
https://research.tue.nl/en/publications/system-specification-and-design-structuring-methods-for-a-lock-product-platform(d97c2601-df91-4720-8dfd-f1267ceaa1d2).html

System speci� caÅ on and design
structuring methods

for a lock product plaç orm

T. Wilschut

System speci�cation and design structuring methods for a
lock product platform

Tim Wilschut

This research has been �nancially supported by Rijkswaterstaat.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4623-7
Copyright c 2018 by T. Wilschut
Reproduction: Gildeprint
Cover photo: https://nl.wikipedia.org/wiki/Prinses_Irenesluizen

System speci�cation and design structuring methods for a
lock product platform

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op
gezag van de rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een commissie
aangewezen door het College voor Promoties, in het openbaar te verdedigen op

28 november 2018 om 13.30 uur

door

Tim Wilschut

geboren te Delft

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. L.P.H. de Goey
1st promotor: prof.dr.ir. M. Steinbuch
2de promotor: prof.dr.ir. I.J.B.F. Adan
Co-promotor: dr.ir. L.F.P. Etman
leden: prof.dr. S.D. Eppinger (Massachusetts Institute of Technology)

prof.dr.ir. M.R. de Baar
prof.dr. K. Höltta-Otto (Aalto University)
dr.ir. G.M. Bonnema (Universiteit Twente)

adviseurs: drs. J.A. Vogel (Rijkswaterstaat)
ir. A.T.A. Peijnenburg (High Tech Systems Center, VDL ETG)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming
met de TU/e Gedragscode Wetenschapsbeoefening.

iii

The blind men and the Elephant

It was six men of Indostan to learning much inclined,
Who went to see the Elephant (Though all of them were blind),
That each by observation might satisfy his mind.

The First approached the Elephant and happening to fall
Against his broad and sturdy side, at once began to bawl:
"God bless me! � but the Elephant is very like a wall!"

The Second, feeling of the tusk, cried: "Ho! � what have we here,
So very round and smooth and sharp? To me 't is mighty clear
This wonder of an Elephant is very like a spear!"

The Third approached the animal, and happening to take
The squirming trunk within his hands, thus boldly up and spake:
"I see," quoth he, "the Elephant is very like a snake!"

The Fourth reached out his eager hand, and felt about the knee.
"What most this wondrous beast is like is mighty plain," quoth he;
"'T is clear enough the Elephant is very like a tree!"

The Fifth , who chanced to touch the ear, Said: "E'en the blindest man
Can tell what this resembles most; deny the fact who can,
This marvel of an Elephant is very like a fan!"

The Sixth no sooner had begun about the beast to grope,
Than, seizing on the swinging tail that fell within his scope,
"I see," quoth he, "the Elephant is very like a rope!"

And so these men of Indostan disputed loud and long,
Each in his own opinion exceeding sti� and strong,
Though each was partly in the right, and all were in the wrong!

. . .

John Godfrey Saxe (1816-1887)

iv

Acknowledgments

This thesis is the result of four years of close cooperation between Rijkswaterstaat
(RWS) and Eindhoven University of Technology (TU/e) within the MultiWaterWerk
(MWW) research project. I really enjoyed this cooperation. RWS showed a sincere
interest into my work, was open-minded to new insights, and gave me the freedom
to explore new ideas and methods. The cooperation is characterized by a strong
`heartbeat', exempli�ed by the many - close to 70 - progress and other presentations I
have given during the last four years. The `heartbeat' stimulates forward momentum
and is vital to bridge the gap between scienti�c research and everyday engineering
practice. The success of this cooperation is underlined by the �ve complementary
Ph.D. research projects that RWS has funded at the TU/e in the last four years.

A driving force behind the cooperation is Han Vogel, contract manager at RWS,
who besides the contract management duties was also very much involved in the
research content of my project. I truly thank him for setting up many (strategic)
meetings to ensure that the right people got involved, for teaching me the ropes of
working in a large governmental organization, and for his e�orts to ensure that the
�ndings of this thesis �nd a place within the organization of RWS. I thank Erik-Jan
Houwing for helping me to get the right data to conduct this research and for getting
me into contact with industry contractors. This enabled me to re�ect upon the ideas in
this thesis from an industry perspective. I thank Maria Angenent for involving the CIV
and IA departments of RWS into this research project, Ron Beem and Mick Baggen
for providing me with insight into current systems engineering practice at RWS, and
Walter Nieman for reviewing the ESL lock function and design speci�cations. I thank
Robert de Roos, Arjan Hijdra, and Kees Nieuwstad, the (former) project managers of
the MWW research project. I thank all other employees of RWS who have contributed
to this thesis.

At the TU/e, I thank my co-promotor Pascal Etman. He motivated me to do a
Ph.D. project and, as he supervised my bachelor, master, and Ph.D. thesis project,
taught me how to do research and how to write scienti�c articles. I thank Koos Rooda
for sharing his years of experience and slowing me down from time to time. I thank
Albert Hofkamp for bringing a computer science point of view to the table, building
the ESL compiler and making me a better programmer. Together, Pascal, Koos,
Albert and I have had weekly in-depth discussions on the methods in this thesis in
general and on the syntax and semantics of ESL in particular. These discussions have
signi�cantly improved the quality of this work. I enjoyed working together with my
fellow MWW researchers Martijn Goorden and Ferdie Reijnen, and with the many

v

vi

students that did their thesis or internship projects in the context of my research. I am
grateful for their contributions to this thesis. I thank my �rst and second promotor,
Maarten Steinbuch and Ivo Adan, and the members of the doctorate committee for
reviewing this thesis and for taking part in the thesis defense.

Finally, I thank my parents Bas and Trudy Wilschut who gave me the right set
of values to explore life, to create and to grasp opportunities, and to work hard to
succeed, and my friends and family who make the journey of life much more fun.
Finally, I thank my partner in life Vera van Bakel who ensures me of much needed
moments of relaxation and who gave birth to our beautiful and cheerful son Daan.

Tim Wilschut
October 21, 2018

Summary

During the �rst half of the last century, many navigation locks have been built
throughout the Netherlands. In the coming decades, approximately �fty navigation
locks have to be thoroughly renovated or replaced. Historically, locks have been
built using an Engineer-to-Order production strategy. This has resulted in a large
variety of lock designs, which is considered to be ine�cient from the viewpoint
of design, construction, and maintenance. Therefore, Rijkswaterstaat (RWS), the
executive branch of the Dutch Ministry of Infrastructure and Water Management, is
developing a modularization and standardization strategy for locks. By doing so, RWS
aims to increase the e�ciency of the replacement task and simultaneously increase
lock reliability and availability (RA), decrease life-cycle-costs (LCC), and decrease
uncertainty in construction costs and time.

This thesis contributes to the objectives of RWS by exploring methods for designing
a lock product platform. Product platforms are commonly used as part of Make-to-
Order and Con�gure-to-Order production strategies. Such a platform forms the basis
for the development of customized products from (semi-) standardized component
modules to meet speci�c customer needs.

It is proposed to create a lock product platform composed of fully-, semi-, and
non-standardized component modules. The platform distinguishes between basic
modules and optional modules. Basic modules are groups of components that are
always present in any lock. Optional modules are groups of components that are only
occasionally present in a lock. RWS can use this platform for the e�cient development
of (semi)-standardized locks that meet location speci�c requirements and constraints.

The �rst part of this thesis explores the feasibility of the lock product platform
proposition given the existing design variety within the current lock portfolio of RWS.
The extent of the design variety is studied using a characteristic matrix, mapping locks
to lock characteristics, and a similarity matrix, showing the similarity between locks
based on the characteristics they possess. Clustering the similarity matrix reveals the
existence of seven groups of locks that share the same characteristics.

Subsequently, the commonality among the seven groups is investigated using the
dependency structure matrix (DSM) method. A DSM is an N � N matrix showing
dependencies, such as energy or information transfer, betweenN components. By
analyzing the network of dependencies between components one can �nd component
modules that have many internal dependencies, but relatively few external dependencies.
What is more, engineering systems typically contain component modules that have
many dependencies across the whole system, which are so-called `busses'. This thesis

vii

viii

presents a novel DSM clustering algorithm to e�ciently �nd the bus and non-bus
component modules within the network of component dependencies.

Multiple DSMs have been made for representative locks from the di�erent groups,
using available engineering data and expertise about the as-built locks. Subsequently,
a so-called� DSM is obtained by summing the DSMs of the individual locks. The
clustering results are used to determine how best to modularize the locks and to
determine which modules are basic modules and which are optional modules.

By projecting (qualitative) RA and LCC data onto the � DSM, the modules that
have a signi�cant impact on RA and LCC of the whole lock portfolio are identi�ed.
These modules are primary candidates for standardization in the lock product platform.

The second part of this thesis focuses on methods for creating function- and design-
speci�cations for the identi�ed lock platform modules. Rijkswaterstaat outsources the
design and construction of locks. To ensure that future locks will meet the prede�ned
standards and interfaces dictated by the lock platform, detailed speci�cations need to
be created for each of the component modules. The consistency of such speci�cations is
essential to ensure the compatibility of the di�erent modules and to prevent costly and
lengthy design iterations. The thesis presents a novel systems engineering language
for writing function and design speci�cations.

One of the key concepts of the language is a prescribed grammar for goal-functions,
which describe the functional purpose of components with respect to each other, and for
transformation-functions, which describe the internal workings of a component. This
concept has been developed further into the Elephant Speci�cation Language (ESL),
which allows for the creation of function and design speci�cations in terms of needs,
requirements, and constraints at multiple granularity levels, following the systems
engineering V-model. The system decomposition tree forms the central structure of an
ESL speci�cation. The needs, requirements, and constraints are speci�ed within the
body of component de�nitions. ESL has a �xed syntax and semantics and supports
the formal derivation of dependencies between components, needs, requirements,
constraints, variables, and combinations thereof throughout the branches and layers of
the system decomposition tree.

The future locks have to meet additional function and design requirements compared
to existing locks. What is more, RA data of existing locks may not be representative
for future locks due to advancements in technology. Therefore, the thesis presents a
method to identify critical components with respect to RA based on the network of
dependencies between components derived from the speci�cation. Critical components
require extra attention during design and construction.

A case study on the Princess Marijkesluizen renovation project shows that ESL
can be e�ectively used to create structured system speci�cations. By clustering and
visualizing dependencies between components, between functions, and combinations
thereof in a multi-domain-matrix (MDM), one can gain insight in the lock architecture,
in the lock function chains, and determine which parts of the lock architecture and
function chains are a�ected by the renovation.

Samenvatting

In de eerste helft van de 20ste eeuw zijn er vele sluizen gebouwd in Nederland. In
de komende decennia dient een vijftigtal sluizen grondig te worden gerenoveerd of te
worden vervangen. Elk van deze sluizen is gebouwd volgens een Engineer-to-Order
realisatiestrategie. Dit heeft geleid tot een grote verscheidenheid aan sluisontwerpen
wat een negatieve invloed heeft op de e�ciëntie van het ontwerpen, bouwen en
onderhouden van sluizen. Rijkswaterstaat (RWS) is daarom gestart met de ontwikke-
ling van een modularisatie- en standaardisatiestrategie voor sluizen. Hiermee tracht
RWS deze vijftigtal sluizen zo e�ciënt mogelijk te renoveren, c.q. te vervangen, en
tegelijkertijd de betrouwbaarheid en de beschikbaarheid (Engelse afkorting: RA) van
sluizen te verhogen en tevens de levenscycluskosten (Engelse afkorting: LCC) en de
onzekerheid in bouwtijd en bouwkosten te verlagen.

Dit proefschrift draagt bij aan de doelen van RWS middels de ontwikkeling van meth-
odes voor het ontwerpen van een productplatform voor sluizen. Een productplatform
wordt veelal gebruikt als referentiekader in een Make-to-Order of Con�gure-to-Order
realisatiestrategie. Een dergelijk platform vormt dan het uitgangspunt voor de ont-
wikkeling van klantspeci�eke oplossingen bestaande uit (semi-)gestandaardiseerde
modules van componenten.

Dit onderzoek presenteert een productplatform voor sluizen bestaande uit volledig,
semi, en niet gestandaardiseerde modules van componenten en de raakvlakken daar-
tussen. Het platform onderscheidt basis modules en optionele modules. Basis modules
zijn groepen van componenten die in elke sluis aanwezig zijn. Optionele modules
zijn alleen in bepaalde situaties aanwezig. RWS kan dit platform gebruiken om op
e�ciënte wijze (semi-)gestandaardiseerde sluizen te ontwikkelen die aansluiten bij de
behoefte van lokale belanghebbenden.

Het eerste deel van dit proefschrift verkent de haalbaarheid van een productplatform
voor sluizen, gegeven de huidige verscheidenheid in sluisontwerpen in Nederland.
De variëteit is onderzocht met een zogeheten karakteristieken-matrix. Deze matrix
relateert sluizen aan sluiskarakteristieken, zoals het type deur. Op basis van de
karakteristieken-matrix is een gelijkenis-matrix te berekenen die aangeeft hoe sterk
de gelijkenis is tussen sluizen op basis van de gekozen karakteristieken. Het clusteren
van de gelijkenis-matrix onthult zeven groepen van sluizen die gelijke karakteristieken
hebben.

Vervolgens worden de gemeenschappelijkheden tussen sluizen onderzocht met
behulp van `dependency structure matrix' (DSM) methodes. Een DSM is eenN �
N matrix die afhankelijkheden, zoals energie- of informatie-uitwisseling, tussenN

ix

x

componenten visualiseert. Door het netwerk van afhankelijkheden te analyseren
met een clusteralgoritme zijn clusters van componenten te vinden die veel interne
afhankelijkheden hebben maar relatief weinig externe afhankelijkheden. Daarnaast
bevatten technische systemen vaak modules van componenten die afhankelijkheden
hebben door het gehele systeem. Dit zijn de zogeheten `integrerende' of `bus' modules.
Dit proefschrift presenteert een nieuw DSM-clusteringsalgoritme wat in het netwerk
van afhankelijkheden op e�ciënte wijze bus en niet-bus modules detecteert.

Vijf DSMs zijn gemaakt voor representatieve sluizen uit vijf van de zeven ge-
lijkwaardige groepen van sluizen. Deze DSMs zijn gemaakt op basis van bestaande
ontwerpgegevens en kennis van sluisexperts. Vervolgens zijn deze DSMs gesommeerd
in een � DSM. De geclusterde� DSM maakt duidelijk welke modules van componenten
altijd aanwezig zijn en welke modules optioneel zijn. Bovendien geeft de� DSM inzicht
in bestaande variaties binnen modules.

Door (kwalitatieve) RA en LCC data op de � DSM te projecteren, zijn modules met
een signi�cante invloed op RA en LCC van de sluisportfolio als geheel geïdenti�ceerd.
Deze modules zijn de primaire kandidaten voor (volledige) standaardisatie in het
productplatform voor sluizen.

RWS besteedt het ontwerp en de bouw van sluizen uit aan marktpartijen. Om
de gewenste modularisatie en standaardisatie te realiseren, dienen eenduidige en
gestructureerde functie- en ontwerpspeci�caties voor de geïdenti�ceerde modules te
worden geschreven. De consistentie van functie- en ontwerpspeci�caties is belangrijk
voor een soepele integratie van de nieuwe modules in de bestaande sluizen en om
ontwerpiteraties te voorkomen. Het speci�ceren van functies en eisen staat centraal
in het tweede deel van dit proefschrift waarin een nieuwe `systems engineering' taal
genaamd de `Elephant Speci�cation Language' (ESL) wordt gepresenteerd.

Het kernconcept van ESL is een voorgeschreven grammatica voor doel-functies, om
het doel van componenten ten opzichte van elkaar te beschrijven, en voor transformatie-
functies, om de interneconversie van `�ow' in componenten te beschrijven. ESL fa-
ciliteert de speci�catie van functies en ontwerp in termen van behoeften, eisen en
randvoorwaarden op meerdere granulariteitsniveaus. Het meerlaagse aspect van ESL
sluit aan bij het systems engineering V-model. In ESL vormt de systeemdecom-
positieboom de centrale structuur. De functie- en ontwerpbehoeften, de eisen en
de randvoorwaarden worden gespeci�ceerd in de de�nities van systeemcomponenten.
ESL heeft een vaste syntax en semantiek en ondersteunt de automatischea�eiding
van afhankelijkheden tussen componenten, behoeften, eisen, randvoorwaarden, (ont-
werp)variabelen en combinaties daarvan.

Toekomstige sluizen dienen extra functie- en ontwerpeisen te vervullen ten opzichte
van bestaande sluizen. De RA data van bestaande sluizen is daarbij maar beperkt
representatief voor toekomstige sluizen. Daartoe wordt een methode gepresenteerd
om kritische componenten met betrekking tot de RA van het systeem als geheel te
identi�ceren op basis van de functionele afhankelijkheden tussen componenten.

Een pilotstudie in het Prinses Marijkesluizen rennovatieproject laat zien dat ESL
e�ectief kan worden gebruikt om systeemspeci�caties te schrijven. Het visualiseren en
het clusteren van afhankelijkheden tussen componenten, tussen functies en combinaties
daarvan geven inzicht in de sluissysteemarchitectuur, in de functieketens van de sluis,
en in welke componenten en raakvlakken daartussen onderdeel zijn van een renovatie.

Contents

1 Introduction 1
1.1 Research objectives . 3
1.2 Analysis of existing locks . 4
1.3 Speci�cation of future locks . 7
1.4 Thesis outline . 10
1.5 List of publications . 10

2 Multi-level �ow-Based Markov clustering 13
2.1 Introduction . 13
2.2 Markov clustering method for DSMs 16
2.3 Comparison of algorithms . 26
2.4 Conclusion . 31
2.5 Future work . 31

3 Similarity, modularity, and commonality analysis 33
3.1 Introduction . 33
3.2 Related work . 36
3.3 Method . 38
3.4 Results . 42
3.5 Conclusion . 51

4 Function speci�cation grammar for dependency derivation 53
4.1 Introduction . 53
4.2 Related work . 56
4.3 Method . 62
4.4 Case study: navigation lock Sambeek 69
4.5 Conclusions . 76
4.6 Discussion . 76

5 Reliability and availability ranking of components 79
5.1 Introduction . 79
5.2 Related work . 82
5.3 Method . 85
5.4 Lock Sambeek study . 91
5.5 Conclusions . 94

xi

xii Contents

6 System speci�cation language 97
6.1 Introduction . 97
6.2 System speci�cations . 99
6.3 Existing system speci�cation methods 101
6.4 The Elephant speci�cation language 103
6.5 Dependency derivation . 109
6.6 Dependency visualization . 119
6.7 Example . 125
6.8 Discussion . 131
6.A ESL syntax . 132
6.B Mapping relations de�nition . 136

7 Renovation project pilot study 137
7.1 Introduction . 137
7.2 Related work . 138
7.3 Method . 144
7.4 The Prinses Marijke Lock-complex . 146
7.5 Conclusion . 159

8 Conclusions 161

Bibliography 163

Chapter 1

Introduction

Navigation locks are vital assets in the Dutch infrastructure. Navigation locks regulate
the �ow of water through the waterways and enable ships to cross di�erences in water
levels between waterways. In the Netherlands, a considerable number of navigation
locks were built during the �rst half of the previous century. In the coming decades,
approximately �fty navigation locks have to be thoroughly renovated or replaced, since
they have reached their end-of-life, no longer meet modern-day safety standards, or
have insu�cient capacity to keep up with growing waterborne transportation.

Historically, locks have been built using an Engineer-to-Order (EtO) production
strategy. Each lock has been uniquely designed to meet location speci�c requirements
and constraints. As a consequence, a great variety of lock designs currently exists in
the Netherlands.

Lock asset managers have observed that due to the design variety, specialized
knowledge, equipment, and spare parts are required to operate and to maintain the
locks. The asset managers consider this to be ine�cient and expensive. What is more,
an EtO strategy requires excessive (human-) resources to renovate and to replace
�fty locks within a few decades. Therefore, Rijkswaterstaat (RWS), the executive
branch of the Dutch Ministry of Infrastructure and Water Management, founded
the MultiWaterWerk (MWW) project, which is dedicated to the modularization of
locks and the standardization of selected lock modules. By doing so, RWS aims to
increase lock reliability and availability (RA), to decrease life-cycle-costs (LCC), and
to decrease uncertainty in construction costs and time.

