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In this survey we use an operator theoretic approach to infinite-dimensional sys-

tems theory. As this research field is quite rich, we restrict ourselves to the class of

infinite-dimensional linear port-Hamiltonian systems and we will focus on topics

such as well-posedness, stability and stabilizability. We combine the abstract opera-

tor theoretic approach with the more physical approach based on Hamiltonians. This

enables us to derive easy verifiable conditions for well-posedness and stability.
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1 INTRODUCTION

Systems described by partial differential equations (PDEs) can be investigated either by operator theoretic or PDE methods.

The PDE methods are specialized to specific classes of PDEs, and therefore lead to refined results. The operator theoretic

methods formulate the main concepts and investigate their interconnections. The advantage of the operator theoretic approach

is that it allows for a general abstract framework. In this survey, we combine the abstract operator theoretic approach with a

more physical approach based on Hamiltonians in order to derive easy verifiable conditions for well-posedness and stability of

port-Hamiltonian systems.

Many physical systems can be formulated using a Hamiltonian framework. This class of systems contains ordinary as well as

PDEs. Each system in this class has a Hamiltonian, generally given by the energy function. In the study of Hamiltonian systems

it is usually assumed that the system does not interact with its environment. However, for the purpose of control and for the

interconnection of two or more Hamiltonian systems it is essential to take this interaction with the environment into account. This

led to the class of port-Hamiltonian systems, see van der Schaft[1] and van der Schaft and Maschke.[2] The Hamiltonian/energy

has been used to control a port-Hamiltonian system, see, for example, Baaiu et al.,[3] Cervera et al.,[4] Hamroun et al.[5] and

Ortega et al.[6] For port-Hamiltonian systems described by ordinary differential equations this approach is very successful, see

the references mentioned above. Port-Hamiltonian systems described by PDE is a subject of current research, see, for example,

Eberard et al.,[7] Jeltsema and van der Schaft[8], Kurula et al.,[9] Macchelli and Macchelli.[10] As mentioned above, we concentrate

on an operator-theoretic approach to port-Hamiltonian systems. There are other approaches, such as using differential geometry

and/or Dirac structures, see, for example, van der Schaft.[1]

2 EXAMPLE OF A PORT-HAMILTONIAN SYSTEM

Various control systems can be modeled by PDEs such as vibrating strings, flexible structures, the propagation of sound waves,

and networks of strings or flexible structures. Here we consider the simple example of a transmission line with boundary control

and observation.
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FIGURE 1 Schematic representation of the transmission line

Example 2.1. Transmission lines with boundary controls are used for electric power transmission.

The problem can be approximated by the 1D system of Figure 1 representing propagation of electric charges and magnetic

fluxes.

The lossless transmission line on the spatial interval [a, b] is described by the PDE:
𝜕Q
𝜕t

(𝜁, t) = − 𝜕

𝜕𝜁

𝜙(𝜁, t)
L(𝜁)

(1)

𝜕𝜙

𝜕t
(𝜁, t) = − 𝜕

𝜕𝜁

Q(𝜁, t)
C(𝜁)

.

Here Q(𝜁, t) is the charge at position 𝜁 ∈ [a, b] and time t > 0, and 𝜙(𝜁, t) is the (magnetic) flux at position 𝜁 and time t. C is

the (distributed) capacity and L is the (distributed) inductance. The voltage and current are given by V = Q∕C and I = 𝜙∕L,

respectively. The energy of this system is given by

E(t) = 1

2∫
b

a

𝜙(𝜁, t)2

L(𝜁)
+ Q(𝜁, t)2

C(𝜁)
d𝜁.

The control, boundary conditions and observation associated to this problem are

V (a, t) = u(t) V (b, t) = RI (b, t) I (a, t) = y(t)

corresponding to a controlled voltage at point a, a resistive charge at point b and an observed current at point a. Here u(t) is the

control, y(t) the observation and R ≥ 0 is the resistor. For the change of energy we obtain

dE
dt

(t) = ∫
b

a

𝜙(𝜁, t)
L(𝜁)

𝜕𝜙

𝜕t
(𝜁, t) + Q(𝜁, t)

C(𝜁)
𝜕Q
𝜕t

(𝜁, t)d𝜁

= ∫
b

a
− 𝜙(𝜁, t)

L(𝜁)
𝜕

𝜕𝜁

Q(𝜁, t)
C(𝜁)

− Q(𝜁, t)
C(𝜁)

𝜕

𝜕𝜁

𝜙(𝜁, t)
L(𝜁)

d𝜁

= −∫
b

a

𝜕

𝜕𝜁

(
𝜙(𝜁, t)
L(𝜁)

Q(𝜁, t)
C(𝜁)

)
d𝜁

= 𝜙(a, t)
L(a)

Q(a, t)
C(a)

− 𝜙(b, t)
L(b)

Q(b, t)
C(b)

= V(a, t)I(a, t) − V(b, t)I(b, t) (2)

= u(t)y(t) − RI(b, t)2, (3)

where we used the boundary conditions. Equation (2) shows that the change of energy can only occur via the boundary. Since

voltage times current equals power and the change of energy is also power, this equation represents a power balance.

3 CLASS OF PORT-HAMILTONIAN SYSTEMS

Many physical systems can be modelled by the following equation

𝜕x
𝜕t

(𝜁, t) = P1
𝜕

𝜕𝜁
((𝜁)x(𝜁, t)) + P0 ((𝜁)x(𝜁, t)) , 𝜁 ∈ (a, b), t > 0,

x(𝜁, 0) = x0(𝜁), 𝜁 ∈ (a, b),

u(t) = WB,1

[(b)x(b, t)(a)x(a, t)

]
, t > 0, (4)

0 = WB,2

[(b)x(b, t)(a)x(a, t)

]
, t > 0,

y(t) = WC

[(b)x(b, t)(a)x(a, t)

]
, t > 0.
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Here P1 ∈ Cn×n is invertible and self-adjoint, that is, P∗
1
= P1, and P0 ∈ Cn×n is skew-adjoint, that is, P∗

0
= −P0. We assume

that  ∈ L∞((a, b);Cn×n), for every 𝜁 ∈ [a, b], (𝜁) a is self-adjoint matrix and there exist constants c,C > 0, such that

cI ≤ (𝜁) ≤ CI for almost every 𝜁 ∈ [a, b]. Finally, WB,1 is a m × 2n-matrix, WB,2 is a (n − m) × 2n-matrix, and WC a

k × 2n-matrix. Here u(t) ∈ Cm denotes the input and y(t) ∈ Ck the output at time t. We call (4) a port-Hamiltonian system.

