate of 0.95. When templates are enabled, the number of classi�cation errors falls
to 102 out of 5039, for a success rate of 0.98. This reduction is mostly caused by the fact that the
0 and O symbols are no longer confused with one another.

Figure 6.7: Correctly recognized symbols for neural nets with and without template, split per
symbol group

This begs the question of what happens when an optimal symbol split is made for the template.
When dividing a symbol set in two, one would expect a �fty percent reduction in errors when a
random division is made. If instead a split is de�ned to minimize the number of errors, results
could improve drastically.

When splitting a 51 symbol set into two groups, a total of
�51

25

�
= 247959266474052 possible

splits can be made. This number is too large to explore in a reasonable amount of time, at 1
second per test, it would take approximately 7.9 million years to �nd the optimal solution. In
order to test the hypothesis stated above, the signi�cantly simpler MNIST case is used. Since this
case only has 10 symbols, there are a more reasonable

�10
5

�
= 252 possible splits. After running all

of these cases, the split 01259=34678 was found to be optimal. The results of this split, a random
split, and no split is shown in Figure 6.8.

As hypothesized, the reduction in errors between a random split and the optimal split is
signi�cant. Without templates, the test set of 10000 symbols has 94 misclassi�ed characters.
With a random template, this drops to 53 wrongly classi�ed characters. This is a reduction

Information retrieval through optical character recognition 29

CHAPTER 6. RESULTS AND EVALUATION

Figure 6.8: Correctly recognized symbols for neural nets with di�erent learning rates

Table 6.1: Variable extraction results

Results Amount Percent
Correct 144 0.966
OCR
Error 1 0.007

Segmentation Error 2 0.013
Selection
error 2 0.013

Totals 149

of 44%, which is close to the expected 50% drop. The optimal split only has 33 misclassi�ed
characters. This is a reduction of 65% compared to not using a template.

Finally, a test is performed on 149 delivery tickets. Two variables are extracted from these
tickets in this test: Volume of liters delivered, and total liters delivered by this trailer before and
after the delivery. The results are shown in Table 6.1.

A ticket is marked correct when either the volume or the liters after � liters before is equal
to the volume entered by the driver. When one of these criteria is met, it is reasonable to assume
that the driver entered the correct number.

A ticket is labeled as ’OCR Error’ when wrongly classi�ed characters are the cause of the
number entered by the driver not matching the number found by OCR. Segmentation errors are
caused by symbols being split or merged by the segmentation engine as described in Chapter 5.2,
causing too many or too few symbols to be recognized. Finally, selection errors are problems with
�nding the dot matrix print section as described in Section 5.1.1.

6.4 Execution time

One of the requirements for this project is to run OCR on a constrained device while a user is
waiting for the process to �nish. This means that it has to have a moderate execution time. The
following tests were run on two devices by running the algorithm on one delivery ticket ten times.

The full end-to-end process executed on a Samsung Galaxy Tab A 10.1 (2016), using an
Exynos 7870 Octa CPU with 4x1.6 GHz Cortex-A53 and 4x1.0 GHz Cortex-A53 cores takes 3742
milliseconds.

30 Information retrieval through optical character recognition

CHAPTER 6. RESULTS AND EVALUATION

Another test on a Xiaomi Mi A1 (Global) device with a Qualcomm MSM8953 Snapdragon 625
CPU consisting of 8x2.0 GHz Cortex-A53 cores shows a running time of 3154 milliseconds.

Information retrieval through optical character recognition 31

Chapter 7

Discussion and conclusions

In this chapter, the results of all performed experiments are summed up and discussed. First, the
results of preprocessing are discussed. Followed by symbol recognition through OCR, and �nally
variable extraction using templates. Each step is briey explained, followed by a summary of the
results for each topic.

7.1 Preprocessing

Among all the preprocessing steps, only rotation is tested separately. All other steps are only tested
implicitly in the �nal variable extraction test. Since rotational correction is only a subproblem
that must be solved in order to get to the real challenge of this thesis, it was not explored very
deeply. Two algorithms are proposed to deal with wrongly oriented input images: an algorithm
based on the Hough Line Transform, and an algorithm that uses white line detection. The �rst
algorithm works well on any rotation within the -45 to 45 degree range. By taking the average
angle of every line found in an input image, the image can be rotated back to within a 2 degree
angle of perfect orientation. This is good, but not good enough. Images that are rotated by more
than 1 degree su�er decreased segmentation performance, and thus are unlikely to be correctly
processed by OCR. White line detection helps bring the rotation down to within 1 degree in almost
all cases. This algorithm counts the number of white lines in an image, and works based on the
fact that a correctly oriented image contains more white lines than a rotated image.

