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- Abstract - _ ,

The purpose of manpower blanning ;s to get a better matching between
manpower requirement and manpower availability. The difficult part of
manpower planning is to get reliable forecasts for future manpower require-
ment. It is important, tﬁérefore, to know what information one needs about
the future to make good decisions now. How detailed should our knowledge
of future manpower requirement be and ofvhcw far in the fﬁture? The last
point is directly related to the problem of the planning horizon. This
proﬁlem is investigated in this paper for a hierarchical manpower system
with two grades, recruitment at the bottom and a promotion policy formu~
lated in the grade~-age (number of years in grade one). There is a goal:
on the total content of the syétem and a goal on the content of the
second level. These goals may be interpreted as the future requirements.
The penalties for deviations from the goals are assumed to be proportional
to these deviations. The only way to control the system is by recruitment.

For the case where all employees have the same career pattern one
can get rather general results since this problem is almost equivalent to

the case with only one grade. For the more general case it is only pos-

sible to get planning horizon results if conditions are added on the




penalty functions and the goal patterns. . The general two-level case
appears to be equivalent to the production-smoothing problem without

inventory with a lower bound on the difference between the hiring in

two subsequent periods.




“ori 1, Introduction

-
e

The problem of medium and long term manpower planning is to get
a good matth of the future requirementsof personnel and the future

availability of personnel. )

The future requlrement for persohnel 1n ‘the various categor1es

is determlned by the organlzatlon act1v1ty plans. The future ava11ab111ty
of personnel is determlned by the actual population, together with the
policy with respect to recrultment, promot1on, job rotation, and so omn.
The problem is to match requlrement and avallablllty as good as possxble.»
The d1ff1cu1ty w1th manpower planning is that all dec131ons made to
adjust avallablllty and requ1rement to each other have a long lasting
1mpact on the organlzatlon. It is not p0531b1e to adJust from year to
year because of, for 1nstance, the folloW1ng p01nts. '

- It is d;fflcult to fire people or to move people-from one

location to amother.




- People have (implicit or explicit) career rights; career
possibilities have to remain stable therefore.

~-For many functions oné needs people with experience in
‘the organization and these people are not directly
available at the labor market, ~ * -~ - SR

The difficulty of this long 1asting impact of personnel decisiens 1s~
even more severe because of the fact that it is not possible to get
. good forecasts ‘for fuCure requirement. It is difficult to. plan more
than five years ahead while the decisions have certainly a longer im-
pac: than five years. It 1s.extreme1y important, therefore, to know
how much of the future ome hes to know to be able to meke good_dec1-~ |
sions now. So the questioﬁ is in the first place, how fer in:the‘fututa"
one needs to have information about the requirement. In the second —
place, how detailed should this information be. The first point is the
problem of choosing the proper pianning horizon. The second point has
to do with fhe level of aggregation; Although these points ere reiated
(longer plenning horizon, higher level of aggregation) we will consider :
here only the plannino horizon problem. R o :

In thinking about planning horizons there are two possible points
of view, the detetministic and the stechastic} In the determiﬁistie
approach'ene assumes that it is poesible to acquire perfeet information
about feﬁure:deta (1# this case future ;ereonnel requirement), but thatid
it 1s difficult to get this information and that it is important; there-
fore, to kncw how muchbinformation.one needs to make a good first-period

decision (see, for instance, Lundin, Morton [5] and Morton [6] for this

approach in production planning). In the other ap?roach one assumes




that the forecasts have a'given (un)reliability and one conziders the

quality of the planning as function of the horizon (see Baker, Peterson .
[21for an example Of ‘this approach). |
In this paper we use the deterministic approach. The problem we

consider is a two-level hierarchical system where the only control
possibility is recruitment (only at the lower level) and where promo-

. tion depends on grade-age, ch#t is the time spent in the last grade. v
The syétem is rather t}pical for formal organizafioné (see, for instance,
van der Beek, Verhoeven, Wessels [3]). The only purpose of the decisions
is to minimize the deviation of future (expected) availability from
future requirement (goals). It will turn out that it is not possible
for the general two-level case to get good planning horizon results
without making extra assuﬁptions about goal patterns and pénalty func-
tions; The special; but interesting, case where all employees have
the same career pattern is easier since in this case the system is
almost equivalent to a one-level syatem.

