Atomic layer deposition of cobalt using H2-, N2-, and NH3-based plasmas
Vos, M.F.J.; van Straaten, G.; Kessels, W.M.M.; Mackus, A.J.M.

Published in:
Journal of Physical Chemistry C

DOI:
10.1021/acs.jpcc.8b06342

Published: 05/09/2018

Citation for published version (APA):
Atomic Layer Deposition of Cobalt Using H₂-, N₂-, and NH₃-Based Plasmas: On the Role of the Co-reactant

Martijn F. J. Vos, Gerben van Straaten, W. M. M. Erwin Kessels, and Adriaan J. M. Mackus

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT: This work investigates the role of the co-reactant for the atomic layer deposition of cobalt (Co) films using cobaltocene (CoCp₂) as the precursor. Three different processes were compared: an AB process using NH₃ plasma, an AB process using H₂/N₂ plasma, and an ABC process using subsequent N₂ and H₂ plasmas. A connection was made between the plasma composition and film properties, thereby gaining an understanding of the role of the various plasma species. For NH₃ plasma, H₂ and N₂ were identified as the main species apart from the expected NH₃, whereas for the H₂/N₂ plasma, NH₃ was detected. Moreover, HCP was observed as a reaction product in the precursor and co-reactant subcycles. Both AB processes showed self-limiting half-reactions and yielded similar material properties, that is, high purity and low resistivity. For the AB process with H₂/N₂, the resistivity and impurity content depended on the H₂/N₂ mixing ratio, which was linked to the production of NH₃ molecules and related radicals. The ABC process resulted in high-resistivity and low-purity films, attributed to the lack of NH₄₊ and NH₃ species during the co-reactant exposures. The obtained insights are summarized in a reaction scheme where CoCp₂ chemisorbs in the precursor subcycle and NH₃ species eliminate the remaining Cp in the consecutive subcycle.

1. INTRODUCTION

Atomic layer deposition (ALD) is a thin-film deposition technique, which relies on the cyclewise alternation of precursor and co-reactant doses. The self-limiting nature of the surface reactions during ALD generally allows for good uniformity on large-area substrates and excellent conformality on three-dimensional structures. Although the precursor that is used for an ALD process generally receives considerable attention, the choice of the co-reactant is equally important because it can greatly affect the properties of the deposited material as well as the technological and industrial feasibility of the process. For the ALD of metals, a wide range of co-reactants have been explored, with gases or plasmas of O₂, H₂, and NH₃ being the most common choices. Moreover, certain ALD processes make use of what can be referred to as an advanced ALD cycle, in which two or more co-reactants are dosed simultaneously or after one another in an ABC-type manner. For instance, mixed H₂/N₂ plasmas have been used for the ALD of a variety of materials. Furthermore, Hämäläinen et al. deposited Ir, Pd, Rh, and Pt at low temperatures (120–200 °C) using consecutive O₂ and H₂ exposures, and similar ABC-type cycles were later reported for the ALD of Ru (at 150 °C) using subsequent O₂ and H₂ doses and for the ALD of Pt (at room temperature) using subsequent O₂ and H₂ plasmas.

H₂, N₂, and NH₃-based plasmas (e.g., plasmas using NH₃, H₂, N₂, or H₂/N₂ mixtures as source gases) have previously been used as co-reactants for the ALD of a wide range of metals and metal nitrides. See Table S1 in the Supporting Information for an overview of selected metals and metal nitrides, which have been deposited using a NH₃ plasma or a mixed H₂/N₂ plasma as the co-reactant. For instance, Kim et al. found that for the ALD of Ir using ((ethylcyclopentadienyl)-(1,5-cyclooctadiene))iridium), NH₃ plasma yielded a lower surface roughness in comparison to when using O₂ gas as the co-reactant. Furthermore, Ten Eyck et al. employed a H₂/N₂ plasma for the ALD of Pd on a polymer substrate and claimed that a H₂/N₂ plasma leads to the formation of reactive NH₂ groups on the polymer, needed for chemisorption of the palladium(II) hexafluoroacetyleonate precursor. Moreover, the use of NH₃ plasmas instead of H₂ plasmas for the ALD of Ru, Ag, and Ni resulted in higher growth per cycle (GPC) and lower resistivity values. The choice for the co-reactant is generally less straightforward for the ALD of Co, Ni, and Cu, as compared to noble metals, because their reduction potential is lower, which makes impurity incorporation more
Table 1. ALD Processes Reported in the Literature for the Deposition of Co, Listing Deposition Temperature T, GPC, and Resistivity ρ

<table>
<thead>
<tr>
<th>precursor</th>
<th>co-reactant</th>
<th>T (°C)</th>
<th>GPC (Å)</th>
<th>ρ (μΩ cm)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoCp₂</td>
<td>NH₃ plasma</td>
<td>300</td>
<td>0.48</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>CoCp₂</td>
<td>H₂/N₂ plasma</td>
<td>150–450</td>
<td>0.26–0.65</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>CoCp₂</td>
<td>NH₃⁺</td>
<td>100–300</td>
<td>0.37–0.97</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Co(MeCp)₂</td>
<td>NH₃ plasma</td>
<td>100–350</td>
<td>0.4–1.9</td>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td>Co(CpAM)₂⁺</td>
<td>NH₃ plasma</td>
<td>200–250</td>
<td>0.5</td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>Co₂(CO)₈</td>
<td>H₂ plasma</td>
<td>75–110</td>
<td>1.2</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>CpCo(CO)₂</td>
<td>H₂ plasma</td>
<td>125–175</td>
<td>1.1</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Co(AMD)₂</td>
<td>H₂</td>
<td>340</td>
<td>0.50</td>
<td>285</td>
<td>43</td>
</tr>
<tr>
<td>Co(AMD)₂</td>
<td>NH₃</td>
<td>350</td>
<td>0.26</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Bu-allylCo(CO)₃</td>
<td>dimethylhydrazine</td>
<td>140</td>
<td>0.5</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>CCTBA⁺</td>
<td>H₂</td>
<td>125–200</td>
<td>0.8</td>
<td>90</td>
<td>46</td>
</tr>
<tr>
<td>Co(DBDB)⁺</td>
<td>formic acid</td>
<td>170–180</td>
<td>0.95</td>
<td>13⁹, 7, 47</td>
<td></td>
</tr>
<tr>
<td>Co(DBDB)⁺</td>
<td>tert-butylamine</td>
<td>170–200</td>
<td>0.98</td>
<td>15⁸, 48</td>
<td></td>
</tr>
</tbody>
</table>

