Changes in autonomic regulation due to Kangaroo care remain unaffected by using a swaddling device

Citation for published version (APA):

DOI:
10.1111/apa.14484

Document status and date:
Published: 01/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2019
Changes in autonomic regulation due to Kangaroo care remain unaffected by using a swaddling device

Deedee R. Kommers (Deedee.Kommers@mmc.nl)1,2, Rohan Joshi3,4,5, Carola van Pul2,4, Loe Feij5, Sbardto Bambang Oetomo1,3, Peter Andriessen

1. Department of Neonatology, Maxima Medical Centre, Veldhoven, The Netherlands
2. Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
3. Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
4. Department of Clinical Physics, Maxima Medical Centre Veldhoven, Veldhoven, The Netherlands
5. Department of Fertility, Pregnancy and Parenting Solutions, Philips Research, Eindhoven, The Netherlands

Keywords
Autonomic regulation, Heart rate variability, Kangaroo care, Preterm infants, Swaddling

INTRODUCTION
Preterm infants may be admitted to neonatal intensive care units (NICU) for long periods of time, an environment that is stressful for infants, due to parent–infant separation, bright lights, noise, iatrogenic interventions and other unnatural stimuli (1–3). Over the past decades, it has been suggested that such early life experiences impair long-term neurodevelopmental outcomes (4). Correspondingly, interest in interventions to reduce pain and stress in NICUs has increased.

In addition to pharmacological interventions such as analgesics (5), a Cochrane review has demonstrated that non-pharmacological pain management can have significant benefits as well (6). In that review, different types of non-pharmacological interventions, including Kangaroo care, swaddling, parental presence and the use of maternal voice were investigated in over 3000 preterm infants. Typically, the effects of interventions are determined by measuring vital signs (7–11) and based on this, the review found evidence to recommend Kangaroo care, sucking-related interventions and swaddling or facilitated tucking (6). Several other studies have also found promising effects of using sounds of parental heartbeat for reducing stress in preterm infants (7–11).

METHOD
Aim: To investigate the effects of a swaddling device known as the Hugsy (Hugsy, Eindhoven, the Netherlands) towards improving autonomic regulation. This device can be used both in the incubator and during Kangaroo care to absorb parental scent and warmth. After Kangaroo care, these stimuli can continue to be experienced by infants, while in the incubator. Additionally, a pre-recorded heartbeat sound can be played.

Results: In this study of 20 infants with a median (interquartile range) gestational age of 28.4 (27–29.9) weeks, Kangaroo care was associated with a decrease in heart rate, respiratory rate, oxygen saturation, temperature and heart rate variability on intervention versus control days.

Conclusion: The use of an alternative swaddling device aimed at facilitating Kangaroo care did not enhance autonomic regulation, as measured by vital signs and heart rate variability.

Key notes
- This study aimed to investigate whether the use of an alternative swaddling device can enhance autonomic regulation in preterm infants.
- This device can absorb parental scent and warmth during Kangaroo care, which are then transferred back to the incubator.
- While Kangaroo care changes heart rate variability, and to a lesser extent vital signs, there is no evidence to suggest that the use of such a swaddling device augments regulation.

Abbreviations
CI, Confidence interval; ECG, Electrocardiography; NICU, Neonatal intensive care unit; NN-intervals, Normal-to-normal heartbeat intervals; pDec, Percentage of decelerations; RMSSD, Root mean square of successive differences in heartbeat intervals; SDDec, Standard deviation of decelerations; SDNN, Standard deviation of normal-to-normal intervals; SEM, Standard error of the mean.
In this study, we investigated the effect of a swaddling device designed at the Eindhoven University of Technology termed the Hugsy. It is designed for use, both in the incubator as well as during Kangaroo care (12). During Kangaroo care, the device is wrapped around the parent and infant in a manner such that it folds around the parent’s axillary region and is fastened across their back, to optimally absorb scent and warmth. These stimuli are then transferred back into the incubator after Kangaroo care (Fig. 1A,B). Also, the device can play a pre-recorded sound of parental heartbeats. We analysed both vital signs and heart rate variability before, during and after Kangaroo care with and without the use of the swaddling device to identify any potential benefits of augmenting Kangaroo care with the use of such devices.

