
https://research.tue.nl/en/publications/5fd6292d-00a8-4d80-af34-5b9adf514b97

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 972

CHART
A debugging tool for RT A3

M.M.H. Hendrickx

19.04.1994

CHART
A debugging tool for RTA3.

CHART a debugging tool for RT A

CHART, a debugging tool for RTA3.

Author
Supervisor
Assignment of

Date

Marcel Hendrickx
David Connah
TUE Eindhoven,
Instituut voor Perceptie Onderzoek
April 1994.

ii

CHART a debugging tool for RT A

Summary.

Almost every programming language has some means for debugging a program. RTA was an
exception on this. The goal of the assignment was to develop a tool with which an RTA-pro­
gram could be debugged by looking at debug information generated during execution. For
the development of the tool was chosen to use a microscope as a metaphor. All functions and
the User-Interface should have, if possible, an analogy in the microscope. The design and
implementation led to a debugging tool (called CHART) that was a great help in finding bugs
in RTA-programs.

lll

CHART a debugging tool for RTA

CONTENTS

Summary. iii
Contents. iv
Introduction. v
Foreword. vi

1. Working environment. 1
1.1. The UNIX Operating system and X-Windows. 1
1.2. Xview. 1

2. RTA. 3
2.1. Able. 3
2.2. Real Time Able. 3
2.3. The old chart program. 4

3. Design. 5
3.1. Functionality. 5
3.2. User-Interface. 7
3.3. Extensions. 7
3.4. The RTA-kemel. 8

4. Implementation 10
4.1. Experience with Xview. 10
4.2. Reactions from users. 10
4.3. New RTA versions. 10
4.4. Functionality. 11
4.5. User-Interface. 12
4.6. The RTA-kemel. 14
4.7. Runtime options. 15

5. Documentation. 16
5.1. User manual CHART. 16
5.2. Programmer's manual, using CHART in RTA 16
5.3. Programmer's manual, for CHART. 16

6. Current state. 17
6.1. CAUSE. 17
6.2. RTA4.0. 17
6.3. Future. 17

Conclusions. 19
Literature. 20

Appendix I : Example of .dbg file. 21
Appendix II : Description of rta.debug. 23
Appendix III: User manual, for CHART. 24
Appendix IV: Using CHART in RTA. 29
Appendix V : Programmer's manual for CHART. 30

iv

CHART a debugging tool for RTA

Introduction.

The programming language RTA has been used for several years at research centres in
PHILIPS. No official debugging tools were available, so some RTA-programmers developed
their own tools to debug RTA-programs.
One of them developed a charting program to view the dynamic behaviour of an RIA-pro­
gram. This program although useful, required improvement and so developing a new chart­
ing program was made an assignment for a student.
The first discussion about the charting program led to requirements on its functionality and
on its User-Interface. The metaphor suggested for developing the charting program was that
of the microscope; the functionality and the User-Interface should have, if possible, an anal­
ogy in the microscope.
The first chapter describes the working environment. It mainly describes Xview, which was
used to make the User-Interface of the charting program. This chapter should give enough
information to allow the source files of the charting program to be read. Chapter two gives
some information about RTA and the old charting program. The next chapter describes the
design of the charting program. The main paragraphs describe the functionality, the User­
Interface and the changes to RTA. Chapter 4 describes the problems encountered before the
implementations and then describes the decisions made for the three parts described in the
previous chapter. Chapter 5 contains a short reference to the documentation available for this
charting program; the real documentation is added in the appendices. The last chapter
describes the current state of the charting program and has some recommendations about the
enhancements of the program and about future extension that can be made.

v

CHART a debugging tool for RTA

Foreword

This assignment couldn't have been accomplished without the help of others. Thanks go to
the IPO for letting me do this assignment here. Specially thanks go to David Connah, Peter
Wavish, Jaap Aeilkema and Guido Leenders for their help and advice.

Marcel,
April 1994.

VI

CHART a debugging tool for RTA

1. Working environment.

This chapter explains some important parts of the working environment. The working envi­
ronment is in this case a Sun work-station and its programs. The work-stations are connected
by a network and programs or files may be anywhere in this network. Important parts of the
software are the operating system UNIX used to execute programs and commands, a graphi­
cal software tool called X-Windows to work with UNIX at a higher level with an easy to
understand User-Interface; and a software library called Xview whose functions can be used
to build a User-Interface using the programming language C. It is assumed that all readers
are acquainted with UNIX.

1.1. The UNIX Operating system and X-Windows.

To execute a command or program in UNIX you need to type its name in from the keyboard.
To help the user and to decrease the time needed to start a program or command, a graphical
shell called X-Windows can be installed. On a programmers level all graphical functions that
can be used by the programmer are located in a library called Xlib. It contains all low-level
graphical functions to build a User-Interface.

1.2. Xview.

When you want to create a User-Interface you can do this with only the low-level functions
of Xlib. There are however several libraries that use Xlib and give you more useful functions
to build a User-Interface. One of them is called Xview.
Xview takes away many small programming problems that you meet when creating a User­
Interface from the scratch. The main loop in such a program would check if the user does
anything and start subroutines according to these user-actions. Xview handles this main loop
and makes events from the user actions. These events are sent to the objects from which the
User-Interface is built up. A few of the more important Xview objects are being described
below:
Frame

Canvas

Panel

Button

Defines an area on the screen to which other objects can be attached. This
object is always needed if something has to go to the screen.
A Canvas is one of the objects that must be attached to a Frame. Several
functions are available for drawing lines and printing text on a Canvas.
This also has to be attached to a Frame. Other objects can be attached to a
Panel : Control-objects. These get information from the user. (Buttons,
Checkboxes, Droptargetitems, Lists, Gauges, Sliders and Fields.) More then
one Panel and Canvas can be attached to a Frame.
This is a Control-object and must therefore be attached to a Panel. There are
several types of Buttons, with their own way of getting information from the
user.