The desire of RWS to create a `production line' for modularized and semi-
standardized locks, requires a change in production strategy.Figure 1.1 shows several
production strategies on the right and the input to each production strategy on the
left. The diagonal gap in the middle denotes the customer-order-decoupling point.
The strategies are ordered in increasing level of standardization. The concept of a
production line for modularized and semi-standardized locks resembles a mixture of a
Make-to-Order (MtO) and a Con�gure-to-Order (CtO) production strategy. A MtO
strategy requires a basic product structure (design) to be present at the moment
a customer order is received, i.e., at the moment a lock is due for renovation or
replacement in the case of RWS. This basic product structure is subsequently modi�ed

1

2 Chapter 1. Introduction

Figure 1.1: Multiple realization strategies and the required input (inspired by Johnsson
(2013) and Kudsk et al. (2013)).

to speci�c customer needs. A CtO strategy requires standard module and component
designs to be present at the moment a customer order is received. A selection of
standard modules and component designs is subsequently combined and con�gured to
customer speci�c needs. A CtO approach allows for mass customization while still
bene�ting from economies of scale (Jiao and Tseng, 1999).

A challenge in implementing MtO and CtO production strategies is to balance
the product variety that is o�ered to the customer with the internal complexity of
managing the design of many product variants (Jiao et al., 2007). To do so e�ectively,
companies often resort to the creation of a product platform, which is de�ned by
Meyer and Lehnerd (1997) as: à set of subsystems and interfaces developed to form
a common structure from which a stream of derivative products can be e�ciently
developed and produced'.

The level of standardization of a product platform may di�er. Alblas and Wortmann
(2012, 2014), for example, advocate the usage of function � technology platforms in
traditional EtO industries. Such a platform contains a standard set of functions,
working-principles, and technologies from which engineers can choose during the
conceptual and embodiment design phases of a design project. It does not contain
detailed designs of standard components.

This study contributes to the development of a lock product platform composed
of fully-, semi-, and non-standardized component modules as well as the interfaces
between them, as schematically depicted inFigure 1.2. The platform distinguishes
between basic modules and optional modules. Basic modules are groups of components
that are always present in any lock. Optional modules are groups of components that
are only occasionally present in a lock. The level of standardization of each module
may range from a functional level to a full detailed design level. RWS can use this
platform for the e�cient development of (semi)-standardized locks that meet location
speci�c requirements and constraints while reducing the design variety in their lock
portfolio.

1.1. Research objectives 3

Figure 1.2: Schematic lock product platform.

1.1 Research objectives

This thesis contributes to shaping the lock product platform and establishing a
systematic method for the speci�cation of function and design requirements that is
complementary to such a platform. Speci�cally, the thesis seeks to develop methods
with the following objectives:

1. To �nd groups of similar locks in the lock portfolio of RWS, i.e., groups of
locks that share many functions and design characteristics. It is argued that
locks within a group can be renovated or replaced using the same set of semi-
standardized component modules. Hence, the number of groups provides an
indication of how many conceptual lock variants one should be able to derive
from the lock platform. This number may decrease if RWS decides to no longer
build a certain variant in the future or this number may increase if RWS decides
to add a new variant.

2. To �nd modules of lock components within locks based on the system architecture.
The basic building blocks of the lock platform are modules of components and
their interfaces. System architecture is described as the mapping of a system's
functions to the physical components within the system, and the dependencies
between those components (Ulrich, 1995). In designing a product platform it is
desirable to create modules of components that are as independent as possible
(Simpson, 2004).

3. To determine which modules of components and interfaces of components are
part of the basic lock structure, and which are part of the optional lock structure.
Modules and interfaces that are part of the basic lock structure are the primary
candidates for full standardization.

4. To determine which component modules are candidates for full, semi-, or non-
standardization, given the desire of RWS to increase lock reliability and avail-

4 Chapter 1. Introduction

ability (RA), to decrease lock life-cycle-costs (LCC), and to decrease uncertainty
in construction costs and time.

5. To create structured and consistent design speci�cations. RWS outsources the
design and construction of locks. To ensure that future locks will meet the
prede�ned standards and interfaces dictated by the lock platform, detailed
speci�cations need to be created for each of the component modules. The
consistency of such speci�cations is essential to ensure the compatibility of the
di�erent modules, and to prevent costly and lengthy design iterations.

6. To derive a model of the system architecture directly from design speci�cations.
A visual model of the system architecture helps engineers to increase their
understanding of the system, to identify dependencies between components,
and to promote communication between engineers (Sosa et al., 2007). For each
renovation and replacement project, RWS has to write a public tender. As such,
RWS has to work with many di�erent subcontractors. A graphical model of the
system architecture aids in the communication and in the transfer of knowledge.

The thesis is organized in two parts. The �rst part of the thesis focuses on methods
for the analysis of existing locks. The second part focuses on methods for the creation
of design speci�cations for future locks.

1.2 Analysis of existing locks

Modularization of a system comprises the division of a system's components into groups,
i.e., into modules. Figure 1.3a shows a schematic drawing of a lock consisting of civil
components, mechanical components, actuators, sensors, resource controller(s), and
supervisory controller(s). Figure 1.3b shows, for example, a hierarchical decomposition
(grouping) of the schematic lock shown inFigure 1.3a. The components are divided
into physical and control components. The physical components are divided into
structural and electrical components. The structural components comprise the civil
and mechanical components while the electrical components comprise the sensors
and actuators. The resource and supervisory controllers are grouped into the control
components module. This is one of many possible modularizations.

In general, one seeks for modules of components that are as independent as possible
(Pahl and Beitz, 2013), i.e, modules of components that have many internal interfaces
but relatively few external interfaces. To identify such modules, one requires knowledge
of and insight into the network of dependencies between components. That is, one
requires insight into the architecture of the system. In the literature, one can �nd many
system architecture modeling methods and tools. Typically, one has to model or specify
the network of dependencies that represents the system architecture, and subsequently
visualize and analyze it. For specifying the network of dependencies one can distinguish
between graphical methods, such as SysML (Friedenthal et al., 2014), and linguistic
methods, such as the object process language (Dori et al., 2003). Linguistic methods
are conceptually close to writing function and requirements speci�cations, which is
the current industry practice. Therefore, a linguistic method is the method of choice
in this thesis

1.2. Analysis of existing locks 5

(a)

(b)

Figure 1.3: (a) Schematic drawing of a lock system, and (b) a lock decomposition tree.

Furthermore, in the literature one can �nd graph-based and matrix-based system
architecture visualization and analysis methods. In this thesis, dependency structure
matrix (DSM) (Steward, 1981), also known as design structure matrix, methods are
used as, compared to graphs, they provide a compact and analytically advantageous
format for visualizing and structuring dependencies between components (Eppinger
and Browning, 2012). DSMs have been applied in many branches of industry, such as
automotive, aerospace, consumer electronics, and construction. See for example the
extensive overview of DSM applications by Browning (2016), which lists more than
500 DSM based articles.

A DSM is a squareN � N matrix in which a non-zero entry at position i; j indicates
that row element i depends on column elementsj (Steward, 1981). A DSM is similar
to an adjacency matrix of a graph, but richer in the sense that it is common practice to
display multiple dependency types and strengths at once (Eklund, 2017). Eppinger and
Browning (2012) have categorized the di�erent types of DSM found in the literature

6 Chapter 1. Introduction

Figure 1.4: Dependency Structure Matrix (DSM) model types.

into static structure, temporal-�ow structure, multi-domain structure, and structure
comparison DSMs, as shown in Figure 1.4.

In the static structure category, one can �nd product and organization DSMs.
Product DSMs are used to display dependencies between subsystems or components of
a product. Organization DSMs are used to display dependencies between departments,
teams, or individuals within an organization. These matrices are usually symmetric
and are typically analyzed with a clustering algorithm, which permutes the rows
and columns of the DSM to �nd clusters (modules) of elements that have many
intra-cluster dependencies and relatively few inter-cluster dependencies. For example,
in Figure 1.5a, an unclustered product DSM is shown that contains components c1 to
c6 and four types of dependencies: material �ow, electrical energy �ow, information
�ow, and spatial connectivity. By permuting the rows and columns using a clustering
algorithm one can obtain the DSM shown inFigure 1.5b. This DSM shows a bus, i.e.,
an integrative cluster composed of component c4, and two modular clusters composed
of components c1, c3, and c5 and components c2 and c6, respectively. Such a clustering
result provides information on how to best decompose a system into modules.

The process DSM typically shows dependencies between functions, activities, or
(design) parameters. The order of elements along the diagonal of the DSM indicates the
sequence in which each element is visited during execution of the process.Figure 1.5c
shows, for example, a process DSM containing the six activities a1 to a6. A circle
at position i; j indicates that activity i requires information (input) from activity j .
Lower-diagonal marks (i > j) indicate feedforward information �ows as activity j
precedes activity i . Upper-diagonal marks (i < j) indicate feedback information �ows
as activity j succeeds activityi . Process DSMs are typically analyzed with sequencing
algorithms that aim at minimizing the number of feedback marks or distance of
feedback marks to the diagonal. InFigure 1.5d, for example, the rows and columns
of Figure 1.5c are permuted such that all marks are lower-diagonal. Upper-diagonal
marks are typically undesired as upon execution of activityi one has to assume the
information input from succeeding activity j . Such assumptions may prove to be

1.3. Speci�cation of future locks 7

Figure 1.5: Illustration of clustering a product DSM (a, b) and sequencing a process
DSM (c, d) .

incorrect upon completion of activity j . As a consequence, activityi may have to be
(partially) reworked.

Any combination of static and temporal �ow DSMs can be jointly presented along
the diagonal of a multi-domain matrix (MDM), which forms the third category in
Figure 1.4. An o�-diagonal matrix within an MDM maps the elements from one DSM
to the elements of another DSM, and is therefore called a domain-mapping matrix
(DMM). A DMM can be used to, for example, map components to functions or map
individuals to activities.

The �nal category is the structure comparison group in which one can �nd the
� DSM and � DSM (Gorbea et al., 2007). In a� DSM multiple DSMs are summed
into a single matrix which shows the commonalities in system architecture of two or
more entities. In a � DSM two DSMs are subtracted from each other, which shows
the di�erences in system architecture between two entities.

A similarity matrix is a variant on a DSM (Chen and Li, 2005), which di�ers from
a DSM in the sense that it is a matrix in which the entries are in the continuous range
[0,1]. A zero entry at position i; j indicates that element i and j have no similarity,
i.e., have no mutual characteristics. A one at positioni; j indicates that element i and
j are perfectly similar and share all characteristics. A value in between zero and one
indicates that elements i and j share a subset of characteristics.

The DSM model types, and variants thereof, form the basis of the methods presented
in this thesis regarding objectives 1 to 4, listed inSection 1.1. That is, a similarity
matrix is used to �nd groups of similar locks, product DSMs are used to investigate
the modularity of locks and to identify component modules that have a signi�cant
impact on RA and LCC, and � DSMs are used to investigate the commonality of
component modules among multiple locks.

1.3 Speci�cation of future locks

Rijkswaterstaat outsources the design and construction of locks. To ensure that future
locks will meet the prede�ned standards and interfaces dictated by the lock platform,
detailed speci�cations need to be created for each of the component modules. The

8 Chapter 1. Introduction

Figure 1.6: The systems engineering V-model (Forsberg and Mooz, 1991) combined
with the onion model (Childers and Long, 1994) and the design phases of Pahl and
Beitz (2013).

consistency of such speci�cations throughout the design process is essential to ensure
the compatibility of the di�erent modules and to prevent costly and lengthy design
iterations.

In the literature, one can �nd a large body of work about design processes and the
importance of design speci�cations. The survey of Estefan (2007) presents, for example,
the waterfall model (Royce, 1987), the spiral model (Boehm, 1988), the systems
engineering V-model (Forsberg and Mooz, 1991), and the onion model (Childers and
Long, 1994). Bonnema et al. (2016) give an overview of various systems engineering
methods and tools that support multidisciplinary engineering design. Within the
established engineering design literature, such as Pahl and Beitz (2013) and Eppinger
and Ulrich (2015), one can �nd many similar, but slightly di�erent schematic models
of design processes.

The common divisors among all models are design hierarchy, design iteration, and
design phases. That is, all models describe a design process as a hierarchical and
iterative process in which engineers go through multiple design phases. Albeit, the
terminology used in the various models often di�ers. The hierarchical levels are for
example described as levels of abstraction, levels of granularity, levels of detail, and
levels of decomposition (Maier et al., 2017). The phases are denoted by a variety of
terms as well. Pahl and Beitz (2013), for example, refer to the conceptual, embodiment,
and detailed design phases. Whereas, axiomatic design theory (Suh, 1998) comprises
the customer needs, functional, and physical design phases.

Figure 1.6 is an attempt to merge the concepts of the systems engineering V-model,
the onion model (Childers and Long, 1994), and the design domains of Pahl and
Beitz (2013) into a single model that schematically represents our view on the design

1.3. Speci�cation of future locks 9

process. This thesis focuses on the development phase (left side of the V). The design
process starts at the upper left corner ofFigure 1.6 in the needs (N) speci�cation phase
at decomposition level 0. At this level, a system is modeled as a single component
(granule) and one speci�es what the component must do and what the component
must comply with. Next, one moves to the conceptual (C) design phase in which one
explores and chooses the way-of-working of the component. Once the way-of-working
has been selected, one can move on to the embodiment (E) design phase where one
explores and chooses the embodiment of the component. Subsequently, one can work
out the detailed (D) design and analysis phase of the component. For example, to
verify whether the component can meet the needs given the chosen way-of-working
and design con�guration. If the detailed design and analysis results happen to be
negative, one has to loop back to the conceptual and embodiment design phases and
change the way-of-working and/or the embodiment. If the detailed design and analysis
results are positive, one can proceed to the validation point to determine whether
one is designing the desired component. That is, to validate if one is designing the
component that the customer actually wants. If the validation results are negative,
one has to go back to the needs domain at decomposition level 0 and redo the design
loop. If the validation results are positive, one can continue to decomposition level 1,
in which the component is decomposed into multiple sub-components (sub-granules).
For each of the sub-components, one has to complete a similar design loop as described
above, before one can move to decomposition level 2.

The thesis presents a novel systems engineering language for writing function and
design speci�cations. One of the key concepts of the language is a prescribed grammar
for goal-functions which describe the functional purpose of components with respect
to each other, and for transformation-functions which describe the internal workings
of a component. This concept has been developed into the Elephant Speci�cation
Language (ESL), which allows for the creation of function and design speci�cations in
terms of needs, requirements, and constraints at multiple granularity levels, following
the systems engineering V-model as depicted inFigure 1.6. The system decomposition
tree forms the central structure of an ESL speci�cation. The function- and design
needs, requirements, and constraints are speci�ed within the body of component
de�nitions.

ESL has a �xed syntax and semantics and supports the formal derivation of
dependencies between components, needs, requirements, constraints, variables, and
combinations thereof throughout the branches and layers of the system decomposition
tree. MDMs are used to visualize the derived dependencies. Each branch in the system
speci�cation tree may be of arbitrary depth. As such, each module of the lock platform
may be speci�ed at a di�erent level of granularity, while remaining consistent. This
enables RWS to selectively increase or decrease the design freedom of the contractor,
i.e., to be speci�c in certain areas, while being general in others. This suits the desired
semi-standardized nature of the lock platform.

The thesis presents a pilot study to show the �rst proof-of-principle of ESL. The
Prinses Marijke locks are due for a major renovation. To e�ectively organize the
renovation project, engineers need insight into the network of dependencies between
components that are due for renewal and components that remain, to ensure that the
replacement parts will �t and function properly in the existing structure. ESL is used

10 Chapter 1. Introduction

to write a structured multi-level function speci�cation for the Prinses Marijke locks
and automatically visualize the network of dependencies between components.

In addition to the language, the thesis presents a method for the ranking of system
components with respect to reliability and availability of the complete system based
on the network of functional dependencies derived from the speci�cation. The method
enables engineers to assess and understand performance risks in the early design phase
to ensure that products will meet customer requirements.

1.4 Thesis outline

The chapters in this thesis consist of a series of (journal) papers, which have been
published or submitted for publication. Each chapter can be read independently.
Readers, who are interested in clustering techniques, are advised to readChapter 2,
which presents a new clustering algorithm that is used throughout the thesis to
cluster DSMs. Readers, who are interested in similarity, modularity, and commonality
analysis of a product portfolio, are recommended to readChapter 3. Readers, who are
interested in writing system speci�cations and risk analysis in product development, are
advised to readChapter 4, Chapter 5, Chapter 6, and Chapter 7. The topic of writing
system speci�cations is addressed inChapter 4 and Chapter 6. Chapter 4 presents
a grammar for structured function speci�cations from which component, function,
and variable dependencies are derived.Chapter 6 builds on the concepts presented in
Chapter 4 and presents a language for writing multi-level system speci�cations, which
is referred to as the Elephant Speci�cation Language (ESL).Chapter 5 uses the method
presentedChapter 4 to obtain a system architecture model, which is subsequently
used to rank components with respect to system reliability and availability. Next,
Chapter 7 builds on Chapter 6, presenting the �rst proof of principle of ESL in a lock
renovation pilot study. Chapter 8 re�ects upon the �ndings of the individual chapters
in relation to the six objectives formulated in Section 1.1.

1.5 List of publications

The chapters in this thesis are based upon the following peer-reviewed conference and
journal articles:

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Adan, I.J.B.F. (2016). Multi-level
�ow-based Markov clustering for design structure matrices. In Proceedings of
the ASME 2016 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Charlotte, NC, USA.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Adan, I.J.B.F. (2017). Multi-
level �ow-based Markov clustering for design structure matrices. Journal of
Mechanical Design, 139(12):1�10.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2017). A DSM
based method for the ranking of system components w.r.t. system reliability and

1.5. List of publications 11

availability. In Proceedings of the 19th International Dependency and Structure
Modeling Conference, September, Espoo, Finland.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2018). Automated
generation of a function-component-parameter multi-domain matrix from textual
function speci�cations. Research in Engineering Design, 29(4):531�546.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J. A. (2018). Multi-level
function speci�cation and architecture analysis using ESL: a lock renovation
project pilot study. In Proceedings of the ASME 2018 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, August, Quebec City, Canada.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2018). Similarity,
modularity, and commonality analysis of navigation locks in The Netherlands.
Accepted, Journal of Infrastructure Systems. doi: 10.1061/(ASCE)IS.1943-
555X.0000468

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2018). DSM
modeling and requirement speci�cation in developing a product platform for
Locks. In Proceedings of the 20th International Dependency and Structure
Modeling Conference, October, Trieste, Italy.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2018). System archi-
tecture analysis for reliability and availability ranking of components. Submitted

� Wilschut, T., Hofkamp, A.T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A.
(2018). A language for multi-level system speci�cation and automated derivation
of component, function, and variable dependencies. Submitted.

� Wilschut, T., Etman, L.F.P., Rooda, J.E., and Vogel, J.A. (2018). Multi-level
speci�cation and architecture analysis using ESL: a lock renovation pilot study.
Submitted.

12 Chapter 1. Introduction

Chapter 2

Multi-level �ow-Based
Markov clustering

For decomposition and integration of systems one needs extensive knowledge of system
structure. A Design Structure Matrix (DSM) model provides a simple, compact and
visual representation of dependencies between system elements. By permuting the
rows and columns of a DSM using a clustering algorithm, the underlying structure
of a system can be revealed. In this chapter, we present a new DSM clustering
algorithm based upon Markov clustering, that is able to cope with the presence of `bus'
elements, returns multi-level clusters, is capable of clustering weighted, directed and
undirected DSMs, and allows the user to control the cluster results by tuning only three
input parameters. Comparison with two algorithms from the literature shows that the
proposed algorithm provides clusterings of similar quality at the expense of less CPU
time.

2.1 Introduction

Products and processes, henceforward referred to as systems, have to satisfy an ever
increasing number of customer requirements, be competitively priced, and have short
development times (Alizon et al., 2007a). As a result, engineers need methods for
structuring and understanding systems (Maurer, 2007). A popular example of such a
method is the systems engineering V-model (Blanchard and Fabrycky, 1990), modeling
the process of hierarchically decomposing a system into smaller elements; designing and
testing the elements; and subsequently integrating the elements to form the complete
system. In this process, knowledge of the dependencies between the various elements
that comprise the system is essential to ensure the proper functioning of the system
as a whole (Eppinger et al., 2014).