METHOD

Patient population

All preterm infants admitted to the NICU of Máxima Medical Centre, Veldhoven, the Netherlands, from October 2016 to March 2017 were asked to participate at the earliest appropriate occasion after admission. Infants were deemed eligible after they were determined to be clinically stable by nurses. Exclusion criteria were any serious clinical conditions at the time of inclusion, such as sepsis and necrotising entercolitits, mechanical ventilation and severe brain pathology defined as intraventricular haemorrhage grade III/IV. Typically, in our hospital, all infants routinely receive Kangaroo care and all parents are encouraged to do so. Since, aside from using an alternative swaddling device, the study was of an observational nature, the medical ethical committee provided a waiver (N16.101) in accordance with the Dutch law on medical research with humans. Written parental consent was obtained corresponding to each participating infant. The study participants are characterised in Table 1.

Study design and swaddling device

This study was of a within-subject design, where intervention days were compared to control days. On intervention days, a swaddling device was used during Kangaroo care sessions as well as in the incubator (12). Therefore, in the post-Kangaroo care period, infants were swaddled in the same device as during Kangaroo care (Fig. 1A,B). In the post-Kangaroo care period of one hour, the device’s speaker played the sound of heartbeats at 30–35 dB and at a pre-recorded frequency of 1–1.5 Hz, corresponding to the resting heart rate of the typical adult. This parental heart rhythm was recorded during the first Kangaroo care session of the study, for a period of 10 minutes. On control days, infants received routine caregiving including Kangaroo care but without using the swaddling device.

The study was designed to last eight days in each infant. Half the infants started with the intervention, while the other half started with routine Kangaroo care (control days). Two intervention days were alternated with two control days, twice in each infant (Fig. 2). Nurses were asked to annotate the start time (placement on parental chest) and end time (placement into incubator) of Kangaroo care. Since the study was of an observational nature, routine caregiving, including the frequency and duration of Kangaroo care remained unaffected.

Measurements; vital signs and heart rate variability

Routine patient monitoring including electrocardiography (ECG, 250 Hz) and the recording of vital signs continued throughout the study. To analyse the potential effects of Kangaroo care on intervention and control days, vital signs and ECG data from the one hour before, during and after Kangaroo care was extracted from a data warehouse (PIIC iX, Data Warehouse Connect; Philips Medical Systems, Andover, MA, USA). The vital signs included heart rate, respiratory rate (using impedance pneumography), oxygen saturation (using pulse oximetry) and diaper-based temperature recorded at a frequency of 1 Hz. ECG data were used to derive heart rate variability—the time intervals between successive heartbeats.

Heart rate variability was calculated using a peak detection algorithm to detect all R-peaks, or heartbeats, in the ECG recordings (13). Artefacts and ectopic beats were removed so that only so-called normal heartbeats remained. Consecutively, beat-to-beat intervals, also known as

--

**Figure 1** (A) illustrates the use of the Hugsy during Kangaroo care. The recording of the heartbeat and the heartbeat module are illustrated elsewhere (12). (B) illustrates the use of the Hugsy as a scented swaddling blanket within the incubator. The speaker playing the heartbeat is positioned in between the Hugsy and the mattress, in close proximity to the infant’s head.
normal-to-normal (NN) intervals were determined (13). On the basis of previous research, we calculated four features of heart rate variability: the standard deviation of all NN-intervals (SDNN), the root mean square of the successive difference between NN-intervals (RMSSD), the percentage of NN-intervals corresponding to transient decelerations (pDec) and the standard deviation of the NN-intervals corresponding to transient decelerations (SDDec); 14–16. The feature SDNN is believed to be reflective of overall variability, whereas the RMSSD reflects short-term variability (15). The features pDec and SDDec are reflective of regulatory instability and are specifically designed to capture heart rate decelerations, both transient decelerations as well as prolonged bradycardia (16,17). We calculated the mean value and the standard error of the mean (SEM) for these four features of heart rate variability every minute, using data from the previous five minutes to obtain a time series graph for each heart rate variability feature. Since for these time series we were interested in the effect of Kangaroo care and not absolute values per se, a normalisation procedure or baseline removal was carried out by subtracting the mean value of each feature in the first 30 minutes of the pre-Kangaroo care period from the corresponding time series, as detailed in a prior publication (16).