The combination of these two algorithms ensures that the vast majority of input images is
correctly oriented before being segmented.

7.2 Artificial neural network configuration

The tests executed in Section 6 conclude that the optimal shape for the neural net is as follows.

� The input layer, consisting of 20x52 input variables, where each variable represents the gray
scale value of a pixel in an input image;

� A convolutional layer with a convolutional kernel size of 3x3 pixels that can learn 32 features.
The kernel size indicates how big a recognized feature can be, while the number of features
inuences the amount of di�erent properties the ANN can recognize.

� A max-pooling layer with a size of 2x2 pixels. This layer reduces the size of the subsequent
layer by a factor four, by halving it’s size in both the x and the y dimension.

� Another convolutional layer with a kernel size of 3x3 pixels, but this time capable of learn-
ing 64 features. The increase in the number of features allows the ANN to learn more
combinations of features found in the previous convolutional layer.

32 Information retrieval through optical character recognition

CHAPTER 7. DISCUSSION AND CONCLUSIONS

� Another max-pooling layer, again reducing the number of connections needed to the next
layer.

� A densely connected layer with 64 neurons. This layer allows the ANN to �nd relations
between all detected features in the entire image, thus allowing the ANN to determine which
symbol is shown in an input image.

� The output layer, where each neuron relates to a possible output symbol. A high output
value for a neuron indicates a high probability that the symbol represented in the input
image is the symbol corresponding to this neuron.

The resulting ANN is as small as it can be without lowering its OCR performance to below a
threshold that would prevent the thesis goals from being reached. This means that the processing
power required to run it on a constrained device is minimal.

7.3 Symbol recognition

After segmenting an image into separate symbols, an arti�cial neural network (ANN) is used to
determine what characters are found. This ANN consists of a number of convolutional layers,
max-pooling layers, and a densely connected layer. The ANN can be tested by feeding a large
set of known symbols into the neural network, and verifying the given output. This is not yet
an end-to-end test going from image to extracted variables: it testing the ANN only. Such a test
shows that 95% of all characters in the test set are correctly identi�ed. The test also shows that
the main problem is that the symbols ’0’ and ’O’ are frequently recognized as each other. This
makes sense, since these two symbols are exactly the same in the font used by the printer. In
order to improve the performance, templates are introduced.

7.4 Templates and variable extraction

In order to improve the performance of OCR, templates are used to give the OCR engine hints
about what types of symbols to expect. This works by creating a library of possible sentences,
and matching a line that has been read by OCR to a line in this dictionary. Each symbol can now
be re-interpreted using the expected character type (letter, number, symbol). It is not necessary
to run OCR again for this, simply �ltering the existing ANN output with the expected character
type is su�cient. By simply applying these templates to the test in 7.3, the accuracy goes up from
95% to 98%. When applying the template to full delivery tickets, 96:6% of tickets can have the
correct amount of delivered liters extracted using OCR. This is su�cient to pass the 90% mark
that was required by Bottomline.

7.5 Execution time

Since the end-to-end process described in this thesis must be run on a constrained device while
the user is waiting for it, it is important that the execution time of the process is not too long.
Tests with two modern Android devices show execution times of 3 to 4 seconds. This is acceptable
for Bottomline’s use case.

Information retrieval through optical character recognition 33

Bibliography

[1] M. Caudill, \Neural networks primer, part i," AI expert, vol. 2, no. 12, pp. 46{52, 1987. 3

[2] W. McCulloch, \Ws mcculloch and w. pitts, bull. math. biophys. 5, 115 (1943).," Bull. Math.
Biophys., vol. 5, p. 115, 1943. 3

[3] G. Cybenko, \Approximation by superpositions of a sigmoidal function," Mathematics of
control, signals and systems, vol. 2, no. 4, pp. 303{314, 1989. 3

[4] J. Snyman, Practical mathematical optimization: an introduction to basic optimization theory
and classical and new gradient-based algorithms, vol. 97. Springer Science & Business Media,
2005. 3

[5] H. Wu, \Global stability analysis of a general class of discontinuous neural networks with
linear growth activation functions," Information Sciences, vol. 179, no. 19, pp. 3432{3441,
2009. 3

[6] M. S. Gashler and S. C. Ashmore, \Training deep fourier neural networks to �t time-series
data," in International Conference on Intelligent Computing, pp. 48{55, Springer, 2014. 3

[7] D. Sussillo and L. Abbott, \Random walk initialization for training very deep feedforward
networks," arXiv preprint arXiv:1412.6558, 2014. 3