The model is described in more detail in Section 2. Section 3
gives a transformation of the problem which brings it somewhat closer
to the production planning type problems. In Section 4 the one-level
case is considerea énd in Section 5 the two-level case. Subsection 5.1
gives'the.special case; subsection 5.2 the genmeral case. Section 6 at
last gives a discussipn of the differences of this problem and a re~-
lated production-smoothiné problem considered in Aronson; Yorton,
Thompson [1] and expla}ns why it is not possible to get planning hori-

zon results for the more-level case without making extra asgumptions

on goal patterns and penalty functions.




2. The Model

Cénsidpr a linear hierarchical system with two grades. The promo-
tion policy is such that people with less than £ years of service in |
grade 1 (grade~age < £) cannot be promoted to grade 2. The probability
to be promoted for people with £ years of service in grade 1, or more
is p. Recruitment is only in gi:ade '1. Promotion as well as recruitment
are assumed to take place once a year at ‘a certain fixed date.' The
probability to leave the system (turnover) is a, independent of grade
~ and grade-age. That means that the system may be described by a
Markov-type model with states (1,1), (1,25;...,(1, ) and (2), where
(1,1i) indicates the cateéoi:y of pebple in grade 1 with gfade-age i
(see Figure 1). People recruited in grade 1 now are assumed to be in

“state (1,1) during this year. Next year they enter state (1,2).

-9 I - leyel 2‘
AP 3
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Suppose that the current content is given by the numbers
Wygs Upgsecestiyp and Wys let z(t) be the recruitment in year t and
xll(t), xlz(t),...,xlz(t) and xz(t) the expected content of the
different categories in year t; then the following equations are e

gsatisfied

| %, = oygr %O = w,
and for t > 0 xll(t+l) = z(tfl) N
,-xli(t+l) = (lva)xlj_l(t), J = 2,000,481
Cxpp(tHl) = (L-w)xyp o (£) + (1-0) (1-p)x, p(t)
x,(e+1) = (L) p(8) + (10 xy(0)

We assume‘that there are goals on the future expected content of the
systen, in the firsz place a goal gl(t) on the content of the whole

‘gystem at time t, Zl xlj(t) + xz(t), and in the second p;ace a goal
gz(t) on the contegt of the second level, xz(:). The costs of devia-~

tions from these goals are assumed to be given by

L SRR _
c,8%[g (8) = (my(t) + 321 %, 4 ()] and ezsf’lgzcc> - %,(t)]

The only way to control the system and keep it close to the goals is by

"chodsing the appropriate recruitment. The problem we will consider is

to choose recruitment such that the total cost of deviations over a




~
finite horizon T is minimized. Since deviations from the goal omn
the content of the second level in periods 1,...,% are not influenced

by the recruitment in periods 1,...,T we choose the following objec~-

,

" tive function:

T 6 - ' T+% " :
(1) := c§1 c;8 lg;(£) - (xy(t) + 521 x5 ()| +---t=§+1 c,B [, (t) - x, ()]

-

'So the problem is a simple goal-programming problem (see Charnes,
Cooper, Lewis, Niehaus [4] and the references given there for applica-
tions of goal-programming techniques in more complex problems). How~
ever, here we are not interested in efficient algorithms or nice
interactive computer péckages, but only in the planning Borizon, the
length of time over which we need information about the goals to make
a good first-period decision. A number N is calleq a planning-horizon
here 1f the problem of minimizing C(T) gives the $amé first-period re-
.cruitment for all T > N, | .

