Cartilage regeneration in preannealed silk elastin-like co-recombinamers injectable hydrogel embedded with mature chondrocytes in an ex vivo culture platform

Citation for published version (APA):

DOI:
10.1021/acs.biomac.8b01211

Document status and date:
Published: 12/11/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Aug. 2019
Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform

Filippo Cipriani,†‡§ Melanie Krüger,† Israel Gonzalez de Torre,†§ Luis Quintanilla Sierra,§ Matilde Alonso Rodrigo,†§ Linda Kock,‡§ and José Carlos Rodríguez-Cabello†§

†Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, 47001 Valladolid, Spain
‡LifeTec Group B.V., 5611 ZS Eindhoven, The Netherlands
§Bior forge, University of Valladolid CIBER-BNN, Paseo de Belén 19, 47001 Valladolid, Spain

ABSTRACT: Tissue engineering for cartilage repair requires biomaterials that show rapid gelation and adequate mechanical properties. Although the use of hydrogel is the most promising biomaterial, it often lacks in rigidity and anchorage of cells when they are surrounded by synovial fluid while they are subjected to heavy loads. We developed and produced the Silk Elastin-Like co-Recombinamer (SELR), which contains both the physical interaction from elastin motifs and from silk motifs. In the first part of this work, we set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures in order to fulfill the required mechanical properties of hydrogels for cartilage repair. The new preannealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of several experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight into the material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes were evaluated. After 4 weeks of culturing in a standardized and representative ex vivo model, the biochemical and histological analysis revealed the production of glycosaminoglycans and collagen. Moreover, the immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline cartilage. Hence, we conclude that the pA(EIS)2-(I5R)6 hydrogel presents improved mechanical properties while conserving the injectability, which leads to successful regeneration of hyaline cartilage in an ex vivo model.

INTRODUCTION

Articular cartilage is central to the proper functioning of synovial joints. It covers the opposing articulating bones, and through its properties of high resiliency and deformability, it protects them from compressive joint loads. Moreover, it provides a smooth and gliding surface with a very low coefficient of friction. Many people suffer from cartilage degeneration due to genetic abnormalities, trauma, or osteoarthritis. One of the main issues in this regard is that articular cartilage possesses limited regeneration ability because of its avascular character and the fact that only one cell type (chondrocytes) is present.

Because of the absence of self-repair abilities, various surgical interventions and biomaterials have been explored to facilitate regeneration of cells and cartilaginous matrix. The physical properties of the extra cellular matrix (ECM) often refer to its rigidity, porosity, insolubility, topography, and other characteristics that are essential for its scaffolding role in supporting tissue structure and integrity, and for its role in migration and anchorage of the cells. Moreover, another important parameter to take into account is the permeability of cartilage; it contributes to several tissue functions like the transport of nutrients to chondrocytes, the ability to carry heavy loads, and the maintenance of a lubricating fluid film between opposing articular surfaces. Permeability is a measure of the ability of fluid to flow through a porous-permeable material, such as an ECM, and is inversely proportional to the friction drag exerted by the fluid. The low permeability of articular cartilage prevents fluid from being quickly squeezed out of the matrix.

The purpose of surgery is the regeneration of the chondral defects to ultrastructural and biomechanical competent hyaline cartilage. From a scientific point of view, the clinical treatments are limited in their ability to functionally regenerate cartilage defects, as they often result in the formation of fibrotic tissue, which consists mainly of collagen type I and is therefore mechanically inferior to native cartilage.

Biomaterials with an elastic modulus in the range of 1–10 kPa are of widespread interest, as many native tissues also have...
The hydrogels developed to repair joint cartilage are more effective when their stress relaxation behavior matches with the native tissue because such behavior affects load transfer and nutrient transport. Up to 80% of articular cartilage wet weight consists of water. To replicate this environment, hydrogels have become a popular option for cartilage regeneration in situ and cartilage engineering in vitro. The purpose of these types of scaffolds is not only to provide support for cell attachment and spreading but also to have mechanical stability at the defect site; although, it is important to take into account that the aim of these scaffolds is not to substitute for the tissue but to improve cartilage regeneration in order to obtain a mature tissue.