The energy or Hamiltonian can be expressed by using x and . That is

E(x(⋅, t)) = 1

2∫
b

a
x(𝜁, t)∗(𝜁)x(𝜁, t)d𝜁. (5)

In Example 2.1, the change of energy (power) of the system was only possible via the boundary of its spatial domain. In general,

for the Hamiltonian given by (5) the following balance equation holds for all (classical) solutions of (4)

dE
dt

(x(⋅, t)) = 1

2

[
(x)∗(𝜁, t)P1 (x) (𝜁, t)

]b
a . (6)

This balance equation will prove to be very important and will be useful in many problems, such as the existence of solutions

and stability.

Example 3.1 (Lossless transmission line).
If we introduce in Example 2.1 the variables x1 = Q and x2 = 𝜙, Equation 1 can be written as

𝜕

𝜕t

[
x1(𝜁, t)
x2(𝜁, t)

]
= − 𝜕

𝜕𝜁

([
0 1

1 0

][ 1

C(𝜁)
0

0
1

L(𝜁)

][
x1(𝜁, t)
x2(𝜁, t)

])
which is of the form of Equation 4 with

P1 =
[

0 −1

−1 0

]
, P0 = 0, (𝜁) =

[ 1

C(𝜁)
0

0
1

L(𝜁)

]
. (7)

The boundary condition, control and observation can be rewritten as

[
0 0 1 0
1 −R 0 0

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

C
(b, t)

x2

L
(b, t)

x1

C
(a, t)

x2

L
(a, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
u(t)

0

]
,

[
0 0 0 1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

C
(b, t)

x2

L
(b, t)

x1

C
(a, t)

x2

L
(a, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= y(t), (8)

that is, WB,1 =
[
0 0 1 0

]
, WB,2 =

[
1 −R 0 0

]
, WC =

[
0 0 0 1

]
, n = 2, and m = k = 1. Finally, the Hamiltonian is written as

E(x(⋅, t)) = 1

2∫
b

a

x1(𝜁, t)2

C(𝜁)
+ x2(𝜁, t)2

L(𝜁)
d𝜁.

4 OPERATOR THEORETIC APPROACH TO PORT-HAMILTONIAN SYSTEMS

In this section we rewrite our port-Hamiltonian system (4) as an abstract differential equation, which enables us to use operator

theoretic methods. Motivated by the fact that the solution of a system ẋ(t) = Ax(t) of ordinary differential equations, that is, A
is a n × n-matrix, with initial condition x(0) = x0 is given by

x(t) = etAx0,

we aim to write the port-Hamiltonian system (4) in the form

ẋ(t) = 𝔄x(t), u(t) = 𝔅x(t), y(t) = ℭx(t), t ≥ 0, x(0) = x0. (9)

Thus, we do not regard the solution x(⋅, ⋅) of (4) as a function of space and time, but as a function of time, which takes values

in a function space, that is, we see x(𝜁, t) as the function x(⋅, t) evaluated at 𝜁 . With a slight abuse of notation, we write x(⋅, t) =
(x(t)) (⋅). We “forget” the spatial dependence, and we write the PDE

𝜕x
𝜕t

(𝜁, t) = P1
𝜕

𝜕𝜁
((𝜁)x(𝜁, t)) + P0 ((𝜁)x(𝜁, t))

as the (abstract) ordinary differential equation

dx
dt
(t) = P1

𝜕

𝜕𝜁
(x(t)) + P0 (x(t)) .
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Hence, we consider the operator

𝔄x ∶= P1
d

d𝜁
(x) + P0 (x) (10)

on a domain which includes the boundary conditions. The domain should be a part of the state space X, which we identify next.

For our class of PDEs we have a natural energy function, see (5). Hence, it is quite natural to consider only states which have

a finite energy. That is we take as our state space all functions for which ∫ b
a x(𝜁)∗(𝜁)x(𝜁)d𝜁 is finite. Thanks to our assump-

tions on (𝜁) the integral ∫ b
a x(𝜁)∗(𝜁)x(𝜁)d𝜁 is finite if only if x is square integrable over (a, b) and so we choose the state

space

X = L2((a, b);Cn)

with inner product

⟨f , g⟩ = 1

2∫
b

a
f (𝜁)∗(𝜁)g(𝜁)d𝜁.

Thus, the squared norm of a state x equals the energy of this state. In order to achieve uniqueness of solutions we need to impose

boundary conditions. For example, we equipped the lossless transmission line (Example 2.1) with the boundary condition,

control and observation (8). In general, we consider boundary conditions, controls and observations as in (4). As 𝔄x is not

well-defined for every function x in X, we equip the operator 𝔄 with the domain D(𝔄), which is given by

D(𝔄) =
{

x ∈ L2((a, b);Cn) ∣ x ∈ H1((a, b);Cn), WB,2

[
(x)(b)
(x)(a)

]
= 0

}
. (11)

Here H1((a, b);Cn) are all functions from (a, b) to C
n which are square integrable and have a derivative which is again

square integrable. We remark, that the operator 𝔄 given by (10) and (11) satisfies for x ∈ D(𝔄) the following useful

condition

Re ⟨𝔄x, x⟩ = 1

2

[
(x)∗(𝜁)P1 (x) (𝜁)

]b
a . (12)

Finally, we define the operators 𝔅 and ℭ by

𝔅 ∶ D(𝔄) → C
m
, 𝔅x = WB,1

[
(x)(b)
(x)(a)

]
, (13)

ℭ ∶ D(𝔄) → C
k
, ℭx = WC

[
(x)(b)
(x)(a)

]
. (14)

5 EXISTENCE OF SOLUTIONS TO THE HOMOGENEOUS EQUATION

A fundamental problem of PDEs is the question of existence and uniqueness of solutions. In this section, we study this question

for our port-Hamiltonian system (4) without control function (u = 0) and observation, that is, we consider a system of the

form

𝜕x
𝜕t

(𝜁, t) = P1
𝜕

𝜕𝜁
((𝜁)x(𝜁, t)) + P0 ((𝜁)x(𝜁, t)) , 𝜁 ∈ (a, b), t > 0,

x(𝜁, 0) = x0(𝜁), 𝜁 ∈ (0, 1), (15)

0 = WB

[
((b)x(b,t)
((a)x(a,t)

]
, t > 0.