“Hot-wire ALD. ¹Cyclopentadienyl isopropyl acetamidinato-cobalt. ²Bis(N,N’-diisopropylacetamidinato)cobalt(II). ³Dicobalt hexacarbonyl tert-butylacetelylene. ⁴Bis(1,4-difort-butyl-1,3-diazabutadienyl)cobalt(II). ⁵Measured on the Ru substrate.

probable.⁴ For this reason, H₂, N₂, or NH₃-based plasmas can be preferred over the O-containing co-reactants commonly used for noble metal ALD. However, for certain elements, the use of N₂, NH₃, or H₂/N₂ plasmas and mixtures thereof can also result in metal nitride films (e.g., AlN, TiN, and TaN).⁹,²¹–²⁴ In general, deposition of a metal nitride becomes more likely for metals with a low reduction potential, as illustrated in Table S1.⁴ Al, Ta, and Ti have reduction potentials between −0.6 and −1.7 V, whereas for Co, Ni, and noble metals, it is −0.26 V or higher.²³ Consequently, the use of, for instance, a mixed H₂/N₂ plasma leads to the deposition of AlN on one hand and metallic Co on the other hand.²⁶

Co is a ferromagnetic transition metal used in, for instance, magnetoresistive random-access memory and CoSi₂ contacts.²⁷–³¹ Currently, Co mostly receives much attention for applications in interconnect technology, in order to reduce the resistance–capacitance delay in state-of-the-art devices.³² First, Co has been suggested as a viable candidate as the liner for Cu interconnects because Co can be thinner than the conventional Ta liner, which leaves more space for Cu.³³,³⁴ Moreover, Co is also being investigated for the replacement of Cu or W in small-dimension interconnects in the front-end of line.³⁵,³⁶ It is therefore valuable to select Co ALD as a model system for studying the influence of the co-reactant. A wide range of precursors and co-reactants have been investigated for the ALD of Co, as shown in Table 1. As compared to other precursors, the bis(cyclopentadienyl)cobalt(II) (cobaltocene, CoCp₂) precursor has previously given good results, that is, a low resistivity and high purity, while also being a readily available and low-cost precursor. Interestingly, the ALD of Co using CoCp₂ as the precursor can be achieved using different co-reactants. Specifically, the studies of Lee et al. and Yoon et al. reported the growth of high-quality Co films using NH₃ plasma and H₂/N₂ plasma, respectively.²⁶,³⁷ A direct comparison between the two different processes as well as a connection between the plasma composition and the obtained material properties has not been made so far.

In this work, a detailed study of the use of H₂, N₂, and NH₃-based plasmas as co-reactants for the ALD of Co using CoCp₂ as the precursor is presented. As illustrated in Figure 1, three ALD processes with different co-reactants were investigated: an AB-type process with NH₃ plasma (referred to as “AB-NH₃ process”, Figure 1a), an AB process with a mixed H₂/N₂ plasma (“AB-H₂/N₂ process”, Figure 1b), and an ABC process with subsequent N₂ and H₂ plasmas (“ABC-N₂-H₂ process”, Figure 1c). As will be shown, the separation of the H₂ and N₂ plasmas in an ABC-type cycle provides an insight into the role of NH₃ and the species that are present in both the NH₃ plasma and the H₂/N₂ plasma (but not in the N₂ or H₂ plasmas).

This work is structured as follows. First, the experimental conditions related to the film deposition, the plasma studies, and the film analysis are discussed. In Section 3.1, the species present in the NH₃ and H₂/N₂ plasmas are identified and the
role of the H_2/N_2 ratio on the plasma composition is investigated. This is followed in Section 3.2 by a study on the reaction products released during the plasma exposures of the three different ALD processes. In Section 3.3, the obtained material properties are compared. In addition, the effect of the H_2/N_2 ratio and NH$_x$ concentrations in the plasma on the material properties are addressed. Next, the role of NH$_x$ species and a possible reaction mechanism are discussed in Sections 4.1 and 4.2, respectively. Finally, the main conclusions of this work are summarized.

2. EXPERIMENTAL SECTION

2.1. ALD Reactor and Conditions. Co films were deposited in a home-built ALD reactor, as described in the previous work.

In short, the reactor is equipped with a remote inductively coupled plasma source and a turbo pump reaching a base pressure of $\sim10^{-6}$ Torr. During all experiments, the temperature of the substrate table was set to 300 °C, whereas the walls were heated to 100 °C. Prior to all experiments, the reactor wall was covered by Co by running at least 200 cycles of the AB-NH$_x$ process. The CoCP$_2$ precursor (98%, Sigma-Aldrich) was contained in a stainless steel bubbler. The bubbler and the dosing line were heated to 80 °C, respectively, as was previously found to be appropriate for the deposition of CoO$_2$ in the same reactor.