T. Wilschut, L. F. P. Etman, J. E. Rooda, and I. J. B. F. Adan, 2017. Multi-level Flow-based
Markov clustering for design structure matrices. Journal of Mechanical Design , 139(12): 1-10.

This is an extended and revised version of the paper presented at the 2016 ASME IDETC/CIE,
Charlotte, North-Carolina, USA

13

14 Chapter 2. Multi-level �ow-Based Markov clustering

(a) (b)

Figure 2.1: (a) Unclustered example DSM (b) Clustered example DSM, revealing a
bus cluster and two modular clusters

The Design Structure Matrix (DSM), introduced by Steward (Steward, 1981), is a
binary N � N matrix denoting the presence of dependencies amongN system elements.
Figure 2.1a shows a DSM consisting of six elements. An o�-diagonal shaded square
denotes a dependency between elementi and element j . A DSM may be symmetric,
implying that dependencies between elementsi and j are undirected, or asymmetric,
implying that dependencies between elementsi and j are directed.

In the literature, one can identify two types of DSMs: static and temporal DSMs
(Eppinger and Browning, 2012). Static DSMs are often used to describe products,
and analyzed by clustering algorithms to �nd modules, whereas temporal DSMs
typically focus on describing processes, to which sequencing algorithms are applied
to �nd an optimal sequence. This work focuses on the analysis of static DSMs using
clustering techniques to support engineers in the analysis and modularization of system
architectures. This is important as the architecture of a system has a profound impact
on the system's performance (Maurer, 2007). Moreover, modular system designs have
several advantages over integral system designs (Sarkar et al., 2014).

In the past decades, DSMs have grown in popularity and are used in many
branches of industry, e.g., aerospace (Brady, 2002; Sosa et al., 2003; Browning and
Eppinger, 2002; Rogers, 1996), automotive (Pimmler and Eppinger, 1994; Gorbea
et al., 2008; Braun et al., 2007) and the semiconductor industry (de Borst et al., 2013,
2016). Eppinger and Browning (2012) give an excellent overview of published DSM
applications. Very recently, Browning (2016) conducted an extensive DSM literature
survey. The DSM's growth in popularity is mainly due to the compact and analytically
advantageous format (Browning, 2001). By permuting the rows and columns of the
DSM the underlying structure of a system can be revealed, as shown in Figure 2.1b.

Typically, a system consists of a `bus', i.e., a group of system elements that have
many dependencies with elements throughout the system, and of several clusters, i.e.,
groups of system elements that have many mutual dependencies within the respective
cluster but little dependencies with other parts of the system (Yu et al., 2007). The
clusters denote the natural lines along which a system can be decomposed into system
modules.

For example, the system described by the DSM depicted inFigure 2.1b can be
decomposed into three modules. The �rst cluster, containing elementd, is the bus
module. The second and third cluster, consisting of elements {a, c, e} and { b, f },

2.1. Introduction 15

respectively, are modular clusters.
To �nd these clusters one generally uses clustering algorithms. Steward (1965)

originally used an algorithm to tear systems of equations into smaller groups of
equations. Nowadays, three of the most popular clustering techniques are (Fortunato,
2010; Schae�er, 2007):k-means clustering (MacQueen, 1967; Hartigan and Wong,
1979; Kanungo et al., 2002; Dhillon et al., 2007; Lloyd, 1982), spectral clustering
(Donath and Ho�man, 1973; Sarkar et al., 2014; Chung, 1997; Agaev and Chebotarev,
2005; Capocci et al., 2005; Pentney and Meila, 2005), and hierarchical clustering
(Kernighan and Lin, 1970; Karypis and Kumar, 1995; Lu and Martins, 2012; Yager,
2000; AlGeddawy and ElMaraghy, 2013). Other techniques used for clustering DSMs
are simulated annealing (Thebeau, 2001; Borjesson and Hölttä-Otto, 2012, 2014) and
genetic algorithms (Rogers, 1996; Yu et al., 2007; Helmer et al., 2010).

Most of these clustering techniques require some information on the system's
structure as input, e.g., the number of expected clusters or the number of hierarchical
levels. Such information is usually not known a priori (Leskovec et al., 2009; Sarkar
et al., 2014). To resolve this issue, these algorithms are often run many times with
di�erent input values. A quality metric or objective function is used to evaluate the
cluster quality of each run, see e.g. Chen and Lin (2002); Allison et al. (2009); de Borst
et al. (2013); AlGeddawy and ElMaraghy (2013); Booth et al. (2008). Furthermore,
there are clustering algorithms that randomly select a number of elements as the
starting point of the clustering process. The clustering result depends on which
elements are initially selected. Therefore, to obtain an optimized result, one has to
run these algorithms many times with di�erent sets of starting elements. Again, a
quality metric or objective functions is used to evaluate the cluster quality of each run.

However, such multi-run clustering approaches may lead to excessive computational
times (de Borst et al., 2013). What is more, in the literature one can �nd many di�erent
quality metrics and objective functions, yielding alternative `optimal' clusterings
(Schae�er, 2007). Selecting an appropriate objective is not a trivial task (Browning,
2001). Besides, these quality metrics and objective functions usually do not account
for the presence of a bus module. To the best of our knowledge most of the above
mentioned clustering techniques do not account for bus detection at all, except for the
genetic clustering algorithm by Yu et al. (2007).

This chapter presents a new DSM clustering algorithm based upon the Markov
clustering algorithm (MCL)(van Dongen, 2008). The MCL algorithm does not require
any pre-de�ned information regarding the system's structure nor does it require
the formulation of an objective function. This makes MCL an appealing candidate
algorithm for the clustering of DSMs.

In this study, the MCL algorithm is extended such that it is better suited for
the clustering of DSMs. The algorithm is extended with 1) a novel method for the
conversion of a DSM into a stochastic matrix; 2) a graph coarsening heuristic; and 3)
a new bus detection heuristic. The extended MCL algorithm can e�ciently detect bus
elements and multi-level clusters in directed, undirected, weighted and binary DSMs.
The capability to deal with various types of DSMs is a desirable feature, which is
present in a couple of existing clustering algorithms such as the algorithms by Thebeau
(2001) and Borjesson and Hölttä-Otto (2014).

The outline of this chapter is as follows. Section 2.2presents our extensions to the

16 Chapter 2. Multi-level �ow-Based Markov clustering

Markov clustering algorithm to make it suitable for clustering DSMs. The original
Markov clustering (MCL) algorithm by van Dongen (2001) is explained in Section 2.2.1.
Section 2.2.2presents our transformation of a DSM into a stochastic matrix P, which
is input to the MCL algorithm. Subsequently, in Section 2.2.3it is shown how MCL
can be used to obtain multi-level clusters. InSection 2.2.4our bus-detection heuristic
to separate bus from non-bus elements is presented. InSection 2.2.5the various steps
of the proposed clustering algorithm are explained using a small running example.
Finally, the in�uence of tuning the di�erent algorithm parameters is illustrated in
Section 2.2.6. In Section 2.3, the proposed algorithm is compared with the DSM
clustering algorithm by Thebeau (2001) and the spectral DSM clustering algorithm of
Sarkar et al. (2014), using the Pratt& Whitney Jet Engine DSM (Sosa et al., 2003)
and the much larger LED-System-in-Package DSM (de Borst et al., 2016) as test cases.
In Sections 4 and 5, we present conclusions and recommendations for future work.

2.2 Markov clustering method for DSMs

This section discusses the background and theory concerning the original and extended
MCL algorithm. First, the general concept behind the original MCL algorithm is
explained. Subsequently, the extensions to enable DSM clustering are presented.

2.2.1 Markov clustering

Markov clustering (van Dongen, 2008) (MCL) is an often used clustering algorithm
in the �eld of bio-informatics (Fortunato, 2010), where it is typically used to cluster
proteins in search of protein families. The MCL-algorithm works on the basis of a
stochastic matrix P which is equivalent to the matrix representation of a Markov
chain describing a stochastic process (Karlin, 2014). Following van Dongen (2008),
an entry pij in P, denotes the probability that a random walker jumps from column
element j to row element i . The rows and columns ofP are symmetrically labeled.
The column sums ofP are equal to one.

The MCL-algorithm is an iterative algorithm where each iteration k consists of
two steps. The �rst step, called the expansion step, consists of raising the matrix k P
to a positive integer power � :

k+1 P = k P � (2.1)

where k P represents the transition matrix P in the kth iteration. The entries k+1 pij

of matrix k+1 P represent the probability that a random walker, who starts at node j ,
is in node i after � jumps. The power � determines the number of jumps a random
walker takes. By increasing� , the region of nodes which is reachable by the random
walker, starting at a random node j , is expanded. This motivates the nameexpansion
step.

The second step, called thein�ation step , consists of taking the Hadamard (en-
try wise) power of k+1 P with coe�cient � , and subsequently applying column-wise
normalization, using Equation (2.2) and Equation (2.3), respectively.

2.2. Markov clustering method for DSMs 17

k+1 pij = k+1 p�
ij (2.2)

k+1 pij =
k+1 pij

P N
i =1

k+1 pij

(2.3)

The in�ation step increases (in�ates) high transfer probabilities and decreases (de�ates)
low transfer probabilities.

Eventually, iteratively alternating expansion and in�ation steps will lead to a
stable matrix which is invariant under the iteration process itself (van Dongen, 2008).
Therefore, the following 2-norm is used as a stopping criterion.

jj k+1 P � k Pjj2 < � (2.4)

The obtained invariant matrix is interpreted as the adjacency matrix of a weighted di-
rected graph denoting disjunct clusters (if present) which is illustrated in Section 2.2.5.

The convergence rate of the MCL process can be increased by applying pruning,
i.e., transition probabilities which fall below a certain threshold are set to zero.

2.2.2 Stochastic matrix P

To use the MCL algorithm to cluster DSMs, it is required to represent the DSM by a
stochastic matrix P. To this end, the DSM is interpreted as the adjacency matrix A
of a weighted directed graphG(V; E), where the row and column elements ofA are
the nodesV and the entries within A are the weighted edgesE. It is assumed that
all entries within A are non-negative.

Generally, clustering aims at �nding groups of nodes which strongly in�uence each
another and/or are strongly dependent on each another. In this work, it is proposed
to use �ow simulation on graph G to determine the relative in�uence r ij and relative
dependencysij of nodes on one another, and subsequently use the values ofr ij and
sij to determine the transition probabilities pij . This �ow simulation thus provides us
with stochastic matrix P.

Assume graphG contains a directed edge from nodej to node i . Then one can
argue that j in�uences i and that i depends onj . To �nd all nodes which are in�uenced
by node j , a �ow is injected into node j which is allowed to �ow freely throughout
graph G while respecting the directionality of edges and the weights of the edges.
That is, the �ow is divided according to the edge weight ratio over the outgoing edges
of a nodej . All nodes i which receive part of the �ow injected into j , are assumed
to be in�uenced by j . Similarly, all nodes on which nodej depends can be found by
reverting the direction of all edges inG and again injecting a �ow into node j . While
doing so, it is assumed that nodej depends on all nodesi which receive part of the
�ow injected into j .

The magnitude of the �ow through a node i , resulting from the �ow injected
into node j , is interpreted as a measure for the relative in�uencer ij or the relative
dependencysij of node j on a nodei , respectively. The transition probabilities pij are
a function of r ij and sij . The larger the sum of r ij and sij , the larger the transition

18 Chapter 2. Multi-level �ow-Based Markov clustering

Figure 2.2: A simple graph containing two clusters

probability pij , which ensures that nodes which strongly in�uence one another and/or
strongly depend on one another are clustered together.

So far, the relative in�uence r ij and relative dependencysij are path length inde-
pendent, i.e., independent of the number of nodes the �ow passes before it reaches node
i . However, if nodesj and i are connected by a short path directed fromj to i , and
nodesj and k are connected by a long path directed fromj to k, one would intuitively
expect that r ij and sji are larger than r kj and sjk . Therefore, an evaporation constant
� is introduced. The evaporation constant � ensures that a �ow, injected into node j ,
is reduced with a factor 1=� every time the �ow passes through a nodei . As a result,
r ij and sij become path length dependent.

Merging of �ows is another aspect which has to be accounted for.Figure 2.2 shows
a section of a graph containing two clusters, where all edge weightswij are equal to
one. A �ow injected into node A is split evenly over the outgoing edges tom nodes
b1; : : : ; bm . These �ows merge again in nodec. In case, m � � the resulting �ow
through node c becomes larger or equal to the �ows through nodesb1; : : : ; bm . Even
more so, if m � � 2 the respective �ow through node d in Figure 2.2 becomes larger
or equal to the �ows through nodes b1; : : : ; bm . In that case, the relative in�uence of
node A on nodesc and d becomes larger than the relative in�uence of nodeA on
nodesb1; : : : ; bm . This is an undesirable e�ect as noded is clearly part of another
cluster. This is resolved by dividing the incoming �ows into a node i by the sum
of the weights of the incoming edges of nodesi . Doing so for the example depicted
in Figure 2.2, yields a �ow f b::: = 1=� through nodesb1; : : : ; bm , a �ow f c = 1=m� 2

though node c, and a �ow f d = 1=m� 3 through node d. As such, f b::: > f c > f d holds
for all values of m and for � > 1.

The �ows through all nodes j resulting from injecting a �ow into node i , are
obtained by solving the following �ow balance equation for f :

f in +
�
A (W out E) � 1 � W in

�
f = 0 (2.5)

Herein, f in is the input �ow rate vector, which consists of N � 1 zeros and a single 1,
where N is the number of nodes in the graph. By placing a 1 at positioni , a �ow with
rate 1 is injected into nodei . A is the (weighted) adjacency matrix. W out is a diagonal
matrix, where wout ;jj = max(1;

P N
i =1 aij), i.e., for those nodes that have no outgoing

edges a sink is created. Multiplication ofA with W � 1
out normalizes the columns inA .

E is the evaporation matrix which is a diagonal matrix with the evaporation constant

2.2. Markov clustering method for DSMs 19

� along its diagonal, i.e,E = � � I . I is the identity matrix. W in is a diagonal matrix,
where win ;jj = max(1;

P N
j =1 aij), i.e., for nodes that have no incoming edges a source

is created. f is the �ow rate vector containing the unknown �ow rates through all
nodes resulting from injecting a �ow with rate 1 into a node j .

Solving Equation (2.5) N times, with N di�erent input �ow vectors f in ;1; : : : ; f in ;N ,
yields N �ow rate vectors f 1; : : : ; f N . The N �ow rate vectors are stored in the
columns of the �ow rate matrix F = [f 1; : : : ; f N]. The N input �ow vectors are stored
in the columns of the input �ow matrix F in = [f in ;1; : : : ; f in ;N]. The relative in�uence
matrix is given by:

R = F � W � 1
in F in (2.6)

where r ij is the fraction of the �ow injected into node i that reaches nodej . These
values are interpreted as a measure for the relative in�uence of nodej on nodei .

Similarly, to �nd all nodes on which a node i depends, balanceEquation (2.7) is
used.

f in +
�
B (W in E) � 1 � W out

�
f = 0 (2.7)

In Equation (2.7), B = A T . By taking the transpose of A , the direction of �ow is
reversed. The out degree of a nodei has now become the in-degree and vice versa.
Therefore, matricesW out and W in have switched position compared toEquation (2.5).
The resulting �ow vector f provides a measure for the relative dependency of a node
instead of a measure for the relative in�uence.

Solving Equation (2.7) N times, with N di�erent input �ow vectors, yields N �ow
rate vectors. By storing these vectors in the columns of the input �ow matrix F in

and the �ow rate matrix F respectively, the relative dependency matrixS is obtained
using Equation (2.8).

S = F � W � 1
out F in (2.8)

Subsequently,R and S are added to obtain matrix Q = R + S.
The �uid �ow simulation process may yield many small �ows. The small �ows will

result in small transition probabilities which slow down the MCL process. Therefore,
matrix Q is pruned, i.e., matrix entries qij are set to zero if they are smaller than:

cp =
1

� � w� +1
max

(2.9)

where � is the evaporation constant, wmax = max(diag(W in + W out)) , which ensures
that direct node connections are never pruned, and� is the expansion coe�cient.
Setting the pruning constant according to equation (9) ensures that �ows between
two nodes j and i connected by a path lengthpl � � will not be pruned before the
�rst iteration of the MCL process. Column-wise normalization of Q �nally yields the
transition probability matrix P.

van Dongen (2008) remarks that the MCL algorithm works best on aperiodic
Markov chains, i.e., a random walker starting at a random nodej should be able to
return to node j at irregular times Karlin (2014). The matrix P obtained through the

20 Chapter 2. Multi-level �ow-Based Markov clustering

procedure described above is not necessarily aperiodic. A random walker starting at
node j may only be able to return to node j in an even number of steps. To counteract
the e�ect of periodicity, arti�cial self-loops are included in P, i.e., with a probability
pjj a random walker starting at node j will remain in node j . The value of pjj is
set, based upon empirical results, to be equal to the maximum transfer probability of
edges starting at nodej , as given by Equation (2.10).

pjj = max(p1;j ; : : : ; pN;j) (2.10)

With the self-loop probabilities in place, subsequently column-wise normalization
is applied to P yielding an aperiodic stochastic matrix P. Subject to the Markov
clustering process,P will converge to a stable matrix which is invariant under the
Markov clustering process itself.

2.2.3 Multi-level clusters

Applying MCL to a stochastic matrix P yields a single level clustering, i.e., theN
nodes present inG are clustered intoc clusters. By clustering the DSM, the granularity
level of the DSM model is decreased fromN granules to c granules (AlGeddawy and
ElMaraghy, 2013). However, in systems engineering one often requires a multi-level
system decomposition, i.e., DSM models at di�erent granularity levels. For example,
the engineering V-model advocates the use of hierarchical system decompositions.
Eppinger showed the value of having a DSM model at each decomposition (granularity)
level (Eppinger et al., 2014).

In this work, the �ow-based MCL algorithm is used in combination with graph
coarsening to obtain a multi-level system clustering. In detail, starting with an
initial graph G consisting of N nodes, the �ow-based MCL process yieldsc clusters.
Subsequently, a graphG0 is constructed consisting ofc nodes in which each node is a
super-node representing a cluster containing one or more nodes ofG. The weight of
an edge between two super nodesi and j is equal to the sum of the inter-cluster edge
weights between the sub-nodes belonging toi and j , respectively.

For example, Figure 2.3 shows a graphG consisting of six nodes and eight edges.
Assume the �ow-based MCL process yields the two clusters indicated by the dashed
squares. Note that there are two edges crossing a cluster boundary, both with edge
weight 1. Coarsening G yields graph G0 which consists of two super-nodes, each
representing a cluster containing three sub-nodes, and a single edge with weight
1 + 1 = 2 .

The process of clustering and coarsening a graph is repeated until the obtained
graph contains a single node, implying that all sub-nodes belong to the same cluster,
or the obtained graph contains no edges, implying that all remaining super-nodes are
disjunct. For example, further coarsening graphG0 shown in Figure 2.3 yields graph
G00consisting of a single node.

As this procedure is a bottom-up approach, there is no need to specify the number
of hierarchical levels a priori, as is required in e.g. Dhillon et al. (2007).

2.2. Markov clustering method for DSMs 21

Figure 2.3: Graph coarsening: the clusters found in graphG are aggregated into super
nodes in graphG0. The clusters found in G0 are aggregated into super nodes in graph
G00.

2.2.4 Bus elements

The multi-level �ow-based MCL algorithm can e�ectively cluster a graph. However,
many engineering systems contain a `bus', i.e., a group of elements which have many
dependencies across the whole system. In graph terms, a bus element is a node which
has many edges across the whole graph. Assigning such a node to a single cluster is
often di�cult and counter intuitive. Therefore, we separate the bus nodes from the
non-bus nodes before clustering.

In the literature, several studies can be found which consider the topic of bus node
detection. Presented methods range from spectral analysis (e.g. Sharman and Yassine
(2004); Sarkar et al. (2014)), to centrality measures (e.g. Barabasi and Albert (1999);
Braha and Bar-Yam (2006) to visual inspection of the normalized node distributions
(e.g. Sosa et al. (2011)).