The goals chosen here are somewhat uncommon. More common is.to
'have a goal on each of the grades. Both choices aré more or less
arb;trary. Important is that one has some way to express the prefer-
ence fog certain grade contents: Since this study 15 not a direct
application, but a way to get some insight in the amount of informa-

tion required in this type of problem, it is not too important which

way of representing this preference is chosen.

Cm e - .



3. Transformation of the Problem

In the first place it is possible to reduce the problem to a pro-

blem with turnover equal to 0. Define

xij(°)= = (l-c)..txﬁ (t) |

1j
". ' . - -t -
xz(t). = (1-a) xz(t)
z'(t): = (1-0)"Tz(t)

Then the x' develops as in an aquivalent system without tutnover with

recruitment z'. If we define

gi(t): = g (t)- 1-0)~"
gy{): = g, (£)-(1-a) "
then the costs in period t are given by '

: ¢
clo(lpa) Btlx (t) + jz xlj

() - glcc)t and ¢+ (1-0) 8% x3(0) - gh(e)]
So of the éame type as before. It is important to notice that 1f the
original goals were (about) constant then the revised goals are (about) -
increasing at rate 1/(1—0). The case where the revised goals are in-
creasing is more or less normal therefore.

In the second place we may assume without loss of generality that

w = 0, start with an empty system. - It is always possible to subtract

‘from the goals the content due to the starting population. That means

that after such a transformation the goals are not necessarily positive.




The third transformation is the most important one. It reduces

the problem to an equivalent problem without grade-age. Let
7y(t): = I xlj(t) + xz(t)
7o(t)s = x3(¢).

All people in the system at time t are at time t+£-1 either in state

(1,2) or in state (2). So xiz(t-kl-],) = yl(t) - yz(t+£-1). The iaput

at time t+f from grade 1 to grade 2 is p(yl(t) - yz(t+£-1)). Hence
yZ(t+£) = yZ(t"'z"l) + p(yl(t) - y2(t+‘€"1))

t-1
- (1~p)y2(t+£-l) +oy,(0) = p 2 (1-p) yl(t—i)

¥, (t+h)
Now define yz(t)' = - then the problem is to choose yl(-) such

that the expression

ﬁl e, (1-0) s‘lylcn) - g0 + e, 1) ‘*’-l yie) - -—@2{}
is mininized under the conditions yl(l) >0, yl(t+1) > yl(t), t = 1,2,..; )
(since the total content at time t+l can never be less than the total
content at time t). The relationship between yl and y’z' is given by
t-1
y3(t) = 2 (1-p) y,_(c-i) = ylcc) + cl-p>y;(=-1>

So we may view yl(-) and y;(-) as input and content of a system where

each period a fraction p of the old population leaves (see Figura :2),




i

I

—e—t-econtent is yz(')

input is yl(-)
Figure 2

For cases with more grades one can get the same type of transfor-’
| mation. If thererare k grades in the original system with 21"“’£kr1
the maximal grade-ages and PyseeesPpq the promotion probabilities
from the highest grade-age to the next grade, then the system is
equivalent to a system as depicted in Figure 3. The total content

in the original system corresponds to the input in the transformed
system, the total content of the grades 2,...,k in the original system

correspands to the content of state 1 in the transformed gystem, and

50 on.
a!\"k-l
yk( . ),
-2
]
Figure 3 1
*Pz
]
-T- Y3( ¢ )
1py
]
-t Yz ( * )
0\

“ ¥1(*) (input)
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P S . . 4, The One-Level Case