The ALD recipe consisted of precursor dosing for 6 s in the first subcycle, using Ar as a carrier gas, which resulted in a chamber pressure of approximately 15 mTorr. Subsequently, the reactor was purged with Ar for 3 s and pumped down for 6 s. All plasma exposures were performed at a power of 100 W for 11 s and were followed by a purge and a pump step of 1 and 11 s, respectively. The NH$_x$, N_2, and H_2 plasmas were started after flowing the source gas into the reactor for 3 s. For the AB-H_2/N_2 process, the N_2 flow was started 2 s before the H_2 flow, and subsequently after 5 s, the H_2/N_2 plasma was ignited. This was done to stabilize the gas flows and minimize overpressures. The precursor dosing and plasma exposure times were based on saturation studies as shown in the Supporting Information (Figure S1).

The pressure used for the NH$_x$ plasma was 1.5 mTorr. For the standard H_2/N_2 plasma, the N_2 and H_2 pressures were separately set to 1.5 and 15 mTorr, respectively. Because of the addition of N_2 to the H_2 gas, the pumping speed increases (as compared to only H_2), leading to a lower total pressure of approximately 13 mTorr for the H_2/N_2 mixture. Moreover, the actual $H_2/(H_2 + N_2)$ mixing ratio is approximately ~0.77 (for the H_2 and N_2 pressures of 1.5 and 15 mTorr, respectively) because of the shorter residence time of H_2 as compared to that of N_2 (see also Section 3.1). The results for different $H_2/(H_2 + N_2)$ ratios in Sections 3.3 and 4.1 were obtained by varying the partial pressures of H_2 and N_2, while keeping the total pressure of the mixture constant at 13 mTorr. For the ABC-N_2-H_2 process, a pressure of 7.5 mTorr was used for both the N_2 and H_2 plasmas, and both plasma exposures were 11 s long.

To determine the effect of the $H_2/(H_2 + N_2)$ ratio on the NH$_x$ production in Section 3.1, a constant pressure of 75 mTorr was used for the gas mixture. This pressure was higher than the "standard" 13 mTorr to allow for more accurate variation of the gas flows and to enable mixing ratios higher than 80 vol %.

For a pressure of 13 mTorr, it is not possible to keep the pressure constant for mixing ratios higher than ~80 vol % because of the low gas flows used and because of changes in pumping speed upon mixing gas flows.

2.2. Plasma Studies. Quadrupole mass spectrometry (QMS) measurements were performed using Pfeiffer Vacuum Prisma QME-200 (mass-to-charge ratio $m/z = 1−200$), attached to the side of the ALD chamber. Measurements were done with the substrate table, and reactor walls were kept at the standard temperatures of 300 and 100 °C, respectively.

Note that a considerable part of the QMS signal can originate from the reactions at the reactor walls because the surface area of the wall is significantly larger than the surface area of the substrate table. It was confirmed that growth also occurs at a deposition temperature of 100 °C, albeit at a lower GPC (~0.13 Å as compared to ~0.29 Å) and with a higher impurity content. Because the aim is to compare the three ALD processes with one another, the temperature difference between the wall and the table is considered to be of minor influence.

For determination of the main species in the NH$_x$ and H_2/N_2 plasmas, mass scans (i.e., ion current as a function of m/z) for masses 1–30 were used. These mass scans were collected after stabilization of the gas flows and plasma. The $H_2/(H_2 + N_2)$ mixing ratios were determined using the QMS ion currents at m/z ratios 2 and 14 (corresponding to H_2^+ and N_2^+, respectively) from such mass scans. For a complete description of this method, see the Supporting Information.

The procedure for time-resolved QMS measurements was similar to the method as previously described by Knoops et al. In short, for $m/z \leq 40$, four m/z ratios were measured simultaneously, of which one was always $m/z = 40$. This value corresponds to Ar^+ and is used as reference. For $m/z > 40$, besides $m/z = 40$, only one other m/z ratio was followed per measurement, in order to keep the signal-to-noise ratio optimal while maintaining a reasonable time resolution. Three different cycles were studied using the QMS measurements: a "normal" (AB- or ABC-type) ALD cycle, a cycle without CoCP$_2$ dosing (but with Ar carrier gas dosing), and a cycle without igniting the plasma(s) (see Figure S2). This was done to discern reaction products from the species present because of the precursor dosing, source gas exposure, or plasma ignition. For each type of recipe, 10 cycles were performed, and only the signals over the last nine were averaged, assuming the first cycle can deviate because of the recipes performed previously.

To further minimize the influence of previous cycles, every set of cycles was preceded by a cleaning step consisting of an O$_2$ plasma for 90 s, followed by a NH$_3$ plasma for 120 s. Moreover, the purging and gas stabilization times were extended as compared to the standard ALD cycle, in order to separate the effects of pressure overshoots from the reaction products. See the Supporting Information (Figure S2) for a more detailed description and an example of the raw data that is collected using this procedure.

Optical emission spectroscopy (OES) was performed using a USB4000 spectrometer from OceanOptics, with a wavelength range of 180–1100 nm, mounted horizontally to the side of the plasma source.

2.3. Film Analysis. For characterization of the deposited material, Co films were grown on Si(100) coupons with 450 nm thermal SiO$_2$. Prior to deposition, the samples were cleaned in situ with an O$_2$ plasma for 2 min. It was found that unloading the samples after the deposition at a table temperature of 300 °C led to significant oxidation of the Co film. Therefore, the substrate table was cooled down from 300 °C led to significant oxidation of the Co film.
to 100 °C after each deposition to minimize the oxidation. Although the effect of the table temperature was not investigated in detail in this study, the GPC and film purity were found to decrease when the sample temperatures were lowered, which will be addressed in a follow-up publication.

The depositions for generating the saturation curves (Supporting Information, Figure S1) were performed on an ALD-grown Co seed layer to avoid nucleation effects. This Co seed layer was deposited by performing 400 cycles of the standard recipe using NH3 plasma on a thermal SiO2 wafer, resulting in a film thickness of approximately 12 nm. Coupons of this seed layer were loaded into the reactor with the table temperature set to 100 °C. After heating the substrate table in vacuum to the standard deposition temperature of 300 °C, the coupons were treated with a NH3 plasma for 3 min to reduce the surface oxidation.