We implemented a novel iterative bus detection heuristic as part of the Markov
multi-level clustering algorithm presented in the previous sections. The heuristic
requires a user-de�ned non-negative value and a node degree listd of length N as
input, where N is the number of nodes in the graph and a node degreedi of node i is
given by:

di = din ;i + dout ;i (2.11)

with, din ;i and duit ;i the in- and out-degree of the nodes, respectively.
In the �rst iteration, d is sorted in ascending order and the medianm is determined.

Subsequently, Equation (2.12) is evaluated for all nodes ind.

di � � m (2.12)

If Equation (2.12) is valid for node i , then node i is considered a bus node. The bus
nodes ind are removed fromd, yielding a reduced node degree listd0.

In the second iteration, the median m0 of sorted list d0 is calculated. Sinced0

is shorter in length than d, median m0 is smaller or equal to m. Subsequently,
Equation (2.12) is evaluated again, but now for the nodes ind0. The nodes for which

22 Chapter 2. Multi-level �ow-Based Markov clustering

this equation is valid are also included in the set of bus nodes, and accordingly the
node degree list further reduced intod00.

This iteration process continues until a node degree listd� , with median m� , is
obtained, for which d� < � m� holds for all nodes. The nodes ind� are the non-bus
nodes.

The ratio between the number of bus nodes and the number of non-bus nodes can
be controlled by tuning the value of .

2.2.5 Outline proposed algorithm

The �nal algorithm, which includes multi-level �ow based Markov clustering and
bus detection, consists of �ve steps. These �ve steps are outlined below and are
illustrated using the example DSM of Figure 2.1a. The used parameter setting is:
� = 2 ; � = 2 ; � = 2 and = 1 :5.

Step 1: Determine the bus nodes. First, the node degrees are calculated,
sorted and stored in array d. For the example DSM of Figure 2.1a this gives:

d = [de; db; df ; da; dc; dd] = [3 ; 4; 4; 5; 5; 7] (2.13)

The median of d is m = 4 :5. Since = 1 :5, Equation (2.12) is only valid for node d,
sincedd = 7 > 1:5 � 4:5. Therefore, noded is a bus node. Removingdd from d, yields
d0 as given by:

d0 = [de; db; df ; da; dc] = [3 ; 4; 4; 5; 5] (2.14)

of which the median m0 is equal to 4. The node degree values ind0 are all smaller
than 1:5 � 4, implying that the nodes in d0 are all non-bus nodes.

Step 2: Create the bus and non-bus adjacency matrices. The next step
consists of creating a bus adjacency matrixA b , which denotes the dependencies
between the bus nodes, and a non-bus adjacency matrixA nb , which denotes the
dependencies between the non-bus nodes. For the example DSM ofFigure 2.1a, A b

and A nb are given by Equation (2.15) and Equation (2.16), respectively.

A b =
�
0
�

(2.15) A nb =

2

6
6
6
4

0 0 1 0 1
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 1 0 0 0

3

7
7
7
5

(2.16)

The single row/column of matrix A b refers to noded; the rows and columns of matrix
A nb refer to nodesa, b, c, e, and f , respectively.

Step 3: Cluster the bus nodes. In the third step, multi-level �ow-based MCL
is applied to cluster the bus nodes. For this example the bus consists of a single node.
Therefore, the clustering result is trivial: a single cluster containing noded.

Step 4: Cluster the non-bus nodes. In the fourth step, multi-level �ow based
MCL is applied to cluster the non-bus nodes. To this end, the adjacency matrixA nb is
converted to stochastic matrix P nb following the procedure presented inSection 2.2.2.
For the DSM example this yields the matrix shown in Equation (2.17). After eleven

2.2. Markov clustering method for DSMs 23

iterations of the MCL process,P nb has converged to11P nb , shown in Equation (2.18).

P nb =

2

6
6
6
4

:25 :04 :18 :25 :11
:08 :48 :00 :00 :43
:25 :00 :41 :36 :00
:25 :00 :41 :36 :03
:17 :48 :00 :03 :43

3

7
7
7
5

(2.17) 11 P nb =

2

6
6
6
4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 1 0
0 1 0 0 1

3

7
7
7
5

(2.18)

The non-zero rows in11P nb indicate the presence of two clusters: one clusterf a; c; eg
and a second clusterf b; f g. Next we enter the multi-level clustering stage. Following
the clustering outcome, matrix A nb is re-organized into A nb,c . For the example
problem this gives the matrix shown in Equation (2.19), where the column and row
labels areA , c, e, b, f . A nb,c is coarsened, yieldingA 0

nb which in turn is converted
into P 0

nb , given by Equation (2.20) and Equation (2.21) respectively.

A nb,c =

2

6
6
6
4

0 1 0 0 1
0 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0

3

7
7
7
5

(2.19) A 0
nb =

�
0 1
0 0

�
(2.20) P 0

nb =

�
:5 :5
:5 :5

�
(2.21)

P 0
nb is invariant under the MCL process implying that the remaining super nodes

belong to the same cluster. As such, the multi-level clustering process stops.
Step 5: Reorder the DSM. The �nal step consists of reordering the rows and

columns of the DSM such that the bus appears in the top left corner and the clusters
are placed along the diagonal.

For this example, the resulting clustered DSM is shown inFigure 2.1b, in which
the bus, consisting of noded, and the two clusters consisting of nodesf a; c; eg and
f b; f g, respectively, are clearly visible. The two clusters together form a super cluster
that contains all non-bus nodes.

2.2.6 Parameters � , � , � and

One of the bene�ts of the presented algorithm is that it does not require any user
input regarding the system's structure, such as the number of expected clusters or the
number of expected hierarchical levels. Nor does the algorithm require the user to
select a particular clustering objective function.

The algorithm requires the user to set four input parameters: expansion coe�cient
� , in�ation coe�cient � , evaporation constant � , and bus threshold value . The user
may have to do some manual parameter tuning to obtain satisfactory results.

Manual parameter tuning might seem a disadvantage of the algorithm. However,
as Browning states `no clustering approach is a panacea (cure for everything)' and
usually visual inspection and manual modi�cation of the clustering results is required
(Browning, 2001).

The e�ect of the four parameters on the clustering results is loosely speaking
as follows. By increasing threshold factor , the number of bus elements decreases;
increasing in�ation coe�cient � and increasing evaporation constant� , generally

24 Chapter 2. Multi-level �ow-Based Markov clustering

(a) Settings: � = 2 :0; � = 2 :0; � = 1 :5, and = 1 :8

(b) Settings: � = 2 :0; � = 2 :5; � = 2 :5, and = 1 :8

(c) Settings: � = 2 :0; � = 2 :0; � = 1 :5, and = 1 :5

2.2. Markov clustering method for DSMs 25

(d) Settings: � = 2 :0; � = 2 :0; � = 1 :5, and = 1 :2

(e) Settings: � = 2 :0; � = 1 :5; � = 1 :5, and = 1 :2

Figure 2.4: Multiple clusterings of the Ford Climate Control System DSM (Pimmler
and Eppinger, 1994) obtained with the proposed algorithm using di�erent parameter
settings.

26 Chapter 2. Multi-level �ow-Based Markov clustering

decreases the size of the clusters and increases the number of hierarchical levels;
changing expansion coe�cient � has less in�uence on the clustering results (van Dongen,
2008).

Initial empirical results show that the following settings often give satisfactory
results:

� = 2

1:5 � � � 3:5

1:5 � � � 3:5

1:5 � � 3

Parameter � usually does not need to be adjusted. Manual tuning of the other three
parameters to arrive at satisfactory clustering results has turned out to be a fairly
swift process.

Figure 2.4a through Figure 2.4eshow several clusterings of a binary version of the
Ford Climate Control System DSM (Pimmler and Eppinger, 1994) obtained by using
the multi-level MCL algorithm with di�erent parameter settings. Figure 2.4a and
Figure 2.4b show that increasing� and � yields more and smaller clusters.Figure 2.4b
through Figure 2.4d show that decreasing increases the number of bus elements. By
further adjusting � and � one can increase or decrease the number of clusters and
number of hierarchical levels within the bus and within the non-bus section of the
DSM, as illustrated in Figure 2.4b and Figure 2.4e.

It may be bene�cial to use di�erent parameter settings to cluster the bus nodes
and to cluster the non-bus nodes. Moreover, it may be bene�cial to use di�erent
parameter settings at di�erent levels of the hierarchical clustering. In the present
implementation we use the same set of parameter values for bus and non-bus elements,
as well as for the di�erent levels.

2.3 Comparison of algorithms

In this section the proposed algorithm is compared with two clustering algorithms
from the literature: the DSM clustering algorithm of Thebeau (2001) and the spectral
clustering algorithm of Sarkar et al. (2014). These two algorithms are chosen as they
were originally developed for the clustering of DSMs. They are applicable to weighted
directed and undirected DSMs and do not yield overlapping clusters. The source codes
of both algorithms are available online (Thebeau's algorithm can be downloaded from
http://www.dsmweb.org/en/dsm-tools/research-tools.html and Sarkar's algorithm can
be downloaded from http://hdl.handle.net/2123/10450). Both algorithms are coded
in Matlab R , as such, di�erences in CPU time will not be caused by di�erences in
programming language.

The algorithm of Thebeau is an improvement of the algorithm of Fernandez (1998)
and aims at optimizing the total coordination cost Ctot , which is a measure for the
cost of coordinating all the dependencies between the elements of the DSM as given
by Equation (2.22).

2.3. Comparison of algorithms 27

Ctot =
qX

k=1

Cin ;ck + Cex;ck (2.22)

Cin ;ck =
X

8i;j 2 ck

(A (i; j) + A (j; i)) � npc
ck

(2.23)

Cex;ck =

0

@
X

8i 2 ck ;j =2 ck

A (i; j) +
X

8i=2 ck ;j 2 ck

(A (i; j)

1

A � N pc (2.24)

For a DSM, denoted by A , with q clusters, Ctot is the sum of the internal cluster
coordination cost Cin ;ck and external cluster coordination costCex;ck of the q clusters.
The internal coordination cost of a cluster ck is the sum of the weights of the edges
between all nodesi and j that are part of cluster ck multiplied with the size of the cluster
nck raised to penalty factor pc, as given byEquation (2.23). The external coordination
cost of a single clusterck is equal to the sum of the edge weights between all nodes
that are part of cluster ck and all nodes that are not part of cluster ck multiplied with
the size of the DSM raised to penalty factorpc, as given by Equation (2.24). The
algorithm of Thebeau optimizes the total coordination cost using a stochastic bidding
process consisting of nine steps. The explanation of these steps are beyond the scope
of this chapter. Borjesson and Hölttä-Otto (2012) suggested some improvements on
the algorithm of Thebeau to escape local minima. The improvements suggested by
Borjesson and Hölttä-Otto (2012) are not implemented in the downloaded MatlabR

implementation used in the comparison presented in this chapter.
The spectral clustering algorithm of Sarkar et al. (2014) expresses each element

of the DSM as a vector in space de�ned as a linear combination of thek-largest
eigenvectors of the DSM multiplied with the corresponding eigenvalues. The cosine-
similarity between two elements within that space is used as a measure of the strength
of interaction between those elements. Subsequently, the cosine-similarity-matrix is
clustered using thek-means algorithm of Matlab R . The user must provide a value for
k. This value determines how many eigenvectors are used and denotes the number of
clusters the k-means algorithm must �nd. To determine appropriate values for k, the
user can observe gaps between eigenvalues.

We compare our proposed Markov-clustering algorithm with Sarkar's spectral
clustering algorithm and Thebeau's stochastic hill climbing algorithm, using the
Pratt& Whitney jet engine DSM (Sosa et al., 2003) and the much larger LED-System-
in-Package DSM (de Borst et al., 2016) as test cases. For fairness of comparison the
following is assumed:

1. The bus and non-bus nodes elements are separated before any of the clustering
algorithms is applied. So each algorithm is used to cluster the bus adjacency
matrix and the non-bus adjacency matrix.

2. The coordination cost function of Thebeau is used as a measure of the `quality'
of the clustering result.

28 Chapter 2. Multi-level �ow-Based Markov clustering

3. The required CPU time to obtain a clustering result is used as a measure for
the `e�ciency' of the algorithms. The CPU time is the required time to obtain
a single optimized clustering. The time spend to tune the parameter setting is
not included.

4. A laptop with an Intel i7 processor was used to run the algorithms.

Figure 2.5 shows the four di�erent clusterings of the jet engine DSM.Figure 2.5a
shows the handmade clustering originally presented in Sosa et al. (2003).Figure 2.5b
shows the clustering result obtained using the spectral clustering algorithm, using a
kbus equal to two and a knon � bus equal to 5. These algorithm parameter settings were
selected after evaluation of the gaps between the eigenvalues and experimenting with
other values. Moreover, the algorithm was run multiple times as thek-means part
of the algorithm contains an element of randomness. As such, clustering results may
vary using the same parameter settings.Figure 2.5c shows the results obtained using
Thebeau's algorithm. The output of this algorithm is highly stochastic. Therefore,
the algorithm was run many times in order to �nd suitable parameter settings and
a satisfactory result. It was not always evident whether di�erences in clustering
results were caused by changes in parameter settings, or by the stochastic nature of
the algorithm. Figure 2.5c shows the clustering results obtained using the Markov
Clustering algorithm. This algorithm had to be run a few times to tune the parameters.
As the algorithm contains no element of randomness, the e�ect of changing a parameter
has a direct e�ect on the clustering result. This enables a straightforward tuning
process.

Table 2.1 shows the coordination cost (Equation (2.22)) associated with each
clustering and the required CPU time to obtain that clustering. The di�erences in
coordination cost are relatively small. As such, the quality of each clustering expressed
in terms of coordination cost are similar. However, the four clusterings do show
di�erences in the number of clusters and size of clusters. Expert judgment is required
to rate the quality of each clustering in further detail.

The required CPU times present signi�cant di�erences. The Markov clustering
algorithm out-performs the spectral clustering algorithm by a factor 4 and the Thebeau
algorithm by a factor 6. This result became particularly evident when clustering
the 711� 711 LED-System-In-Package DSM presented by de Borst et al. (2016). The
Markov Clustering algorithm required 11 seconds to obtain a satisfactory result.
De Borst (2013) reported that Thebeau's algorithm did not provide a satisfactory
solution within a reasonable time. We applied the spectral clustering algorithm but
did not obtain a satisfactory solution either. This is probably caused by the fact that
the norm of many rows of the DSM become e�ectively zero, which causes numerical
issues in calculating the cosine similarity value. On the other hand, it is noted that
many DSMs have a size of less than a hundred (Browning, 2016), for which all three
algorithms are expected to provide satisfactory results within reasonable computational
times.

2.3. Comparison of algorithms 29

(a) Original handmade clustering (Sosa et al., 2003)

(b) Spectral clustering, settings: kbus = 2 , knon _ bus = 5

30 Chapter 2. Multi-level �ow-Based Markov clustering

(c) Stochastic hill climbing, settings: pow_ cc = 2, pow_ bid = 1 ,pow_ dep = 4:

(d) Markov clustering, settings: � = 2 , � = 2 , � = 2

Figure 2.5: Multiple clusterings of the Pratt&Whitney jet engine DSM (Sosa et al.,
2003) obtained using di�erent algorithms.

2.4. Conclusion 31

Table 2.1: CPU times and coordination cost of cluster results

Coordination cost [-] CPU Time [s]
Original 999402 -
Spectral 1057074 0.484
Thebeau 1097237 0.750
Markov 953608 0.125

2.4 Conclusion

This work presents a new DSM clustering algorithm based on �ow-based multi-level
Markov clustering. The algorithm distinguishes bus nodes from non-bus nodes and
clusters both sets independently. The clustering is carried out hierarchically, which
means that clusters which are found at the base level are collapsed into super nodes
and are re-clustered, resulting in clusters of clusters.

Many existing clustering algorithms require user input regarding the system's struc-
ture, such as the number of expected clusters or the number of expected hierarchical
levels. Such information is usually unknown a priori. Moreover, one often has to select
an appropriate objective function for the clustering, which is not a trivial task.

The proposed algorithm does not require to set any input parameters regarding the
system's structure nor does it require the formulation of a clustering objective. Instead,
the user has four, e�ectively three, input parameters which can be used to manually
in�uence the size of clusters, the number of clusters, and the number of hierarchical
levels. The algorithm is capable of clustering weighted, directed and undirected DSMs.

Comparison of the performance of the proposed algorithm to the clustering algo-
rithm of Thebeau (2001) and the spectral cluster algorithm of Sarkar et al. (2014)
showed that the algorithm yields clusterings of similar quality while it requires less
CPU time. The low CPU time, also for large DSMs, enables the analyst to visually
inspect and interactively adjust the clustering by tuning the input parameters.

2.5 Future work

The proposed multi-level Markov clustering algorithm for DSMs shows promising
results with respect to cluster quality, computational speed and tuning capabilities.
We seek to further extend the capabilities of the algorithm, for instance by including
multi-level bus detection. That is, super-clusters may contain `local' bus elements.
These buses are currently not detected by the algorithm. Another extension that we
consider, is the enforcement of user constraints regarding elements that need to be
clustered in the same cluster. Finally, the implementation of the algorithm may be
improved in an e�ort to further reduce computation times.

32 Chapter 2. Multi-level �ow-Based Markov clustering

Chapter 3

Similarity, modularity, and
commonality analysis

In the coming decades Rijkswaterstaat, the executive branch of the Dutch Ministry of
Infrastructure and the Environment, has to replace or thoroughly renovate over �fty
navigation locks. Given the substantial number of locks that needs to be renewed in a
relatively short time frame, Rijkswaterstaat is exploring the development of a lock family
platform from which future locks can be designed and realized. This study aims to �nd
basic lock component modules, optional lock component modules, and their interfaces,
together shaping the platform. It is aimed to identify modules and components that
are candidates for standardization. For this purpose, 127 locks in the Netherlands
are analyzed using a similarity matrix to �nd lock variants. Dependency structure
matrices (DSM) are built to �nd commonalities among the variants. By projecting
impact scores upon the DSM, component modules are sought that are candidates for
(partial) standardization. The results provide clear insight in how to design the lock
family platform.

3.1 Introduction

In the 1930's many navigation locks have been built in the Netherlands. Approximately
�fty of these locks will reach their end of life or have to be replaced to keep up with
the growing shipping tra�c in the coming decades. Since over �fty locks need to be
renewed or thoroughly renovated within a period of thirty years, Rijkswaterstaat, the
executive branch of the Dutch Ministry of Infrastructure and the Environment, is
re-thinking the design of locks with the aim of decreasing the life-cycle-costs (LCC),
decreasing the uncertainty in realization costs and time, and increasing the reliability
and availability.

Historically, navigation locks have been individually designed to meet the require-
ments of local stakeholders and to satisfy constraints of the local environment, which

Wilschut, T., L.F.P. Etman, J.E. Rooda, and J.A. Vogel, 2018. Similarity, modularity, and
commonality analysis of navigation locks in The Netherlands. Accepted. Journal of Infrastructure
Systems. doi: 10.1061/(ASCE)IS.1943-555X.0000468

33

34 Chapter 3. Similarity, modularity, and commonality analysis

Figure 3.1: Multiple customer order decoupling points and associated product realiza-
tion strategies (inspired by Figure 3 in Kudsk et al. (2013).

resulted in a great variety of lock designs. Lock managers have observed that the
great variety in lock designs has a negative impact on lock reliability, availability (RA)
and life cycle costs (LCC). The negative impact is primarily due to the need for local
specialized knowledge to operate and maintain these locks and the need for many
expensive and one-of-a-kind spare parts.

These problems are not unique to civil engineering construction. Other branches of
industry face similar problems which have been an area of study for quite some time,
see for example Jiao and Tseng (1999) and Alblas and Wortmann (2012). One of the
major challenges is to balance the external variety, i.e., the level of customization that
is o�ered to the customer, with the internal uniformity, i.e., the level of standardization
that can be applied in designing, manufacturing, and supporting multiple product
variants (Jiao et al., 2007).

Figure 3.1 schematically shows the trade-o� between the level of customization and
the level of standardization in relation to the strategy that is used to realize products.
Traditionally, the construction industry works via an Engineer-to-Order (EtO) strategy
(Johnsson, 2013). That is, customer requirements and local legislation are used as
input to the realization process. A unique solution is designed for the customer that
aims to meet these requirements, resulting in a high degree of customization.

The automotive industry traditionally works via a Assembly-to-Order strategy
(Ericsson et al., 2010), echoing the famous words of Henry Ford:̀You can have any
color you like, as long as it is black.'. In doing so, the automotive industry achieved a
high degree of standardization of products and production processes, which resulted
in better products that could be manufactured and maintained against less costs.