For statistical analyses of heart rate variability and vital signs, representative or stable epochs were defined to enable reliable comparison of differences in absolute values on intervention days versus control days, similar to previous studies (16,18).

In the pre-Kangaroo care period, the first 30 minutes were considered stable, whereas for the periods of during and after Kangaroo care, the epochs corresponding to the 16–45th minute were considered stable and were used for statistical analyses (see Fig. 3). A detailed discussion motivating this approach is provided in a previous publication (16). Briefly, the first 30 minutes of the pre-Kangaroo care period is a stable period since it is free of routine nursing intervention. The 16–45th minute during Kangaroo care is stable since infants have acclimatised to Kangaroo care after the transition from incubator to the parental chest. Similarly, the 16–45th minute of the post-Kangaroo care period is considered stable since infants have acclimatised to the incubator after the stress of transition from the parental chest to the incubator. The mean values of the heart rate variability features and vital signs were calculated for the stable 30-minute epochs of each pre-Kangaroo care, during Kangaroo care and post-Kangaroo care period. Consecutively, the median and interquartile ranges of these representative values were determined for both the intervention and control arm of the study to analyse the effect of Kangaroo care.

### Statistical analyses

Statistical testing for differences in vital signs and heart rate variability features were carried out using two-sided Wilcoxon rank-sum tests. In addition, the effect size of Kangaroo care on both intervention and control days was quantified by determining the difference in means of the individual 30-minute stable periods from the pre-Kangaroo care, during Kangaroo care and post-Kangaroo care periods. Estimates of the 95% confidence intervals (95% CI) of the effect size were obtained by bootstrapping 10 000 times. A p-value ≤0.01 was considered statistically significant.

### RESULTS

In this study of 20 preterm infants with a median (interquartile range) gestational age of 28.4 (27–29.9) weeks, 108 and 106 Kangaroo care sessions were analysed corresponding to intervention and control days respectively. With regard to the heart rate and respiratory rate, there were no differences between intervention and control days corresponding to the pre-Kangaroo care, during Kangaroo care and post-Kangaroo care periods (Table 2). However, Kangaroo care, irrespective of whether on intervention or control days, reduced heart rate and respiratory rate compared to the corresponding pre-Kangaroo care periods. This decrease was statistically significant as can be seen in Figure 4A,B since the upper bound of the 95% CI, corresponding to the effect size of Kangaroo care in comparison to the pre-Kangaroo care period is below zero. Notably, though, there is no lasting effect of Kangaroo care on heart rate.

### Table 1 - Median and interquartile ranges (25th–75th percentile) of patient characteristics at birth and during the study

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Median</th>
<th>25th percentile</th>
<th>75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age (weeks)</td>
<td>28.4</td>
<td>27</td>
<td>29.9</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>1015</td>
<td>870</td>
<td>1280</td>
</tr>
<tr>
<td>No. of KC sessions</td>
<td>5.5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Duration of KC sessions control days</td>
<td>100</td>
<td>77</td>
<td>120</td>
</tr>
<tr>
<td>Duration of KC sessions intervention</td>
<td>90</td>
<td>74.5</td>
<td>112</td>
</tr>
<tr>
<td>days (minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMA during first KC session</td>
<td>30.6</td>
<td>29.6</td>
<td>31.4</td>
</tr>
<tr>
<td>Average PMA for all KC sessions</td>
<td>31.1</td>
<td>29.9</td>
<td>31.6</td>
</tr>
<tr>
<td>PNA during KC (days)</td>
<td>13</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Duration of data collection (days)</td>
<td>8</td>
<td>6.5</td>
<td>8</td>
</tr>
</tbody>
</table>