The ALD growth was monitored in situ by spectroscopic ellipsometry (SE) using a J.A. Woollam, Inc. M2000U ellipsometer.52 The dielectric function of the deposited films was parameterized using a B-spline model.53 The Co film microstructure was studied using transmission electron microscopy (TEM) using JEOL ARM 200F, operated at 200 kV. For the TEM analysis, a lamella was prepared using a focused ion beam (FIB) in a FEI Nova600i NanoLab. X-ray photoelectron spectroscopy (XPS) was performed with a Thermo Scientific c KA1066 spectrometer, using monochromatic Al Kα X-rays with an energy of 1486.6 eV. For XPS depth profiling, sputtering was carried out using Ar+ ions with an energy of 500 eV. In addition, four-point probe (FPP) resistivity measurements were done using a Keithley 2400 Sourcemeter and Signalatron probe.

3. RESULTS

3.1. Species in NH3 and H2/N2 Plasmas. The similarities and differences between the NH3 plasma and H2/N2 plasma were identified by collecting mass spectra in the range m/z = 1–30. As can be seen in Figure 2, both plasmas mainly contain H2 (m/z = 2), N2 (m/z = 14 and 28), and NH3 (m/z = 15–17). However, the ratio between these species differs for the two plasmas, with the relative amount of NH3 being larger for the NH3 plasma. The mass-to-charge ratios 15 and 16 could correspond to NH3 (x < 3) species formed in the plasma as well as NH3 species formed by the dissociation of NH3 in the QMS analyzer. However, NH3 (x < 3) radicals present in the plasma are likely recombined before being detected in the QMS, indicating that the signals for m/z = 15–17 can mainly be attributed to NH3. Although NH3 (x < 3) species cannot directly be detected using the QMS, it can be assumed that they are present in the plasma as a consequence of dissociation of NH3.14 See also the Supporting Information (Table S2) for the assignment of species to corresponding mass-to-charge ratios.

By comparing the QMS spectrum for the source gas with the spectrum for the corresponding plasma, it becomes visible which species are formed upon plasma ignition (see Figure S4). When a NH3 plasma is ignited, the signals for m/z ratios 15, 16, and 17 decrease, whereas the signals at m/z = 2, 7, 14, and 28 increase. These observations indicate that part of the NH3 is dissociated, leading to the formation of both N2 and H2. Similarly, in a H2/N2 plasma, N2 and H2 are dissociated upon plasma ignition, followed by the formation of NH3 (see Figure S4b). NH3 production using a H2/N2 plasma occurs mostly at the reactor walls because a three-body reaction in the gas phase is unlikely for the pressures used in this work.54,56

The two plasmas were further compared using OES measurements (see Figure S5). The emission spectra for the NH3 and H2/N2 plasmas were found to be very similar. Moreover, the emission peak at ~336 nm corresponds to the A′Π → XΣ transition of NH and was identified in the spectra for both plasmas (Figure S5b), corroborating the presence of NH3,57 species.

To study the composition of the H2/N2 plasma as a function of the mixing ratio between the H2 and N2 gases, QMS spectra were collected for different H2/(H2 + N2) ratios. The amount of NH3 species produced in the plasma was found to depend on the mixing ratio. Figure 3 shows the QMS ion currents at m/z ratios 16 and 17 as a function of the H2/(H2 + N2) ratio for a constant chamber pressure of 75 mTorr. This pressure is higher than the standard 13 mTorr used for the ALD process, as explained in Section 2.1. The m/z ratios 16 and 17 correspond to NH3+ and NH3+, and their ion currents are a measure for the amount of NH3 produced in the plasma. Figure 3 indicates a maximum in NH3 production around 60–

Figure 2. QMS spectra for a NH3 plasma and a H2/N2 plasma. The main plasma species (H2, N2, and NH3) are indicated in the figure. The NH3 pressure was 1.5 mTorr, whereas the H2/N2 pressure was 13 mTorr.

Figure 3. QMS ion current at m/z ratios 16 and 17 for H2/N2 plasmas as a function of H2 fraction in the H2/N2 mixture. The H2/(H2 + N2) mixing ratios on the horizontal axis were determined using the ion currents at m/z ratios 2 and 14, corresponding to H2+ and N2+ (see the Supporting Information), before igniting the plasma. The total chamber pressure was kept constant at 75 mTorr.

DOI: 10.1021/acs.jpcc.8b06342
Based on these results, it can be concluded that HCp ignition corresponds to the formation of N2 (Figure 4a), the AB-H2/N2 process (Figure 4b), and the ABC-N2-H2 process. A normal ALD cycle and a reference cycle without the CoCp2 precursor dosing were measured, with plasma ignition for 11 s during both cycles (indicated by an arrow in the panels for m/z = 28). The H2/(H2 + N2) mixing ratio of the H2/N2 plasma was ~0.77.

80% H2 in the H2/N2 mixture, in agreement with the previous work.51,60 Interestingly, the optimum is found close to the ratio between N and H atoms in the NH3 molecule (0.75).60,61 Because the plasma composition depends strongly on the mixing ratio, selecting the H2/(H2 + N2) ratio is highly important when using a H2/N2 plasma for ALD, as will also be discussed later. On the basis of the optimum found in Figure 3, a H2/(H2 + N2) mixing ratio of ~0.77 was employed for further QMS studies and depositions using the AB-H2/N2 process, unless specified otherwise.