Note that now we have chosen u ≡ 0 in Equation (4). In the previous section we rewrote Equation 15 equivalently as (using A
instead of 𝔄)

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0, (16)

where A ∶ D(A) ⊆ L2((a, b);Cn) → L2((a, b);Cn) is given by

Ax = P1
d

d𝜁
(x) + P0 (x) , x ∈ D(A), (17)

D(A) =
{

x∈L2((a, b);Cn) ∣ x ∈ H1((a, b);Cn), WB

[
(x)(b)
(x)(a)

]
= 0

}
. (18)
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Now the question arises:

Does Equation (16) has a unique solution?

This question is well-studied in operator theory and closely related to the notion of C0-semigroups. The theory of

C0-semigroup started with the work of Hille, Phillips, and Yosida in the 1950s. By now it is a well-documented theory, for

example, Curtain and Zwart,[11] Engel and Nagel,[12] Hille and Phillips,[13] Pazy,[14] and Yosida.[15]

Definition 5.1. Let X be a Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖⋅‖ =
√⟨⋅, ⋅⟩. The operator valued function t → T(t),

t ≥ 0, denoted by (T(t))t≥0, is a strongly continuous semigroup or C0-semigroup if the following holds

1. For all t ≥ 0, T(t) is a bounded linear operator on X, that is, T(t) ∈ (X);
2. T(0) = I;

3. T(t + 𝜏) = T(t)T(𝜏) for all t, 𝜏 ≥ 0.

4. For all x0 ∈ X, we have that ‖T(t)x0 − x0‖ converges to zero, when t ↘ 0.

The easiest example of a C0-semigroup is the exponential of a matrix. That is, let A be an n × n matrix, the matrix-valued

function T(t) = eAt satisfies the properties of Definition 5.1 on the Hilbert space C
n. Clearly the exponential of a matrix is also

defined for t < 0. If the semigroup can be extended to all t ∈ R, then we say that (T(t))t∈R is a group. We present the formal

definition next.

Definition 5.2. Let X be a Hilbert space. (T(t))t∈R is a strongly continuous group or C0-group, if the following holds

1. For all t ∈ R, T(t) is a bounded linear operator on X;

2. T(0) = I;

3. T(t + 𝜏) = T(t)T(𝜏) for all t, 𝜏 ∈ R.

4. For all x0 ∈ X, we have that ‖T(t)x0 − x0‖ converges to zero, when t → 0.

It is easy to see that the exponential of a bounded operator is a C0-group. However, only a few C0-semigroups are actually a

C0-group. Given the C0-semigroup
(
eAt)

t≥0
with A being a square matrix or a linear bounded operator, A can be obtained by

differentiating eAt and evaluating the derivative at t = 0. Next we associate an operator A to a C0-semigroup (T(t))t≥0.

Definition 5.3. Let (T(t))t≥0 be a C0-semigroup on the Hilbert space X. If the limit limt↘0
T(t)x0−x0

t
exists, then we say that

x0 ∈ X is an element of the domain of A, shortly x0 ∈ D(A), and we define

Ax0 = lim
t↘0

T(t)x0 − x0

t
.

We call A infinitesimal generator of the C0-semigroup (T(t))t≥0.

The relevance of C0-semigroup is given by the next theorem.

Theorem 5.4 ([12, Theorem II.6.7]). Let A be a linear operator with non-empty resolvent set, that is, there exists an s ∈ C

such that the inverse of sI − A exists as a bounded operator on X. Then the following statements are equivalent.

1. A is the infinitesimal generator of the C0-semigroup (T(t))t≥0.
2. For every x0 ∈ D(A) Equation (16) has a unique classical solution.

Moreover, for x0 ∈ D(A), the function x(t) ∶= T(t)x0 equals the unique classical solution of (16).

Although T(t)x0 only satisfies (16) if x0 ∈ D(A), x(t) = T(t)x0 is still called the solution of (16) if x0 ∈ X. To distinguish it

from the classical solution, it is also called mild solution. So far we associated an infinitesimal generator to a C0-semigroup,

but usually, we have a differential operator A and we need to decide whether A generates a C0-semigroup. The Hille-Yosida

theorem (see [12, Theorem II.3.8]) provides an equivalent characterization. Here we formulate the Lumer-Phillips theorem

which characterizes generators of contraction semigroups.

Definition 5.5. A C0-semigroup (T(t))t≥0 is called a contraction semigroup if ‖T(t)x0‖ ≤ ‖x0‖ for all x0 ∈ X and all t ≥ 0.
A C0-group is called a unitary group if ‖T(t)x0‖ = ‖x0‖ for all x0 ∈ X and all t ∈ R.

Theorem 5.6 (Lumer-Phillips theorem [12, Theorem II.3.15]). An operator A defined on the Hilbert space X is the infinitesimal
generator of a contraction semigroup on X if and only if the following conditions hold

1. For all x0 ∈ D(A) we have that Re ⟨Ax0, x0⟩ ≤ 0;
2. For all z ∈ X there exists a x0 ∈ D(A) such that (I − A)x0 = z.

For unitary groups there is a similar characterization.
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Corollary 5.7. An operator A defined on the Hilbert space X is the infinitesimal generator of a unitary group on X if and only if

1. For all x0 ∈ D(A) we have that Re ⟨Ax0, x0⟩ = 0;
2. For all z ∈ X there exists a x0 ∈ D(A) such that (I − A)x0 = z.

3. For all z ∈ X there exists a x0 ∈ D(A) such that (I + A)x0 = z.

We are now in the position to characterize the existence of a unique solution to (15).