Natural polymers such as collagen and hyaluronic acid have some limitations: for instance, the insufficient mechanical integrity and the short lifetime in inflamed defects due to degradation by matrix metalloproteinases. From a biological point of view, the major drawback of synthetic polymer hydrogels such as polyglycolic acid (PGA) and polylactide acid (PLA) is that they do not provide specific biological functions. Moreover, synthetic polymer hydrogels do not fully recapitulate the chemical and biological features of ECM, considering that they generally regenerated fibrocartilage instead of hyaline cartilage.

Over the last few decades, recombinant DNA techniques have proven to be very powerful tools for the development of novel protein-based biomaterials that are able to self-assemble into different structures, such as hydrogels. These biomaterials include elastin-like recombinamers (ELRs), which are protein-based polypeptides that comprise repetitive units of the Val-Pro-Gly-X-Gly (VPGXG)_n pentapeptide, in which X (guest residue) could be any amino acid except l-proline. Moreover, they show thermoresponsiveness due to the change of the protein conformation above the so-called transition temperature (T_g), which itself depends on the amino acid composition of the polymer. Therefore, taking into account two ELRs with the same amino acid composition except for the guest amino acid, the T_g can be tuned depending on the polarity of the side chain for the guest residue in the X position of the pentapeptide. Furthermore, ELRs can be designed so the phase transition occurring above the T_g is translated into a hydrophobically driven self-assembly of the molecules toward supramolecular hydrogels.

In this work, we have used previously described amphiphilic Silk-Elastin-Like co-Recombinamers (SELR) including two types of elastin-like domains, one hydrophilic and the other one hydrophobic. SELR also contains the amino acid sequences derived from other structural proteins like the GAGAGS hexapeptide (G: Glycine, A: Alanine, S: Serine) found in Bombyx mori silk fibroin, hence giving rise to SELR. Furthermore, the final sequence also contains the well-known RGD cell-adhesion sequence, which promotes specific cell attachment via integrins that provide a cell-friendly environment. This recombinamer contains a dual physical interaction that triggers gel formation, in order to obtain a rapid and stable gel that can be delivered into the area of interest via a simple injection. The elastin motifs have been reported to form elastomeric hydrogels, in which the hydrophilic blocks provide conformational elastic properties, and the hydrophobic blocks form cross-links by hydrophobic aggregation. The silk motifs have been reported to be responsible for the supramolecular rearrangement into β-sheets, which increases the moduli of the hydrogels. However, the rearrangement of silk motifs into β-sheets with the consequent formation of a fibrillar structure takes time; the long time needed represents a drawback in terms of surgical application for the cartilage environment, which is surrounded by synovial fluid.

Furthermore, recent works have demonstrated that physical and structural features of the ECM, such as fibrils, are essential for its scaffolding role in supporting tissue structure and integrity. The nanoﬁber environment plays an essential role in the migration and anchorage of the cells. Considering that one difﬁculty in nanoﬁber technology has been the placement of cells within a nanofibrillar structure, the purpose of this work is to design a system based on supramolecular self-assembly to form nanofibrillar matrices in situ, around the cells, without cellular damage.

This study focuses on the correlation between the elastin motifs and silk motifs, in order to understand how to improve the gelation properties of the hydrogel to obtain a system capable of forming an ECM fibrillar structure directly after injection. We set up and optimized a thermal treatment (preannealing treatment), which accelerates the β-sheet formation without losing the injectability of the material. The new pA(EIS)_{12}-(I5R)_{6} were characterized either with molecular analysis (circular dichroism and transmission electron microscopy) or with rheological characterization, in order to investigate the impact of the preannealing treatment on the arrangement of the silk motifs into β-sheet conformation. Moreover, the morphology of the hydrogel was checked using scanning electron microscopy in order to verify the interconnected structure and an adequate porosity and permeability.