Research shows that traditional EtO industries, such as the high-tech machinery
industry, can bene�t from increasing the degree of standardization as well. To do so,
companies have to adopt an Make-to-Order (MtO) or a Con�gure-to-Order (CtO)
realization strategy, see for example Alblas and Wortmann (2014) and Kristjansdottir
et al. (2015). An MtO strategy requires a basic product structure to be present at the
start of the realization process. A basic product structure is a group of components or
component modules and their interfaces that together form a (conceptual) product.

3.1. Introduction 35

Subsequently, the basic product structure is adapted to realize a product that meets
the customer requirements. A CtO strategy requires a portfolio of standard modules
and components to be present at the start of the realization process. A selection of
the modules and components is made and subsequently con�gured to realize a product
that meets the customer requirements.

To manage MtO and CtO realization processes e�ciently, EtO industries often
develop a product family platform (Kristjansdottir et al., 2015), allowing the EtO
industries to create a `nuanced design freeze' of their products. A product family
platform is formally de�ned by Meyer and Lehnerd (1997) as a set of subsystems and
interfaces that form a common structure from which a stream of derivative products
can be e�ciently developed and produced.

Product family platforms can bene�t the construction industry as well. Goodrum
et al. (2009) and Jarkas (2010) argue that modularity and standardization can increase
the e�ciency in the construction industry. Their argument is supported by the housing
development platform case study of Thuesen and Hvam (2011), where a cost reduction
of 30% was realized compared to an EtO approach. However, frequently changing
and location speci�c requirements often hinder the creation of fully speci�ed and
standardized platforms (Jansson, 2013; Johnsson, 2013). Therefore, MtO and CtO
realization strategies are particularly bene�cial in the repetitive construction of civil
structures such as houses (Kudsk et al., 2013; Bonev et al., 2015).

A product platform can form the basis for a future lock Building Information
Model (BIM) which bene�ts asset management e�ciency. BIM is an active �eld of
study, see for example Schraven et al. (2011), Love et al. (2014), and Bradley et al.
(2016).

In light of the aforementioned developments,Rijkswaterstaat is currently exploring
the development of a navigation lock family platform supporting the replacement
and renovation of more than �fty navigation locks throughout the Netherlands. The
platform, schematically depicted in Figure 3.2, consists of a basic lock structure, i.e.,
component modules and their interfaces that are required in every navigation lock,
and optional lock structures, i.e., component modules and their interfaces that are
optional. The interfaces between the basic component modules denote the basic
product structure. The interfaces between the basic component modules and the
optional component modules extend the basic product structure. What is more, the
components within the basic and optional modules may be fully standardized, may be
partially standardized, i.e., only the interfaces of those components are standardized,
or may be non-standardized.

This study focuses on the design of the lock family platform. In particular, this
study aims to identify:

1. the basic component modules and the associated basic product structure,

2. the optional component modules and the variations in product structure, and

3. components that are candidates for full standardization or partial standardization
with regard to the objective of Rijkswaterstaat to increase RA, decrease LCC,
and decrease uncertainty in construction time and costs of navigation locks.

36 Chapter 3. Similarity, modularity, and commonality analysis

Figure 3.2: Schematic representation of the lock family platform consisting of a
common component core and optional component modules.

The remainder of this chapter is organized as follows. First, literature is discussed
regarding the study of similarity, modularity and commonality among product family
members and the identi�cation of components with a relatively high impact on RA
and LCC within a product. Next, we present a novel combination of methods found
in the literature to identify opportunities for modularization and standardization of
locks, i.e., to answer the questions listed above. Afterwards, the results are presented
and discussed. Finally, conclusions are drawn.

3.2 Related work

In the literature one can �nd a signi�cant body of work concerning product family
design. Jiao et al. (2007) provide an extensive review on product family design and
de�ne two important aspects:

� Modularity: refers to the extent to which a product can be decomposed into
relatively independent component clusters (modules). A module should have
many internal component interfaces and little external component interfaces.

� Commonality: refers to the likelihood that a speci�c component cluster and
related component interfaces are part of a speci�c product family member. The
higher the likelihood, the more common a cluster is.

In the literature, a popular technique to investigate the modularity of products is
the application of a Dependency Structure Matrix (DSM) (Eppinger and Browning,
2012) in combination with a clustering algorithm. The DSM concept originates from
Steward (1981). A DSM is a binary N � N matrix visualizing the dependencies
(interfaces) amongN elements. Pimmler and Eppinger (1994) were one of the �rst to
build a DSM for the purpose of modeling and analysis of product structure. Since, the
DSM has been further developed to cover organizations, and (time-based) processes, see
Eppinger and Browning (2012). Figure 3.3a shows an example DSM. An o�-diagonal

3.2. Related work 37

(a) (b)

Figure 3.3: (a) Example DSM showing unclustered component dependencies. (b)
Example DSM showing clustered component dependencies, revealing a bus cluster and
two modular clusters.

shaded square denotes a dependency between componenti and component j . By
re-ordering the rows and columns of a DSM using a clustering algorithm, one can
reveal the underling product structure. For example, Figure 3.3b reveals two modular
clusters {c1,c3,c5} and {c2,c6} and one so-called bus cluster{c4} . The modular
clusters consist of components which have many intra cluster dependencies but few
cross cluster dependencies. The bus cluster consists of components that have many
dependencies with components across the whole product.

Browning (2016) provides an extensive review of DSM applications in various
industries such as aerospace, automotive, software and construction. Schmidt et al.
(2009, 2014) for instance used the DSM to design and evaluate the adaptability of
buildings.

Commonality among product family members can be studied using DSMs as
well. For example, Alizon et al. (2007b) used three dimensional DSMs to study the
commonality in a Kodak disposable camera family. Gorbea et al. (2007, 2008) used a
� DSM to study the commonalities in multiple electrical vehicle product structures.
A � DSM is a summation of multiple DSMs each describing the product structure
of a single family member, as schematically shown inFigure 3.4. An entry within
the � DSM at position i; j indicates the number of times a dependency between two
componentsi and j is observed among the family members. The higher the value of
an entry at position i; j , the more common the dependency between componentsi
and j is. By clustering the � DSM one can �nd clusters of common components and
clusters of optional components.

Risk management is an important aspect in construction projects and asset man-
agement (Turskis et al., 2012). In this study, we aim to identify the components and
component clusters that are likely to have a signi�cant impact on the RA and LCC of
the future locks. That is, we aim to identify the component clusters that present the
highest rick of negatively in�uencing lock family RA and lock family LCC.

Failure Mode E�ect Analysis (FMEA) is a commonly applied method to asses RA
risk (Stamatis, 2003). However, FMEA requires detailed information on the state
of the existing product (Lough et al., 2009). In this study, the lock platform does
not exist yet. Moreover, it is questionable whether data from locks built in 1930 are
representative for locks to be built in 2030, due to the signi�cant advancement in

38 Chapter 3. Similarity, modularity, and commonality analysis

Figure 3.4: Schematic representation of a� DSM.

technology.
Net present value (NPV) analysis is a classical method to asses LCC (Sa� et al.,

2013). However, for this study, the required cost data of the various components was
not available.

Brady (2002) faced a similar problem when assessing technology development risk
within the NASA Mars Path�nder. Since the path�nder was a unique and new to
the world product, no relevant data was available. Therefore, Brady developed a
DSM based method to asses the technology development risks within the path�nder
product structure design. First, Brady decomposed the Path�nder into 43 components
and build a DSM. Next, Brady assigned a technology risk factor (TRF) to each
component ranging from 1 to 5, where a 1 indicates a low risk, i.e., the technology of
that component has already been tested in �ight, and a 5 indicates a high risk, i.e.,
only the technology concept and application has been formulated. Based on the DSM
and the individual TRFs, Brady calculated a risk projection matrix P, as follows:

P ij = A ij � TRF i � TRF j (3.1)

Herein, A is the DSM of the Path�nder, TRF i is the TRF of component i , and TRF j

is the TRF of component j . An entry i; j within P indicates the technology risk
associated with the combination of componentsi and j .

3.3 Method

A DSM is analytically advantageous and provides a more compact and structured
visualization of a network of dependencies compared to a graph (Browning, 2016).
Hence, we use the DSM in our work to analyze and to visualize the network of
dependencies between lock components. A DSM typically has �fty to hundred rows
and columns, containing several hundreds of dependencies, which may take weeks
to months to build (Eppinger and Browning, 2012; Browning, 2016). Building a
DSM for each member of the 127 locks in the portfolio of RWS is not feasible. In a
previous study, Dijkstra (2016) selected four distinct locks to cover a range of lock
characteristics encountered in the lock portfolio. However, this selection was quite
subjective, and the limit of four was determined by the capacity available to �ll the
DSMs.

3.3. Method 39

Figure 3.5: (a) Schematic lock characteristic matrixC and lock similarity matrix S, (b)
Example lock characteristic matrix C and unclustered lock similarity matrix S without
pruning. (c) Example lock characteristic matrix C and clustered lock similarity matrix
S with pruning below 50%.

Our approach is as follows. First of all, the characteristics of the 127 locks are
analyzed to gain more insight in the variety throughout the complete lock family.
Based on the individual characteristics of locks, subfamilies of similar locks are sought
for. A subfamily is a group of locks in which individuals have a high mutual similarity.

Secondly, for each subfamily, a DSM is built for a selected lock within that group.
The subfamily DSMs are assumed to be representative for the product structure variety
among the lock family members. The subfamily DSMs are summed into a� DSM
which is used to study the modularity and commonality of component modules among
the di�erent lock subfamilies.

Thirdly, an RA and an LCC impact analysis is performed regarding the impact of
component clusters on RA and LCC by projecting RA and LCC data onto the � DSM.
Each of these three steps is explained in more detail in the remainder of this section.

3.3.1 Similarity analysis

The sub-families can be found using a method introduced by Chen and Li (2005) to
decompose design problems. Variations on this method have been previously used
in product family design by Alizon et al. (2007c) and Kalyanasundaram and Lewis
(2011).

The method uses characteristic matrixC and a similarity matrix S as schematically
depicted in Figure 3.5a. Characteristic matrix C is a binary r � q matrix, mapping
lock characteristics to respective locks. That is, each row refers to one particular lock
characteristic, for instance gate type (mitre gate, lifting gate, rolling gate) or gate
actuator type (electro-hydraulic, electro-mechanical), while each column corresponds to
one particular lock. An entry i; j within C indicates that lock j possesses characteristic
i . Similarity matrix S is a q� q matrix wherein the rows and columns are labeled with
q locks. An entry i; j is a measure for the similarity of locksi and j . This measure is
calculated using the Jaccard index (Jaccard, 1908), which is frequently used in graph
clustering (Schae�er, 2007) and is given by:

40 Chapter 3. Similarity, modularity, and commonality analysis

J (i; j) =
P r

k=1 min(cki ; ckj)
P r

k=1 max(cki ; ckj)
(3.2)

where i and j are the locks for which the similarity is calculated and cki and ckj

are entriesk; i and k; j within characteristic matrix C, respectively. An entry i; j in
similarity matrix S is equal to Jaccard indexJ (i; j).

Figure 3.5b shows example characteristic matrixC and lock similarity matrix S.
Looking at locks l1 and l3, one can see that lock l1 has two characteristics, lock l3
has three characteristics of which two are the same characteristics as those of lock l1.
Hence, lock l1 and l3 have a similarity ofS(1; 3) = S(3; 1) = 2=3 � 100� 66%.

Now by pruning S, i.e., by setting similarity values below a user de�ned threshold�
to zero, and subsequently clusteringS, one can identify lock sub-families. For example,
in Figure 3.5c values below� = 50% are pruned from S. S is subsequently clustered
and reveals the two lock sub-families l1 and l3 and l2 and l4, respectively. In this
study, the Markov clustering algorithm of Wilschut et al. (2017) is used for clustering
S, though any suitable clustering algorithm would su�ce.

3.3.2 Modularity and commonality analysis

Prior to this study, Dijkstra (2015, 2016) built four DSMs over a period of several
months. First, Dijkstra examined several existing lock decompositions and proposed
a decomposition of 72 components to be used in the DSM modeling process. Next,
Dijkstra started building the individual DSMs. To this end, Dijkstra �rst selected
the components from the decomposition that are present in the respective lock.
Subsequently, Dijkstra reviewed design documentation and conducted interviews
with lock experts within Rijkswaterstaat to identify the dependencies (interfaces)
between the various components present in the lock. Dijkstra considered four types
of dependencies: 1) information dependencies which indicate that information is
transfered between two components such as a control and status signals; 2) energy
dependencies which indicate that energy is transfered between two components such
electrical and mechanical energy; 3) spatial dependencies which indicate that two
components are physically connected to each other or that a dimensional change of
one component implies a dimensional change of the other component; and 4) location
dependencies which indicate that two components require a particular alignment but
are not physically connected.

The approach of Dijkstra is used to build a DSM for one representative lock from
each identi�ed lock subfamily. The subfamily DSMs are assumed to be representative
for the product structure variety among the whole lock portfolio. The subfamily DSMs
are summed into� DSM F. By clustering � DSM F one can �nd components modules
that are likely to be common, are semi-likely to be common, or are not likely to be
common. That is, modules of components in which the values of the dependencies are
equal to or close to the number of summed DSMs are likely to be common; modules in
which the values of the dependencies are approximately half of the number of summed
DSMs are semi-likely to be common, and modules in which the values are much smaller
than the number of summed DSMs are not likely to be common.

3.3. Method 41

Table 3.1: Excerpt from a QFD table showing the risk scores (1,3,9) assigned to
lock components with respect to reliability R, availability A, construction cost Cc,
maintenance costCm , renovation cost Cr , and the calculated life-cycle-costCl risk
score.

I R I A I Cc I Cm I C r I C l

Level measuring system 9 3 1 1 3 3
High voltage supply 9 3 3 1 3 5
Gate actuators LH 3 9 3 9 3 9
Lock chamber wall 1 9 9 1 3 11

. .

3.3.3 RA and LCC impact analysis

In our research we have adopted Brady's method for the RA and LCC impact analysis.
Dijkstra (2015) has shown that this method can be e�ectively used to display RA
data in the DSM of a lock. Dijkstra aimed to identify RA risks for existing locks
based on the condition of lock components at that point in time. In this study we
aim to identify risks of future locks over the complete life-time. To this end, each lock
component is assigned a reliability impact scoreI R and an availability impact score
I A . Furthermore, each component is given a construction cost impact scoreI Cc , a
maintenance cost impact scoreI Cm , and a renovation cost impact scoreI C r . Based on
the cost impact scores a life-cycle-cost impact scoreI C l is calculated using:

I C l = I Cc +
I Cm + I C r

2
(3.3)

This equation is based on the rule of thumb used at Rijkswaterstaat that over the life
time of a lock the sum of the maintenance and the renovation costs are roughly equal
to the initial construction cost.

Table 3.1 shows impact scores of a few components. The individual scores have
been determined using expert interviews. An impact score may have a value of 0, 1,
3 or 9, which is a rating scheme often used in Quality Function Deployment (Reich
and Paz, 2008). A 0 indicates that a component has no impact, a 1 indicates that
a component has low impact, a 3 indicates that a component has a medium impact,
and a 9 indicates that a component has a high impact. The individual component
scores are determined based upon expert opinion.

The lock � DSM F, and the values in Table 3.1 are used to calculate six di�erent
projection matrices P x , where x 2 f R; A; Cc; Cm ; Cr ; Cl g. An entry i; j within P x is
given by:

P x;ij = F ij � (I x;i + I x;j) (3.4)

wherein, F is the � DSM, I x;i is the impact score of componenti , and I x;j is the
impact score of componentj . An entry i; j within P x is a measure for the expected
impact of the two components regarding metricx with respect to the lock family. An
entry may have a minimum value of 0 and a maximum value of5 � (9 + 9) = 90 .

42 Chapter 3. Similarity, modularity, and commonality analysis

Note that following Equation (3.1), Brady multiplied the TRFs of two components
i and j , whereas inEquation (3.4) the impact scores are added. The reason for this
is that reliability relates to the measurable quantity failure frequency, availability
relates to the measurable quantities up- and downtime, and costs relate to a countable
currency. Therefore, it is more natural to take the sum of impact scores instead of the
product.

3.4 Results

In this section the results of the three analysis steps discussed in the Method section
are presented and discussed.

3.4.1 Results similarity analysis

Figure 3.6 shows the lock characteristic matrix C (rows 127-186, columns 1-127) and
the lock similarity matrix S (rows 1-127, columns 1-127).C contains 58 di�erent lock
characteristics which all have a strong in�uence on the design of a navigation lock and
thus the product structure. These characteristics have been chosen based on expert
opinions. The characteristics inC can be divided into design characteristics such as
door types and leveling system types, location characteristics such as water level di�er-
ences and ship classes, and functional characteristics such as, bi- or mono-directional
water retention, single or double head high water retention and water discharging. In
Glerum and Vrijburcht (2000) one can �nd extensive information regarding all of these
lock characteristics. The data collection required to �ll characteristic matrix C took
two engineers several weeks since the data was scattered across multiple databases
and many written documents.

The values in C are calculated based uponS using the Jaccard index. Matrix
C is pruned to a value of � = 40%, and subsequently clustered. The value of� is
empirically determined by testing multiple values and inspecting the clustering results.
The diagonal entries in C that are marked red or orange denote locks that are due for
replacement or renovation before before 2030 and 2050, respectively.

Matrix C displays seven lock sub-families which all have distinct combinations of
lock characteristics. Interestingly, eight out of the eleven locks that have been built
since the year 2000 belong to Clusters 1 and 2, and ten of these locks have mitre gates
and gate openings as a leveling system. So this variant seems to be the preferred
solution in modern day lock engineering in the Netherlands.

Lock Empel, part of Cluster 4 (row 64), is the only recently built lock that has a
turning gate instead of mitre gates. The di�erent gate type is due to the bidirectional
water retention functionality which is di�cult to realize with mitre gates. Moreover,
Lock Empel is the only lock in Cluster 4 that does not have lifting gates. So based
on the location and functional characteristics, lock Empel is similar to locks which
historically have been designed with lifting gates. However, lifting gates seem to have
gone out of fashion in the Netherlands as the last lock with lifting gates has been built
in 1977.

Lock III (row 97) is the only recently built lock in which culverts are applied

3.4. Results 43

Figure 3.6: Lock characteristic matrix C and lock similarity matrix S based on data
gathered from 127 navigation locks.

44 Chapter 3. Similarity, modularity, and commonality analysis

instead of gate openings. This choice is due to the relatively large water level di�erence
of more than seven meter.

Cluster 3 mainly contains locks with rolling gates and a lock chamber width larger
than 20 meter. As such, rolling gates are the preferred solution for larger locks.
Currently, the largest navigation lock in the world is being built at IJmuiden (not
included in this data). This lock will have rolling gates as well. Overall the seven
clusters (lock sub-families) seem to capture the variety in lock designs fairly well. Note
that the locks in Clusters 2, 5, and 6 have a relatively high similarity to the locks
in Cluster 1. Moreover, the locks in Cluster 2 and 5 do not possess characteristics
that will cause variations in locks structure, i.e., variations that will be visible in a
DSM. For example, the di�erence between electro-mechanical and electro-hydraulic
door actuators will not be visible in a lock DSM that contains between �fty and a
hundred components. Therefore, Clusters 1, 3, 4, 6, and 7 have been selected for
further modularity and commonality analysis.

3.4.2 Results commonality analysis

The locks modeled by Dijkstra (2016) were selected based upon expert opinion and the
quality of the available design documentation to capture the variety in the lock family.
In fact, Figure 3.6 shows that each lock studied by Dijkstra is part of a di�erent
sub-family. That is, Dijkstra made a DSM of Lock Sambeek member of Cluster 1 (row
26), Lock Hansweert member of Cluster 3 (row 42), Lock Eefde member of Cluster 4
(row 54) and Lock 15 member of Cluster 6 (row 92). These locks are marked with
a green dot on the diagonal. As each of these locks is part of a di�erent sub-family,
their DSMs are suitable to be used in our commonality and modularity analysis.
Subsequently, an additional project was assigned to a group of students as part of a
DSM modeling class at TU/e to build a DSM of Lock 1 (row 119) which is part of
Cluster 7. The students followed the same approach as Dijkstra and provided the �fth
DSM required in this study.