As can be seen from the above, three levels of objects can be distinguished. Figurel shows
this also.
The events the user causes will first go the third level. If no objects in a level uses the event,
it will be sent to a higher level. If the frame can't use it, it is destroyed. If the mouse-cursor
lies on an object (for example a button) clicking the mouse-button will result in an event
being sent to the event-handler associated with that object. The programmer must write an
event-handler and attach it to a (visible) object. Xview specifies which events can be
received by each type of object and the programmer can specify which of those are really
handled by the event-handler of an object.

CHART a debugging tool for RT A

2. RTA.

Real Time Able is a language that was developed from Able at PHILIPS in the UK. Some
other PHILIPS research centres are now also experimenting with RTA. RTA2 didn't change
anything from RTAl except speed and the way things are stored. RTA3.0 added extra fea­
tures like modules and worlds. RTA3. l is just an adapted version of RTA3.0 that included
features that were developed at other research centres, such as CHART and loading of mod­
ules that are in different directories.

2.1 Able.

ABLE (Agent Behaviour LanguagE) is a language developed for specifying and implement­
ing systems of interacting agents embedded in a common physical world. It was designed for
a research on multi agents worlds. For more information see Literature list.

2.2 Real Time Able.

RTA is a concurrent rule-based programming language intended for developing system of
interacting autonomous agents. Differences between the ABLE and RTA language derive
from the different ways they are implemented. ABLE programs are interpreted by a conven­
tional pattern matching production rule interpreter, whereas RTA programs are compiled into
an asynchronous digital logic circuit representation which is then emulated in the run-time
system.
There are provisions in the language that allow changes of the state of any behaviour or a set
of behaviours to be reported as the program executes. (So called trace_behaviours.) The
RTA-kemel is normally locked to the real-time clock of the computer, so that time intervals
specified in the RTA-source text are translated into equivalent intervals of real time during
program execution.
The above gives a short summary of the functions from RTA version 1.0 that are of interest
for CHART. The functionality in version 2.0 is similar to that of version 1.0, but was faster
and used much less memory space than the previous version. Version 3.0 added quite a few
new features. The features of interest are.

Modules
Worlds
Dynamic loading

RTA systems can be built from independently compiled modules.
Multiple worlds with independent timelines are supported.
Modules can be loaded and unloaded at run-time.

The first one makes it necessary to search for the behaviours of a program in different mod­
ules. The module names of that program can be found in the module called "system". Now
for each behaviour its module has to be specified, because behaviours in different modules
can have the same name.
The second one means that for all modules the world they are in has to be specified. Because
timelines can be independent it makes no sense to display behaviours from different worlds
at the same time. Therefore this is not allowed by CHART.
The last feature means that the CHART program must take into account the possibility of a
change in information about the memory location of a module during runtime. (See Para­
graph 3.4 for more information.)
Version 3.1 added features that were developed by other research centres (Peter Wavish at
PHILIPS UK does the normal development of RTA). The user can now define a path where

3

CHART a debugging tool for RTA

the RTA files can be found, CHART also uses this path to find and store the data it needs and
produces. Also the debug.c file allowing CHART to be used was appended to the RTA-ker­
nel. Now the user who wants to use CHART doesn't have to change the kernel any more.
Including the line "#define DEBUG YES" in the file RTA_3.l/KERNEL/include/rta_ker­
nel.h enables the use of CHART. More features were added but they are not of interest for
CHART.

2.3 The old chart program.

The old chart program was written by David Connah, an RTA-programmer who wanted a
small debug-tool for his RTA-programs. The program could only deal with 50 different
behaviours and 3000 behaviour changes. It uses the information outputted by trace_behav­
iours in the RTA-code.
You first have to select the behaviours you want to show. Then you come in the show-part
where you can select a range and zoom in on it. There where only three buttons in the show­
part.

quit
draw
sample

To Quit the program.
To redraw all data (no zoom).
To zoom in on the part selected with the mouse.

4

CHART a debugging tool for RT A

3 Design.

The program was designed in two stages. First all information gathered from the old chart
program and the RTA-programmers was used to design a prototype. This was tested by some
users and their reactions were used to guide the design of the final version.

3.1 Functionality.

Any program has two different parts, the functional part and the User-Interface. The
demands on the functionality of the CHART program were gathered in three ways : from the
information that an RTA-program could generate using traces on behaviours; from the old
chart program, written by David Connah originally, and by asking RTA-programmers what
they needed to identify common errors in RTA programs.

The traces on behaviours suggest the following requirements for the CHART-program.
• The user must be able to select the behaviours that he wants to look at. Some RTA-pro­

grams have more that 3000 behaviours. If information about all of these behaviours
were to be shown to the user, it would be very difficult to understand.

• The time at which behaviour changes occur and the order in which they occur are very
important.

