Microcapillary enabled direct conversion of methane to methanol

Citation for published version (APA):

Document status and date:
Published: 01/03/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Aug. 2019
Microcapillary enabled direct conversion of methane to methanol

A. Delparish, Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology
S. Kanungo, J. van der Schaaf, M.F.N D’Angelo, Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology

Methane valorization typically proceeds via the cost- and energy-intensive production of synthesis gas as an intermediate step. A low-temperature single-step approach for the conversion of methane into value-added chemicals such as methanol is therefore considered a “holy grail”. Methanol is a valuable commodity and a fuel itself. It is a versatile liquid intermediate which can be easily shipped and is readily converted to liquid hydrocarbons and olefinic building blocks for polymers and other chemicals [1].

The direct oxidation of methane to methanol using H\textsubscript{2}O\textsubscript{2} at low temperature over Au-Pd nanoparticles has been successfully demonstrated by Agarwal et al. [2]. However, the yields remain very low, and the current understanding of the reaction mechanism is limited. Additionally, in-situ generation of H\textsubscript{2}O\textsubscript{2} is industrially and environmentally more desirable than using pre-synthesized H\textsubscript{2}O\textsubscript{2} as the oxidant [3]. However, due to the explosive nature of H\textsubscript{2}, O\textsubscript{2} and CH\textsubscript{4} mixtures, the concept of coupling the direct synthesis of H\textsubscript{2}O\textsubscript{2} with the in-situ oxidation of methane to methanol has not received sufficient attention. This study aims to investigate this process using a catalytic microchannel reactor, which offers the opportunity to explore the process under a wide range of concentrations.

The catalytic microchannel, which showed an outstanding performance for the direct H\textsubscript{2}O\textsubscript{2} synthesis in our previous work [4], is obtained by embedding Au-Pd nanoparticles on the silica-coated walls of a microcapillary. The experiments are conducted under a broad range of H\textsubscript{2}:O\textsubscript{2}:CH\textsubscript{4} ratios at 20 bar and 42 °C. Direct conversion of methane to methanol with in-situ generated H\textsubscript{2}O\textsubscript{2} is successfully demonstrated. Partial pressures low in H\textsubscript{2} and O\textsubscript{2} and high in CH\textsubscript{4} leads to higher methanol yields. Deactivation on stream is also identified and can be overcome by regeneration in O\textsubscript{2} at mild conditions. Figure 1 represents the time-on-stream formation of methanol and H\textsubscript{2}O\textsubscript{2} in a microcapillary reactor of 1 m length at gas and liquid flow rates of 5 NmL min-1 and 0.1 mL min-1, respectively. The yellow areas in the figure represent regeneration with 5 NmL min-1 of O\textsubscript{2} at 20 bar and 42 °C. This study sheds light on the one-step oxidation of methane to methanol with in-situ generated H\textsubscript{2}O\textsubscript{2}, and can be conducive towards a better catalyst design for this conversion.

![Diagram](image-url)

Time-on-stream formation of methanol and hydrogen peroxide in an AuPd coated capillary micro reactor. Yellow areas represent regeneration conditions.

E-mail a.delparish@tue.nl