

Shunting trains with deep reinforcement learning

Citation for published version (APA):
Peer, E., Menkovski, V., Zhang, Y., & Lee, W.-J. (2018). Shunting trains with deep reinforcement learning. In
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3063-3068). Article
8616516 IEEE-SMC. https://doi.org/10.1109/SMC.2018.00520

DOI:
10.1109/SMC.2018.00520

Document status and date:
Published: 01/01/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Sep. 2024

https://doi.org/10.1109/SMC.2018.00520
https://doi.org/10.1109/SMC.2018.00520
https://research.tue.nl/en/publications/75f2bad1-fb69-47fb-946f-eba45411f7ce

Shunting Trains with Deep Reinforcement Learning
Evertjan Peer, Vlado Menkovski and Yingqian Zhang

Eindhoven University of Technology
Eindhoven, The Netherlands

e.peer@student.tue.nl, {v.menkovski, yqzhang}@tue.nl

Wan-Jui Lee
Maintenance Development, NS (Dutch Railways)

Utrecht, The Netherlands
wan-jui.lee@ns.nl

Abstract—The Train Unit Shunting Problem (TUSP) is a
difficult sequential decision making problem faced by Dutch
Railways (NS). Current heuristic solutions under study at NS fall
short in accounting for uncertainty during plan execution and
do not efficiently support replanning. Furthermore, the resulting
plans lack consistency. We approach the TUSP by formulating
it as a Markov Decision Process and develop an image-like
state space representation that allows us to develop a Deep
Reinforcement Learning (DRL) solution. The Deep Q-Network
efficiently reduces the state space and develops an on-line strategy
for the TUSP capable of dealing with uncertainty and delivering
significantly more consistent solutions compared to approaches
currently being developed by NS.

I. INTRODUCTION

The Dutch Railways (NS) manage a fleet of around 2750
carriages with which they operate about 4800 daily train rides.
During peak hours, most of the carriages are in use. However,
at night and off peak hours, the NS needs to cope with a
surplus of ‘rolling stock’ (trains). Therefore, they are stored
in a shunting yard. On these shunting yards, activities such as
conducting repairs and cleaning of the fleet also take place.

Planning movements and tasks on train service sites is a
major challenge to the NS. Among others, incoming train units
need to be matched with outgoing train services according to
the timetable, maintenance and cleaning activities need to be
scheduled and trains need to be routed over and stalled on the
tracks of the shunting yard. The complex physical layout of
shunting yards makes the parking and routing of trains already
a complex task: many tracks are dead-ended, overtaking is not
possible with trains, track lengths (and train lengths) vary and
maintenance and cleaning tasks are typically only possible on
dedicated tracks on the yard. An example of a shunting yard
is shown in Fig. 1.

At the time of writing, human planners manually generate
a step-by-step plan, following a set of service site specific
heuristic rules and aiming for a flow of trains that is robust
to disruptions during plan execution. However, both busier
railroad occupation - which increases the problem complexity
- and strategic reasons call for an automated planning approach
to assist the planners.

In this paper we focus on the situation in which no service
activities need to take place on the service sites. This means
that we reduce the planning problem to determining a sequence
of train movements, which makes sure each train that is
requested by the network can be delivered on time. Note that
parking the sequence of arriving trains on the set of tracks

Inspection

Internal Cleaning

External

Cleaning

Fig. 1. Schematic illustration of a fictional shunting yard, with spe-
cific tracks for inspection and cleaning activities. Image adjusted from
www.sporenplan.nl

resembles the Bin Packing Problem which is known to be
NP-hard. Here, however, the trains need to be parked in such
a way, that whenever a train of a certain type and composition
is requested by the service schedule, there is an unobstructed
path for that train to leave (no other train is blocking the way).