• The state a behaviour changed to is also very important. (on or off)

The old chart-program led to the following demands.
• We see that zooming in time is very important when searching for errors. Sometimes

changes that are of interest occur 5 seconds apart, sometimes 5 microseconds.
• It is also necessary to get the exact times a change occurred. The old chart-program

used a cursor for this.

RTA-programmers also had some demands, most of them are however covered in the above.
It was very difficult for the RTA-programmers to specify demands for the CHART-program,
because there isn't any other debug tool for RTA and RTA is a new language. Most of them
didn't use RTA very much and started using it only or short time ago. We could add two
other demands however.
• Frequently the user wants to compare two situations. One way to do this would be to

store a specific situation and recall it, so that an easy comparison could be made.
• Mostly the user wants to compare two behaviours to see which change occurred first.

Displaying them near to each other would help in doing this. This suggest that there
should be some way to change the order in which they are displayed.

The above requirements where used to design the program. Selection of behaviours is a very
important part of the CHART-program. A two-stage selection process was decided upon
because:
• The programmer usually knows in advance what behaviours are needed.
• Large RTA-programs can have many behaviours (over 3000). Choosing the behav­

iours to be shown from all of these is almost impossible. By making a raw selection
first the final selection can be made much easier (and quicker). We therefore split the
selections of behaviours to be shown into two stages.

5

CHART a debugging tool for RT A

FILTER-STAGE

The first stage is called the Filter-stage and it is used to make a coarse selection of the behav­
iours. It has the following functions.
• Select a time range. Only this time range can be viewed at the Show-stage.
• Select behaviours that can be viewed at the Show-stage. The time-range overrules this

selection, so the changes must be in the selected range and the behaviours must be
selected.

Selecting of behaviours is difficult, so you have to have easy ways of selecting groups of
them. The program allows the user to select modules one by one and an extra window is used
to make a fine selection from those modules. This Select-window has the following func­
tions.
• Select all behaviours of the module.
• Select no behaviours of the module.
• Select all behaviours of a special type.
• Deselect all behaviours of a special type.

We will distinguish five different types of behaviour.
• Those starting with -->
• Those starting with I
• Those starting with =
• Those starting with ==>
• And all others (Simple behaviours).

SHOW-STAGE

The second stage is the Show-stage, here the user can select the behaviours to be displayed.
At this stage the following functions are available :
• Several scrolling possibilities (up, down, right, left etc.).
• Several zooming possibilities (in, out, nozoom, etc.).
• Means for storing and retrieving the context.
• A quit button.
• A button to get back to the Filter-stage.
• Special functions to select and sort the behaviours shown in the window.

The function to select behaviours to be shown will open an extra window, in this window
will be displayed all the behaviours that can be shown at the Show-stage. (i.e. those selected
in the Filter-stage.) In this extra window there are the same functions for selecting behav­
iours as are available at the Filter-stage to select behaviours in a particular module. An extra
function here is the Threshold. Setting this to a value selects all behaviours that change as
many as or more times than the threshold value and deselects all others.

The program is intended to be used as follows :
1. Start at the Filter-stage and select all behaviours you might want to examine.
2. Go to the Show-stage.
3. Select the behaviours you want to see.
4. Sort them in the order you want to see them.
5. Examine them.
6. Quit the program or go to step 3.

6

CHART a debugging tool for RT A

There is however a way back to the Filter-stage (1), to include behaviours in the filter that
you have forgotten the first time, without having to start the CHART-program again.

3.2 User-Interface.

For the User-Interface we used the same design method as we used to design the functional
part of the program.

The traces on behaviours (see chapter 2.2) give the programmer information about the time a
behaviours state changes.
• The order in which behaviours go on or off is important for an RTA-programmer. This

information must be clearly visible in the chart program.
• The precise time at which behaviours change is also important. These times must also

be shown clearly by the program.

The old-chart program had a few features that should also be in the new one.
• Zooming: You could select a time range to be displayed and press a button to show

only that range. Another button would display all the data. It is clear that zooming
should be in the CHART-program. It should however have far more functionality that
the zooming in the old chart program.

Zoom in.
Zoom out.
No zoom.
Set the displayed range to a special value. You can, for example, set the range
to l second, then one second around the cursor will be displayed.
Change the zoom factor. Normally zoom in and out will work with factor 2,
but you can change this value to 5 or 10.

• Start state : At the beginning of each line, the state of that behaviour at the beginning
of the time interval is shown. When a behaviour does not change during the time inter­
val displayed, no line is drawn. (Only the state at the beginning of the range is shown).
This reduces clutter.

The RTA-programmers didn't have any further proposals.

As discussed before, the metaphor that was used in visualising the CHART-programs User­
Interface was that of a microscope. Staining specimens when using a microscope can be
compared with the selecting of behaviours in the CHART-program. Changing to another lens
can be compared with zooming. Moving the specimens can be compared with scrolling the
behaviours up and down and scrolling the shown time-interval. Each basic functions of the
CHART-program has an analogy in the microscope. It is hoped that this metaphor will ena­
ble the user to understand and make use of the functionality of the CHART-program more
quickly.

3.3 Extensions.

The first version of CHART was written for RTA version 2.1. Since then version 3.0 and 3.1
have been released and version 4.0 is expected early in 1994. Many functions have been
added to RTA in each new version, and CHART has had to be adapted to each change.
Important changes are.
• Modules can be loaded and unloaded during execution time and so not all modules are

in memory all the time. This means that we have to keep track of whether modules are

7

CHART a debugging tool for RTA

loaded or not and where in memory they have been loaded. (To determine which
behaviour belongs to which module.)

