Optimization of actuator shapes for a wafer heating application

Citation for published version (APA):

Document status and date:
Published: 23/10/2018

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at: openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Sep. 2019
Motivation

Wafer heating (see Fig. 1) significantly affects the imaging quality of ASML's wafer scanners. Thermal actuators can be used to improve the imaging quality, but it is not trivial which placement of actuators is most effective to counteract the effect of the expose light. Therefore, tools are needed to design an effective thermal actuator layout.

Thermomechanical wafer heating model

The model is formulated in the \((x, \zeta)\)-coordinate system which is fixed to the expose light. Based on the expose heat load \(Q_{\text{exp}}(x, \zeta, t)\) and the actuation heat load \(Q_{\text{act}}(x, \zeta, t)\), the temperature field \(T(x, \zeta, t)\) and the displacement fields in \(x\)- and \(\zeta\)-direction \(d_x(x, \zeta, t)\) and \(d_\zeta(x, \zeta, t)\), respectively, are computed. The scanning of one field (one black rectangle in Fig. 1) during the time interval \(t \in (0, t_e)\) on the infinite domain \((x, \zeta) \in \mathbb{R}^2\) is considered.

Optimal actuator shape design

The actuation heat load is of the form

\[Q_{\text{act}}(x, \zeta, t) = B(x, \zeta)u(t) \]

where the shape of the actuation heat load \(B(x, \zeta)\) is fixed over time and only the intensity \(u(t)\) is time-dependent. Note that when the sign of \(u(t)\) does not change, the sign of \(B(x, \zeta)\) will indicate where heaters and where coolers should be placed.

The actuator shape \(B(x, \zeta)\) and intensity \(u(t)\) are designed as the minimizers of the following optimization problem.

\[
\min_{B(x, \zeta), u(t)} J = \int_0^{t_e} \int_{\mathbb{R}^2} Q_{\text{act}}^2(x, \zeta, t) \, dx \, d\zeta \, dt \\
\text{subject to} \\
1) \text{The displacement in the slit is sufficiently small, i.e. inside the exposed area} \\
\quad d_x^2(x, \zeta, t) + d_\zeta^2(x, \zeta, t) < \delta_{\text{exp}}. \\
2) \text{There is no slip between wafer and supporting structure, i.e. on the whole wafer} \\
\quad d_x^2(x, \zeta, t) + d_\zeta^2(x, \zeta, t) < \delta_{\text{slip}}. \\
3) \text{There is no actuation applied in the slit.} \\
4) \text{The sign of } u(t) \text{ does not change.}
\]

Results

When the actuator shape \(B(x, \zeta)\) and intensity \(u(t)\) are optimized to keep the maximum displacement in the slit below \(\delta_{\text{slit}} = 2\) nm while keeping the displacement on the whole wafer below \(\delta_{\text{slip}} = 3.67\) nm, the results in Fig. 2 are obtained. Without thermal actuation the maximal displacement in the slit is 4.1 nm, which means that slip between wafer and supporting structure will occur without thermal actuation.

Conclusions

A method to design optimal actuator shapes for the wafer heating problem has been developed.