This planning problem has been studied extensively in
Operations Research (OR) literature, both including and ex-
cluding service activities and working with different shunting
yard layouts, and is commonly known as the ‘Train Unit
Shunting Problem’ (TUSP) [1] [2]. Exact solution approaches
fall short when real-life problem cases are considered, since
computation time increases drastically [3]. The local search
based algorithm that is currently being developed at NS [2]
is more successful in finding solutions to real-life problem
cases. However, this approach assumes full information, thus
ignoring uncertainties on arrivals and departures, and does not
adhere to a step-by-step strategy. As a result, the movement
plan seems ad-hoc to human planners, and solutions to the
same problem instance can be very different when small
perturbations occur. Because of these reasons, it is not easy
for human planners to evaluate and adjust plans generated by
this method.

Since in real life disturbances often occur in the planned
sequences of trains, we aim to develop a method that cre-
ates consistent plans which are both predictable for human
planners and robust to uncertainty in the arrival and departure
sequence. When creating plans, the method should reason for
each decision it takes which action is valid for most of the
likely executions. Machine Learning, and more specifically
the Reinforcement Learning (RL) framework, is a suitable
technique to achieve this. For complex problems though, reg-
ular Reinforcement Learning falls short in learning strategies.
Recent developments in the Deep Reinforcement Learning

(DRL) field, where RL and Deep Learning (DL) are combined,
have shown that strategies can be derived for difficult problems
where imperfect information is available [4][5][6]. As the
TUSP is a sequential decision making process with delayed
rewards, i.e., parking a train in front of another could lead
to infeasible solutions later on, DRL is a suitable technique
to address this problem. More specifically, since the TUSP is
linked to a fixed physical infrastructure, we apply the DQN
[5] which is able to take advantage of spatial relations when
mapping images to values of actions.

In this paper, we model the TUSP as a Markov Decision
Process for which we design a visual state representation for
the TUSP together with an appropriate action space and reward
function (Section IV). To incorporate uncertainty, we assume
that at each time step t we only know the train compositions
of the first ma arrival and the first md departure events. For
arrival and departure events further in the future, we only know
the total number of carriages. At time t we do not know the
train type (and composition) of those trains.

We train a DQN agent using real-world instances gener-
ated by NS, and then compare the consistency of the plans
generated by the DQN agent to those generated by the local
search approach [2], using an entropy metric to measure
the uncertainty of the parking location of each train type
when occurring at different positions in the arriving sequence
(Sections V and VI). We find that at a small cost in terms of
a lower number of solved instances, the DRL agent is able
to find much more consistent strategies than the local search
approach. This shows Deep Reinforcement Learning proves to
be a promising technique to explore further in the context of
sequential decision making problems in Operations Research.

II. TUSP FORMULATION

This research focuses on a limited version of the Train
Unit Shunting Problem without service activities. A fictional
shunting yard layout is used that is a simplified ‘shuffleboard’
structure, which also occurs in practice. In such an infras-
tructure the shunting yard consists of n dead-ended tracks
with different lengths on which trains can be parked. In our
experiments we will assume n = 9.

Central to the TUSP are trains. Trains can be composed of
one or more train units of the same type, which are a set of
carriages that form a self-propelling vehicle that can drive in
both directions. Of the same train unit type, there exist multiple
subtypes, where the subtype indicates how many carriages the
train unit consists of. Fig. 2 shows the two subtypes VIRM4
and VIRM6 of the train type VIRM.

In this research we assume train compositions of a maxi-
mum of two train units and we assume there exist two train
types (SLT and VIRM), which have the subtypes (SLT4, SLT6)
and (VIRM4, VIRM6). Under these assumptions, there exist
10 unique train compositions in which trains can arrive at the
shunting yard. For the departures, we assume that all trains
consist of only one train unit. Implicitly, this means that if a
combination of train units arrives, we directly decouple them
after they are parked, since all departing trains will be separate

Fig. 2. Subtypes of train unit type VIRM: VIRM4 (top) and VIRM6 (bottom)

train units. In our setting, it is not possible to relocate a train
temporarily from one track to another.