• Worlds have been added and each world has its own time-line. These times have no
linear connection with each other, the only fundamental reference is the outermost
time-line (the real time), the time of the first world created. We have to keep track of
the world a module is in. Showing of behaviours from different worlds will be forbid­
den to avoid confusion.

3.4 The RTA-kemel.

So far the functionality and the User-Interface of the CHART-program have been discussed;
we have not said how we get the information we want from RTA.
What information do we need to provide the described functionality?
• It is obvious that we need to now at what time each behaviour changes state.
• With the newer versions of RTA, we also need to now when a module is loaded or

unloaded.
• Also we need to now which world a module is in. Because there is no linear connec­

tion between the time-lines of the different worlds we need to know the real time
whenever we get a local time of a world.

We cannot use the information delivered by the trace behaviours, because these traces must
be set on individually by the programmer. We could set the traces for all the behaviours on,
but this would produce an enormous amount of data, because the information is produced in
ascii-format. So we have to change the RTA-kernel so as to produce the information neces­
sary.
The programmer of RTA (Peter Wavish) gave me a few hints as to where to change the code
to get the desired information. Three short pieces of code had to be written to produce the
right information. Two of them are needed to report whether a module is loaded or unloaded,
and one to report the state change of a behaviour. The kernel outputs this information to a file
that can be used by CHART.
The code has to be included in the RTA-kernel. We will use an extra source-file to put these
functions in to minimize the changes made to the original-source code of the kernel. (In RTA
3.1 these changes have been incorporated into the kernel.) The source-file included for
debugging must have the following functions.
• Functions to put the debug information in the debug-file.
• Start debugging, open the debug file so information can be written in it.
• Stop debugging to close the debug file in a proper way.
• Functions to suspend and continue debugging if you don't want debug information to

be put in the file all the time.

Internally (in the kernel of RTA) all behaviours are represented as devices. A function called
rta_dispatch() changes the state of the devices. Here we have to change the kernel so that it
will output the correct information to the debug-file. We also have to know when a module is
loaded or unloaded, the functions load_module() and delete_moduJe() do this, so these also
have to be changed.
The problem is how to get the right information in CHART. We could add a function calcu­
lating a unique number for each behaviour in each module but this would take too much time
to calculate. We would disturb the real-time characteristic of RTA to much. Therefore we
simply store the memory-address at which the device (behaviour) is stored. The behaviours .
of a module are stored as an array of devices. The address of the first device can be found in
a structure holding all data about a module.
So in CHART we can calculate (with this information) a number representing the index of

8

CHART a debugging tool for RT A

that behaviour in its modules behaviour list. This number is also stored in a file which has the
name of the module and .dbg appended to it. (.rst in version 3.0 and earlier versions of RTA)
Along with the number the name of the behaviour is stored here. (See appendix I for a .dbg
file.) So we can determine the name of a behaviour and in what module it is if the RTA-ker­
nel puts the address of the devices and of the beginning of the device-list in the debug file.
We also need to know the time at which all these things occur. Therefore we also put the
local time and the real time in the debug file. To decrease the amount of space needed to
store times we only print times if they change.

Because there is no real structure in the information sent to the debug file we have to create
one. We store all information such as state change, module loaded, time, etc. in 4 bytes. The
first bits of these bytes give information about the type of information in the bytes. Some
information, like the address of a device needs very many bits (Actually it needs them all but
a few are stripped.) and other information needs only a few. (Like microseconds for which
20 bits are enough.) Thus not all data requires the same number of bits. A document called
rta.debug.info holds a short description about the contents of the rta.debug-file. It is also
included in Appendix II.

9

CHART a debugging tool for RTA

4 Implementation.

Because I hadn't used Xlib and Xview before, I first had to get some experience in it. I
planned to get a working version of CHART with the main features implemented, just to get
some experience in Xview programming. Then I intended to rewrite the whole program
using the best parts of the first trial and write all additional features. The first version was
also tested on a few people to give their opinion.
While writing the first version new releases of RTA came out with new features that had to
be handled by the CHART-program as well. When writing the final version all intermediate
versions that could run were used to test some real RTA-programs, so that inadequate parts
of the program could be quickly improved.

4.1 Experience with Xview.

By examining programs that use Xview and by studying the programmers manual, the basic
things in Xview were quickly learned. The main problem was that Xview isn't used very
much at the IPO, so getting help was a problem. However Xview is built very logically and
is similar to the programs that do the same things on other computers. Basic features such as
getting a window on the screen and making buttons to accept input from the user, were
learned very fast.
The first task was making the old chart program faster and give it more functions. When this
succeeded I began writing the first version. After reactions on this by some RTA-program­
mers and a new release of RTA, I began writing the first real version of CHART.

4.2 Reactions from users.

As mentioned above, all intermediate versions were tested by RTA-programmers with real
RTA-programs they were working on. The first version was also sent to some PHILIPS peo­
ple in other countries. The reactions of all these people were used to change the functionality
and the User-Interface of the CHART-program. (As mentioned in 3.)
Speed was an item that came from these tests. The selection of behaviours took a while and
drawing also took its time. Some extra features were added to speed up selection. Storage of
behaviour-changes in memory was totally changed to speed up writing on the screen. A
small change that had to be made was the way behaviour names where displayed. Some
RTA-programmers use very long names for their behaviours (or they are generated by RTA)
with the distinguishing parts at the end. A scroll bar had to be added to scroll the names of
the behaviours sideways.