3.2. Reaction Products during Plasma Subcycle. A further insight into the use of NH3 and H2/N2 plasmas was obtained by studying the reaction products formed during the ALD cycles using time-resolved QMS measurements. First, QMS signals were collected for m/z ratios 40 (Ar+), 59 (Co+), and 66 (HCP+) during the precursor subcycle (Figure S6). On the basis of these results, it can be concluded that HCP (C\textsubscript{3}H\textsubscript{5}+, m/z = 66) is released as a product during the precursor half-reaction. Second, QMS signals were recorded during the co-reactant subcycles of the AB-NH3 process (Figure 4a), the AB-H2/N2 process (Figure 4b), and the ABC-N2-H2 process (Figure 4c). Measurements were done for a normal ALD cycle and for a reference cycle without CoCp2 dosing, using plasma exposures of 11 s (see Figure S3). Differences between the signals for the two cycles indicate the formation of species as a consequence of the ALD reactions.

Figure 4a shows the results collected during the plasma subcycle of the AB-NH3 process. The signals for m/z ratios 17 and 28 are very similar for the ALD cycle and the corresponding reference cycle and are related to the main plasma species, namely, NH3 and N2. The increase in ion current for m/z = 28 and a decrease for m/z = 17 after plasma ignition correspond to the formation of N2 (m/z = 28), which is a consequence of the dissociation of NH3 (m/z = 17). The current for m/z = 17 demonstrates a transient behavior, as NH3 is a “sticky” molecule and the NH3 flow does not stabilize within the time of the exposure.62 Meanwhile, the initial rise in ion currents (at ~0 s) for m/z ratios 27, 39, and 66 upon plasma ignition for the (normal) ALD cycle can be attributed to the release of reaction products (see Table S2). This rise is not observed for the reference cycle without CoCp2 dosing. The increase for m/z = 66, assigned to HCP+ (C\textsubscript{3}H\textsubscript{5}+), upon plasma ignition indicates the elimination of the Cp ring from the surface. A similar increase in ion current was observed for m/z = 65 (C\textsubscript{3}H\textsubscript{5}+, data not shown). The detection of HCP+ reveals that some of the Cp ligands are still present on the surface after the CoCp2 subcycle. The mass-to-charge ratio 27 corresponds to C\textsubscript{2}H\textsubscript{5}+ or HCN+ and m/z = 39 to C\textsubscript{2}H\textsubscript{3}+ or C\textsubscript{2}HN+. The presence of, for example, HCN and C\textsubscript{2}HN might be caused by the reaction of C\textsubscript{2}H\textsubscript{5}+ and NH\textsubscript{3}+ in the plasma. The detection of C\textsubscript{2}H\textsubscript{5}+ and C\textsubscript{2}HN+ can be explained by dissociative ionization of HCP in the QMS (see the cracking pattern in Figure S7) and/or by the formation of C\textsubscript{2}H\textsubscript{4} and C\textsubscript{2}H\textsubscript{2} in the plasma because of dissociation of HCP. Such production channels can unfortunately not be distinguished using the current experimental setup.

The QMS results for the AB-H2/N2 process are shown in Figure 4b. The ion currents for m/z ratios 17 and 28 behave very similar for the ALD cycle and the reference cycle and indicate the formation of NH\textsubscript{3} (m/z = 17) and consumption of N2 (m/z = 28) in the H2/N2 plasma. These findings are in line with the QMS measurements discussed in Section 3.1 (as shown in Figure S4). Note that the signal for m/z = 17 continues to increase during the plasma exposure because of the “sticky” nature of NH\textsubscript{3} and/or ongoing stabilization of the NH\textsubscript{3} production.62 However, the current for m/z = 17 starts to
drop after the plasma exposure, accompanied by a small increase in the signal for N_2, indicating that no more N_2 is being consumed. The ion currents for m/z ratios 27, 39, and 66 for the ALD cycle increase when the plasma is started (at $t \approx 0$ s), similar to the data shown in Figure 4a. This increase can be explained by the release of reaction products, as was discussed for the AB-NH$_3$ process.

To examine the role of the NH$_3$ species in the plasma in the reaction mechanism, the H$_2$/N$_2$ plasma was replaced by separated N$_2$ and H$_2$ plasma steps in an ABC-type cycle (see Figure 1). The results for the ABC-N$_2$-H$_2$ process in Figure 4c show that no NH$_3$ was present during the N$_2$ exposure, as can be expected. Moreover, upon ignition of the N$_2$ plasma (at $t \approx 0$ s), a minimal amount of HCP$^+$ ($m/z = 66$) is detected (revealed by the small difference with the reference cycle), which is much smaller than for the AB-NH$_3$ and AB-H$_2$/N$_2$ processes. Upon ignition of the subsequent H$_2$ plasma, a rise in ion currents for both $m/z = 17$ and 28 (at $t \approx 32$ s, observed for the ALD cycle and also for the reference cycle) indicates that NH$_3$ and N$_2$ are released. However, the amounts are almost negligible and are limited by the amount of nitrogen-containing species adsorbed to the substrate and reactor wall after the N$_2$ plasma exposure. The H$_2$ plasma mostly leads to the detection of C$_2$H$_5$/HCN$^-$ ($m/z = 27$) and C$_2$H$_3$-/C/HN$^-$ ($m/z = 39$) species and no significant amount of HCP$^+$. The limited amount of HCP$^+$ detected during both plasma exposures indicates that the Cp ring is not eliminated as a whole but rather dissociated because of the interaction with the plasmas.

Comparison of the results for the three different ALD processes provides an insight into the similarities and differences in reaction mechanisms. Except for the differences in plasma species ($m/z = 17$ and 28), the results in Figure 4a,b show very similar reaction products for the AB-NH$_3$ and AB-H$_2$/N$_2$ processes. These analogies between the two AB processes suggest a similar reaction pathway, where Cp ligands are eliminated from the surface during both the precursor and plasma subcycle. QMS measurements for the ABC-N$_2$-H$_2$ process show significant differences in terms of plasma species and reaction products (see Figure 4c), as compared to the AB processes, suggesting a different reaction pathway.