This restricted setting leaves us with the problem of finding
1) an assignment of all the arriving trains to parking tracks in
such a way that no violation of track lengths occurs, and 2)
an assignment of parked trains to departing services such that
the correct type of train is assigned to the departing service
and that all assigned trains have an unobstructed path to leave
(no other trains are blocking the way out).

The following elements define one instance of the TUSP:

1) a timetable consisting of planned arrival of trains (both
the composition and specific train units are specified),

2) a timetable consisting of required departures of trains
(here only the composition is defined), and

3) a physical layout of a shunting yard.

The fact that for departures only the composition is defined
implies that we are free to choose which exact train unit of
the defined type we will assign to the departing service. So, if
we have two VIRM4 train units on our shunting yard and one
VIRM4 is requested, we are free to choose which one will
leave for this service.

As mentioned in the introduction, we include uncertainty
in our formulation by assuming that at each time step t we
only know the train compositions of the first ma arrival and
the first md departure events. In our experiments we assume
ma = md = 5.

III. (DEEP) REINFORCEMENT LEARNING FRAMEWORK

Central to the Reinforcement Learning (RL) framework is
an agent (actor) that is interacting with a certain environment.
The agent observes the current state of the environment s and
decides which action a to take. As a result, the environment
moves to a new state s′. At this point, the environment
provides a reward r for the action taken. The goal of the
agent is to optimize its actions in order to achieve the highest
cumulative reward over the relevant time horizon. Since the
agent does not know anything about the environment, it can
only learn from the rewards it observes during training. We
refer to [7] for a more detailed introduction to RL.

Q-learning [8] is a tabular RL algorithm that assumes that
the state-action space can be explored fully [9]. For each
possible state and action pair, (s, a), Q-learning learns an
estimate Q̂(s, a) of the optimal state-action value Q∗(s, a). It
has been shown that these estimates converge to the optimal
values Q∗(s, a) under the appropriate settings. However, as all
state-action values need to be estimated separately, this is not
practical in large state spaces.

Deep Reinforcement Learning (DRL) combines Deep
Learning with RL, for instance by using deep neural networks

(a) Example of state with arriving train (b) Example of state with departure request

Fig. 3. Visual state space design of arrival and departure states for a shunting yard with n = 9 tracks. The rows with black pixels denote tracks; trains can
only be parked on the non-black pixels. Each carriage has a length of 1 pixel, and every train type has its own color encoding. At time t, the state encodes
information about the current shunting yard occupation, the currently arriving or requested departing train, a lookahead of ma = 5 arrival and md = 5
departure events and information on the total number of carriages that will arrive and depart beyond the ma = md = 5 lookahead events.

as a function approximator for the Q-values of each state-
action pair. This enables generalization from seen states to
unseen states. However, using function approximation in the
RL framework is known to be unstable. This is a result of
the fact that RL by design collects correlated samples and
the fact that targets are non-stationary, whereas deep neural
networks rely on the assumptions of i.i.d. data distributions
and stationary targets.

The Deep Q-Network (DQN) by [5] addresses these issues
by using two techniques. First, they introduce experience
replay, where the agent’s experiences are stored in a data set
and, when a Q-learning update iteration is executed, a sample
of experiences is drawn uniformly at random from this data
set. This removes the correlation of the data used to train the
function approximator. Second, a separate neural network for
the targets is used, which is only updated every fixed number
of steps. By doing this, the targets are stationary for periods of
time. In [5], the authors successfully parameterize an approx-
imate value function Q(s, a, θ), using a deep convolutional
network where θ denotes the weights of the neural network.
Using convolutional neural networks as function approximator
enables efficient learning in which spatial relations in the
visual state representation can be utilized.

IV. DRL FOR TUSP

In order to apply the DQN techniques we formulate the
TUSP in terms of a(n) (approximate) Markov Decision Process
and design a visual representation of the state space.