In this section we consider the case in which there is a single
grade. Accérding to Section 3 the problem is then to z
Mininize Z {dly(t) - h(e) | o
. C t=1 L i
under the conditions y(1) > 0 and y(t+l) i_y(t) for t > 1. Since the
gcais h(+) are transformed to take into account the contribution due
to the starting content, it is possible that h(t) < 0. The one-level
case is interesting in its own right, but also beczuse of its similarity
with the two-level case with promotion probability p = 1 (see Subsec~
tion 5 1). . |
In the single-level case 1t is possible to give an explicit expres-'
siog for the optimal first—period decision. This can be used to derive
planning horizon results. Let y(tlT) be the optimal content in period
t for the T-period problem. Define sgnt(x)' = -] for x < h(t),
5 () = tzl {sgn, (=) (1-0) “8°} and

let n, be the supremum of all x such that 8, (x) < 0 for all tl < T.
t s

sgnt(x)° = 41 for x > h(t).: Let s

Notice that ng < h(l). _

An integer T* is called a planning horizon if y(1|T) = y1|T%)
for all T > T* 1ndependent of the h(t) for t > T* T* is called a
(weak) planning horizon if y(lIT) = y(l[T*) is onlv true under certain

conditions on the h(t) for t > T*,

Lemma 4.1. y(1|T) = max(0, n,) for all T > 1.
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Proof. Suppose y(llT) > max(0, nT) for some T. Let El be the first

t, such that s, (y(1|T)) > 0. Construct the solution y'(-) by
: 1

y'(t) = y(t|T) - ¢ for all t < t, and y'(t) = y(t|T) for all t > €. .

1 1
Then, by the definition of 8, » the solution y'(+) is better than the

solution y(*|T), which yieldsla contradiction,

Suppoé; now that y(1|T) ? bax(O, nT); $0 O‘S.y(llf) < oy Let t'
. be the first t such that y(tlID > max(0, nT) (if such a t exists; other-
wise t': = T + 1), Canstrdct,the solutioﬁ y'(*) by y'(t).= max(0, ﬁT)
for t < t* and y'(t) = y(t|T) for t > t'. By the definition of n, the
solution y‘(°) is cheaper than the solution y(-|T), which yields a

contradiction again.”
" The following gorollaries are immediate consequences of Lemma 4.1.

Corollary 4.1. The optimal first-period decision y(1|T) is non-

increasing in T. That means, if y(1|T*) = 0 then T* is a planning

horizon.

Cd%ollérz_4.2. _If'h(é) 3_5(1’ féfvail t i;to tﬁén tolisra (weak) plan~-.
ning horizon. | ' | | ‘ “
A special case where the conditions of Corollari 4.2 are satisfied
for to =] ié the cése where.h(t) is increasing. The optimal policy is
myopic in this case, y(1|T) = max(0, h(1)). In section 3 we mentioned
already.that the case bf incréasiﬁg (reVised)'goéis is éhe normal case.

The discount factor 8 and the turnover rate a can also help in

getting planning horizons.
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- _a)t*-i-lst*-l-l
Corollary 4.3. If for t* > 1 the value st*(h(l)) < 1-(1=0)8

then t* 1s a planning horizon.

R4l eRel

Proof. st*(h(l)) 5_ -(I:J(l_a)g implies that st(h(l)) < 0 for
all t > t*, Since o, < h(1l) this implies that n, is constant for
T > t*, .
For instance, if (1-a)B < 1 then s, (h(1)) =~ (1~a)B = - (1"0%)282 <
| = 2 1 (1-a)B
< -il-a)zsz
1-(1-a)8

and corollary 4.3 implies that 1 is a planning horizonm, n, = h(l)
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5.  The Two-ﬁevel Case

R I TR e men e

In this section we consider the two-level case. According to Sec-
tion 3 we may consioerla problem of the following type
ininize | (dllyl(t) 3 (t)l +d2|y2(t) Z(é')l}a'-a)':s‘
o ea o LT - -
where yz(t) = 120 (i—p) yl(t—i) and yl( ) has to satisfy the conditions
yl(l) > 0, yl(t+1) > yl(t) for t > . s |
The constants d1 and d2 correspond to the constants clksh&‘*
2p(l—u) B in the original model, while h (t) and h (t) correspond to
g;(t) and gi(t+L)/p (see Section 3) | o - '
In Subsection 5.1 the case p=l 1is considered. The results for
this case are very similar to the one-~level results. Although the
case p=l 1is special it is certainly not uninteresting. In many formal
organizations”the prqmotion restrictions; especiaily-in the lower
grades, are so tight that one may approximate it by pai, >0ne may
also think of a situation where the lower level is a training—type level.
In Subsection 5.2 the case p < 1 is investigated. In this case it
is only possible to give good results under extra conditions on the
constants d