Theorem 5.8 ([16], [17, Theorem 7.2.4], [18]). Consider the port-Hamiltonian operator A defined by (17) and (18), where we
assume that P0, P1, WB and (𝜁) are as in Section 3. W̃B ∶= WB

[ P1 −P1

I I

]−1 and Σ ∶=
[

0 I
I 0

]
. Here I denotes the n × n-identity

matrix. Then the following statements are equivalent:

1. A generates a contraction semigroup on L2((a, b);Cn) with the inner product ⟨⋅, ⋅⟩;
2. Re ⟨Ax, x⟩ ≤ 0 for every x ∈ D(A);
3. For x ∈ D(A) there holds (x)∗(b)P1 (x) (b) − (x)∗(a)P1 (x) (a) ≤ 0;
4. The matrix WB has rank n and W̃BΣW̃∗

B ≥ 0.

Moreover, the following statements are equivalent:

1. A generates a unitary group on L2((a, b);Cn) with the inner product ⟨⋅, ⋅⟩;
2. Re ⟨Ax, x⟩ = 0 for every x ∈ D(A);
3. For x ∈ D(A) there holds (x)∗(b)P1 (x) (b) − (x)∗(a)P1 (x) (a) = 0;
4. The matrix WB has rank n and W̃BΣW̃∗

B = 0.

We note, that whether A generates a contraction semigroup or unitary group is independent of the matrix-function . In Jacob

et al.,[18] equivalent conditions for C0-semigroup and C0-group generation of port-Hamiltonian operator A defined by (17) and

(18) are given. Again these are easy verifiable matrix conditions. The results are further generalized for infinitely many coupled

port-Hamiltonian systems in Jacob and Kaiser.[19] Next we apply this theorem to our Example 2.1.

Example 5.9. We consider the lossless transmission line the spatial interval [a, b] as discussed in Examples 2.1 and 3.1 with

u = 0. For the lossless transmission line (1) we have n = 2,

P1 =
[

0 −1
−1 0

]
, P0 = 0, (𝜁) =

[
1

C(𝜁)
0

0
1

L(𝜁)

]
and

WB =
[

0 0 1 0
1 −R 0 0

]
,

see Example 3.1 and note, that we have no control function, that is, u = 0. Clearly, the matrix WB has rank 2. An easy calculation

shows

W̃BΣW̃∗
B =

[
0 0
0 R

]
≥ 0.

Thus, by Theorem 5.8 the differential operator associated to the PDE (1) with boundary condition V (a, t) = 0, V (b, t) = RI (b, t)
generates a contraction semigroup on the energy space L2((a, b);C2). Furthermore, if R = 0, then this operator generates a

unitary group on L2((a, b);C2).

6 PORT-HAMILTONIAN SYSTEMS WITH DISTRIBUTED CONTROL AND OBSERVATION

So far, we have only considered systems without control, that is, u(t) = 0. In this section, we study port-Hamiltonian systems

with distributed control and observation, that is, we consider systems of the form

𝜕x
𝜕t

(𝜁, t) = P1
𝜕

𝜕𝜁
((𝜁)x(𝜁, t)) + P0 ((𝜁)x(𝜁, t)) + b(𝜁)u(𝜁, t),

x(𝜁, 0) = x0(𝜁), 𝜁 ∈ (0, 1), (19)

0 = WB

[
((b)x(b,t)
((a)x(a,t)

]
, t > 0,

y(t) = ∫
b

a
c(𝜁)x(𝜁, t)d𝜁, t > 0.
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Here we assume that b ∈ L∞((a, b);Cn×m), c ∈ L∞((a, b);Ck×n) and u ∈ L2((a, b) × [0,∞);Cm). As the choice u(t) = 0 is

possible, we further assume that the operator A given by

Ax = P1
d

d𝜁
(x) + P0 (x) , x ∈ D(A),

D(A) =
{

x ∈ L2((a, b);Cn) ∣ x ∈ H1((a, b);Cn), WB

[
(x)(b)
(x)(a)

]
= 0

}
generates a C0-semigroup (T(t))t≥0 on L2((a, b);Cn). With a slight abuse of notation, we write u(⋅, t) = (u(t)) (⋅) and we define

the bounded operator B ∶ L2((a, b);Cm) → L2((a, b);Cn) by (Bu)(𝜁) ∶= b(𝜁)u(𝜁). Furthermore, let C ∶ L2((a, b);Cn) → Ck

be defined by Cx ∶= ∫ b
a c(𝜁)x(𝜁)d𝜁 . Thus we “forget” the spatial dependence, and we write the port-Hamiltonian system in the

form

ẋ(t) = Ax(t) + Bu(t) t ≥ 0, x(0) = x0, y(t) = Cx(t).

The following theorem provides a formula for the solution of (19).

Theorem 6.1. If the operator A generates a C0-semigroup (T(t))t≥0 on L2((a, b);Cn), then for x0 ∈ D(A) and u ∈
C1([0, 𝜏],L2((a, b);Cm))

x(t) = T(t)x0 + ∫
t

0

T(t − s)Bu(s)ds, t ∈ [0, 𝜏], (20)

y(t) = CT(t)x0 + ∫
t

0

CT(t − s)Bu(s)ds, t ∈ [0, 𝜏],

is the unique classical solution of (19) on [0, 𝜏].

If x0 ∈ L2((a, b);Cn) and u ∈ L2((a, b) × [0,∞);Cm), then we call (20) the mild solution of (19).

7 PORT-HAMILTONIAN SYSTEMS WITH BOUNDARY CONTROL AND OBSERVATION

In this section we study the existence of solution of the port-Hamiltonian system (4).

Using the operator theoretic approach of Section 4, we can rewrite the port-Hamiltonian system (4) equivalently as

ẋ(t) = 𝔄x(t), u(t) = 𝔅x(t), y(t) = ℭx(t) t ≥ 0, x(0) = x0, (21)

where 𝔄 is given by (10) and (11), 𝔅 by (13) and ℭ by (14). Now the question arises:

Does there exist for every initial condition x0 ∈ X and every control function u ∈ L2 a solution of (21)?