1) Reinforcement Learning formulation: To fully define a
Markov Decision Process we formulate S: a finite state space,
A: the set of possible actions and R: the reward function.
P , the transition probabilities, follows as a consequence of
the problem instances we will generate for our experiments

(as will be explained later). Thus, these probabilities are not
explicitly defined here.

State space S: In order to apply the DQN we have modeled
a visual representation of the state space. We make a distinc-
tion between two types of states: arrival states (Fig. 3a) and
departure states (Fig. 3b), in which respectively an arrival or
a departure takes place. Each carriage of a train unit occupies
1 pixel in our state representation. Both arrival and departure
states are defined by the following components:

Current shunting yard occupation: In each state, we know
exactly which train units of which type are parked on which
tracks. Together with the fixed track lengths, this is encoded
in our state as a 9× 33 image, which corresponds to the rows
12 to 20 in Fig. 3. The black areas symbolize the restriction
to the length of the tracks. Trains can only be parked on the
non-black areas of the 9 tracks.

Current arriving or requested departing train: Row 11
in Fig. 3a and row 21 in Fig. 3b show respectively the current
arriving train and the train requested for departing. If the event
is an arrival, row 11 will be occupied by a train and row 21
will be empty. For a requested departure, row 21 will contain
a train, and row 11 will be empty, as visualized in Fig. 3.

5 lookahead arrival and departure events: We restrict
the information in the states about the future to the coming
ma = 5 arrivals and md = 5 departures, which are included as
rows 5 to 9 and 23 to 27 respectively in Fig. 3a and 3b. Note
that this lookahead includes the current arrival or departure.

Number of carriages that will arrive and depart beyond
the 5 lookahead events: Finally the state contains information
about the number of carriages that will still arrive and depart
beyond this lookahead window. No information is encoded
about train types and order. For the arrivals, rows 0 to 3 are
reserved for this in both state types in Fig. 3. For the requested
departures, these are rows 29 to 32. The number of colored

(non-blue) pixels corresponds to the number of carriages that
will still arrive/depart beyond the arrival/departure lookahead.

Action space A: If the event is an arrival, the agent can
choose an action a from 1, ..., n which corresponds to the
track the arriving train should be parked on. If the event is
a departure request, the agent again can choose a track. The
train which is currently at the front of that track, will then be
selected for departure.

Reward function R: For this experiment we have con-
structed a simple value function (Equation 1).

r(s, a, s′) =

0.5 if correct parking
1 if correct departure
−1 otherwise

(1)

A correct parking means no maximum track occupation is
violated. A departure is only correct if the delivered train is
of the correct (sub)type.

All these elements together formulate a finite Markov De-
cision Process. In this formulation we assume that the exact
sequence of steps which led to the current state is not relevant
for the algorithm to understand the current state.

2) Objectives and performance metrics: The DRL agent
aims to maximize its expected reward over the complete
time horizon. The way the problem and value function are
formulated, implies that we are looking for one of the feasible
solutions to the problem.

The performance of our method will be evaluated using two
metrics. First, we calculate the percentage of instances in our
test set for which a solution is found. Second, we introduce
a measure of entropy, with which we quantify to what extend
the algorithm follows a strategy when solving the problems.

For this second metric, we look at train subtypes, and in
which step of the arrival sequence these types occur. We
calculate per train type i and position j in the arrival sequence,
the probability of being parked on each of the tracks k, for
all successfully solved test cases combined. From the non-
zero probabilities pijk, we calculate the entropy E(i, j) using
Equation 2. The entropy will be zero when it is sure that
a certain type, when arriving in a certain position of the
sequence, will be parked on a certain track. The highest
entropy will be achieved when all n = 9 tracks are equally
likely, which gives E ≈ 2.20.