1

sider the case of increasing goals.

and dz and on the goal patterns. we will especially con-

5.1. The Case p=l

In this case yl(t) = yz(t) and the problem reduces to

Minimize 2 {dllyl(t) hy(6)] + dyly,(8) = hy(6)]} (1) *"

t=1
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under the conditions y,(1) > 0 and yl(t+1)'3,y1(t) for t > 1. That
. means that this problem is almost equivalent to the one-level case.
As ‘in that case there 1s only one variable which can be controlled.
The difference 1s the shape of'the-penalty function.

Let x (t) be the largest value of x for which dllx - h (t)l +
zlx - 2(t)l is minimal. Let r, (x) be the left-hand derivative of’
this function in x. Define, as In Section 4, for all tl > 1. ' _
's (x)' = 21 r (x)(l-a) 8t and let nT be the supremum of all X such

Y t=1
that s, (x) <0 for all tl < T. Observe that n, <X (). The follaw-
Y
ing lemma and corollaries carrespond to Lemma 4 1 and Corollaries 4 1,

4,2 and 4 3, and are given without proof.

Lemma 5.1. For each T there is an optimal solution yl(t[T) with

yl(llr) = max(9, nT)

Corollary S. 1. If yl(l‘T*) = 0 tﬁen T is a planning hotizon.

Corollary 5.2. If h,(t) and h,(t) are such that x (t) > x (1) for
2 0 - "0

all ¢ 2t then t is a (weak) planning horizom.

A special case where these conditions are satisfied for t =1 is
the case where h (+) and hz( ) are increasing, this implies that x ( )

is also increasing. In this case yl(llT) = max(O, % (1))

Corollary 5.3. If for certain t*'Z.l the value

gy Bt
stz () ¢ B (g 44y,

1-(1-a)8

mmt*baphmmgwﬁﬁm7“A
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‘Since the transformations apsi;ed in Section 3 are more essential
in this case than.in the oneélevel.case we have to check what a planning
horizon T in this transformed model means in the original problem. The '
main part of the transformation was a shift in the time-axis for Yo
That means that a planning hofizon T for the transformed problem implies
that in the original problem one needs to know the goals gl(l),...,gi(T)

M’
and 82(1)a-~-,82(T+Z)-In case p=1 the maximum time spent in the 1owest

AN

grade is 2. The result shows that 2 contrlbutes dlrectly to the length of

k1

the proper planning horlzon.

Reviewing this subsectioq shows that the results can be generalized

to the case with more than two levels and more general penalty functions.

5.1. The Case p < 1

In this case one has to add conditions on the ratio of d1 and dz.
If d /d is large and hl(-) can be follawed (h () 1is non-decreasing) |
then hl( ) has to be followed indeed. If dzld 1s large and h ( ) can
be followed then hz(-) has to be followed indeed. However, there is a
gap between the two regioﬁs; avgap which 1is wi&ening with Qecreasing p.

" In Lemma 5.2 we consider the case where h, is the most Important goal.