4.3 New RTA versions.

In the first version of RTA (RTA 2.0) no modules were used, so when version 3.0 came
along, provisions had to be made to get the right information on screen. The names of the
behaviours were now distributed over more than one file, each file containing the behaviour
names of one module. The names of these files were the module name with extension .dbg.
Thus the behaviours names of a module called agent would be in a file called agent.dbg. (See
Appendix I for an example of a .dbg file.)
The names of the modules are in a file called system.dbg. Not all names that are in this file
are module names, so you first have to test whether it is a module name or not. In the .dbg

IO

CHART a debugging tool for RTA

files there also is a node-number of each behaviour (and module). These numbers and the
information put out by the RTA-Kernel (Chapter 4.6) are used to determine the name of a
module.
Version 3.0 and 3.1 also have the possibility of having multiple worlds. The current version
of CHART only uses a simple test that will not allow the user to show modules from differ­
ent worlds.
Before version 3.1 of RTA, CHART has to use .rst files instead of .dbg files. See also chapter
4.7.

4.4 Functionality.

The design of the internal storage structure and its implementation is discussed in this chap­
ter because the structure of the stored information is a consequence of the chosen functional­
ity.
First we have to decided how to store the information in memory. There are two ways. The
first one is to store every thing in memory as it arrives. This is useful for searching for a
change at a special time, as is done when using moving the cursor. The other way is to store
the changes sorted by their behaviours. So each behaviour has a list of its changes. This has
some advantages when drawing on the screen. In fact it is also not that difficult to find the
next time in the list of changes of each behaviour displayed on screen and so this last method
is used by CHART to store the information.
Because we don't know in advance how many modules, behaviours and changes there are,
we don't know how much memory is needed to store them. Determining the number of mod­
ules and behaviours can be done in two ways. The first one is by reading the .dbg files twice.
The first time to count the number of modules and behaviours so as to reserve memory for
them and the second time to store them in memory. The second way is to read the .dbg file
and to reserve a small amount of memory for all of the modules and behaviours and link
them together with pointers (as a double linked list); a list of modules and a list for each
module containing its behaviours. The disadvantage of the second method is that behaviour
data can not be read randomly (as an array); you have to search in the list to get the right
data. This can be solved by making an extra array containing pointers to all behaviours.
Using a double linked list gives us a quick method of sorting the behaviours alphabetically
as they are read in from the file. Another advantage is that the files have only to be read once.
Some files full of behaviours may take 30 seconds to read. Several of these files would take
several minutes. By making both types of lists (list of modules and list of behaviours) the
same we can use the same functions to add and delete modules and behaviours. This last
method of storing modules and behaviours is used in CHART.
For storing the changes we have a similar problem. However we will not store the changes in
a linked list because the overhead (the pointers to the next and previous one) is too big in
comparison with the data itself. With modules and behaviours we don't have this, because
we also have to store the name of them and other attributes. Reading the debug file twice
isn't a nice solution either since the debug file can be up to a few Mega-bytes. Here we can
make use of the two stage selection of behaviours. Before the Filter-stage we only read the
information about modules and behavi.ours. We let the user select the behaviours he might
want to see. Now we read all debug-information evaluate it and write to a temporary-file
only that part that is of interest. This new file will be a lot smaller than the original one.
While reading the debug-file we also count the number of occurrences of behaviour changes
for all behaviours.We now know how much memory is needed for the changes of each
behaviour. This memory is reserved and attached to the behaviour as an array of times.
While reading the new smaller file these arrays are filled. We still have to read two files, but
the second file is a lot smaller that the first one.
In the old-chart program times where represented as real-numbers (float in C). Calculations

11

CHART a debugging tool for RTA

with these numbers however consume much processor time. Therefore times in CHART are
now stored as integers. This necessitates the writing of new functions for handling times.
These functions are gathered in a separate file.

Below follows a short description of the implementation of the functions the user can per­
form in the Show-Window.

The scrolling functions can be divided into two parts : scrolling of the data and scrolling of
the behaviours. The data can be scrolled at two speeds; a slow speed, that moves the data a
few pixels; and a fast speed, that moves the data half a screen. The behaviours can also be
scrolled at two speeds; one line at a time or half the screen at once.
There are also two cursor movement functions. These let the cursor stick to the next or previ­
ous behaviour change. The precise time the cursor is at and to which behaviour it is stuck
must clearly be shown (see next paragraph). There are five zooming functions. The zooming
functions use the cursor as centre for their operations. So after a zooming function the cursor
will always be in he middle of the screen. Below follows a short description of the five func­
tions.
Zoom factor This function doesn't change anything on the display, its only sets the

zoom factor to a value. The values that it can have are 2, 5 and 10. The
zoom factor is used when the functions zoom in and zoom out are
used.

Zoom in This function zooms in, it divides the current shown time-range by the
zoom factor and displays it with the time the cursor is at in the middle
of the screen.

Zoom out This multiplies the shown time-range with the zoom factor.
No zoom This function expands the time-range so that it contains all times

present in memory. (The time-range selected in the filter-window.)
Zoom rang This function lets you specify a value that will be the new time-range.