E(i, j) = −
n∑

k=1

pijk ln(pijk) (2)

We use the entropy measure as a proxy for plan consistency.
A practical relevant measure of plan consistency is where
trains of specific types are parked. Solving a plan using
consistent strategies eases the planning of additional tasks that
happen on a shunting yard, and allows for interpretability and
ease of use for human planners.

3) Algorithm: Our aim is to bring the techniques developed
by [5] to the Operations Research field by solving a real-life
sequential decision making problem. Using the Reinforcement

Learning framework we train an approximate value function
Q(s, a, θ) based on experiences that the agent collects during
training. We use a convolutional neural network which has
an architecture similar to the one used in [5]. The input to
the network is the 33 × 33 state representation as shown in
Fig. 3. The first and second hidden layers are convolutional
layers which convolve 32 and 64 filters of 4 × 4 and 2 × 2
respectively, both using a ReLU activation function. The third
and final hidden layer is a fully connected layer with 256 units
that also uses the ReLU activation function. The output layer
is a fully connected linear layer with n outputs, one for each
action. We use only two convolutional layers instead of three
as used in [5] since our input dimensions are much smaller. In
addition, we lowered the maximum experience memory pool-
size in order to enable faster learning of the departure task,
which only occurs halfway the problem for the first time. For
full details on the DQN we refer to [5].

V. EXPERIMENT SETUP

In order to evaluate our method, we use a problem instance
generator developed by NS. This generator generates real-life
scenarios of arriving and departure times and train composi-
tions for the arrivals. All arriving activities occur before the
first departing activity, which means that this number of train
units is also the maximum number of train units that is present
on the shunting yard at the same time. Table I shows the train
units that are present in our instances and the approximate
ratios of occurrence. Approximately half of the arrival events
are trains composing of two train units, and half of one train
unit. Departing trains always consist of one train unit.

To train the Reinforcement Learning agent, we generate
30, 000 problem instances with 14, 15, 16, and 17 train units
(7, 500 of each number of train units). At these numbers, the
problem is reasonable complex: we need to park multiple
trains on the same track in order to fit them all. However,
we are sure that the total number of carriages is lower than
the available space on the tracks. An example of an arrival
sequence of 14 train units is: [SLT4, SLT4], [VIRM6], [SLT6],
[SLT4], [SLT6, SLT4], [VIRM4, VIRM4], [VIRM4, VIRM6],
[VIRM4, VIRM4], [VIRM4]. The brackets indicate trains,
consisting of 1 or 2 train units.

Note that there are 10 possible arriving compositions (all
units separately, and all combinations of two train units of
the same type). There are over 3,5 million unique ways to
generate a sequence of 9 train types out of those 10. For the
instances with a higher number of trains this is even bigger,
and we still do not take into account the departures in this
computation. So, during training, the Reinforcement Learning
agent only gets to see < 1% of the possible scenarios. To

TABLE I
DISTRIBUTION OF TRAIN SUBTYPES OCCURRING IN ARRIVING EVENTS

Traintype(subtype) SLT(4) SLT(6) VIRM(4) VIRM(6)
Length 4 6 4 6
Ratio 0.28 0.15 0.42 0.15

TABLE II
% SOLVED INSTANCES OF TEST SET FOR DIFFERENT INSTANCE SIZES.

Problem instance size (in nr. of train units)
Algorithm 14 15 16 17

Greedy 39.6% 37.5% 41.3% 37.0%
DRL 83.0% (2.2) 79.8% (2.8) 81.0% (3.2) 80.4 % (5.2)
[2] 91.1% 91.9% 92.8% 93.9%

test the agent’s performance, we have generated another 750
problem instances for each of the four instance sizes, which
gives a total of 3,000 test cases.

We will compare the scores on the two performance metrics
of our algorithm to the scores of the local search algorithm
with full information [2] and a simple greedy algorithm.