Lerma 5.2. Let d, > dzlp and hl(t) non~-decreasing for t 2t.. Then

1
for each T the optimal solution yl(tlT) satisfies

yl(tlT) = max(hl(t), yl(t—llT)) for all t > Fo"

Proof. We will give ‘the proof for the case o= 0, B = 1; the proof
for the general case is similar. | ' ' '

Let t, > t  and suppose Yl(tllf) > max(h, (t,), yl(tl-llt)); Then

the optimal solution can be improved by the revised solution yi(-)
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defined by y}(t) = y,(t|T), ¢t # t; and yj(t,) = y,(&(]T) - €. ‘The total
cost for deviations from goal hl(-)»is sdl legs for solution yi(-) than -
for yl(-IT), while the cost for deviations from goal h,(*) 1s at most
ed
2 -

e(d2 + dz(l-p) + dz(I.p) Feso) = > more for yl( ) than for e
y, (- -|T). This yields a contradiction. -

- Now suppose yl(tllr) <h (tl) for some tl >t.. Let tl + k be the
first period t where yl(tlT) > h (t) (if such a period exists. otherwise '
t,+ k: = T+ 1). This implies that yl(t1+k|T) > yl(ti+k~1]T)° Define

1
1. * .
the revised so;gtion jl( ) bv_yl(Fl). -’yl(tllT? + t-:~

yi(tl+k): - yl(t1+k|T) - e(l—p)k
' . =m _
yi(e): =y, (e|D), téhe, b 4k

This is possible for ¢ small enough since yl(t +le) > yl(t +kr1|T)

Now yz( ) differs from yz( «|T) only in the periods tl""’ti+k ~1l. The
reduction in costs of deviations from the goal h,(-) 1s at least

(d. - (l-p)kdl)e while the increase in cost§ of deviatiéns from the

goal h,(+) is at most e(d + d,(1-p) +...+ d (l—p) "1y - e*d,/p(1 - (l-p) )

So in total y'(-) is better than y(-|T), which yields a contradiction.

In case hl(-) is increasing the conditions of Lémma 5.2 are

satisfied for to = 1., We have the following corollary. ...

Corollary S.4. If 4

1 > dzlﬁ and hl(-) is increasing then the optimal

first-period decision is yl(llT) = max(0, hl(l))'and 1 is therefore a

(weak) planning horizon.
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For to > 1 the problem is more difficult here than in the one-level
case or the two—-level case with p=l. In the first part of the proof we
do not use the fact that hl(-) is non—@ecreasing. That means that
y, (£[T)$ max(h; (£); y;(t-1|T)) for all t. Let t* 2 t, be such that

'h (t“") 2 hy (s) for all s < t and also h,(t¥%) 2 0. Then for all problems

1(
: w1th T 2 t* the opt1ma1 yl(t*l'r) = h (t"‘)

. " Hawever, this does not necessatily mean that
t* 1s a planning horiéon, since yz(t*) is still free and will depend in
generai on the behavior of hy(-) and h,(-) beyond t*,

In the next lemma we consider the case where hz( ) is the most

‘ important goal.

Lemma 5.3. Let d, > dl(z—p) and let h (t:+1) - (l-p)hz(t) be non-

2
decreasing from t = t - 1 on. Then !er each T the optimal solution

yl( ™, yz( BL) ‘has the following properties.

(a) Let t, 2t and let yl(~),. yz(-) be a feasible solution such that
k 3 S ' :
yl(t) "yl(t]I'l forAt < tl -1, ylzc(t) < hz(t) for t_z t, and

1
Kooy o | | | k |
yz(t) hz(t) for t > t, + k. ;’hen yz(tllT) > yz(tl)‘..

() If (1-p)y,(t,-1{T) + yl(tl-ll'r) < hy(t,) for some t; > t_ then

yz(tIIT) _<_h2(tl).

(c) 1If (l-p)yz(tl-llT) + yl(tl-l"l') 3-h2(ti) for some tl > to then

yl(:llr) = yl(tl-llT).

Proof. We wi.ll give the proof for the case where a=0, 8=1; the

proof for the general case is similar.
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(a) Let yl;_('-);, y‘zc(-) be as stated. Suppose 'yz(tll'r) < yg(ﬁi). - Choose

" £ such that t, + £ is the first period t after t; such that °

1
yl(t:l’r) > yi(t-ll'.[‘) (1f such a period exists; otherwise t'].+£=" = T+l).