This question is closely related to the notion of boundary control systems, see Curtain and Zwart,[11] Staffans,[20] and Tuscnak

and Weiss,[21] which we define next.

Definition 7.1. Let X, U and Y be Hilbert spaces. Furthermore, assume that 𝔄 ∶ D(𝔄) ⊂ X → X, 𝔅 ∶ D(𝔄) → U and

ℭ ∶ D(𝔄) → Y are linear operators. Then (𝔄,𝔅,ℭ) is a boundary control and observation system if the following hold:

1. The operator A ∶ D(A) → X with D(A) = D(𝔄) ∩ ker(𝔅) and

Ax = 𝔄x for x ∈ D(A) (22)

is the infinitesimal generator of a C0-semigroup (T(t))t≥0 on X;

2. There exists a right inverse B̃ ∈ (U,X) of 𝔅 in the sense that for all u ∈ U we have B̃u ∈ D(𝔄), 𝔄B̃ ∈ (U,X) and

𝔅B̃u = u, u ∈ U. (23)
3. The operator ℭ is bounded from D(A) to Y , where D(A) is equipped with the graph norm of A.

Theorem 7.2 ([17, Lemma 13.1.5]). Assume that (𝔄,𝔅,ℭ) is a boundary control and observation system. Let x0 ∈ D(𝔄) and
u ∈ C2([0, 𝜏];Cm) satisfying 𝔅x0 = u(0). Then system (21) has a unique (classical) solution given by

x(t) = T(t)x0 + ∫
t

0

T(t − s)𝔄B̃u(s)ds − A∫
t

0

T(t − s)B̃u(s)ds, (24)

y(t) = ℭT(t)x0 + ℭ∫
t

0

T(t − s)𝔄B̃u(s)ds − ℭA∫
t

0

T(t − s)B̃u(s)ds.

For port-Hamiltonian systems (4) it is easy to verify whether they are boundary control and observation systems.
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Theorem 7.3. ([17, Theorem 11.3.2 and Theorem 11.3.5]) Let U = Cm, Y = C
k, X = L2((a, b);Cn), 𝔄 be given by (10) and

(11), 𝔅 by (13) and ℭ by (14). If the operator

Ax = P1
d

d𝜁
(x) + P0 (x) , x ∈ D(A), (25)

D(A) = {x ∈ L2((a, b);Cn) ∣ x ∈ H1((a, b);Cn),
[

WB,1
WB,2

] [
(x)(b)
(x)(a)

]
= 0}.

generates a C0-semigroup (T(t))t≥0 on L2((a, b);Cn), then (𝔄,𝔅,ℭ) is a boundary control and observation system, that is, the
port-Hamiltonian system (4) is a boundary control and observation system.

Furthermore, the operator B̃ ∶ Cm → L2((a, b);Cn) can be defined as follows

(B̃u)(𝜁) ∶= ((𝜁))−1

(
S11

𝜁 − a
b − a

+ S21

b − 𝜁

b − a

)
u,

where S11 and S21 are n × m-matrices given by

S ∶=
[

S11 S12

S21 S22

]
∶=

[
P1 −P1

I I

]−1

W∗
B(WBW∗

B)
−1

[
Im 0
0 0

]
Note that WB =

[
WB,1
WB,2

]
has full rank.

So far, we have only considered classical solutions of boundary control and observation system. Existence of (mild) solutions

for any initial condition x0 ∈ X and any input u ∈ L2([0, 𝜏];U), such that x is a continuous X-valued function and y ∈
L2([0, 𝜏];Y) is called well-posedness.

Definition 7.4. We call a boundary control and observation system (𝔄,𝔅,ℭ) well-posed if there exist a 𝜏 > 0 and m𝜏 ≥ 0 such

that for all x0 ∈ D(𝔄) and u ∈ C2([0, 𝜏];U) with u(0) = 𝔅x0 we have

‖x(𝜏)‖2
X + ∫

𝜏

0

‖y(t)‖2dt ≤ m𝜏

(‖x0‖2
X + ∫

𝜏

0

‖u(t)‖2dt
)
. (26)

There exists a rich literature on well-posed systems, see, for example, the monographs Staffans[20] and Tuscnak and Weiss.[21]

In general it is not easy to show that a boundary control system is well-posed. However, there is a special class of systems for

which well-posedness can be proved easily.

Proposition 7.5 ([17, Proposition 13.1.4]). If every classical solution of a boundary control and observation system satisfies

d
dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2, (27)

then the system is well-posed.

Boundary control and observation systems satisfying (27) are called scattering passive.

We now return to the port-Hamiltonian system (4). For every 𝜁 ∈ (a, b), the matrices P1 and (𝜁) are self-adjoint and thus

there exists a diagonal matrix Δ(𝜁) and an invertible matrix S(𝜁) such that

P1(𝜁) = S−1(𝜁)Δ(𝜁)S(𝜁).

Definition 7.6. We say that the port-Hamiltonian system (4) satisfies the Condition (C) if the matrix-valued functions S and Δ
can be chosen such that both are continuous differentiable on (a, b).

Theorem 7.7 ([22], [17, Theorem 13.2.2]). Assume that the port-Hamiltonian system (4) satisfies Condition (C). Then the
following statements are equivalent.

1. The operator A, as defined in (25), generates a C0-semigroup on L2((a, b);Cn),
2. The port-Hamiltonian system (4) is a well-posed boundary control and observation system.

Theorem 5.8 implies the following two corollaries.

Corollary 7.8. Assume that the port-Hamiltonian system (4) satisfies Condition (C). If the matrix WB has rank n, and W̃BΣW̃∗
B ≥

0, where W̃B and Σ are defined as in Theorem 5.8, then the port-Hamiltonian system (4) is a well-posed boundary control and
observation system.