3.3. Film Properties

Before characterization of the material properties, the ALD behavior of the two AB processes was studied by determining the GPC as a function of the Co$_2$p$_2$ dosing and the plasma exposure times. As can be seen in Figure S1, both the precursor and co-reactant subcycles demonstrated a self-limiting behavior for the NH$_3$ plasma as well as for the H$_2$/N$_2$ plasma processes. Moreover, the saturation curves for the two processes look very similar, in line with the finding that the two AB processes show similarities in terms of plasma composition and reaction pathways as discussed in Sections 3.1 and 3.2. The GPC saturates to a value of 0.29 ± 0.02 Å, which is slightly lower than that reported by Kim and co-workers (0.48 Å).26,57

The material properties for the three different ALD processes were investigated for the films deposited using 1000 cycles. A film deposited using the AB-NH$_3$ process was investigated using TEM after preparation of a lamella using a FIB. The cross-sectional images in Figure 5 reveal that the film is polycrystalline and the crystal grains can clearly be observed. The film forms a closed layer of approximately 29 nm thick and has a low roughness. SE modeling yielded a film thickness of ≈ 32 nm. The difference between the thicknesses derived from SE and TEM is thought to be due to the film roughness, which is not included in the SE modeling.

The material properties obtained using the different processes are shown in Table 2. As can be seen, for both the AB-NH$_3$ and the AB-H$_2$/N$_2$ process, the film thickness (determined using SE) is ≈ 25 nm after 1000 cycles, corresponding to an average GPC of approximately 0.25 Å. It is noted that the sample prepared for the TEM analysis was different from the sample listed in Table 2 and the film thickness was slightly higher. The ABC-N$_2$-H$_2$ process resulted in an average GPC as high as 0.44 Å. The films deposited using the AB-NH$_3$ and AB-H$_2$/N$_2$ processes both demonstrate a low resistivity ($41–42 \mu\Omega \cdot \text{cm}$), as compared to a Co bulk resistivity of 6.24 $\mu\Omega \cdot \text{cm}$) and have a similarly low impurity content.53 The resistivity values obtained for the AB processes are slightly higher than the best reported value for Co ALD and lie within the range of values obtained for processes using NH$_3$ or H$_2$/N$_2$ plasma as the co-reactant (10–140 $\mu\Omega \cdot \text{cm}$, see Table 1). This is in contrast to the film deposited using the ABC-N$_2$-H$_2$ process, which has a high resistivity (>1000 $\mu\Omega \cdot \text{cm}$), likely caused by considerable amounts of impurities found in the film (O, N, and C add up to 25 at. %).

XPS measurements showed that the surface of the Co films is slightly oxidized (Figure S8). After Ar$^+$ sputtering, the O contents of the films deposited using both AB processes (NH$_3$ and H$_2$/N$_2$) are however found to be close to 0 at. %, and metallic Co 2p peaks were detected at around 780.2 eV.64 Apart from minimal amounts of O, C, and N, no other impurities were detected in the Co films grown using the AB-NH$_3$ and AB-H$_2$/N$_2$ processes. For the film deposited using the ABC-N$_2$-H$_2$ process, significant amounts of O, C, and N were detected in the bulk of the film (see the XPS results in Figures S8 and S9). It was found that exchanging the H$_2$ and N$_2$ plasma exposures, corresponding to an ABC-type cycle first with the H$_2$ plasma followed by the N$_2$ plasma, led to a comparable impurity content of approximately 25 at. % (see Table S3).

The significant higher GPC and resistivity for the ABC-N$_2$-H$_2$ process can be explained by the impurity incorporation, leading to a lower film density and/or a higher surface roughness. The difference between the two AB processes on one hand and the ABC-N$_2$-H$_2$ process on the other hand can most likely be attributed to the absence of NH$_3$ species in the
The material properties will be further discussed in Section 4.1. Background species (such as H$_2$O) in the plasma during the O incorporation is likely due to the dissociation of water vapor. In addition to the O content, the resistivity of the films varied slightly as a function of H$_2$ fraction, with higher film thicknesses (\sim20 nm) obtained for intermediate ratios of 0.35 and 0.42. The films deposited using low mixing ratios of 0.13 and 0.23 had resistivity values that were too high to be measured ($>10^8 \mu\Omega$ cm). For higher mixing ratios, the resistivity of the films decreased with increasing H$_2$ fraction, which correlates to a significant decrease in O impurity content.

As described in Section 3.1, the amount of NH$_3$ produced in the H$_2$/N$_2$ plasma depends on the ratio between the two source gases. To study the effect of the NH$_3$ concentration in the plasma, a set of Co films was deposited for various H$_2$/(H$_2$ + N$_2$) ratios, using a constant pressure of 13 mTorr for the gas mixture. The properties of the Co films were studied using SE, FPP, and XPS, and the results are shown in Table 3. The thicknesses of the films varied slightly as a function of H$_2$ fraction, with higher film thicknesses (\sim20 nm) obtained for intermediate ratios of 0.35 and 0.42. The films deposited using low mixing ratios of 0.13 and 0.23 had resistivity values that were too high to be measured ($>10^8 \mu\Omega$ cm). For higher mixing ratios, the resistivity of the films decreased with increasing H$_2$ fraction, which correlates to a significant decrease in O impurity content. In addition to the O content, differences in film structure (e.g., crystallinity, density, or porosity) might affect the film resistivity, and further research would be required to obtain a more detailed understanding.

The O incorporation is likely due to the dissociation of background species (such as H$_2$O) in the plasma during film growth or post-deposition oxidation of the film. Interestingly, the C and N contents of the films are relatively constant and do not show a clear trend as a function of H$_2$/(H$_2$ + N$_2$) ratio. The relation between the H$_2$/(H$_2$ + N$_2$) ratio and the material properties will be further discussed in Section 4.1.

