Communicating system behavior with ambient light

Citation for published version (APA):

Document license:
Other

Document status and date:
Published: 27/11/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Communicating system behavior with ambient light
From complex control system behavior to ambient lighting patterns

Introduction

Smart technology has permeated our daily lives, domestic contexts and generally any transition between work, living and leisure imaginable. When such technology is integrated in living and practices of living, we encounter different forms of automation and sharing of tasks between the machine and humans. While we often strive for high degrees of automation in everyday chores, errands and periodic adjustments, the loss of control and being oblivious to how automation actually behaves in our personal spaces presents difficulties.

This poster outlines a research project on enhancing a smart automation system [2] with means to communicate about its internal dynamics and working principles using abstract light patterns that are created by distributed small lights in the context. For example, when the control system adjusts the room climate according to end-users’ preferences, this process will take some time (heating air, decreasing humidity, etc.). By communicating this fact to end-users we can prevent overshooting in further adjustments, misguided troubleshooting and general impatience.

Mapping system internals to patterns

Analyzing the internal processes of an interactive automation system, we can find more candidates for communication to end-users such as requests for user preferences, context switches of individual users, conflicts between automation and user preferences, conflicts between preferences of different users, and that the system cannot act upon the given context or information. Our hypothesis is that these cases can be communicated effectively using ambient lighting patterns and help resolve friction between human and the automation system.

Communicating with lighting patterns

In addition to the above mapping, we briefly explain the lighting design for communicating [1] a system’s internals and initiating human-system interactions for achieving better user experience (cf. Figure 2). Before the system automatically acts, the system will (1) show blinking lights to notify the user of an action to be executed in a few minutes. The user notices the lighting pattern and understands the notification. She (3a) is either not sure about the message and looks around to check the lighting patterns on other devices [back to 1]; (3b) approves the automation choice [go to 4b]; or (3c) disables automation on an input device (e.g. gesture or voice control) [go to 4c]. The system (4b) shows a timer or countdown to indicate when the function will be triggered; (4c) dimmed the lighting to confirm the function was disable. As a result, the user (5) is aware of automation choices being taken into account and feels in control.

Figure 1. From left to right, conventional trigger-action rules, IIP concepts and behavior, and communication setup for ambient light patterns


Figure 2. Flow diagram of lighting interaction.