Again the cursor will be in the centre of the new displayed data.
CHART also has some ways of storing the current context. Three different contexts can be
stored and recalled. These functions store which behaviours are shown, the order, the shown
time-range and the cursor position. The context is only stored in memory, so it is lost when
you have quit the program. Selection of behaviours can be done in two places. Selection of
behaviours is very similar to sorting of behaviours. For both selecting and sorting the same
window is used. Therefore less code and less memory is needed.
The C-functions for the program are separated into different groups, depending on which
part of the program they refer to.

4.5 User-Interface.

For the User-Interface we have to define two main windows : one for the Filter-stage and one
for the Show-stage. In the filter window the buttons are arranged vertically with the ones that
are required first at the top. See Figure 2.
The topmost button is the one for loading a previously stored filter. Buttons further down
allow the user to specify, a time range, a threshold, modules and sets of behaviours. Further
down still is a button which allows the current filter to be stored. At the right side of the win­
dow there is a button called SHOW, it is grayed when no behaviours are selected, but it is
normally drawn when at least one behaviour is selected. The cancel button is only drawn
normally when the Filter-stage is entered from the Show-stage. Graying buttons should give
the user a hint that he first has to do something else before he can use the button.
The other window is the Show-window. Evaluation of the requirements gathered in chapter
3.2 led to a User-Interface consisting of four parts.

12

CHART a debugging tool for RT A

YES' in your C-code and debugging is started. The debug code added in the kernel gives you
the following six functions, that can be used in the C-code belonging to the RTA-program.
debug_start() Starts debugging and opens the output file. It should be called

debug_stop()

debug_ suspend()
debug_ continue()
debug_message(int m)

debug_mark()

once at the beginning of the RTA-program, before any module
is loaded.
Stops debugging and closes the output file. It should be called
before exiting the RTA-program. If this function is not called
the last second of debug-information may be lost, because it
isn't written from an internal buffer used by UNIX to the file.
Stops debugging temporarily.
Continues debugging when stopped with debug_suspend().
Gives a message in the debug output with the number specified.
(-32768 < i < 32767).
Gives a mark in the debug output with a number one higher that
the previous mark (0 .. 65535).

The above two functions are not extensively supported by CHART. CHART only prints a
message to stderr, saying a message or mark was in the file at a specific time and prints the
number. In Appendix IV is a document giving brief instructions on how to use the functions
in your RTA-program.

The above functions only specify the interface of debug to the RTA-programmer, other func­
tions had to be implemented to print the correct information in the output file. The variables
used by these functions will be made static, this means they can only be used in the file in
which they are declared. The real printing in the debug-file is done by the function debug_ -
print(long data, int type). Loading and unloading of modules will always be printed in the
debug-file, because this information is always needed. So if the debugging is suspended only
the information about state changes is not stored (This is most of it).

4. 7 Runtime options.

For the convenience of the user four options are added that can be turned on at start-up.
The first one (-RST) must be used when RTA3.0 is used along with CHART. When this
option is used CHART searches for files ending with ".rst" for information about behaviours.
Nothing is changed in the rest of the program.
An other option can be used to get the same type of information as with the trace_behaviour
of RTA. The output is sent to stdout, which is normally the screen. Typing "chart -PRINT
>traces" will send the output to the file "traces".
The default threshold in the Filter-stage and the Display-stage can be changed with the
option -THRES. Typing "chart -THRES 20" will set the default threshold to 20, so only
behaviours with equal to or more than twenty changes will be selected in the Filter-stage.
The last option can be used when the RTA-program comprises of only a few modules. Nor­
mally none of the modules is selected when you enter the Filter-stage (the first time), using
the option -ALL will select all modules. This can speed up using the program, you can
immediately press the SHOW-button and go to the Display-stage.

15

CHART a debugging tool for RTA

5. Documentation.

The documentation for CHART is divided into three parts: the user manual for CHART, the
programmers manual about the changes made to the RTA-kemel to give information for
CHART and the programmers manual for CHART itself.

5.1. User manual CHART

In appendix III the user manual for the CHART-program can be found. It gives a short
description of the functions of the CHART-program.

5.2. Programmer's manual, using CHART in RTA.

With RTA comes a file that contains instructions how to change RTA-programs so that
CHART can be used on them. This manual is also printed in appendix IV.

5.3. Programmer's manual, for CHART.

Appendix V contains the programmer's manual for CHART. In it you will find a short sum­
mary of the functions used in CHART, and in what files they are. There are also some extra
remarks on some functions. For more information on the source, see the documented source
files.

16

CHART a debugging tool for RTA

RTA (Peter Wavish) will probably solve this problem.

With worlds being introduced in RTA one can create a Play-Mode for RTA-programs. The
outer-world should be created by CHART and control the time in the inner world where the
RTA-program is running. Each event that normally would be printed in the rta.debug file
should be directly sent to CHART and change the currently displayed data. CHART could be
started on an other computer, not to disturb the screen output of the RTA-program.
Memory management will be a big problem in this version, reserving a little memory for
every incoming behaviour-change is highly inefficient for the memory used. Maybe reserv­
ing memory for a number of behaviours at a time is a solution.

A scrollbar could be added to the Data-part of the Show-Window to conform to the scrolling
standard of X-Windows. The functions to scroll the data are already present so implementing
this will not be a big problem.
Hints:
SCROLLBAR_PIXELS_PER_UNIT, 10
SCROLLBAR_PAGE_LENGTH, (data_width-25)/10-1
SCROLLBAR_ VIEW _LENGTH, (data_width-25)/20 -1
SCROLLBAR_OBJECT_LENGTH, "total length of time in memory (buf_stop_time -
buf_start_time) divided by range_step_time."