Then yz(tl'r)~'< yg(t) for tj < t'<t,-+ £. Define the revised solu- .

“tiom Y]_( )5 Yz( )by -4 ;' TR IR B L

Ayt B J S : B - T e

y1(t +1) yl(tllr) # © 1 - o 1,...,&:—1

e - ,.'A':.

3y ey -l-C) - yl(t +2|T), - e{(l—n) + (l-p) +ooot (1-p)° }

yl(t)‘ - yl(tl'r), t < tl and t>¢t, +& ¢

Since yz(t) < h (t) for t > t:l and yz(t]T) < yz(t) for tl <t <'t:1 + £,
we have also yz(t) < yz(t) _<_hz(t) for g, <t <t + £ (and ¢
sufficiently small). For t > tl + £ we havefyé(t) = yz(tl'l')'.

The reduction in cost of deviations from the goal hz( ) is equal -

£-1
tod, § el 4 (1-p) +ooct (1-p)Y) = dpe { Pmaep™
2 320 I

M z ‘ '

2e:(ﬁ —-—E 1 (1- ) ) The increase in cost of deviations from

" the goal h ( ) is at most d £e + d"efl -p) ———(—1—2)— . ~It :l.s easy s
to prove by induction, using dz > dl(Z-p), that the total cost of
y1€)s y5(:) 1s less than the total cost of yl(-l'r), yz(-]'r), s

which contradicts the optimality of this last solution.

(b) Let (1—p)y2(t -1|T) + yl(: -1|T) <h 5(t: ) for some- tl 2t and
suppose yz(tll'r) > hy(t,). Observe first that by part a and.the

non—decreasingness of h (t:+1) - (l—p)h (t) from t = t = 1 on this

e

implies that yo(e|T) > B (t) for all t > t;. Choose £ such that o
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:1+£ is the first period t after t, such that_yz(t:l'l‘) = hz(t) (1f
such a period exists; otherwise t,+0: = T+1). Define the revised

solution yi('), Yi(') by .

yl(t ): = yl(tllT) -
yl(t: +£): = yl(t +£[T) + e(l—p)

y}(): = y (£|T) for all t ¢ tl‘, £, +L

_’Tﬁe.féaéibility éf yi(tl): -‘yikfllT) - e.follaws‘from

1Py, (=11 + 3, (61-1|T) < ByCe)) and v, (e, |T) = (-ply,(e,-1[T) +
’yl(tllT) > h,(ty), which implies that yl(fl]T) > yl(tl-llT) and
ﬁheréfore that yl(tllT) can be reduced indeed. That yl(t +£|T)
~can be increased without increasing yl(t|T) for t > t +£ follows
from y, (t, +£+1lr) > b, (e HEHL) = - (1-p)hy (£ H0) = (e +EHD) -
.'(l—p)yz(t +£) > h (t +£) (1- p)h (t +L- l) > yz(t +£l'1.‘) - ‘

yz(t +L- llT) = yl(t +£IT)

For yz( ) we have

7y(t) = yzftlT), t < cl'
yp(t+L) = &2(t+1lT) - e-pt, 1 =0,1,...,041
| yy(t) = yz(tIT),_ t>t + 2 |
The reduction in cost of devigtions from thé goal hz(') is
9€ ZEI (l-p) l:ﬁl:!lf.‘ The increase in cost of deviations 

from the ?oal h () is at most dle +d e(1~p) ‘From d2 > dl(z-p)

it follows that the total cost of yl( ) 72( ) is less than the
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“ total cost of yi('lT), yz(-lT), which contradicts the optimality

of the last solution.
4 ’(g) The proof of ¢ 1s similar to the proof of b.