As the �ve DSMs are all built departing from the same lock decomposition and
interaction types, they can be summed into a� DSM. Figure 3.7 shows the resulting
� DSM F. A mark F(i; j) indicates that components i and j have at least one
information, energy, spatial, or location dependency among the �ve studied locks. The
entry values F(i; j) indicate the number of times a component dependency is present
within the �ve individual DSMs. Entries with a value of 4 and 5 are colored green
and are interpreted as being likely to be common. Entries with a value of 2 and 3 are
colored blue and are are interpreted as being likely to be semi-common. Entries with a
value of 1 are colored purple and are are interpreted as being likely to be uncommon.

F has been clustered using the Markov clustering algorithm of Wilschut et al.
(2017) revealing a `bus' (rows, columns 1-17) of integrative components consisting
of two sub-clusters: the lock-heads cluster (rows, columns 1-7) and the control and
electronics cluster (rows, columns 8-17), respectively. Interestingly, most dependencies
within these two clusters are likely to be common, whereas most dependencies between
these two clusters are not likely to be common. So, both component clusters are
candidates to become a basis lock module and part of the basic lock structure.

The non-bus components (rows, columns 18-72) are clustered into eight clusters

3.4. Results 45

Figure 3.7: � DSM F of �ve locks that are members of �ve di�erent lock sub-families.

46 Chapter 3. Similarity, modularity, and commonality analysis

which in turn are clustered into three super-clusters. The components in rows 57
to 72 have no dependencies with other non-bus components and are therefore single
component clusters.

Clusters 5 and 7 only have dependencies that are likely to be uncommon. This
implies that these clusters of components are likely to be optional. This is the case for
certain individual components, such as the ice prevention system (row 36) and the
bubble screen (row 58), as well.

In contrast, Clusters 3, 4, 6, 8, and 9 contain primarily dependencies that are likely
to be common. This implies that these clusters are likely to be basis modules and
part of the basic lock structure. However, each of these clusters does contain multiple
uncommon and semi-common dependencies. These variations are due to di�erences
in the working principle of certain components. For example, the choice for culverts
instead of gate openings results in a dependency between the leveling system and
the lock heads (row 38, column 7), whereas the alternate choice yields a dependency
between the leveling system and the lock gates (row 38, column 34). Note that the
prior choice is likely to be uncommon whereas the latter choice is likely to be common.

In general, Figure 3.7 provides clear insight in the modularity of the lock family.
Additionally, the � DSM provides a indication of an suitable setup and structure for
the lock family platform, in particular (a) the clusters that are basis modules and
optional modules, (b) the basic product structure and (c) which variations may occur
within the basic lock structure due the addition of optional components or optional
components clusters or changes in working principles of components.

Building upon this product platform, the next section identi�es which modules
and components stand out regarding their impact on RA and LCC. These may require
particular attention during design. Particular design solutions for those modules and
components may be considered for standardization across the lock family.

3.4.3 Results RA analysis

Figure 3.8 shows reliability project matrix P R and availability projection matrix P A .
These matrices are particularly useful to draw conclusions regarding the relative
impact of component modules on the selected performance measures. High-impact
modules are candidates for further detailed analysis, such as an FMEA to obtain more
quantitative RA impact numbers.

Matrix P R indicates that Cluster 2, i.e., the controls and electronics cluster, is
expected to have the highest impact on the reliability of the lock family. This cluster
has many internal high impact dependencies as well as many high impact external
dependencies with the information and communication systems.

In Cluster 1, i.e., the lock head and accessories cluster, the level measuring system
is expected to have a relatively high impact on the lock family reliability.

Looking at the non-bus clusters, Clusters 6 and 9, i.e., the mechanical components
of the lower and upper lock head, are expected to have the a signi�cant impact on
the reliability of the lock. These clusters have several high impact dependencies with
Cluster 1 as well.

As such, standardization of Clusters 2, 6, 9, the level measuring system, and the
interfaces between those clusters may improve the reliability of the lock family as

3.4. Results 47

(a) Reliability projection matrix P R .

(b) Availability projection matrix P A .

Figure 3.8: Reliability and availability impact scores projected upon � DSM F.

48 Chapter 3. Similarity, modularity, and commonality analysis

whole. Moreover, standardizing the interfaces between Cluster 2 and the information
and communication system may prove to be bene�cial.

Looking at availability projection matrix P A , Clusters 4, 6, and 9 are expected to
have a high impact on the lock family availability. In general, when comparingP R

and P A , an impact shift is observed from electro-control component clusters towards
civil-mechanical component clusters. This is due to the fact that many civil-mechanical
components have a high reliability but a long mean time to repair compared to electro-
control components. For example, resetting a control system may take several minutes
while repairing a damaged lock gate may take several weeks to months. Moreover, the
civil-mechanical components are subject to uncontrollable and unpredictable events
such as ship collisions and �oating debris. This causes the civil-mechanical components
to have a higher impact on the availability of a lock than one would expect based on
their designs.

Standardization of Clusters 4, 6, and 9, however, can help to reduce the mean
time to repair of individual locks within the lock family, and therefore, improve the
availability of the lock family as a whole.

3.4.4 Results LCC analysis

Figure 3.9 shows construction cost projection matrix P Cc , maintenance cost projection
matrix P Cm , renovation cost projection matrix P C r , and life-cycle-cost projection
matrix P C l .

Construction cost projection matrix P Cc indicates that Clusters 1, 4, 6, and 9
account for most of the construction costs of a lock. These clusters contain all the
major civil and mechanical components. The high construction cost of these clusters
is due the large amount of raw materials and hours of labor needed to build them.
Standardizing these clusters does not necessarily reduce the amount of required raw
materials. However, standardization may improve the e�ciency of the construction
process (Jarkas, 2010) and signi�cantly reduce the required hours of labor. Moreover,
it may prevent the (re)-occurrence of design and construction errors that cause costly
and lengthy rework (Simpeh et al., 2015) during construction of the lock family.

Maintenance cost project matrix P Cm shows that Clusters 3, 6, 8, and 9 are the
maintenance cost drivers. Clusters 3 and 6 are the two pre-port areas, respectively.
These areas of the water-way need to be dredged periodically to remove sediment.
Moreover, the soil protection in these areas is often damaged due to the ever increasing
propeller powers of ships and dragging anchors. Clusters 6 and 9 are the mechanical
components of the lower and upper lock head. These components need to be maintained
regularly due to the wear and tear they experience during operations. Standardization
of these clusters may reduce the maintenance costs of these clusters in the lock family.

In renovation cost projection matrix P C r a signi�cant increase in impact of Cluster
2 is observed compared to maintenance cost projection matrixP Cm . The controls and
electronics do not require much maintenance. However, to keep up with advancements
in technology, the controls are replaced every 7 to 10 years and the electronics are
replaced every 12 to 15 years, resulting in signi�cant renovation cost over the 100 year
life time of a lock.

The full standardization of Cluster 2, however, may not be bene�cial with respect to

3.4. Results 49

(a) Construction cost projection matrix P C c .

(b) Maintenance cost projection matrix P C m .

50 Chapter 3. Similarity, modularity, and commonality analysis

(c) Renovation cost projection matrix P C r .

(d) Life cycle cost projection matrix P C l .

Figure 3.9: Figure 9: Cost impact scores projected upon� DSM F.

3.5. Conclusion 51

renovation cost due to fast developments within the electronics industry, i.e., developed
standards may become quickly outdated. Though, modularizing and standardizing
the cluster structure and component interfaces may signi�cantly reduce the renovation
costs as it increases the cluster's adaptability (Browning, 2016), i.e., the ease with
which the cluster can be renovated to meet modern day standards.

In life-cycle-cost projection matrix P C l the construction cost, maintenance cost,
and renovation cost impact scores are combined. The theoretical maximum value
within P C l is equal to 5 � (18 + 18) = 190.

Looking at P C l , one can see that Clusters 6 and 9 have the highest impact on the
lock family life-cycle costs. This is a result of the fact that the mechanical component
clusters have relatively moderate to high realization cost, relatively high maintenance
cost and relatively high renovation cost. Clusters 3, 4 and 8 closely follow Clusters 6
and 9.

Comparing these results with the results of Dijkstra (2016) who analyzed four
existing locks shows some interesting di�erences. For example, Dijkstra identi�ed the
controls and electronics cluster to be of roughly equal importance as the two mechanical
components clusters with respect to RA in several individual locks. Contrary, in our
study the controls and electronics cluster is regarded as more important compared
to the two mechanical components clusters. This is caused by the fact that Dijkstra
accounted for the actual physical conditions of components, e�ectively increasing the
importance of components that were near to their end-of-life at that point in time.

3.5 Conclusion

Rijkswaterstaat is exploring the possibility of creating a semi-standardized navigation
lock family platform for the replacement and renovation of more than �fty navigation
locks throughout the Netherlands with the aim of increasing the reliability and
availability, decreasing the life-cycle-costs (LCC) and decreasing the uncertainty in
realization costs and time of the lock family. This study focuses on the design of the
lock family platform and the identi�cation of component clusters that are candidates
for standardization.

The lock similarity analysis showed that Rijkswaterstaat currently governs seven
lock variants. The lock-commonality analysis showed that the seven variant share
a basic lock structure which can be modularized. Additionally, several optional
components modules are identi�ed which can be used to customize lock designs. As
such, designing a semi-standardized modular lock family platform is possible.

The RA and LCC impact analysis showed that Clusters 6 and 9, i.e., the mechanical
components of the lower and upper lock head, are the primary candidates for full
standardization as they are marked as high impact clusters in each of the six projection
matrices.

Cluster 2, i.e., the control and electrical components, has a relatively high impact
on lock family reliability and lock family renovation cost. However, the full standard-
ization of Cluster 2 may not be bene�cial with respect to renovation cost due to fast
developments within the electronics industry, i.e., developed standards may become
quickly outdated. However, modularizing and standardizing the cluster structure and

52 Chapter 3. Similarity, modularity, and commonality analysis

component interfaces may signi�cantly reduce the renovation costs as it increases
the cluster's adaptability, i.e., the ease with which the cluster can be renovated to
meet modern day standards. As such, Cluster 2 is a primary candidate for interface
standardization.

Standardization of the major civil components in Clusters 1 and 4 can increase the
e�ciency of the construction process and reduce the construction costs. Moreover, it
may prevent the (re)-occurrence of design and construction errors that cause costly
and lengthy rework during construction of the lock family.

Summarizing, the presented method enabled us to e�ectively bring structure to
the seemingly diverse lock portfolio of RWS. We were able to �nd the similarities
and commonalities between 127 locks and identify high impact component modules
regarding R, A, and LCC. The high-impact modules are candidates for further detailed
analysis. The method may also be used to the analyze other product portfolios, such
as bridges.

Chapter 4

Function speci�cation
grammar for dependency
derivation

This study introduces a method to build a Multi-Domain Matrix (MDM), visualizing
the intended architecture of a system within the component, function, and parameter
domains. The MDM is generated from textual function speci�cations that are subject
to a speci�c grammatical structure and vocabulary based upon the functional basis and
interaction basis as presented in the literature. Two types of functions are distinguished:
functions specifying what functionality a particular component provides to another
component; and functions specifying the internal working (transformation of �ow) of
a particular component. The �xed grammar for the speci�cation of the two types of
functions allows for the automated derivation of dependencies between components,
between functions of components, and between system parameters. A case study on
a navigation lock demonstrates that the system architecture generated from function
speci�cations matches the architecture of the real lock system fairly well. As such the
method can be used in the early design phase to reveal the product architecture that is
embodied in the function speci�cations of system components. The method may also
support modeling of high-de�nition DSMs of existing engineering systems.

4.1 Introduction

In recent years, many researchers have advocated the importance of system architecture
design in the early development phases; see e.g. Pahl and Beitz (2013); Tilstra et al.
(2012), and Eggert (2005). Their rationale is supported by, for example, Simpson
(2004) and Jiao et al. (2007), who state that a system's architecture has a profound

Wilschut, T., L. F. P. Etman, J. E. Rooda, and J. A. Vogel, 2018. Automated generation of a
function-component-parameter multi-domain matrix from textual function speci�cations. Research
in Engineering Design. , 29(4):531�546.

53

54 Chapter 4. Function speci�cation grammar for dependency derivation

(a) (b)

Figure 4.1: (a) Example DSM, unclustered, showing component dependencies. (b)
Example DSM. clustered, revealing a bus cluster and two modular clusters (reprinted
from Wilschut et al. (2016).

impact on its performance and �exibility, i.e., the quality of the delivered functionality
and the ease with which the system can be modi�ed to ful�ll future requirements.
Both properties are important in modern, highly competitive and rapidly changing
industries (Alizon et al., 2007a).

Ulrich (1995) de�ned system architecture as the mapping of a system's functions
to the physical components within the system, and the dependencies between those
components. A well-known concept in modeling and analyzing those component
dependencies is the Dependency Structure Matrix (DSM) (Steward, 1981), also referred
to as Design Structure Matrix (Eppinger and Browning, 2012).

A DSM is a binary N � N matrix denoting the dependencies amongN system
components. Figure 4.1a shows an example DSM. An o�-diagonal shaded square
denotes a dependency between componenti and component j . A DSM may be
symmetric, denoting that dependencies between componentsi and j are undirected,
or asymmetric, denoting that dependencies between componentsi and j are directed.

One may distinguish product, organization, and process type of DSMs (Eppinger
and Browning, 2012). Each type of DSM shows the dependencies between elements
from a di�erent domain. These DSMs may be jointly presented along the diagonal of
a larger matrix. Such a matrix is called a Multi-Domain Matrix (MDM). Each pair of
DSMs, is connected via a Domain-Mapping Matrix (DMM). A DMM is an N � M
matrix, showing the dependencies between theN elements from one domain and the
M elements from the other domain.

Eppinger and Browning (2012) discuss DSM and MDM applications in many
branches of industry, e.g., aerospace, automotive and the semiconductor industry.
DSMs are primarily used due to the compact and analytically advantageous format
(Eppinger and Browning, 2012). For example, one can highlight the system architecture
by permuting the rows and columns of the DSM, as shown inFigure 4.1b. That is,
the permuted (clustered) matrix reveals an integrative or `bus' module consisting of
component d and two relatively independent modules consisting of componentsf a, c,
eg and componentsf b, f g, respectively.

Eppinger and Browning (2012) introduced a �ve step DSM method to architectural
modeling and analysis, as depicted inFigure 4.2. These �ve steps can be used to build

4.1. Introduction 55

Figure 4.2: DSM method to architectural modeling and analysis (Eppinger and
Browning, 2012). This work contributes to the second step: the identi�cation of
dependencies.

an MDM as well. In Step 1, the system is decomposed into components. Guidelines
for decomposing a system are given in Chiriac et al. (2011) and Tilstra et al. (2012).
Next, component dependencies are identi�ed and documented in Step 2. The resulting
DSM is analyzed in Step 3, for example by means of a clustering algorithm. The
results are visually inspected in Step 4. Finally, Step 5 concerns the improvement of
the DSM by for example adding missed component dependencies or manually altering
the clustering results.

Recently, Browning (2016) has presented an extensive overview of DSM research.
From the overview of papers presented in this survey, it follows that the literature has
primarily focused on the third step. The other steps have received less attention. In
particular, the second step has received little attention.

In Step 2, interviews with system experts and/or design documentation reviews are
often used to identify the dependencies between the various components (Browning,
2016). For product architecture DSMs this often means the identi�cation of spatial,
information, energy and material type of dependencies, following the seminal work
of Pimmler and Eppinger (1994). However, the identi�cation of dependencies often
presents challenges. It appears to be quite labor intensive and time consuming. In the
literature, typically e�orts of several months are reported. For example, the 46� 46
NASA path�nder DSM took �ve months to complete (Brady, 2002); the 64� 64 Pratt
and Whitney jet engine DSM four months (Sosa et al., 2003); and the84� 84 Xerox
printing system DSM three months (Suh et al., 2010). Secondly, identi�cation of spatial,
energy, information or material dependencies is focused on form and not on function.
Hence, not all identi�ed dependencies may relate to a function. Most DSM studies
analyze an existing product relying on design documentation and expert opinions to
determine the various spatial, energy, information, and material dependencies. For
systems in the early product development stage, an actual product realization or
technical drawings may not be available; the DSM modeler has to rely mainly on
functional descriptions of components.

This chapter presents a method to automatically build a function-component-
parameter MDM from functional speci�cations of components, schematically depicted
in Figure 4.3. The MDM consists of a component DSM, a function DSM, a parameter
DSM, and three DMMs representing the mappings between the elements of the three
DSMs. The MDM is automatically built from textual function speci�cations that are
speci�ed using a prede�ned vocabulary and grammatical structure. The functional

56 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.3: Schematic Multi-Domain-Matrix (MDM).

basis of Stone and Wood (2000), later improved by Hirtz et al. (2002), is used as
a basis for the vocabulary. The grammar is based on the well-known verb + noun
representation used for instance by Stone and Wood (2000) and Pahl and Beitz (2013).
Stone and Wood (2000) used the functional basis and verb + noun representation
to create solution free functional models of systems. Caldwell et al. (2012) showed
that additional context improves the interpretability of function models. In our
study, the dependencies between components are of particular interest. Therefore, the
presented grammar is an extension upon the verb + noun representation that enables
the automated derivation of dependencies between components, between component
functions, and between parameters that quantify the �ows needed to realize functions.
The resulting MDM describes the architecture of a system within the component,
function, and parameter domains. By applying clustering analysis to the generated
DSMs, the component-function-parameter system architecture is highlighted.

The outline of this chapter is as follows. Section 4.2discusses literature regarding
DSM model building and function modeling. Section 4.3introduces the new method
illustrated using an example problem. Section 4.4presents a case study in which the
presented method is used to derive dependencies between components of a navigation
lock. The resulting DSM is compared with a DSM built in a previous study by Dijkstra
(2016). Finally, conclusions are presented in Section 4.5.

4.2 Related work

In this section, literature is discussed which relates to building DSM or MDMs
automatically and linguistic speci�cations for function modeling.

4.2. Related work 57

4.2.1 Automated DSM generation

Dong and Whitney (2001) were one of the �rst to consider automated building of
DSMs. In their study, a design matrix (DM) is manually constructed using Axiomatic
Design Theory (Suh, 1998). The DM is ann � m matrix which relates n functional
requirements to m design parameters. An entry at positioni; j in the DM denotes that
functional requirement i is a�ected by design parameter j . Dong and Whitney (2001)
used a heuristic to automatically generate a functional requirement DSM as well as a
design parameter DSM by permuting the rows and columns of the DM. Their method
requires the DM to be a square matrix, i.e. the number of functional requirements is
assumed to be equal to the number of design parameters. However, if one strives for a
diagonal DM, the accompanying DSMs also become diagonal.

A variation on this approach was introduced by Maurer (2007) who used DMMs
and DSMs assembled into a single MDM:

M =
�

C 0
D F

�
(4.1)

where D is an n � m DMM that relates n functions to m components,C is an m � m
component DSM, andF is an n � n function DSM. An entry i; j in D denotes that
function i is being (partly) ful�lled by component j . D is assumed to be constructed by
hand. Subsequently, component DSMC is computed byC = D T �D and function DSM
F is computed by F = D � D T . The intuition behind this is that if two components
contribute to the ful�llment of the same function, there possibly is a dependency
between the two components. Similarly, if two functions are being ful�lled by the
same component, there possibly is a dependency between the two functions. The
method yields symmetric DSMs. Note that the method yields candidate dependencies;
a subset presents the actual dependencies. Manual veri�cation of the candidate
component dependencies and candidate function dependencies is required (Maurer,
2007). Regarding the construction of matrix D , it may be di�cult to decide whether
a component contributes to ful�lling a function. There may be components that do
not directly contribute, but that do have an indirect in�uence. Including or excluding
these contributions obviously a�ects the calculated component and function DSMs.