4. DISCUSSION

4.1. Role of NH$_3$ Species

The results addressed in Section 3 can provide an insight into the role of different plasma species during the Co film growth. Specifically, the data in Table 3 show that the impurity content decreases with the H$_2$ fraction in the H$_2$/N$_2$ plasma. Meanwhile, the ion current at m/z = 17, indicating NH$_3$ in the plasma, increased when varying the H$_2$/(H$_2$ + N$_2$) ratio up to \sim0.77 (see Figure S10). This finding is in line with the dependence of the NH$_3$ content on the mixing ratio as was discussed in Section 3.1. In Figure 6, the Co concentration of the films is plotted as a function of the ion current for m/z = 17. Interestingly, this graph shows a linear trend, suggesting that a higher amount of NH$_3$ species in the plasma leads to a higher film purity. Note that with a higher NH$_3$ concentration in the plasma, also the amount of NH$_{x<3}$ radical species increases, as a consequence of NH$_3$ dissociation. The increase in Co purity is mostly due to the decline in O content, suggesting that NH$_{x<3}$ species facilitate the removal of O from the material or lead to a film which is less prone to post-deposition oxidation. Additional research is required to distinguish between these two possible explanations.

Overall, the findings show that careful consideration is needed when a H$_2$/N$_2$ plasma is employed as the co-reactant for ALD. Moreover, the dependence on the NH$_x$ concentration explains why H$_2$ plasmas or N$_2$ plasmas are not suitable as co-reactants, mainly because of the lack of NH$_x$ species. In addition, the fact that NH$_3$ gas cannot be used as the co-reactant in a thermal ALD process substantiates the hypothesis that NH$_x$ ($x < 3$) plasma species are necessary. The results thus suggest that NH$_{x<3}$ species play a crucial role in the Co plasmas for the ABC-N$_2$-H$_2$ process (see Section 3.2), as will also be discussed later.

Table 3. Material Properties of Co Films for Different H$_2$/N$_2$ Mixing Ratios

<table>
<thead>
<tr>
<th>H$_2$/(H$_2$ + N$_2$)</th>
<th>d (nm)</th>
<th>ρ ((\mu\Omega\cdot\text{cm}))</th>
<th>[O] (at. %)</th>
<th>[N] (at. %)</th>
<th>[C] (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>17.9</td>
<td>$>10^5$</td>
<td>7.0 ± 0.2</td>
<td>9.5 ± 0.5</td>
<td>4.0 ± 0.9</td>
</tr>
<tr>
<td>0.23</td>
<td>19.9</td>
<td>$>10^5$</td>
<td>6.2</td>
<td>9.5</td>
<td>3.8</td>
</tr>
<tr>
<td>0.35</td>
<td>20.3</td>
<td>3.6×10^6</td>
<td>5.6</td>
<td>9.3</td>
<td>3.8</td>
</tr>
<tr>
<td>0.42</td>
<td>20.3</td>
<td>2.5×10^5</td>
<td>4.2</td>
<td>9.6</td>
<td>3.5</td>
</tr>
<tr>
<td>0.52</td>
<td>19.6</td>
<td>1.5×10^5</td>
<td>4.4</td>
<td>8.8</td>
<td>3.8</td>
</tr>
<tr>
<td>0.77</td>
<td>17.5</td>
<td>78</td>
<td>0.2</td>
<td>8.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

“800 ALD cycles were performed. The total pressure was kept constant at 13 mTorr. The impurity contents were determined using XPS after sputtering with Ar$^+$ for 6 min.

Figure 6. Co content from XPS as a function of QMS ion current at m/z = 17. The QMS ion current is a measure for the NH$_3$ production in the H$_2$/N$_2$ plasma and was varied by changing the H$_2$/N$_2$ mixing ratio of the source gas. The pressure of the H$_2$/N$_2$ gas mixture was kept constant at 13 mTorr. The Co content was determined using XPS on films obtained by performing 800 ALD using the various H$_2$/N$_2$ mixing ratios. XPS was carried out after sputtering with Ar$^+$ ions for 3 min. The resistivity values of the Co films are indicated in the figure, in which the dashed line represents a linear fit through the data. It is noted that the decrease of the film resistivity as a function of NH$_3$ concentration might be related to the changes in the film structure, aside from the increased film purity.
growth. This is further elaborated on in Section 4.1, where a reaction mechanism is proposed.

Interestingly, the dependence of the film resistivity on the H2/N2 ratio is in agreement with the work of Yoon et al. and Hong et al. for the deposition of Co and Ru, respectively.12,26 Both studies observed high-resistivity values for high N2 fractions and suggested that NHx species in the plasma play an important role in the growth.12,26 In addition, in the work of Ten Eyck et al., the H2/N2 ratio was optimized in order to maximize the NHx generation in the plasma.10 Finally, ALD processes for Ru, Ni, and Ag have been reported to improve when NHx plasmas are used instead of H2 plasmas (in terms of a higher GPC and lower resistivity), which also suggests an important role of NHx species present in the NH3 plasmas.18–20

4.2. Reaction Mechanism. The QMS studies addressed in Section 3.2 can help to unravel the reaction mechanisms for the ALD growth of Co. Before reviewing the main QMS results, it is relevant to obtain an understanding of the surface groups present on Co after plasma exposure (i.e., prior to precursor dosing). Although the interaction of a NHx, H2, or N2 plasma with a Co surface has not been studied in detail, the surface science literature on Co provides some insights. For instance, Kizilkaya et al. investigated the stability of NHx groups on Co after NH3 exposure and found that NH2 adsorption on Co is followed by decomposition, resulting in NHx groups remaining on the surface.67 In addition, Wang et al. studied the nitridation of transition-metal surfaces and calculated that Co is not prone to nitridation, although a N-covered surface is stable after formation.68 On the basis of these reports, it can be expected that NHx groups are present on the Co film after NH3 or H2/N2 plasma exposure. H adsorbed on the Co surface seems less likely because H is reported to desorb (as H2) from Co between the temperatures of approximately 300 and 400 K, which is lower than the sample temperature during ALD (300 °C = 573 K table temperature).69–71 Notably, the role of N-containing surface species has previously been addressed for the ALD of Pt and Ag using N2 or NH3 plasmas.72,73 Specifically, N-containing species were proposed to adsorb during the N2 or NH3 plasma exposures and to react with the precursor during the subsequent precursor dose.