The greedy algorithm acts according to the following rules.
If an arriving train consists of only 1 train unit type, the greedy
algorithm will try to park it behind a train of the same type that
already is present on the shunting yard. If that is not possible,
and in case the train consists of multiple train unit types, the
rule is to put the train on an available empty track. If there is
no empty track available, the train will be put on a non-empty
track that has enough available space for the train to fit. If no
such track exists, the algorithm fails. For the departures, the
greedy algorithm will check on which tracks there is a train
of the requested type in front, and returns one of those. If no
such track exists, the algorithm fails.

Whenever the greedy algorithm has multiple valid actions
to choose from, it will pick the track with the highest number.
This means the greedy algorithm will always park the first
train on the last track, which corresponds to line 20 in Fig. 3.

VI. EXPERIMENT RESULTS

The algorithm is set up to train for 150,000 episodes. Every
time a new episode begins, a random instance is drawn from
the training data. To enable faster learning, the agent can try a
maximum of three times to select a correct action from each
state. An episode terminates when a problem has been solved,
or when 3 times in a row, from the same state, an action has
been chosen that resulted in a negative reward. This training
procedure takes about 14 hours using the Intel R©DevCloud.
Note that our DQN implementation is not parallelized and
thus only 1 CPU core is used.

a) Solved instances: We repeat our training procedure
4 times to create 4 agents. Their average score and standard
deviation, together with the score of the local search approach
and the greedy algorithm, are shown in Table II. The local
search only fails when there exist no feasible solution to the
problem: in that case it is not possible to solve the problem
without a crossing to occur: a train that needs to overtake
another. The DRL agents solve less problems, but still achieve
a good score given the fact that each decision is made using
imperfect knowledge about the future. The greedy algorithm
only finds a solution to less than 40% of the problem instances
in our test set. This underwrites that just using a very simple
hand-crafted strategy is not good enough to solve the problem.

b) Plan consistency: Fig. 4 reveals the decisions made
by the DRL agent for different train compositions, when these
arrive first or second in the arrival sequence. The algorithm
has made up its mind about preferred tracks for each train
composition, including alternative choices depending on the
current state. In Fig. 5 the entropy, as measure of certainty
where a train will be positioned, is calculated for all train
types and all steps in the arrival sequence. This is done for
the DRL, local search and greedy solutions. In addition, the
aggregated entropy measures for each train type (regardless of
the position in the arriving sequence) are shown in Table III.

These results reveal that the DRL algorithm follows a
strategy in which for 5 out of 10 possible arrival compositions,
a practically fixed track assignment is used since the entropy
is always close to zero. The other 5 arrival compositions with
higher entropy scores are parked on a larger set of tracks,
though in comparison with the results of the local search, the
uncertainty of possible tracks is much smaller. Because of the
random nature of the local search, it does not score much
better than random allocation of arriving trains to tracks, which
would result in an entropy score of E ≈ 2.20. The greedy
algorithm performs better than the local search, but worse than
the DRL agent in terms of consistency on the instances that it
solved. The entropy scores follow from the rules underlying
the greedy algorithm. For instance, we find that the first train
is always parked on the same track. Also, for the arriving train
compositions that only contain 1 train unit type we find higher
entropy scores, since these are, when possible, parked behind
already present trains. It is obvious from these results that the
DRL agent has derived different strategies than those that are
implemented in this simple greedy algorithm.

Our experiments show that the DRL algorithm is consistent
in parking arriving trains with the same composition on a
limited set of tracks.

VII. CONCLUSION

In this work we have shown that benefits from the re-
cent advancements in Deep Reinforcement Learning can be
transferred to problems for which a visual representation of
the state space is not obvious. We have shown that using
a Deep Reinforcement Learning approach to the TUSP, a
sequential decision making problem under uncertainty, leads to
consistent solutions. The agent is able to find general strategies
under uncertainty at a small cost in terms of a lower number
of solved instances in the test set compared to the local
search approach [2]. When used in practice, our method is
preferred since it can be used in a step-by-step fashion, allows
efficient (re)planning, and takes possible disturbances in the
future into account. Deep Reinforcement Learning proves to
be a promising method to explore further in the context of
sequential decision making problems in Operations Research.