Definition 7.9. We call the port-Hamiltonian system (4) impedance passive, if m = k = n and for every x ∈ D(𝔄) we have

Re ⟨𝔄x, x⟩ ≤ Re ⟨𝔅x,ℭx⟩Cm . (28)



JACOB AND ZWART 9 of 14

Furthermore, the port-Hamiltonian system (4) is impedance energy preserving, if m = k = n and for every x ∈ D(𝔄) we have

Re ⟨𝔄x, x⟩ = Re ⟨𝔅x,ℭx⟩Cm , (29)

Theorem 5.8 implies that the operator A of an impedance passive port -Hamiltonian system (4) generates a contraction

semigroup, which is even a unitary group if the system (4) is impedance energy preserving.

Corollary 7.10. Assume that the port-Hamiltonian system (4) satisfies Condition (C) and is impedance passive. Then the
port-Hamiltonian system (4) is a well-posed boundary control and observation system.

Theorem 7.11 ([17, Lemma 13.1.5 and Theorem 13.1.7]). Let (𝔄,𝔅,ℭ) be a well-posed boundary control and observation
system. Then for every t > 0 there exists linear and bounded operators

Φt ∶L2((0, t);U) → X,
Ψt ∶X → L2((0; t),Y),
Ft ∶L2((0, t);U) → L2((0, t);Y).

such that for every x0 ∈ D(𝔄) and u ∈ C2([0, t];Cm) satisfying 𝔅x0 = u(0) we have

Φtu = ∫
t

0

T(t − s)𝔄B̃u(s)ds − A∫
t

0

T(t − s)B̃u(s)ds,

(Ψtx0)(𝜏) = ℭT(𝜏)x0, 𝜏 ∈ [0, t],

(Ftu)(𝜏) = ℭ
(
∫

𝜏

0

T(𝜏 − s)𝔄B̃u(s)ds − A∫
𝜏

0

T(𝜏 − s)B̃u(s)ds
)
, 𝜏 ∈ [0, t],

and therefore
x(t) = T(t)x0 + Φtu, y = Ψtx0 + Ftu. (30)

Definition 7.12. Let (𝔄,𝔅,ℭ) be a well-posed boundary control and observation system. Then for every x0 ∈ X and u ∈
L2((0,∞),U) the mild solutions of (21) are given by (30).

Summarizing, if the port-Hamiltonian system (4) satisfies Condition (C) and the operator A, as defined in (25), generates a

C0-semigroup on L2((a, b),Cn), then the port-Hamiltonian system (4) is a well-posed boundary control and observation system

and it possesses for every initial condition x0 ∈ X and every u ∈ L2((0,∞),Cm) a mild solution.

8 STANDARD CONTROL OPERATOR FORMULATION

In this section we aim to rewrite the control part of our port-Hamiltonian system (4) in the standard control operator formulation

ẋ(t) = A−1x(t) + Bu(t), x(0) = x0, t ≥ 0, (31)

for some operators A−1 and B. Due to the fact that we have a system with boundary control, we cannot expect B to be a bounded

operator from the input space Cm to the state space X = L2((a, b),Cn). Indeed B will map into a larger space. Throughout this

section we assume that the port-Hamiltonian system (4) is a well-posed boundary control and observation system.

Let the operator A be given by (25). Using the operator theoretic approach to port-Hamiltonian system, properties of the

operators A play an important role. Here we list some of these. The operator A generates a C0-semigroup (T(t))t≥0 on X =
L2((a, b),Cn), and therefore A is a densely defined, closed operator. Moreover, A has a compact resolvent.[23] Thus the spectrum

of A is contained in some closed left half plane of C, it consists of eigenvalues with finite multiplicity only and the spectrum of

A is a discrete set without any finite accumulation point.

In order to define the operator B we first need to derive the Hilbert space adjoint of A. In the remaining of this section we

assume that A generates a contraction semigroup (T(t))t≥0 on X = L2((a, b),Cn). Then there exist an invertible n × n-matrix S
and a n × n-matrix V with VV∗ ≤ I such that[19][

WB,1
WB,2

]
= S [I + V I − V]

[
P1 −P1

I I

]
. (32)

Theorem 8.1. ([23,24]) The Hilbert space adjoint A∗ ∶ D(A∗) ⊂ X → X of A is given by

A∗x = −P1
d

d𝜁
(x) − P0 (x) , x ∈ D(A∗),

D(A∗) =
{

x∈X ∣ x∈H1((a, b);Cn),
[
I+V∗ I−V∗][ −P1 P1

I I

][ (x)(b)
(x)(a)

]
=0

}
.
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Let X−1 is the completion of X with respect to the norm ‖x‖X−1
= ‖(𝛽 − A)−1x‖X for some 𝛽 in the resolvent set 𝜌(A) of A,

that is,

X ⊂ X−1

and X is continuously embedded and dense in X−1. The semigroup (T(t))t≥0 extends uniquely to a C0-semigroup (T−1(t))t≥0 on

X−1 whose generator A−1, with domain equal to X, is an extension of A, see, for example, Engel and Nagel.[12] Moreover, we can

identify X−1 with the dual space of D(A∗) with respect to the pivot space X, see Tucsnak and Weiss,[21] that is X−1 = D(A∗)′.
For x0 ∈ D(𝔄) and u ∈ C2([0, 𝜏];Cm) satisfying 𝔅x0 = u(0), we can rewrite the classical solution (24) as

x(t) = T(t)x0 + ∫
t

0

T−1(t − s)
(
𝔄B̃ − A−1B̃

)
u(s)ds. (33)

This equation is well-defined for every x0 ∈ X, every u ∈ L2((0, 𝜏);Cm) and 0 < t < 𝜏, and satisfies x ∈ C([0, 𝜏];X) for every

𝜏 > 0. Thus the operator Φt of Theorem 7.11 is given by

Φtu = ∫
t

0

T−1(t − s)
(
𝔄B̃ − A−1B̃

)
u(s)ds.

We recall, that if x0 ∈ X and u ∈ L2([0, 𝜏];Cm) the function x given by (33) is called the mild solution of our port-Hamiltonian

system (4). This function can also be interpreted as the mild solution of the abstract differential equation

ẋ(t) = A−1x(t) +
(
𝔄B̃ − A−1B̃

)
u(t), x(0) = x0, t ≥ 0,

that is, the operator B ∶ Cm → X−1 in (31) is given by

B =
(
𝔄B̃ − A−1B̃

)
.