; Application of this lemma to the case wiﬁh t, = 1 (uith hz(O): = 0)
!gives also myopic-type results. In the first place, it follows from ¢
that h (1) < 0 implies yl(llT) = 0! So in this case the (weak) planning
hcrizon is indeed equal to 1. Further, it follows from a and b that if

i
“there 1s a feasible policy yl( ), y ( ) with Yo (t) = h Gt) for all t >1

'then thls is the optlmal pollcy. Since h2(2) (1 p) h (1) h (1) ::
such a policy y?(-), y%(') exists if hz(l) 2 0. So.ip this case the
. (weak) planning horizon is equal to 2 (and yl(llT) = hz(l)).

To evaluate the usefulnéss of Lemma 5.3.observe that—
hz(t+1) - (l—p)hzﬂt) 2 hz(t) - (l-p)hz(t-l) can also be written
hz(t+1) - hz(t) > (l—p)(hz(t) - hz(t-l)). So convexity of hz(o) is .
sufficient for all p, but for the case where p is close to 1 the con—

dition is much weaker. According to section 3 one may expect in most

cases h2(~) increasing about geometrically. That means that the condition

is not too severe.
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6. Production-S8moothing Problem

In this section we discuss the relationship of this problem with
the production-smoothing problem without inventory investigated by
Aronson, Morton, Thompson [1]. First we apply one more transformation.

Define o §1(:):'- yl(t)-- h, (t) : e

: t-l
70 = 3o - ) (1-p>‘h (e-1)

The problem formulated in yl and yz is then

t-l t e
Minimize 2 {dllyl(t)l + dzlyz(t) - () - § a-p'n (t-i)l}(l—u)
. R o

- t=1
where yz(t) - X (1-p) yl(t-i) and yl( ) has to satisfy t"xe condit:lons

yl(l) _>_ -] 1(1), yl(t+1) 2> yl(t) - hl(t+1)'+ hl(t) for t _>_ 1.
The problem considered in [1] is of the following type
Minimize § {a]x,(t)] + b]x, (£) - d(t)|}
L T el 1 ,‘ 2
- t=1
where x (t) = z xl(t-i)‘
—— . 1=0
The most essentlal difference is that in the problem considered
here ;1( *) is not free while in the production-smoothing problem xl( )
is free. In [1] the following planning horizon result is given. If
for certain T = T® the optimal policy is such that xl(tl) > 0 and
x,(t,) < 0 for certain t, # t, smaller than T* then the optimal policy

on the interval {1, min(tl, tz) = 1] 1s not changed by a further

increase of T.
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In the problem under comsideration here it is not possible to get
such type of planning horizon resnlts without adding éktra information on
the goal patterns. To clarify this we give an example where an 1n-
crease 1n h (t ) for a certain t' implies a decrease in yz(t) for cer-

T

tain t < t:'

Exarple. Let T=3,p=1/2,0=0,8=1, d; =1, d) = 2 and let the
goals be hl(l) - h1(2) '.h1(3)‘f Z'énd.hz(l).- 0,:h2(2) = 3, hz(3) = 31/2.
Then the optimal solution is yl(l) - y1(2) -‘y1(3) = 2 which ylelds

7,(1) = 2, 7,(2) = 3, y,(3) = 3 1/2." However, 1if h,(3) = 4 1/2 instead

of 3 1/2 then the opttmal solution is yl(l) = 0, y1(2) = 3, y1(3) =3
which yields yz(l) = Q, y2(2) =3, y2(3) = 4 1/2. So an increase in

h2(3) causes a decrease in yz(l). It is clear that this is due to the

fact that an increase in y1(2) can also imply an increase of yl(a).

Since the possibility to derive planning horizons as in [1] relies
heavily on the monotonicity of the decisions in the goals one may not
. expect to be able to get these types of planning horizons here.

It 1s also possible of course to explain the difficulty to derive .
planning horizons for this problem by mentioning that for p < 1 the
state space is“tyoédimensionaliwhile the state spacé in the productidn—

smoothing problem is one-dimensional.
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