Improving BOLD sensitivity with real-time multi-echo echo-planar imaging - Towards a cleaner neurofeedback signal

Citation for published version (APA):

DOI:
10.5281/zenodo.2553256

Document status and date:
Published: 17/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at: openaccess@tue.nl
providing details and we will investigate your claim.
1. Real-time fMRI and neurofeedback quality

Real-time fMRI suffers from known issues related to T_2^*-weighted single-echo echo-planar imaging (EPI). These include image dropout in areas with increased local magnetic susceptibility gradients\(^2\), suboptimal whole-brain BOLD contrast due to average T_2^*-weighting\(^3\), and confounders like subject motion and physiology\(^4\). During fMRI neurofeedback a metric calculated from real-time brain activity is presented visually to the subject in the scanner\(^5\). To prevent sham feedback, new methods should focus on improving BOLD signal quality in real-time.

2. Multi-echo combination

Efforts to reduce noise have extended to multi-echo EPI (ME-EPI)\(^6\), which allows the estimation of brain-wide magnetic relaxation parameters (T_1, T_2, S_0) according to the standard decay equation\(^7\). Multiple echoes can be combined using various weighting schemes to increase BOLD sensitivity and decrease dropout\(^8\) (Fig. 2). This work investigates its use in real-time fMRI.

Figures 3 and 4 show brain slice montages of group-averaged tSNR and percentage difference in tSNR, respectively. These data were used to fit the probability density curves and box plots (termed raincloud plots\(^9\)) displayed in Figures 5 and 6.

3. Methods, Data and Code

We introduce a novel real-time multi-echo fMRI processing pipeline. To quantify scanner improvements, we investigate the influence of 3 real-time multi-echo combination schemes\(^10\) on resulting time series temporal signal-to-noise ratio (tSNR).

(i) pre-calculated tSNR-weighted combination;
(ii) pre-estimated T_2^*-weighted combination;
(iii) real-time estimated T_2^*-weighted combination.

Data - We used publicly available data from OpenNeuro\(^6\). A single resting state multi-echo fMRI run (scan time 10m06s) was collected for 31 subjects.

Preprocessing - Data were preprocessed to ensure anatomical/functional alignment. tSNR maps were calculated per echo time series and T_2^* maps were estimated from the temporal average of all echoes, using log-linear regression of the standard decay equation. These tSNR and T_2^* maps provided the weighting combination schemes (i) and (ii) above.

Real-time processing - Using the newly developed real-time ME-EPI processing pipeline all echoes were realigned, followed by per-time-point estimation of T_1, T_2 and S_0 maps and real-time combination using methods (i), (ii) and (iii).

All processing was done with MATLAB 2016b and SPM12. Code is available on GitHub for reproducibility purposes\(^6\).

6. References

*A available online: https://github.com/heunis/fmri

Please cite this work with: Heunis S., Lamersch A., Song G., Zinger S., Aldenkamp A., 2018. **Research partners and funding**

Affiliations

1 Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2 Kempenhaeghe, Haeze, The Netherlands
3 Philips Research Laboratories Eindhoven, Eindhoven, The Netherlands

Contact: Stephan Heunis, s.heunis@tue.nl, @fmriwhy