Furthermore, the Hilbert space adjoints of B are often needed. As an application we mention the duality of the notions

controllability and observability.[21] Therefore, we conclude the section with the calculation of the Hilbert space adjoint of B.

Theorem 8.2. ([23]) The Hilbert space adjoint B∗ ∶ D(A∗) → Cm of B ∶ Cm → X−1 is given by

B∗x = 1

4
S−∗(I + VV∗)−1 [I − V I + V]

[ P1 −P1

I I

] [(b)x(b)(a)x(a)

]
, x ∈ D(A∗),

where V is given by (32) and D(A∗) by Theorem 8.1.

9 STABILITY

This chapter is devoted to stability of linear (homogeneous) port-Hamiltonian systems (15) (u = 0), that is, we study the

question whether the solution of (15) tends to zero as time tends to infinity. For infinite-dimensional systems there are different

notions of stability such as strong stability, polynomial stability, and exponential stability. In this chapter, we restrict ourselves

to exponential stability and again we use an operator theoretic approach. Therefore, we start with the definition of exponential

stability for abstract differential equations of the form ẋ(t) = Ax(t), where A generates a C0-semigroup (T(t))t≥0.

Definition 9.1. A C0-semigroup (T(t))t≥0 on the Hilbert space X is exponentially stable if there exist positive constants M and

𝜔 such that ‖T(t)‖ ≤ Me−𝜔t for t ≥ 0.

The constant 𝜔 is called the decay rate.

If (T(t))t≥0 is exponentially stable, then the solution of the abstract Cauchy problem

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0,

tends to zero exponentially fast as t → ∞.

Theorem 9.2 ([17, Theorem 8.1.3]). Suppose that A is the infinitesimal generator of the C0-semigroup (T(t))t≥0 on the Hilbert
space X. Then the following are equivalent

1. (T(t))t≥0 is exponentially stable;
2. There exists a positive operator P ∈ (X) such that

⟨Ax,Px⟩ + ⟨Px,Ax⟩ ≤ −⟨x, x⟩ for all x ∈ D(A). (34)
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Equation (34) is called a Lyapunov inequality. In Zwart,[25] it is shown that the condition

Re ⟨Ax, x⟩ < 0, x ∈ D(A), x ≠ 0, (35)

is in general not sufficient for exponential stability of the semigroup generated by A. However, for port-Hamiltonian systems a

weaker but more structured condition than (35) implies even exponential stability.

Theorem 9.3 ([26], [17, Theorem 9.1.3]). Let A be defined by (17) and (18). If for some positive constant k one of the following
conditions is satisfied for all x ∈ D(A)

Re ⟨Ax, x⟩ ≤ −k‖(b)x(b)‖2,

Re ⟨Ax, x⟩ ≤ −k‖(a)x(a)‖2,

then A generates an exponentially stable C0-semigroup.

Example 9.4. We consider the lossless transmission line on the spatial interval [a, b] as discussed in Examples 2.1, 3.1 and 5.9

with u(t) = 0 and R > 0. Let x ∈ D(A). Using (12) and (7) we get

Re ⟨Ax, x⟩ = 1

2

[
(x)∗ (𝜁)P1 (x) (𝜁)

]b
a

= x2

L
(a) x1

C
(a) − x2

L
(b) x1

C
(b) .

As x ∈ D(A), which in particular implies
x1

C
(a) = 0 and

x1

C
(b) = R x2

L
(b), we obtain

Re ⟨Ax, x⟩ = −R
(x2

L
(b)

)2

= − R
1 + R

‖(b)x(b)‖2.

Thus, if R > 0, then by Theorem 9.3 the differential operator associated to the PDE (1) with boundary condition
Q
C
(a, t) = 0,

Q
C
(b, t) = RI (b, t) generates an exponentially stable semigroup on the energy space L2((a, b),C2).

10 SYSTEM THEORETIC PROPERTIES

We have introduced an operator theoretic approach to linear port-Hamiltonian systems. This approach has been successfully

used to prove system theoretic properties, to develop controllers and to couple port-Hamiltonian systems with finite-dimensional

linear and nonlinear systems. In this section we list some of these results.

10.1 Stabilizability by output feedback

There are several different possibilities to stabilize a port-Hamiltonian system by static linear output feedback, dynamic lin-

ear output feedback or nonlinear static or dynamic feedback. Linear static and dynamic output feedback has been studied by

Villegas.[24] In particular, he investigated the well-posedness and stability of feedback connections. Augner[23] extended these

results for nonlinear static and dynamic output feedback. Related results for nonlinear dynamic output feedback were obtained

in Ramirez et al.[27] Here we only mention the following results for impedance passive port-Hamiltonian systems.

If the port-Hamiltonian system (4) is impedance passive, see (28), then the corresponding operator A generates a contrac-

tion semigroup. Thus, if additionally Condition (C) is satisfied, it is a well-posed boundary control and observation system.

Moreover, the port-Hamiltonian system (4) is impedance passive if and only if[
W̃BΣW̃∗

B W̃BΣW̃∗
C

W̃CΣW̃∗
B W̃CΣW̃∗

C

]
≤ Σ,

see [23, Proposition 3.2.16]. Here W̃B ∶= WB
[ P1 −P1

I I

]−1
, W̃C ∶= WC

[ P1 −P1

I I

]−1
and Σ ∶=

[
0 I
I 0

]
.

Theorem 10.1. ([28]) Any impedance passive port-Hamiltonian system (4) can be exponentially stabilized by negative output
feedback u(t) = −ky(t), for any k > 0, that is, the operator A ∶ D(A) ⊆ L2((a, b);Cn) → L2((a, b);Cn) given by

Ax = P1
d

d𝜁
(x) + P0 (x) , x ∈ D(A),

D(A) =
{

x∈L2((a, b);Cn) ∣ x ∈ H1((a, b);Cn), [WB + kWC]
[
(x)(b)
(x)(a)

]
= 0

}
generates an exponentially stable C0-semigroup.