18

CHART a debugging tool for RTA

Conclusion.

CHART is a debugging tool for RTA-programs that has shown its value already. However
care has to be taken to keep CHART up to date. As new versions of RTA appear the func­
tionality of the language is extended and CHART has to be extended in its tum. For this pur­
pose the source files of CHART are heavily documented and the implementation is well
described in this report.
As can be seen in Chapter 6 many extensions can be made to CHART giving it a greater
functionality. These new functions should in some way fit the metaphor used, so that the user
can understand and make use of the extra functions more quickly. Most users won't read
manuals first, so the User-Interface must be self explanatory.
Also the kernel of RTA is extended with a few extra functions that can be used to develop
new debug tools.

19

CHART a debugging tool for RTA

Literature list.

• Peter Wavish, on-line documentation for RTA3.l.

• Peter Wavish, on-line documentation for RTA3.0.

• Peter Wavish, on-line documentation for RTA2.

• XLib Programmers manual: for version 11 of the XWindow System by Adrian Nye
3rd ed. O'Reilly 1990.

• X view programming manual : for version 11 of the XWindow System by Dan Heller
2nd ed. O'Reilly 1990.

20

Appendix I : Example of .dbg file.

Appendix I : Example of .dbg file.

node(l, system).
node(2, a_button).
node(3, agent).
node(4, assist).
node(5, b_button).
node(6, down).
node(?, gfx_clock).
node(8, left).
node(9, mouse).
node(lO, mouse_left).
node(ll, mouse_middle).
node(12, mouse_right).
node(13, reload).
node(14, right).
node(l5, start).
node(16, tetris_clock).
node(l 7, user).
node(l 8, world).
node(l 9, module_arguments(system)).
node(20, /(gfx_clock,5.0E-02)).
node(21, -->(/(reload,l.OE-01),' { ... } ')).
node(22, -->(/(no(gfx_clock),5 .OE-02),' { ... } ')).
node(23, -->(/(no(user), l.OE-01),' { ... }')).
device(O,behaviour(bbb,[],[],[],[],0,lo)).
device(l,behaviour(bbb,'.' (19,[]),[],[],[], 1,hi)).
device(2,behaviour(bbb,[] ,[] ,[] ,[] ,2,lo)) .
device(3,behaviour(bbb,[],[],[],[],3,lo)).
device(4,behaviour(bbb,[],[],[],[],4,lo)).
device(5,behaviour(bbb, [],[] ,[], [] ,5,lo)).
device(6,behaviour(bbb,[], [] ,[], [] ,6,lo)).
device(? ,behaviour(bbb,' .' (20,' .' (29,'. '(20,[]))),'. '(24,[]),[],[], 7 ,lo)).
device(8,behaviour(bbb,[],[],[],[],8,lo)).
device(9 ,behaviour(bbb, [],[] ,[], [] ,9 ,lo)).
device(l O,behaviour(bbb,[],[],[],[], 1 O,lo)).
device(l l ,behaviour(bbb,[],[],[],[], 11,lo)).
device(12,behaviour(bbb,[],[],[],[],l2,lo)).
device(l3,behaviour(bbb,[],' .'(33,[]),[],[],13,lo)).
device(14,behaviour(bbb,[],[],[],[], 14,lo)).
device(15,behaviour(bbb,[],[],[],[],15,hi)).
device(16,behaviour(bbb,[] ,[] ,[] ,[], 16,lo)) .
device(l 7,behaviour(bbb,'. '(25,[]),' .'(33,[]),[],[],l 7 ,lo)).
device(18,behaviour(bbb,[],[],[],[], 18,hi)).
device(l 9,behaviour(bbb,[],'. '(37,[]),[],[], 19,hi)).
device(20,behaviour(bbb,' .' (29,[]),' .' (24,' .' (36,[])),[],[],20,lo)).
device(21,behaviour(bbb,[],[],[],[],21,hi)).
device(22,behaviour(bbb,[],[],[],[],22,hi)).
device(23,behaviour(bbb,[],[],[],[],23,hi)).
device(24,delay(5 .OE-02,20,24,lo)).
device(25,delay(l .OE-05,26,25,lo)).
device(26,and('.' (23,'.' (27 ,[])),26,lo)).
device(27 ,delay(l .OE-01,28,27 ,lo)).

21

device(28,not(17 ,28,hi)).
device(29 ,delay(l .OE-05 ,30,29 ,lo)).
device(30,and('. '(22,'.' (31,[])),30,lo)).
device(31,delay(5.0E-02,32,31,lo)).
device(32,not(7 ,32,hi)).
device(33,delay(l .OE-05,34,33,lo)).
device(34,and('.' (21,'.' (35,[])),34,lo)).
device(35,delay(l .OE-Ol, 13,35,lo)).
device(36,not(7 ,36,hi)).
device(37,not(l ,37,lo)).

Appendix I : Example of .dbg file.

22

Appendix II : Description of rta.debug file.

Appendix II : Description of rta.debug.