Future work directions regarding the application of DRL
to the TUSP include scaling to problem instances with more
trains and extending the problem formulation to include ser-
vice activities and more complex shunting yard layouts. Also,
more complex value functions can be introduced to prefer

Fig. 4. Distribution of parking locations per train type for the first 2 steps by the DRL agent.

Fig. 5. Entropy of parking location decisions for the arriving train compositions.

TABLE III
AGGREGATED ENTROPY CALCULATION ON THE UNCERTAINTY IN PARKING LOCATION FOR EACH POSSIBLE ARRIVAL COMPOSITION.

Train arrival composition
Algorithm SLT4,SLT4 SLT4,SLT6 SLT4 SLT6, SLT4 SLT6 VIRM4,VIRM4 VIRM4,VIRM6 VIRM4 VIRM6,VIRM4 VIRM6

DRL 0.34 0.04 0.16 0.03 0.84 1.22 0.06 1.16 0.02 1.37
[2] 1.93 1.79 2.18 1.78 2.19 1.92 1.78 2.19 1.77 2.18

Greedy 1.85 1.78 1.82 1.75 1.94 1.86 1.78 1.8 1.76 1.92

certain solutions over others. More advanced versions of the
DQN could help to learn more efficiently when scaling, e.g.
by introducing prioritized experience replay [10]. Also, other
DRL methods such as the A3C (Asynchronous Advantage
Actor Critic) [11] could be of help by enabling benefiting
from parallel learners.

ACKNOWLEDGMENT

The authors thank Bob Huisman from NS for several
helpful discussions. This work has received funding from
the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 737459 (project
Productive4.0). This Joint Undertaking receives support from
the European Union Horizon 2020 research and innovation
program and Germany, Austria, France, Czech Republic,
Netherlands, Belgium, Spain, Greece, Sweden, Italy, Ireland,
Poland, Hungary, Portugal, Denmark, Finland, Luxembourg,
Norway, Turkey. The work is partially supported by the NWO
funded project Real-time data-driven maintenance logistics
(project number: 628.009.012).

REFERENCES

[1] L. G. Kroon, R. M. Lentink and A. Schrijver. Shunting of passenger
train units: an integrated approach. Transportation Science, 42(4):436
449, 2006.

[2] R.van den Broek, Train shunting and service scheduling: an integrated
local search approach, Master’s Thesis, Utrecht University, 2016.

[3] F. Wolfhagen, The Train Unit Shunting Problem with Reallocation,
Master’s Thesis, Erasmus University Rotterdam, 2017.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel and D. Hassabis,
Mastering the game of Go without human knowledge. Springer Nature,
550(7676): 354-359, 2017.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg and Demis Hassabis, Human-level control through
deep reinforcement learning, Nature, Springer Nature, 518(7540): 529-
533, 2015.

[6] H. Mao, M. Alizadeh, I. Menache and S. Kandula Resource Management
with Deep Reinforcement Learning, HotNets, 50-56, 2016.

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st edition, MIT Press, 1998.

[8] C.J.C.H. Watkins and P. Dayan, Technical Note: Q-Learning, Machine
Learning, 8(3): 279-292.

[9] M.L. Littman, Reinforcement learning improves behaviour from evalua-
tive feedback, Nature, 521(7553):445-451.

[10] T. Schaul, J. Quan, I. Antonoglou and D. Silver, Prioritized experience
replay, International Conference on Learning Representations, 2015.

[11] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley,
D. Silver and K. Kavukcuoglu, Asynchronous methods for deep rein-
forcement learning. Proceedings of the 33rd International Conference on
Machine Learning, New York, NY, USA, 2016.