As an alternative to the aforementioned matrix based methods, graphical models
to derive component dependencies were proposed; see e.g. Eisenbart et al. (2016),
Wyatt et al. (2012) and D'Amelio et al. (2011). Of particular interest for this study are
Function-Behavior-State (FBS) models (Umeda et al., 1995) and variants thereof, such
as Structure-Behavior-State models (Goel et al., 2009). van Beek et al. (2010) used
Function-Behavior- State models to derive DSMs.Figure 4.4 shows an example FBS
model. A function relates to a particular physical phenomenon, i.e., a certain type of
desired behavior. The behavior is realized by several entities, i.e., the components of
the system. These entities should be in a certain state to realize the behavior. For the
example shown inFigure 4.4, the energy supply and the lamp should be connected.
Though, the practical application of graphical FBS models in industry is low, since
written documents are the primary means of communication and documentation in
system design (Tomiyama et al., 2013).

Tosserams et al. (2010) observed the limited scalability of graphical models while
specifying decomposed multi-disciplinary-optimization problems. Therefore, they

58 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.4: An example Function-Behavior-State model.

developed the dedicated speci�cation languageY, which in turn de Borst et al. (2016)
used to model a LED-System-in-Package. Based on theY-language speci�cation,
de Borst et al. (2016) automatically generated a DSM displaying the relationships be-
tween the approximately seven-hundred response and design parameters characterizing
the system.

Dori et al. (2003) developed object-process-models which can be described graphi-
cally by using object-process-diagrams and linguistically by using the object-process-
language implemented within the OPCAT tooling. Sharon et al. (2009) used OPCAT
to derive DSMs. Their e�orts focus on modeling of relationships between system
components and activities within the development process. Based on the linguistic
and graphical models, dependencies between activities and components are derived.

In summary, in building DSMs linguistic approaches provide better scalability and
tractability than graphical approaches (Tosserams et al., 2010). Moreover, written
documents are currently the primary communication and documentation means in
system design (Tomiyama et al., 2013). However, to the authors' knowledge, there
is no method to automatically build product DSMs or MDMs based upon textual
speci�cations. In particular, generating DSMs and MDMs from textual speci�cations
of functions would be very powerful since component functions play an important role
in system architecture design (Browning, 2016). This chapter presents exactly such a
method. This allows designers to easily switch between text-based and DSM-based
representations of the system.

4.2.2 Linguistic function speci�cations

In function modeling one can take several perspectives, e.g., a system centered, a
process centered or a purpose centered perspective (Erden et al., 2008). Our work aims
to derive component dependencies, function dependencies and parameter dependencies
from textual function speci�cations. This falls into the category of the system centered
modeling perspective, which is common practice in engineering design literature
(Eisenbart et al., 2012), see for instance Pahl and Beitz (2013) and Hubka and Eder
(2012).

In the literature one can �nd many de�nitions of function. Eisenbart et al. (2012)

4.2. Related work 59

compared twelve di�erent function de�nitions, and concluded that there are basically
two perspectives in de�ning function. The �rst perspective emphasizes that a function
describes some purpose, goal or requirement. This perspective is consistent with the
work of Umeda et al. (1996) and the work of Fernandes and Machado (2016). The
second perspective emphasizes that a function describes a transformation of �ow. This
perspective is used in engineering design literature, such as Pahl and Beitz (2013) and
Dieter et al. (2013).

In the engineering design literature, transformation functions are usually repre-
sented by a verb and a noun, for example `provide power' or `transfer torque'. These
functional descriptions relate to the manipulation of �ows of energy, material and signal
through the system and should be accompanied by the physical quantities (Pahl and
Beitz, 2013). Such a verb-noun representation is advantageous in view of generality,
�exibility, and expressiveness, but has limitations with respect to rigorousness and
uniqueness (Deng, 2002) due to the many synonyms in natural language.

Another disadvantage of the verb-noun representation is that it does not yield
complete sentences. The verb-noun phrases typically do not contain a subject. Pahl and
Beitz (2013) state that in innovative design one should engage in solution free function
modeling. Therefore, they argue that a function should not contain a subject. On the
other hand, solution free function modeling rarely happens in practice (Tomiyama
et al., 2013). In fact, many companies tend to reuse design knowledge to decrease
product development time and costs (Jiao et al., 2007).

It is not possible to arrive at a single readable and understandable document when
using verb-noun phrases without a subject. Nor is it possible to derive component
dependencies or function dependencies. That is, the function `provide power' does not
provide any information regarding the dependencies between components or functions.
Stone and Wood (2000) use block diagrams to construct verb + noun function chains
by hand.

Hirtz et al. (2002) created a functional basis consisting of a unique set of verbs
and �ows. The verb set can be used to improve the uniqueness of linguistic function
speci�cations. The �ow set can be used to characterize the dependencies between
components. Tilstra et al. (2012) used the �ow set for the creation of an interaction
(dependency) basis that they used to (manually) build what they call High-De�nition
DSMs, displaying up to 25 di�erent dependency types. In their approach they build a
separate DSM per interaction type and subsequently assemble those DSMs into a single
DSM. Tilstra et al. (2012) noted, however, that manually building High-De�nition
DSMs of more than 10 components requires quite a large amount of work.

This chapter presents an extension upon the verb and noun function representation.
The extension uses the functional basis to ensure the uniqueness of the speci�cations.
The interaction basis is used to characterize the resulting dependencies. Our extension
results in complete sentences from which dependencies between components, functions,
and parameters can automatically be derived. The resulting dependencies are visualized
using an MDM.

60 Chapter 4. Function speci�cation grammar for dependency derivation

(a)

(b)

Figure 4.5: (a) Fixed structure of goal and transformation functions. (b) Multi-domain
matrix derived from the goal and transformation component functions.

Table 4.1: Goal functions of a simple water storage system.

ID 1st Comp. name verb parameter name prep. 2nd comp. name
h0 Power supply po provides powerpe to electric motor el
h1 Power supply po provides powerpv to control system co
h2 Electric motor el provides torque kp to pump pu
h3 Electric motor el signals status signalse to control system co
h4 Frame fr secures positionxe of electric motor el
h5 Frame fr secures positionxp of pump pu
h6 Frame fr secures positionxs of storage containerst
h7 Control system co signals control signalce to electric motor el
h8 Sensorse measures pressurewp in storage containerst
h9 Sensorse signals status signalks to control system co
h10 Pump pu provides �ow qs to storage containerst

Table 4.2: Mapping between parameters types and dependency types.

Parameter type Interaction type from dependency basis
Power Electrical energy
Torque Mechanical energy (dynamic)
Position Spatial
Volume Spatial
Pressure Hydraulic energy
Flow Liquid material
Status signal Status signal
Control signal Control signal

4.2. Related work 61

Ta
bl

e
4.

3:
Tr

an
sf

or
m

at
io

n
fu

nc
tio

ns
of

a
si

m
pl

e
w

at
er

st
or

ag
e

sy
st

em
.

ID
C

om
p.

na
m

e
ve

rb
1st

pa
ra

m
et

er
na

m
e(

s)
pr

ep
.

2nd
pa

ra
m

et
er

na
m

e(
s)

a0
E

le
ct

ric
m

ot
or

el
co

nv
er

ts
p

ow
er

p p
in

to
to

rq
ue

k p

a1
E

le
ct

ric
m

ot
or

el
co

nv
er

ts
co

nt
ro

ls
ig

na
lc

e
in

to
st

at
us

si
gn

al
s e

a2
C

on
tr

ol
sy

st
em

co
pr

o
ce

ss
es

st
at

us
si

gn
alw

s
an

d
st

at
us

si
gn

al
se

in
to

co
nt

ro
ls

ig
na

l
c e

a3
C

on
tr

ol
sy

st
em

co
co

nv
er

ts
p

ow
er

p c
in

to
co

nt
ro

ls
ig

na
l

c e
a3

C
on

tr
ol

sy
st

em
co

ad
ds

co
nt

ro
ls

ig
na

lc
e

to
lo

g
l o

a4
S

en
so

rs
e

co
nv

er
ts

pr
es

su
re

w
p

in
to

st
at

us
si

gn
al

w
s

a5
P

um
p

pu
co

nv
er

ts
to

rq
ue

k p
in

to
�o

w
q s

a6
S

to
ra

ge
co

nt
ai

ne
rs

t
ac

cu
m

ul
at

es
�o

w
q s

in
to

vo
lu

m
e

w
v

62 Chapter 4. Function speci�cation grammar for dependency derivation

4.3 Method

This section introduces a method for the automated generation of MDMs from
textual function speci�cations. The method is based on the function speci�cation
model depicted in Figure 4.5. Function speci�cations consist of two basic elements:
components and parameters. Components denote a speci�c part of the system.
Parameters refer to �ows through the system, e.g., power and information, or to
aspects of components, e.g., position and temperature.

In the function speci�cations, components and parameters are used together with
verbs and prepositions following a �xed format. A sentence specifying a function
describes either a goal function or a transformation function. A goal function describes
the purpose of a component with respect to the other components of the system. For
example, the goal function `Componentx provides powerp to component y', denotes
that the purpose of componentx is to provide power p to component y. Goal functions
are similar to a�ordances introduced by Maier and Fadel (2009). A transformation
function describes the transformation of �ow that occurs within a component. For
example, the transformation function `Component x converts powerp into torque k',
denotes that an electrical energy �ow p is converted into a mechanical energy �owk
inside componentx.

The method requires design engineers to manually specify the functions following
the �xed format and to create a dictionary of component names, verbs, parameter
types, parameter names, and prepositions that are allowed in the function speci�cations.
Each word within a speci�ed function is automatically referenced against the dictionary
to detect typos and inconsistencies.

A compact �xed format is deliberately chosen to enforce precise and concise
function speci�cations. That is, the quality of the speci�cation is traded against
the �exibility of the speci�cation. Albeit the restricted speci�cation �exibility, the
proposed �xed format, de�ned in Figure 4.5a, enables automatic processing of the
goal and transformation function speci�cations to generate an MDM consisting of
a symmetric component DSM, an asymmetric goal function DSM, an asymmetric
parameter DSM, and three DMMs indicating the dependencies between components,
goal functions, and parameters. By analyzing these matrices, for instance by clustering,
one can gain insight in the system architecture.

The three main steps of the method are explained in further detail below.Section 4.3.1
explains how goal functions are speci�ed.Section 4.3.2explains how transformation
functions are speci�ed. Section 4.3.3explains how the MDM is generated from the
function speci�cations.

4.3.1 Step 1: Specifying goal functions

Table 4.1 shows goal functions of a simple water storage system. Each sentence consists
of the following four main elements:

1. The 1st component name denotes the component which actively contributes
to ful�lling the function. The component name must be part of the system
decomposition.

4.3. Method 63

2. The verb indicates the action that the component performs on the �ow. The
verbs are constrained to the verbs of the functional basis of Hirtz et al. (2002).

3. The parameter name quanti�es a �ow between the two components (e.g.,
parameter pe in function h0 of Table 4.1) or alternatively a particular aspect of
the 2nd component (e.g. parameterxe in function h4 of Table 4.1). A parameter
name consists of a parameter type and an identi�er. A parameter type should
be an instance of one of the generic dependency types de�ned in the dependency
basis of Tilstra et al. (2012). For example see Table 4.2.

4. The 2nd component name , denotes the component that is passively involved
in ful�lling the function. The component name must be part of the system
decomposition.

Note that this grammar does not allow the construct: `The electric wire wi connects
power supply po with electric motor el', since power supplypo is not a parameter
quantifying a �ow, nor is power supply po an aspect of electric motorel. The sentence
describes form and not function. The actual function of electric wirewi is to conduct
electricity from power supply po to electric motor el. Following the goal function
format, the function of the wire can be captured by the functions: `The power supply
po exports power pe to electric wire wi ' and 'Electric wire wi conducts powerpe to
electric motor el'.

4.3.2 Step 2: Specifying transformation functions

Table 4.3 shows transformation functions of the water storage system example. Each
sentence consists of the following 4 main elements.

1. The component name denotes the component which actively contributes to
ful�lling the function. The component must be part of the system decomposition.

2. The verb indicates the action that the component performs on the �ow(s). The
verbs are constrained to the functional basis of Hirtz et al. (2002).

3. The 1st parameter name(s) denotes the required input �ow(s) for the action
performed by the component. An action may require multiple inputs. The
inputs are separated by `and'.

4. The 2nd parameter name(s) denotes the resulting output �ow(s) of the action
performed by the component. An action may yield multiple outputs. The
outputs are separated by `and'.

The parameter names may be part of the set of parameters resulting from the
speci�cation of goal functions. The modeler should take care to ensure consistency in
parameter names.

64 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.6: Multi-domain-matrix generated from the function speci�cations listed in
Table 4.1 and Table 4.3.

4.3.3 Step 3: Automatically building a MDM

The MDM shown in Figure 4.6 is automatically built from the goal and transformation
function speci�cations listed in Table 4.1 and Table 4.3, respectively. The DSMs in
the MDM are clustered separately. For the water storage example problem and the
case problem presented in Section 4 we used Markov clustering (Wilschut et al., 2016,
2017), but any suitable clustering algorithm may be used.

The goal functions represent dependencies between components (C - C) and
mapping relations between goal functions and components (F - C), between parameters
and components (P - C), and between parameters and goal functions parameters (P
- F). In the following it is explained which dependencies and mapping relations are
derived from goal functions.

Let G be the set of all speci�ed goal functionsg, where g is de�ned as the tuple:

g := (cg;1; vg; pg; qg; cg;2) (4.2)

wherein, cg;1 is the �rst component, vg is the verb, pg is the parameter, qg is the
preposition, and cg;2 is the second component. LetC =

S

8g2 G
cg;1; cg;2 be the set of all

components used in the goal functions. Then, componentci and componentcj are

4.3. Method 65

dependent if:
9g 2 G : cg;1 = ci ^ cg;2 = cj (4.3)

evaluates true. That is, there exists a goal functiong in the set of a goal functions
G, such that the �rst component cg;1 in g equalsci and the 2nd component cg;2 in g
equalscj .

The derived dependency between componentsci and cj is characterized by param-
eter pg, which is de�ned as the tuple:

pg := (npg ; tpg ; bpg) (4.4)

wherein, npg is the name of parameterpg, tpg is the type of parameter pg, and bpg is
the type of the dependency basis of Tilstra et al. (2012) to which typetpg belongs. For
instance, in the example problem, the parameter type power belongs to the electrical
energy type of the dependency basis, as shown in Table 4.2.

The derived dependency between componentsci and cj is assumed to be bidirec-
tional, as it is common practice to model symmetric product architectures (Browning,
2016). That is, if Equation (4.3) evaluates true, the dependency entries (ci ; cj) and
(cj ; ci) are placed in a symmetric component-component (C-C) DSM, and are assigned
dependency typebpg . Each dependency type is represented by a distinct number and
color in the DSM.

Furthermore, goal function g is used to derive mapping relations between goal
functions and components. That is, a goal functiong has a mapping relation with
component c if:

cg;1 = c _ cg;2 = c (4.5)

evaluates true. That is, g has a mapping relation with c if the �rst or second component
of g is equal to componentc. These relations are placed in an asymmetric goal function-
component (F-C) DMM, where a relation betweeng and its �rst component cg;1 (entry
(g; cg;1)) is marked as an active relation and assigned typebpg and a relation between
g and its second componentcg;2 (entry (g; cg;2)) is marked as being a passive relation
indicated by a number 9 and gray color.

Similarly, mapping relations between parameters and components are derived from
goal functions. That is, a parameter p has a mapping relation with componentc if:

9g 2 G : (cg;1 = c _ cg;2 = c) ^ pg = p (4.6)

evaluates true. That is, parameterp has a mapping relation with componentc if there
exists a goal functiong such the �rst or second component ing equalsc and parameter
pg in g equalsp. This relation is placed in an asymmetric parameter-component (P-C)
DMM (entry (p; c)) and is assigned typebpg .

Finally, goal functions denote mapping relations between parameters and goal
functions. A parameter p has a mapping relation with goal function g if:

pg = p (4.7)

evaluates true. Parameter-goal function mapping relations are placed in an asymmetric
parameter-goal function DMM and is assigned typebpg .

66 Chapter 4. Function speci�cation grammar for dependency derivation

Transformation functions represent dependencies between parameters (P-P), be-
tween goal functions (F-F), and mapping relations between components and parameters
(P-C). In the following it is explained which dependencies and mapping relations are
derived from transformation functions.

Let T be the set of all speci�ed transformation functions t, where t is de�ned as
the tuple:

t = (ct ; vt ; Pt; 1; qt ; Pt; 2) (4.8)

wherein, ct 2 C is the component within t, vt is the verb, Pt; 1 is the �rst set
of parameters, qt is the preposition, and Pt; 2 is the second parameter set. Then,
parameter pi depends on parameterpj if:

9t 2 T : pi 2 Pt; 2 ^ pj 2 Pt; 1 (4.9)

evaluates true. That is, parameter pi depends on parameterpj if there exists a
transformation function t such that pi is a member of the second parameter setPt; 2

and pj is a member of the �rst parameter set Pt; 1.
Parameter dependency entry (pi ; pj) is placed in an asymmetric parameter-parameter

(P-P) DSM and is assigned the dependency typebpj of the column (input) parameter
pj .

What is more, transformation functions are used to derive goal function dependen-
cies. That is, goal function gi depends on goal functiongj if:

9t 2 T : pgi 2 Pt; 2 ^ pgj 2 Pt; 1 (4.10)

evaluates true. That is, goal function gi depends on goal functiongj if there exists a
transformation function t such the parameterpgi is a member of the second parameter
set Pt; 2 and parameter pgj is a member of the �rst parameter set Pt; 1.

Goal function dependency entry(gi ; gj) is placed in an asymmetric goal function-
goal function DSM and is assigned dependency typebpg j

of parameter pgj of column
(input) goal function gj .

Finally, parameter-component mapping relations are derived from transformation
functions. That is, parameter p has a mapping relation with component c if:

9t 2 T : ct = c ^ p 2 Pt; 1 [Pt; 2 (4.11)

evaluates true. That is, parameterp has a mapping relation with component c if there
exists a transformation function t in which ct equalsc and p is a member of the union
of the �rst and second parameter sets oft, Pt; 1 and Pt; 2, respectively. Parameter-
component mapping relations are placed in an asymmetric parameter-component (P-C)
DMM and are assigned dependency typebp.

For the water storage system example, the goal functions shown inTable 4.1
yield: (1) dependencies between components, displayed in the C-C DSM of the MDM
shown Figure 4.6 (rows 1-7, columns 1-7); (2) between components and goal functions,
displayed in the F-C DMM (rows 8-18, columns 1-7); (3) between components and
parameters, in the P-C DMM (rows 19-31, columns 1-7); and (4) between goal functions
and parameters, shown in the P-F DMM (rows 19-31, columns 8-18). For example,
goal function h0: `Power supply po provides electrical powerpe to electric motor

4.3. Method 67

el', represents an electrical energy type dependency between the power supplypo
and the electric motor el. The dependency is taken to be bidirectional, yielding two
symmetrically placed, entries (3; 1) and (1; 3), in the component DSM. The type of
the dependency originates from the relation between the parameter type `power' and
the dependency basis of Tilstra et al. (2012), as listed in Table 4.2.

Secondly,h0 yields two dependencies in the F-C DMM. Power supplypo actively
contributes to ful�lling h0 and electric motor el passively contributes to ful�lling h0:
the yellow entry (10; 3) labeled with `1' in Figure 4.6 indicates that the power supply
po performs an action on an electrical �ow; the gray entry (10; 1) labeled with `9'
indicates that electric motor el passively contributes to ful�lling function h0.

Thirdly, h0 yields two dependencies,(21; 1) and (21; 3), in the P-C DMM since
power supply po and electric motor el both relate to parameter pe.

Finally, h0 describes a dependency betweenh0 and parameter pe, resulting in a
single dependency(21; 10) in the P-F DMM. The label `1' (yellow) indicates that
parameter pe represents an electric energy �ow.

The transformation functions of Table 4.3 are used to derive: (1) dependencies
between parameters, shown in the parameter DSM (rows 19-31, columns 19-31); (2)
dependencies between goal functions, shown in the function DSM (rows 8-18, columns
8-18); and (3) dependencies between components and parameters, shown in the P-C
DMM (rows 19-31, columns 1-7). For example, functiona0: `Electric motor el converts
electrical power pe into torque kp ', denotes a dependency between electrical powerpe

and torque kp . This dependency is taken to be directed, yielding a single dependency,
entry (22; 21) in the parameter DSM directed from pe to kp . Moreover, the directed
dependency between parameterspe and kp implies a directed dependency between
goal functions h0 and h2 since power supplypo needs to provide powerpe to electric
motor el, before electric motor el can provide torque kp to pump pu. As such, a0
yields a single dependency, entry(8; 10) in the goal function DSM directed from h0 to
h2. Additionally, electric motor el interacts with all parameters used in a0, yielding
two entries (21; 1) and (22; 1) in the P�C DMM.