The data written to the rta.debug file consists of events (4 bytes long). An event consists of
two parts an identify part and a data part. The first 2 to 12 bits may be used for the type of the
event (the identify part). The rest is the data part. The following types of events exist.

type mask data
DEBUG_BEHAVIOUR %00xxxxxx.xxxx Behaviour address
DEBUG_SECONDS %01 xxxxxx.xxxx Last seconds
DEBUG_MICROS % 1 Oxxxxxx.xxxx Last micro seconds
DEBUG_DEVTABLE % 11 Oxxxxx.xxxx Address of device table
DEBUG_SIZEOF % 111 Oxxxx.xxxx Size of device table
DEBUG_MODULENR % 1111 Oxxx.xxxx Number of the module
DEBUG_REALSECONDS %111110xx.xxxx Last real seconds
DEBUG_REALMICROS %1111 llOx.xxxx Last real micro seconds
DEBUG_ WORLD % 11111110.xxxx World number
DEBUG_MARK %11111111.1110 Number incremented each time
DEBUG_MESSAGE %11111111.1111 User specified number

1. A DEBUG_BEHAVIOUR event is stored when a behaviour changes state.
2. DEBUG_DEVTABLE, DEBUG_SIZEOF, DEBUG_ WORLD and DEBUG_MODU-

LENR are stored (in that order) when a module gets loaded.
3. When it gets deleted only DEBUG_MODULENR is stored.
DEBUG_SECONDS and DEBUG_MICROS are stored in all three cases, but only if they
have changed since the last time they where sent. So a DEBUG_SECONDS event will be
stored once a seconds at most.
DEBUG_REALMICROS and DEBUG_REALSECONDS are stored if DEBUG_MICROS
and DEBUG_SECONDS are stored. The data part of these events will contain the real time
(the outer time).

The above identify-bits for the events may change in future versions of CHART and/or RTA.

23

Appendix III: User manual CHART

Appendix III: User manual of CHART.

1. ABOUT CHART.

CHART is a program to view the debug information that the RTA 3.1 kernel outputs. The pro­
gram graphically displays the state changes of behaviours. The program has two stages.

The first one is to make a raw selection of the behaviour of the RTA-program you want to exam­
ine. This stage is called the Filter-stage. The selections you make here can be stored, so it will be
easy to select the behaviours the next time you stru:t the program
From this stage you can enter the Display-stage, in here you can display the behaviours you want
in the order you want.

2. THE FILTER STAGE.

In the Filter-stage you can select the behaviours that you might need to examine the RTA-pro­
gram. CHART uses the environment variable RTAYATH (also used by RTA) to find the right
behaviours and debug-information. If you don't have RTA-path defined, the current directory
will be used. When all information is loaded you can filter out the information you really want.
For this you have a few buttons.
• Time selection: You can specify a time range. Only the times in this range can be dis­

played in the Display-state.
• Module selection : With this toggle-menu you can select the modules that are of interest.
• Behaviour selection : When you have enabled a module, you can make a selection of the

behaviours of that module with this menu. When you have selected a module to process, a
new window will be shown. In here are some helpful buttons to select the behaviours of
interest.
* You can select all behaviours.

*
*

*

*

*

You can select no behaviours.
You can specify what type of behaviour must be selected, or what type not. We
can differentiate 5 types of behaviours

Those starting with -->
Those starting with I
Those starting with =
Those starting with ==>
Simple behaviours (all others)

You can (de)select the behaviours one by one with the mouse. Pressing the mouse
button down and dragging it to an other location will (de)select the whole range.
Pressing the Cancel button brings you back to the Filter-window with no changes
made to the filter you where constructing.
Pressing the OK button also brings you back to the Filter-window, the filter will
also be adapted to the selections you made for the module.

When you enter the Filter-Window all behaviours will be selected.
• The cancel button of the Filter-window is only available if you entered the Filter-stage

from the Display-stage, and did not load an other program, or reload the current one. The

24

Appendix III: User manual CHART

button will bring you back to the Display-window.
• The SHOW-button brings you to the Display-stage.
• Load Filter recalls a previously stored filter. The button can always be pressed, but a mes­

sage will be printed if there is no filter stored.
• Store Filter, stores the current constructed filter. Storing can only be done when debug

information of a program is loaded.

NOTE : Behaviours and times not included in the filter can not be displayed in the Display­
stage, you can however go back to the Filter-stage to construct a NEW filter.

3. THE DISPLAY STAGE.

We can divide the window of the Display-stage into 4 parts.
1. The Selection functions, in the upper-left part.
2. The Display functions, in the upper-right part.
3. The behaviour names, in the lower-left part.
4. The behaviour changes, in the lower-right part.

The function of each part will be discussed in a different chapter.

3.1. The Selection functions.

• Quit : With this function you can quit the chart program. This is the only quit button in the
program, if you want to quit from the Filter-stage you must use the quit menu in the upper­
left comer of the window.

• Select : This function opens a new window for selecting behaviours to be shown. The win­
dow looks like the window you can use in the Filter-stage to select behaviours to be fil­
tered. Now however in front of each behaviour is the number of state-changes the
behaviour has. Also there can be behaviours of more then one module and there is an extra
function. The function are.
* You can select all behaviours.

*
*

*

*

You can select no behaviours.
You can specify what type of behaviour must be selected or what type not. We can
diffentiate 5 types of behaviours.

Those starting with -->

Those starting with I
Those starting with =
Those starting with ==>
And simple behaviours

You can specify a threshold for the number of state-changes of a behaviour. Set­
ting this threshold to 1 disables you to select any behaviour with less than 1
changes. The threshold value defaults to 1. Setting it to 0 allows you to select all
behaviours, even those that do not change.
You can (de)select the behaviours one by one with the mouse. Pressing the button

25