In Humaloja and Paunonen,[28] robust regulation of port-Hamiltonian systems is studied.
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10.2 Observability

Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs.

Throughout this subsection we assume that the port-Hamiltonian system (4) is a well-posed boundary control and observation

system.

Definition 10.2. The system (4) is called exactly observable, if there exists a time 𝜏 > 0 and a constant c ≥ 0 such that for

every x0 ∈ X the corresponding mild solution x (with u = 0) satisfies

‖x0‖2 ≤ c∫
𝜏

0

‖‖‖‖‖WC

[(b)x(b, t)(a)x(a, t)

]‖‖‖‖‖
2

dt.

Moreover, the port-Hamiltonian system (4) is called finally observable, if there exists a time 𝜏 > 0 and a constant c ≥ 0 such

that for every x0 ∈ X the corresponding mild solution x (with u = 0) satisfies

‖x(𝜏)‖2 ≤ c∫
𝜏

0

‖‖‖‖‖WC

[(b)x(b, t)(a)x(a, t)

]‖‖‖‖‖
2

dt.

Lemma 9.1.2 in Jacob and Zwart[17] implies a sufficient condition for final observability.

Theorem 10.3. Assume that the operator A corresponding to the port-Hamiltonian system (4) generates a contraction semi-
group,  is Lipschitz continuous and that n = k. If WC = [W 0] or WC = [0 W] with W invertible, then the port-Hamiltonian
system (4) is finally observable.

If additionally, A generates a C0-group, then the port-Hamiltonian system (4) is exactly observable.

10.3 Controllability

Exact controllability denotes the ability to move a system from any initial state to every given state in some time 𝜏. Furthermore,

a system is null controllable if the system can be steered from every initial condition to the zero state. Throughout this subsection

we assume that the port-Hamiltonian system (4) is a well-posed boundary control and observation system.

Definition 10.4. The system (4) is called exactly controllable, if there exists a time 𝜏 > 0 such that for every x1 ∈ X there is a

control function u ∈ L2((0, 𝜏);Cm) such that the corresponding mild solution x (with x0 = 0) satisfies

x(0) = 0, x(𝜏) = x1.

Moreover, the port-Hamiltonian system (4) is called null controllable, if there exists a time 𝜏 > 0 such that for every x0 ∈ X
there is a control function u ∈ L2((0, 𝜏);Cm) such that the corresponding mild solution x satisfies

x(0) = x0, x(𝜏) = 0.

For linear systems controllability and observability are dual notion.[21] Therefore, Theorems 10.3 and 8.1 imply the following

theorem.

Theorem 10.5. Assume that the operator A corresponding to the port-Hamiltonian system (4) generates a contraction semi-
group,  is Lipschitz continuous and that n = m. If WB = [W 0] or WB = [0 W] with W invertible, then the port-Hamiltonian
system (4) is null controllable.

If additionally, A generates a C0-group, then the port-Hamiltonian system (4) is exactly controllable.

Exact controllability is closely related to the notion of stabilizability. We remark, that the following results even holds for

more general control systems.

Theorem 10.6 ([29, Corollary 2.2]). Assume that the operator A corresponding to the port-Hamiltonian system (4) generates
a C0-group (T(t))t∈R satisfying ‖T(t)x‖ ≥ c‖x‖ for some c > 0 and every x ∈ X and t ≥ 0. Then the following statements are
equivalent

1. The port-Hamiltonian system (4) is exactly controllable,
2. For every x0 ∈ X there exists a control function u ∈ L2([0,∞);Cm) such that the corresponding mild solution x satisfies

x ∈ L2([0,∞),L2((a, b);Cn)).

Note that by Theorem 5.8 the operator A of an impedance energy preserving port-Hamiltonian system (4) generates a unitary

group. Thus Theorem 10.1 implies the following corollary.
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Corollary 10.7. Assume that the port-Hamiltonian system (4) is impedance energy preserving, then the port-Hamiltonian
system (4) is exactly controllable.

10.4 Input-to-state stability

The concept of input-to-state stability, introduced by E. Sontag in 1989,[30] is a well-studied stability notion of control systems

with respect to external inputs. For well-posed boundary control and observation systems input-to-state stability is equivalent to

exponential stability of the corresponding semigroup.[31] Here we give an input-to state stability estimate for port-Hamiltonian

systems.

Theorem 10.8. ([31]) Assume that the port-Hamiltonian system (4) is a well-posed boundary control and observation system
and that the corresponding operator A is exponentially stable. Then there exists constants M ≥ 1, 𝜔 > 0 and c > 0 such that
for every initial condition x0 ∈ X and every input function u ∈ L∞((0,∞);Cm) the corresponding mild solution x satisfies for
every t ≥ 0

‖x(t)‖X ≤ Me−𝜔t‖x0‖X + c
(
∫

t

0

‖u(s)‖2

Cm ds
)2

,

‖x(t)‖X ≤ Me−𝜔t‖x0‖X + c ess sup
s∈[0,t]

‖u(s)‖Cm .

11 CONCLUSIONS

In this article we presented an operator theoretic approach to infinite-dimensional systems theory. However, we only consider

port-Hamiltonian systems, where the partial differential operator 𝔄 is given by 𝔄x = P1
d

d𝜁
[x] + P0 [x]. In order to model

examples like the Euler-Bernoulli beam, Schrödinger equation or Airy’s equation, more general port-Hamiltonian systems of

the form

𝜕x
𝜕t

(𝜁, t) =
N∑

j=0

Pj
𝜕j

𝜕𝜁 j [(𝜁)x(𝜁, t)]

need to be investigated. Several results extend to this more general class of port-Hamiltonian systems. The contraction semigroup

generation results have been shown by Le Gorrec, Zwart and Maschke,[16] see also Jacob and Kaiser.[19] Furthermore, stability

has been investigated in Augner[23] and Augner and Jacob.[32] It is known that a general result like presented in Theorem 7.7 does

not hold for port-Hamiltonian systems of higher order. However, which of these systems are well-posed is still an open question.
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