KC = Kangaroo care; PMA = Post-menstrual age; PNA = Postnatal age. PNA is the number of days after birth. Duration of collection days is the number of days from the first day of the study until the last day of the study.
rate and respiratory rate, since the 95% CI of the effect size corresponding to the effect of intervention measured from the pre-Kangaroo care to the post-Kangaroo care period includes zero.

While Kangaroo care did not affect heart rate and respiratory rate in the post-Kangaroo care period, heart rate variability reduced during Kangaroo care and continued to remain low in the post-Kangaroo care period for both intervention and control days, as can be seen from Table 3 and Figure 5. Figure 5 shows the heart rate variability time series corresponding only to intervention days since heart rate variability was similar in both arms of the study. Note that heart rate variability values were normalised by subtracting the mean value of the first 30 minutes of the pre-Kangaroo care period from the corresponding time series and therefore, in Figure 5, all the time series start around zero. Overall variability (SDNN) changed from 19 ms (13–32) in the pre-Kangaroo care period to 16 ms (10–22) in the post-Kangaroo care period on intervention days, versus from 19 ms (13–28) to 16 ms (12–22) on control days. Values of all features of heart rate variability can be found in Table 3.

With regard to oxygen saturation and temperature, there was no change in response to Kangaroo care (Fig. 4C,D). However, on intervention days, oxygen saturation increased marginally in the post-Kangaroo care period in comparison to the pre-Kangaroo care period. Nevertheless, the effect size was insufficient to create a statistically significant difference between oxygen saturation values in the post-Kangaroo care periods of the intervention and control arms of the study. This can be determined not only from the overlapping 95% CIs in Figure 4C but also from the statistically insignificant difference in the post-Kangaroo care values in Table 2.

DISCUSSION
In this study, we investigated whether an alternative swaddling device used during Kangaroo care, aimed at providing parental scent and heartbeat sounds to preterm infants once back in the incubator, enhanced autonomic regulation as measured by changes in vital signs and heart rate variability on intervention versus control days.
**Figure 4** Effect size and confidence interval of vital signs. Differences in heart rate (HR, A), respiratory rate (RR, B), oxygen saturation (SpO2, C) and temperature (D) are illustrated for intervention days (pink) and control days (blue). The effectiveness of Kangaroo care as measured by changes in vital signs from pre-Kangaroo care to during Kangaroo care (pre–during, two left bars) and from pre-Kangaroo care to post-Kangaroo care (pre–post, two right bars) are displayed. When the error bars do not include zero, it points to a statistically significant effect.

**Table 3** Heart rate variability in the pre-Kangaroo care, during Kangaroo care and post-Kangaroo care periods

<table>
<thead>
<tr>
<th>Feature</th>
<th>Pre-KC</th>
<th>During KC</th>
<th>Post-KC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention</td>
<td>Control</td>
<td>Intervention</td>
</tr>
<tr>
<td>SDNN</td>
<td>19 (13–32)</td>
<td>19 (13–28)</td>
<td>16 (11–26)</td>
</tr>
<tr>
<td>RMSSD</td>
<td>10 (6–28)</td>
<td>10 (6–23)</td>
<td>9 (6–18)</td>
</tr>
<tr>
<td>pDec</td>
<td>46 (41–49)</td>
<td>46 (42–50)</td>
<td>44 (41–48)</td>
</tr>
</tbody>
</table>

KC = Kangaroo care; pDec = The percentage of decelerations; RMSSD = Root mean square of successive differences; SDDec = The standard deviation of decelerations; SDNN = The standard deviation of all normal-to-normal intervals.