[8] X. Glorot, A. Bordes, and Y. Bengio, \Deep sparse recti�er neural networks," in Proceedings
of the Fourteenth International Conference on Arti�cial Intelligence and Statistics, pp. 315{
323, 2011. 4

[9] M. Buscema, \Back propagation neural networks," Substance use & misuse, vol. 33, no. 2,
pp. 233{270, 1998. 4, 21

[10] L. Bottou, \Large-scale machine learning with stochastic gradient descent," in Proceedings of
COMPSTAT’2010, pp. 177{186, Springer, 2010. 4, 22

[11] J. Wu, \Introduction to convolutional neural networks," National Key Lab for Novel Software
Technology. Nanjing University. China, 2017. 5

[12] X. Wang, L. Wang, and Y. Qiao, \A comparative study of encoding, pooling and normaliza-
tion methods for action recognition," in Asian Conference on Computer Vision, pp. 572{585,
Springer, 2012. 5

[13] D. Stathakis, \How many hidden layers and nodes?," International Journal of Remote Sens-
ing, vol. 30, no. 8, pp. 2133{2147, 2009. 6

[14] K. Shibata and Y. Ikeda, \E�ect of number of hidden neurons on learning in large-scale
layered neural networks," pp. 5008{5013, 2009. 6

[15] A. S. Urmi Jadhav, \E�ect of varying neurons in the hidden layer of neural network for simple
character recognition," International Journal on Recent and Innovation Trends in Computing
and Communication, vol. 4, no. 6, pp. 266{269, 2016. 11

34 Information retrieval through optical character recognition

BIBLIOGRAPHY

[16] \Ocr.space website." http://web.archive.org/web/20180404213830/https://ocr.
space/. Accessed: 2018-04-08. 13

[17] \Free-ocr website." http://web.archive.org/web/20180224083744/http://www.
free-ocr.com/. Accessed: 2018-04-08. 13

[18] \Rwth ocr homepage." http://web.archive.org/web/20171001181000/https://www-
i6.informatik.rwth-aachen.de/rwth-ocr/. 13

[19] \Tesseract github page." http://web.archive.org/web/20180311185536/https://github.com/tesseract-
ocr/tesseract. 13

[20] \Tensorow homepage." http://web.archive.org/web/20180401230936/https://www.tensorow.org/.
13

[21] K. Csuka, D. Gaastra, and Y. de Bruijn, \Breaking captchas on the dark web," 2018. 13

[22] \Click and �nd website." http://web.archive.org/web/20170918215216/http://www.
clickandfind.it/. Accessed: 2017-09-18. 14

[23] N. Kiryati, Y. Eldar, and A. M. Bruckstein, \A probabilistic hough transform," Pattern
recognition, vol. 24, no. 4, pp. 303{316, 1991. 16

[24] Y. Lu, \Machine printed character segmentation; an overview," Pattern recognition, vol. 28,
no. 1, pp. 67{80, 1995. 18, 19

[25] L. L. Barski and R. S. Gaborski, \Preprocessing of dot-matrix/ink-jet printed text for optical
character recognition," May 18 1993. US Patent 5,212,741. 19

[26] B. A. Yanikoglu, \Pitch-based segmentation and recognition of dot-matrix text," Interna-
tional Journal on Document Analysis and Recognition, vol. 3, no. 1, pp. 34{39, 2000. 19

[27] Y. LeCun, C. Cortes, and C. J. Burges, \The mnist database of handwritten digits," 1998.
20

[28] V. I. Levenshtein, \Binary codes capable of correcting deletions, insertions, and reversals,"
in Soviet physics doklady, vol. 10, pp. 707{710, 1966. 22

Information retrieval through optical character recognition 35

http://web.archive.org/web/20180404213830/https://ocr.space/
http://web.archive.org/web/20180404213830/https://ocr.space/
http://web.archive.org/web/20180224083744/http://www.free-ocr.com/
http://web.archive.org/web/20180224083744/http://www.free-ocr.com/
http://web.archive.org/web/20170918215216/http://www.clickandfind.it/
http://web.archive.org/web/20170918215216/http://www.clickandfind.it/

Appendix A

Images

A.1 Bottomline delivery ticket

36 Information retrieval through optical character recognition

APPENDIX A. IMAGES

Figure A.1: A scan of a Bottomline delivery ticket

A.2 Segmenting

Information retrieval through optical character recognition 37

APPENDIX A. IMAGES

Figure A.2: Segmenting steps. Left: �nding lines and letters; right: merging and splitting.

38 Information retrieval through optical character recognition

	Contents
	List of Figures
	List of Tables
	Introduction
	Context

	Formal problem description