4.3.4 Result and discussion

The component DSM in Figure 4.6 shows that the system consists of a cluster of
mechanical components, consisting of the framefr , pump pu, and storage containerst,
and a cluster of electrical components, consisting of the control systemco, the power
supply po, and the sensorse. The two clusters are connected via the `bus' consisting
of the electric motor el.

Note that the generated component DSM only displays intended dependencies
between components, i.e., dependencies that follow from function speci�cations. Unin-
tended dependencies, that may result from physical phenomena such as heat generation,
are not displayed by the DSM.

The function and parameter DSMs both show a cluster of dynamic electro-
mechanical functions/parameters, a cluster of control functions/parameters, and
three independent spatial functions/parameters. Since the function DSM is directed
one can identify function chains. For example, one can identify the function chain
h0 ! h2 ! h10, which indicates that power supply po provides powerpe to electric

68 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.7: Navigation lock Sambeek

motor el (h0), electric motor el converts powerpe into torque kp and provides torque
kp to pump pu (h0), and pump pu converts torque kp into water �ow qs, which is
provided to storage containerst (h10). Similarly, the parameter DSM indicates �ow
chains. For example, one can identify the chainpe ! kp ! qs ! wv , indicating the
�ow chain electrical energy ! mechanical energy! liquid material ! liquid material.
The function DSM could be analyzed with a sequencing algorithm to �nd the optimal
function cycle within the system. By sequencing the parameter DSM one can �nd an
optimal sequence to set parameter values during the design process.

The three DMMs clearly show the mapping between the component, function, and
parameter clusters. Each component cluster ful�lls a speci�c set of functions which
are characterized by a speci�c set of parameters. Moreover, the DMMs indicate which
functions and parameters cross the boundary of a component cluster. This is relevant
information during the design process. For example, parameterwp relates to both the
electrical and the mechanical component clusters. The water pressurewp depends
on the height of the storage containerst. As such, changing the height of storage
container st in�uences water pressurewp . In turn, this may result in the need for a
di�erent sensor and/or a di�erent control strategy.

Summarizing, the proposed method aims to improve the uniqueness and clarity of
function speci�cations by using a �xed grammar and vocabulary. The �xed grammar
enables the automated construction of an MDM. The MDM can provide valuable and
structured information regarding dependencies between system components, functions,
and parameters. By relating parameter types to the dependency basis of Tilstra
et al. (2012), a variety of distinct dependency types can be derived from the function
speci�cations and visualized using the MDM. This, reduces the required e�ort to
construct high-de�nition DSMs.

4.4. Case study: navigation lock Sambeek 69

4.4 Case study: navigation lock Sambeek

To validate the proposed method for a larger case problem, a component DSM
developed in a previous study by Dijkstra (2016) is compared with a component DSM
of the same system generated following the method described in the previous section.
The major di�erence with the study of Dijkstra (2016) is that Dijkstra built the
DSM model following the DSM modeling concepts of Pimmler and Eppinger (1994),
while our study departs from speci�cations of goal functions of the system elements
to automatically generate the component DSM. Both DSMs aim at identifying and
visualizing the dependencies between the components of navigation lock Sambeek,
shown in Figure 4.7. Through the comparison of the outcomes of the two approaches,
we investigate how well the intended dependencies present in the DSM generated from
the function speci�cations match the dependencies in the DSM of the real physical
system. In other words, how well speci�ed functions translate to realized form. All the
DSMs shown in the remainder of this section were clustered separately and therefore
show di�erences in the order of column and row labels.

4.4.1 Building and generating DSMs of lock Sambeek

Dijkstra (2016) followed the �ve step DSM approach of Eppinger and Browning
(2012). Dijkstra �rst reviewed several existing lock decompositions and proposed
a decomposition consisting of 51 components for the DSM modeling. To identify
interactions, Dijkstra conducted interviews and reviewed design documentation over a
period of several weeks. In this process, Dijkstra considered four types of component
dependencies: 1) spatial dependencies which indicate that a dimensional change of one
component implies a dimensional change of another component or that two components
are physically connected to each other; 2) location dependencies which indicate that
two components have a particular alignment but are not physically connected; 3)
energy dependencies which indicate that energy is transfered between two components;
and 4) information dependencies which indicate that information is transfered between
two components. The spatial interaction includes the strain energy and proximity
dependency type of interactions in the interaction basis by Tilstra et al. (2012). The
location dependency type relates to the alignment type of interaction in the interaction
basis. Dijkstra assumed that all dependencies are bidirectional. This resulted in DSM
H (where H refers to handmade), shown inFigure 4.8, displaying spatial, location,
energy, and information type dependencies.

Using the same decomposition as Dijkstra we speci�ed the goal functions of the
various lock components. The method presented in Section 3.1 was used to this end. In
this process we have re-written function descriptions in natural language into function
speci�cations following the format de�ned in Section 3.1. For instance, one of the
functions for ship lock Sambeek was formulated as:

`The �lling and emptying system serves to level the water in the chamber,
containing one or more vessels, to correspond with the water level in the water
way from which the ships are approaching.'(Glerum and Vrijburcht, 2000).

which we have rewritten as the following two functions:

70 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.8: Handmade DSMH (Dijkstra, 2016).

4.4. Case study: navigation lock Sambeek 71

Figure 4.9: Generated DSMG.

72 Chapter 4. Function speci�cation grammar for dependency derivation

Figure 4.10: � DSM S showing the di�erences between handmade DSMH and
generated DSMG.

4.4. Case study: navigation lock Sambeek 73

`Leveling-systemlsa imports water �ow Qin into lock-chamber loc'

`Leveling-systemlsb exports water �ow Qout from lock-chamber loc'

since the import and export of water is performed by two di�erent leveling systems at
Lock Sambeek. Note that our �xed sentence structure only allows to specify the actual
functions of the leveling-systems. Conditions to which a function may be subjected
cannot be expressed.

From the function speci�cations, the component DSM was generated following
the logic described inSection 4.3.3. This resulted in DSM G, shown in Figure 4.9,
displaying ten di�erent dependencies types. Note that the elements of the two DSMs
are presented in di�erent order due to the di�erent clustering outcomes for the two
analyses.

It took us approximately one week to complete the full process. But having the
system decomposition and reference DSM of Dijkstra at our disposal, signi�cantly eased
the speci�cation process. Moreover, as we were involved in Dijkstra's study we gained
extensive knowledge on the functioning of lock Sambeek prior to the speci�cation
process. Without such prior knowledge our estimate is that the speci�cation process
would have taken several weeks to complete. For example, in the Master's graduation
project of Josten (2017) the presented method was used to describe the architecture of
a bridge control system using a DSM with 45 elements. It took Josten approximately
four to �ve weeks to review roughly 800 pages of design documentation (pdf and
Word documents) and to manually specify the goal and transformation functions.
Some veri�cation with design engineers was needed to resolve ambiguities in the
documentation as well.

4.4.2 Comparing the two DSMs of lock Sambeek

Handmade DSM H and generated DSMG are compared in two steps. The �rst step
consists of comparing the presence of dependencies inH and in G using the � DSM
concept introduced by Gorbea et al. (2008). The second step consists of comparing
the types of dependencies inH and G.

In our case DSMsH and G contain di�erent dependency types due to the di�erent
modeling approaches. As a consequence,H and G cannot be directly merged into
a � DSM. To this end, the DSMs are �rst converted into scalar matrices, �H and �G
respectively, where �H ij = 1 , denotes that component ci and component cj have one
or more dependencies in DSMH , otherwise �H ij = 0 . Similarly, �G ij = 2 , denotes that
component ci and component cj have one or more dependencies in DSMG, otherwise
�G ij = 0 . The sum of these matrices yields the� DSM:

S = �H + �G (4.12)

where Sij = 1 indicates that a dependency is only present in�H ; Sij = 2 indicates that
a dependency is only present in�G ; and Sij = 3 indicates that a dependency is present
in both �H and �G.

Figure 4.10 shows � DSM S. Red squares, marked with a number 1, indicate
dependencies that were identi�ed by Dijkstra (2016) but were not derived from the

74 Chapter 4. Function speci�cation grammar for dependency derivation

Table 4.4: Similarity in number of dependencies.

M H M G M T color # %
1 0 1 red 0 0.0
0 2 2 blue 58 14.7
1 2 3 green 336 85.3

total: 394 100

Table 4.5: Number of dependencies per dependency type in handmade DSMH and
generated DSMG.

Handmade DSM H Generated DSMG
Type # Type #
Spatial 50

Spatial 100
Location 198

Information 82
Status signal 102
Control signal 56

Energy 56 Electrical energy 56
Mechanical Energy 10
Optical energy 24
Hydraulic energy 22
Solid material 90
Liquid material 26
Gaseous material 8

Total 386 Total 494

function speci�cations. Blue squares, marked with a number 2, indicate dependencies
that were derived from the functions speci�cations but where not identi�ed by Dijkstra
(2016). Green squares, marked with a number 3, indicate dependencies that were
derived from the function speci�cations and were identi�ed by Dijkstra (2016).

Table 4.4 lists the number of red, blue and green marks. All dependencies identi�ed
by Dijkstra (2016) could be related to a goal function, resulting in zero red marks.
However, 58 (14.7%) dependencies were generated that were not identi�ed by Dijkstra
(2016). Most of the blue marks relate to liquid (water) and solid (ships) material �ows
through the system, which were not considered by Dijkstra (2016). Interesting are
the seven blue interactions of the Close Circuit Television (CCTV) installation (cci,
row 2). The top of the operating building of lock Sambeek provides a clear line of
sight to all areas of the lock complex, as such Dijkstra (2016) only identi�ed a location
interaction between the CCTV installation and the operating building. Contrary, from
a functional perspective the CCTV installation needs to cover all areas of the lock
complex. As such, the function speci�cations yield many interactions throughout the
lock complex with the CCTV installation.

Table 4.5 list the number of dependencies (entries in the DSM) per dependency
type for handmade DSMH and generated DSMG. Despite the di�erences in modeling
approach, the dependency types used inH and G do, to some extent, match: the

4.4. Case study: navigation lock Sambeek 75

spatial and location types in H relate to the spatial type in G; the information type
used in H relates to the status and control signal types inG; the energy type in H
relates to the electrical, mechanical, optical, and hydraulic energy types inG; the solid,
liquid and gaseous material �ow type dependencies inG do not have an equivalent
type in H .

Note that Table 4.5 lists 386 dependencies inH and 494 dependencies inG, while
binary DSMs �H and �G only contain 336 and 394 dependencies respectively. InH
25 components pairs are connected via more than one dependency type and inG 46
component pairs are connected via more than one dependency type. As a result,H
and G contain more dependencies than�H and �G respectively.

Furthermore, H contains 50 spatial dependencies and 198 location dependencies,
while G only contains a 100 spatial dependencies. This is caused by the fact that
location relates to form and not to function. For example, in H object lighting obl
has multiple location interactions throughout the system, (row seven ofFigure 4.8,
while in G, object lighting obl has multiple optical energy relations (row/column 9 of
Figure 4.9) since the function of object lighting obl is to provide light at various places
of the lock complex. To ful�ll this function in the realized system, the object lighting
has to be at several locations of the lock complex. Hence, the functional optical energy
dependencies turn into physical location dependencies.

Considering information dependencies,H contains 82 information dependencies
while G contains 102 status signal dependencies and 56 control signal dependencies.
Two components i and j may have to interchange multiple status and control signals
to ful�ll their functions. For example regular operating system ros and control system
cos interchange multiple status and control signals. Those signals are exchanged over
the same physical connection. HenceG contains more information type dependencies
than H . This example shows that multiple functional dependencies may turn into a
single information dependency in the DSM of the as-built (physical) system.

Looking at the energy type dependencies inTable 4.5, one can see that there
is an exact match between the number of energy type dependencies inH and the
electrical energy type dependencies inG. As such, each functional electrical energy
type dependency has resulted in a physical energy type dependency in the realized
system. The mechanical and optical energy type dependencies inG have probably
been captured by Dijkstra by spatial and location type dependencies inH .

Dijkstra did not consider material �ow type dependencies, as a result many of the
liquid, solid and gaseous material �ow type dependencies are not included inH .

To conclude, the method presented inSection 4.3can be used to generated an
intended lock architecture which matches the realized physical architecture fairly well.
The generated system architecture provides a reasonable model for the (to be realized)
architecture of the physical system. Therefore, the method can be used in the early
design phase to determine the functional architecture of a new system, as well as for
an existing physical system to identify component and parameter dependencies (most
published DSM analyses considered existing systems). On the other hand, the DSM
generated from function speci�cations and the DSM built from data regarding the
actual physical embodiment are closely related but at the same time depart from a
di�erent modeling perspective: function based DSM modeling versus form based DSM
modeling.

76 Chapter 4. Function speci�cation grammar for dependency derivation

4.5 Conclusions

Building Dependency Structure matrices (DSMs) is a time consuming and sometimes
tedious process. This study aims to introduce a method for the intuitive, easy and
quick speci�cation of goal and transformation functions. The function speci�cations
are constrained to a �xed grammar and vocabulary through which we aim to increase
the uniqueness and clarity of function speci�cations and allow for the automated
construction of a Multi-Domain-Matrix (MDM). The MDM consists of a component
DSM, a function DSM, a parameter DSM, and three Domain-Mapping-Matrices
(DMMs) indicating the dependencies between the elements in the three DSMs. The
MDM provides valuable and structured information regarding the intended architecture
of the system within the component, function, and parameter domains. Additionally,
by mapping parameter types onto dependencies types, a variety of distinct dependency
types can be derived from the function speci�cations and visualized using the MDM.
This reduces the required e�ort to construct high-de�nition DSMs.

Case study `Navigation lock Sambeek' showed that the generated intended lock
architecture matches the realized physical architecture fairly well. Therefore, the
generated system architecture provides a reasonable model for the (to be realized)
architecture of the physical system. As such, the method can be applied in the early
design phase to gain insight in and reason about the architecture of a new system.
The generated MDM provides clear insight into the dependencies inside and across
the component, function and parameter domains. The method may also be used to
generate a DSM of an existing system, acknowledging that one takes a functional
instead of a physical DSM modeling view. Functional speci�cations of components
may be more straightforward to obtain than identifying spatial, material, information
and energy interactions from design documents and interviews. For our lock case and
the study of Josten (2017) this appeared to be the case. A reduction of modeling
e�ort was observed.

4.6 Discussion

The method presented in this chapter requires function speci�cations to be written
in a �xed structured format. Design documents are generally written using far more
natural language. This means the design documentation has to be converted in
function speci�cations according to the prescribed format. This may be quite an
elaborate process. There is software tooling to automatically process natural language,
see for instance Bird et al. (2009), which may support the conversion process. However,
we have experienced that a signi�cant amount of e�ort has to do with inconsistencies,
errors, and incompleteness of documentation. This may for instance relate to the
system decomposition, the naming conventions, function descriptions, graphs and
drawings. Automated language processing typically cannot help with this. The
conversion process provides a means to encounter these issues an correct for them.

Design documentation usually contains far more information than function de-
scriptions, for example, geometric aspects of a system. Therefore, in our future work
we seek to extend our grammar such that non-functional aspects of systems can be

4.6. Discussion 77

described as well. For example, two components may have a spatial relation as they
are placed in the same system housing. Such a dependency does not follow from
just the speci�cation of the goal and transfer functions of the two components. More
information is needed there.

78 Chapter 4. Function speci�cation grammar for dependency derivation

Chapter 5

Reliability and availability
ranking of components

In product development, assessment of risks in the early design phase is essential to
meeting customer requirements and managing development lead times and budgets.
This chapter presents a method for the ranking of system components with respect
to reliability and availability of the complete system. A list of structured function
speci�cations and a table with function weights are required as input. A Dependency
Structure Matrix (DSM) is derived from the function speci�cations, which serves as a
model of the system architecture. The PageRank algorithm is used to rank the system
components based on the derived DSM and the function weights. The results are
projected on the DSM. A navigation lock pilot study shows that the resulting DSMs
clearly indicate which components, and in particular which component clusters in a
system are most important with respect to reliability and availability.

5.1 Introduction

This research is performed in the context of the renovation of a series of navigation
locks in The Netherlands. In the �rst half of the previous century many navigation
locks have been built throughout the Netherlands. The locks manage the �ow of water
through the Dutch waterways and enable ships to cross di�erences in water-levels
between water-ways. In the coming decades many navigation locks have to be replaced
or renovated. In doing so, Rijkswaterstaat (RWS), the executive branch of the Dutch
Ministry of Infrastructure and Water Management, aims to improve the reliability and
availability of the locks. Reliability of a system is the probability that no operational
interruptions will occur during a stated time interval; availability is the probability
that the system can perform its required function under given conditions at a stated
time interval (Birolini, 2007).

Wilschut, T., L.F.P. Etman, J.E. Rooda, and J.A. Vogel, 2018. System architecture analysis for
reliability and availability ranking of components, submitted.

This is an extended and revised version of the paper presented at the 17th International Dependency
and Structure Modeling Conference, Helsinki, Finland, September, 2017

79

80 Chapter 5. Reliability and availability ranking of components

To focus RWS' e�orts, we set out to develop a method to pin-point the critical
components and modules within the system architecture, in particular regarding
reliability and availability of the future locks. We view system architecture as the
mapping of a system's functions to the physical components within the system, and
the dependencies between those components, following the de�nition of Ulrich (1995).

System architecture design is essential in the early design phase (Eggert, 2005;
Pahl and Beitz, 2013). Since the architecture of a system has a signi�cant impact
on a system's performance (Simpson, 2004; Lough et al., 2009). Therefore, engineers
need tools to structure, understand and asses the performance risks within system
designs (Maurer, 2007), for example, to determine which components are critical to
the reliability of the system as a whole. The earlier in the design process engineers are
aware of components and system modules that are critical regarding reliability and
availability, the earlier engineers can take adequate measures to minimize development
risk in design processes and minimize the impact of failure of those components (Unger
and Eppinger, 2011).

Yet, to the authors' knowledge, few methods exists to asses reliability and avail-
ability risks within a system architecture and rank components with respect to system
performance measures in the early design phase. As Lough et al. (2009) pointed
out, most conventional risk assessment methods, such as failure mode e�ect analysis,
event tree analysis, event sequence diagrams, and fault tree analysis, require detailed
information on the components within a design, which is generally not available in
the early design stage. Therefore, Lough et al. (2009) proposed a risk assessment
method based on function models, which is an extension of the work of Tumer and
Stone (2003). Functions models are viewed as independent blueprints of a product
that can be derived early in the conceptual design phase. This method identi�es
critical failure modes, but not from the view point of the system architecture. What
is more, the method requires a database of observed component failure modes, their
e�ect, and their impact. In the early design stage such information is not always
available. Additionally, it is questionable whether failure data from a lock built in
1930 is representative for a lock to be built in 2030.

Quality Function Deployment (QFD) is a popular method to assess performance
risk in the early design phase that does not require historic data (Bahill and William,
1993; Govers, 1996; Chan and Wu, 2002). QFD enables one to rank the importance of
technical features (F) of the system with respect to customer needs (N). The so called
`House of quality', schematically depicted inFigure 5.1, consists of a QFD matrix,
which links customer requirements to technical features of the system, and a roof in
which non-zero entries denote dependencies between technical features of the system.

The roof is similar to the upper (or lower) diagonal half of a dependency structure
matrix (DSM) (Eppinger and Browning, 2012). The DSM, originally presented by
Steward (1981), has proven to be an e�ective, compact and analytically advantageous
method to structure and to understand system architecture (Eppinger and Browning,
2012). A DSM is ann � n matrix showing dependencies betweenn system components.
That is, a non-zero entry at position i; j denotes a dependency between row component
i and column componentj . By permuting the rows and columns of a DSM with a
clustering algorithm, one can highlight the system architecture. That is, one can �nd
clusters of components that have many internal (mutual) connections but fairly little

	Introduction
	Research objectives
	Analysis of existing locks
	Specification of future locks
	Thesis outline
	List of publications

	Multi-level flow-Based Markov clustering
	Introduction
	Markov clustering method for DSMs

	Similarity, modularity, and commonality analysis
	Introduction

	Function specification grammar for dependency derivation