There were no statistically significant differences in the features of heart rate variability between the intervention and control arms of the study corresponding to these periods.
While positive effects of using parental heartbeat and scent in a NICU have been reported previously (7,8,19), this study found no difference in vital signs and heart rate variability during and post-Kangaroo care for intervention and control days, i.e. for Kangaroo care with and without swaddling device. In both arms of the study, Kangaroo care was associated with a reduced heart rate and respiratory rate. In agreement with the literature, these findings may suggest reduced metabolic expenditure during Kangaroo care (20–22). This effect, however, did not remain in the post-Kangaroo care period since both the heart rate and the respiratory rate increased to pre-Kangaroo care values. In contrast, heart rate variability not only reduced during Kangaroo care but remained low in the post-Kangaroo care period on both intervention and control days, suggesting a lasting effect of Kangaroo care. In agreement with previous studies, in this group of preterm infants, decreased heart rate variability also suggests improved autonomic regulation, as demonstrated by a reduction in the extent of decelerations during Kangaroo care (16). Due to immature autonomic regulation, preterm infants are especially prone to transient heart rate decelerations, which remain uncaptured in average measures of heart rate (14,23).

In summary, no changes in vital signs or heart rate variability could be observed in this study where an intervention comprising of the use of a swaddling device during Kangaroo care as opposed to routine Kangaroo care was analysed. In other studies, the sounds of heartbeats were reported to have a calming effect during caregiving procedures as measured by vital signs (8,24). Perhaps the stimuli employed by the swaddling device might have been of an insufficient intensity to overcome the background noise or olfactory stimuli of the NICU (25–27). Furthermore, nasal blockage or the use of masks, tubes and patches meant for respiratory support may hinder the sense of smell in preterm infants. It was not possible to determine whether the olfactory and auditory stimuli provided by the swaddling device were actually sensed by the infant. Another explanation is that the stimuli were of insufficient quality with regard to for instance complexity, dynamicity and synchrony with the infants’ rhythm and therefore not effective in affecting regulation. So far, consensus about using pre-recorded heartbeat sounds in NICUs has not been reached. Contrasting findings suggest that the timing, frequency and dynamics of sounds may affect outcomes (28). The swaddling device plays a heartbeat sound that is pre-recorded during Kangaroo care, with the intention to mimic the live

![Figure 5](https://example.com/figure5.png)

Figure 5 Time series of the SDNN (A), RMSSD (B), pDec (C) and SDDec (D) during Kangaroo care sessions on intervention days. Normalised mean ± SEM values are shown for the pre-Kangaroo care period (1–60 minutes), the first and last 30 minutes of Kangaroo care (60–120 minutes) and the post-Kangaroo care period (120–180 minutes). RMSSD = Root mean square of successive differences in heartbeat intervals; SDNN = standard deviation of all normal-to-normal-intervals.
experience. Nevertheless, the simulated heartbeat generated by
an oscillating membrane differs substantially from the
actual sound of heartbeats and could be a limiting factor in
the experience provided to the infant (12). In agreement
with a previous study that investigated whether Kangaroo
care can be mechanically simulated, this study also suggests
that simulating the multisensory experience of Kangaroo
care is not easy (18). Whether these limitations in simulating
and augmenting Kangaroo care can be attributed to piece-
wise simulation of Kangaroo care, for instance just mechan-
ic or olfactory stimulation remains an open question.
Future work can focus on multisensory stimulation including
dynamically titrating the intensity of stimuli in response
to the infant’s physiological condition. However, until low-
cost, safe and reliable approaches for augmenting Kangaroo
care can be demonstrated, promoting and facilitating Kan-
garoo care appears to be the most effective approach to
improve autonomic regulation in preterm infants.

CONCLUSION
We investigated the use of an alternative swaddling device
that was designed to absorb parental scent and warmth
during Kangaroo care and to transfer these stimuli back into
the incubator so that they remain available to infants after
Kangaroo care. During the post-Kangaroo care period, a
pre-recorded heartbeat sound was also played back to the
infants. In this study, while Kangaroo care improved
regulation, both with and without using the swaddling
device, using the device itself showed no evidence of
improving regulation as measured by changes in vital signs
and heart rate variability.