In short, the QMS studies in Section 3.2 revealed the following. During the precursor and co-reactant subcycles, HCp (C5H5) is released for both the AB-NH3 and AB-H2/N2 processes. In addition, fragments of the Cp ring (e.g., C6H5 and C6H4N+) were detected during the plasma exposure. Furthermore, variation of the H2/N2 ratio showed that the NHx species (NH2, NH) play an important role in the growth mechanism. These observations suggest that during the precursor subcycle, the CoCp2 molecules chemisorb to the surface and that part of the Cp rings react with H atoms present at the surface, followed by the release of HCp. This is illustrated in step “A” in Figure 7. Considering that chemisorbed H is not stable on a Co surface, it is speculated that NHx surface groups present after the plasma exposure provide the source of H (NHx with the subscript y is used to indicate the distinction from the NHy species in the plasma). Additional research such as surface Fourier-transform infrared spectroscopy (FTIR) is required to identify the surface groups to which the precursor binds. Possibly the precursor chemisorbs directly to unoccupied Co surface sites or to the NHx species after the release of HCp.

Figure 7. Schematic representation of the proposed reaction mechanisms during the ALD of Co using NH3 or H2/N2 plasma as the co-reactant. During the precursor subcycle (“A”), CoCp2 binds to the surface, accompanied by the release of HCp. The site to which CoCp2 chemisorbs is indicated as “X” because it remains to be identified. In the co-reactant subcycle (“B”), the NHx species from the plasma cause the release of HCp and fragments thereof and lead to the formation of NHx surface groups. NHx with the subscript y is used to indicate the distinction from NHx species in the plasma.

In the co-reactant subcycle, the Cp ligands remaining after precursor dosing are eliminated by the NHx radical species from the plasma (NHx). This reaction leads to the formation of HCp and C-, H-, and N-containing fragments, as illustrated in step “B” in Figure 7. The release of HCp was also observed during the NH3 plasma exposure in the work of Oh et al.74 Moreover, Shimizu et al. and Yuan et al. used NH3 as the co-reactant gas for Co and Ni hot-wire ALD using CoCp2 and NiCp2 as precursors, respectively, and claimed that the NHx gas-phase species formed on the hot wire are needed for the dissociation of the metal–Cp bond.75,76 In the reaction mechanism shown in Figure 7, the NHx species generated in the plasma thus fulfill this role. Furthermore, the NHx species as well as NH2 lead to the formation of NHx surface groups, which react with the precursor molecules in the next cycle. Although NH2 can dissociate after adsorption on a clean Co surface, it is believed that the NHx species are essential for complete ligand removal.

Note that a small amount of N (~2–3 at. %) is present in the Co films deposited using the AB-NH3 and AB-H2/N2 processes and that this content is slightly higher (~4.5 at. %) in the surface region (see Figure S9). This corroborates the expectation based on the surface science literature that N-containing species (e.g., NHx) are present and that they are more stable on the surface than in the bulk. However, a remaining question is how the surface NHx species leave the film, such that they are not incorporated in the film. Because the films contain only a small amount of N, it is speculated that most of the N diffuses out of the surface region and desorbs in the form of either NH3 or N2.

Interestingly, an analogy appears to exist between the proposed reaction mechanism and the ALD growth of noble metals using O2 as the co-reactant. During noble metal ALD, chemisorbed O plays a crucial role in the reaction mechanism, while the stability of noble metal oxides is limited.76 This is similar to the ALD of Co, where NHx species appear needed for chemisorption of the precursor and removal of the Cp ligands but are not built into the film.

5. CONCLUSIONS

The use of H2, N2, and NH3-based plasmas as co-reactants for the ALD of Co using CoCp2 was investigated. A direct
Speciﬁc reactant of a metal ALD process should be carefully selected. It was shown that the NH3 and H2/N2 plasmas contain comparable plasma species, including NH3_{ad} although the relative concentrations are different. Moreover, the reaction products detected during the plasma subcycle are very similar, suggesting analogous reaction pathways. Variation of the mixing ratio of H2 and N2 in the H2/N2 plasma showed that the lowest resistivity is achieved for the ratios with the highest NH3_{ad} concentration. In addition, the films deposited using plasmas with a lower NH3_{ad} concentration contained substantial amounts of O impurities. Deposition using an ABC-type cycle with consecutive N2 and H2 plasma steps resulted in a Co film with signiﬁcant amounts of impurities and a high resistivity. These insights indicate that the NH3 species present in both the NH3 and H2/N2 plasmas are necessary for eliminating the precursor ligands and for obtaining high-purity ﬁlms, which explains why H2 plasmas or N2 plasmas are not suitable as co-reactants. Furthermore, on the basis of the QMS results and surface science literature, a reaction mechanism was proposed where NH3_{ad} play an essential role, leading to the release of HCP in both subcycles.

Overall, the work shows that the plasma composition can strongly affect the obtained material properties and that the co-reactant of a metal ALD process should be carefully selected. Speciﬁcally, when using a H2/N2 plasma for Co ALD, selecting the H2/(H2 + N2) ratio is crucial. Other literature reports further illustrate the importance of choosing a suitable co-reactant and demonstrate that NH3 or H2/N2 plasmas can be preferred over other co-reactants. This suggests that the ﬁndings of this work can be generalized and can also apply to other metal ALD processes.

REFERENCES

The Journal of Physical Chemistry C

Article