ACKNOWLEDGEMENT
We thank all the participating parents and children and all
the NICU nurses for their essential cooperation. Special
thanks go to Sabine Ligtvoet for her exceptional dedication
and assistance.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

FINANCE
This study did not receive any specific funding.

References
2. Sekar KC. Iatrogenic complications in the neonatal intensive
3. Maroney DI. Recognizing the potential effect of stress and
   trauma on premature infants in the NICU: how are outcomes
4. Grunau RE, Holstí L, Peters JWB. Long-term consequences of
   pain in human neonates. Semin Fetal Neonatal Med 2006; 11:
   268–75.
5. van Ganzewinkel C, Derijks L, Anand KJS, van Lingen RA,
   Neef C, Kramer BW, et al. Multiple intravenous doses of
   paracetamol result in a predictable pharmacokinetic profile in
6. Pillai RR, Racine NM, Turcotte K, Uman LS, Horton RE, Din
   OL, et al. Non-pharmacological management of infant and
   young child procedural pain. Cochrane Database Syst Rev
   2011; (10): CD006275.
   biological maternal sounds improves cardiorespiratory
   regulation in extremely preterm infants. J Matern Fetal Neonatal
8. Rand K, Lahav A. Maternal sounds elicit lower heart rate in
   preterm newborns in the first month of life. Early Hum Dev
9. Panagiotidou J, Lahav A. Simulation of prenatal maternal
   sounds in NICU incubators: a pilot safety and feasibility study.
10. Webb AR, Heller HT, Benson CB, Lahav A. Mother’s voice
    and heartbeat sounds elicit auditory plasticity in the human
    brain before full gestation. Proc Natl Acad Sci 2015; 112:
    3152–7.
11. Cignacco E, Hamers JPH, Stoffel L, van Lingen RA, Gessler P,
    McDougall J, et al. The efficacy of non-pharmacological
    interventions in the management of procedural pain in preterm
    and term neonates. A systematic literature review. Eur J Pain
    Hugsy: a comforting solution for preterm neonates designed to
    enhance parent-child bonding. In 2017 IEEE/ACM
    International Conference on Connected Health: Applications,
    Systems and Engineering Technologies (CHASE). IEEE, 2017:
    177–84.
    R-peak detection for ambulatory fetal monitoring. Physiol
14. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM,
    Suri JS. Heart rate variability: a review. Med Biol Eng Comput
    2006; 44: 1031–51.
15. Task Force of the European Society of Cardiology. Heart rate
    variability - standards of measurement, physiological
16. Kommers DR, Joshi R, van Pul CV, Atallah L, Feijs L, Oei G,
    et al. Features of heart rate variability capture regulatory
    changes during kangaroo care in preterm infants. J Pediatr
17. Patural H, Pichot V, Jaziri F, Teyssier G, Gaspoz JM, Roche F,
    et al. Autonomic cardiac control of very preterm newborns: a
    Unlike Kangaroo care, mechanically simulated Kangaroo care
does not change heart rate variability in preterm neonates.
    Early Hum Dev 2018; 121: 27–32.
19. Welch MG, Firestein MR, Austin J, Hane AA, Stark RL, Hofer
    MA, et al. Family nurture intervention in the neonatal
    intensive care unit improves social-relatedness, attention, and
    neurodevelopment of preterm infants at 18 months in a
    randomized controlled trial. J Child Psychol Psychiatry 2015;
    11: 1202–11.
20. Mitchell A, Yates C. Effects of daily kangaroo care on
    cardiorespiratory parameters in preterm infants. J Neonatal
21. Ludington-Hoe SM, Anderson GC, Swinth JY, Thompson C,
    Hadeed AJ, Randomized controlled trial of kangaroo care:
    cardiorespiratory and thermal effects on healthy preterm