The incorporation of cells into biomaterial scaffolds include multiple aspects in cartilage repair; thus, considering that cells are the driving force of cartilage formation, they can significantly help orchestrate regeneration and overcome some of the limitations of using cells or biomaterials alone. The use of mature chondrocytes is based on the premise that native mature cells are best suited to guide regeneration. Moreover, the remarkable property of ELRs permits a homogeneous embedding of cells in the ELR solution at a temperature below T_g while molecules can self-assemble into hydrogels above the T_g thus allowing the use of the cell-scaffold system in injectable therapies perfectly suitable to the shape of the injured area. Therefore, although other ELR-based hydrogels have shown a minimal inflammatory response, confirming its high and extraordinary biocompatibility, we performed an in vitro study evaluating the metabolic activity of the chondrocytes embedded in the 3D hydrogel. The potential properties of pA(EIS)_{12}-(I5R)_{6} hydrogel in cartilage repair were evaluated in an ex vivo osteochondral culture platform. The use of bioreactors has some advantages: first, bioreactors are devices in which biological or biochemical processes develop under a closely monitored and tightly controlled environment. Second, it must be taken into account that cartilage defect models in rodents and mature rabbits show spontaneous self-repair. In addition, there are some other disadvantages using an animal model: the limited control over physiological parameters, and the limited possibilities for monitoring and controlling the healing progress from a biological and biomechanical point of view, as well as the high costs of animal care and ethical issues.
Figure 1. Graphical scheme of the composition of (EIS)$_2$-(I$_5$R)$_6$.

MATERIALS AND METHODS

(EIS)$_2$-(I$_5$R)$_6$ Design. **Amino Acid Sequence.** MESLLP- {[(VPGVG)$_2$]-VPGEQ-(VPVG)$_2$}$_{10}$-[V(GAG-AKS)$_2$]-[(VPGG)$_2$]-AVTRGDSPFV$_{36}$. The composition of this (EIS)$_2$-(I$_5$R)$_6$ is based on previously synthesized block corecombinamers, which have silk-like motifs (SELR).26,41 The original block copolymer was designed to comprise a hydrophobic block (containing isoleucine as the guest residue) with a low T_c and a hydrophilic block (containing glutamic acid with a carboxylic group) with a high T_c. The final composition was further functionalized to include RGD cell-adhesion sequences (Figure 1).

Initial SELRs were kindly provided by Technical Proteins Nanobiotechnology.

ELR Biosynthesis and Purification. The cloning and molecular biology for gene construction of (EIS)$_2$-(I$_5$R)$_6$ was performed using standard genetic-engineering methods. Production was carried out using recombinant techniques with *Escherichia coli* as the cell system, as described previously.$^{32-34}$ Purification was performed using several cooling and heating purification cycles (Inverse Transition Cycling) following centrifugation.

Pre-Annealing Treatment. The lyophilized recombinamer was dissolved in ultrapure water at a concentration of 50 mg/mL, and incubated at 37 °C for different time points: 12, 24, 36, and 48 h. The 50 mg/mL concentration for the preannealing treatment was selected considering the inability to form a gel even when using a long incubation time (up to 48 h). Afterward, the solution was frozen and the polymer lyophilized again to finally obtain the preannealed SELRs: pA(EIS)$_2$-(I$_5$R)$_6$. The purity and molecular weight of the ELRs were verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy using a Voyager STR apparatus from Applied Biosystems. Amino acid composition analysis was also performed. Additional characterization of ELRs was accomplished using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) techniques.46 (Supporting Information Figures S1–S5).

Circular Dichroism (CD). Circular dichroism is an excellent method for rapidly evaluating the secondary structure and folding of proteins.47 It is known that the ELR conformational state is temperature-dependent as a consequence of the ITT (inverse temperature transition) behavior experienced by this class of molecules.33 For performing CD experiments, recombinamers (EIS)$_2$-(I$_5$R)$_6$ and pA(EIS)$_2$-(I$_5$R)$_6$ were dissolved at a concentration of 1 mg/mL and were kept overnight at 4 °C. Just before performing each measurement, a 1:10 dilution was made. The CD spectrum was acquired using a Jasco J-815 150-S spectrometer (Servicios Centrales de Investigación, University of Almeria). A quartz cuvette with a path length of 0.1 cm was used. The scans were obtained over the wavelength range of 190–260 nm at the experimental temperatures of 4, 37, and 60 °C by acquiring points every 0.5 nm using a scan speed of 50 nm/min. Before each measurement, samples were equilibrated for 15 min. Spectra were corrected by subtraction of the corresponding blank solvent readings. The data was expressed as molar ellipticity ($[\theta]$), which was calculated as follows:

$$[\theta] = \frac{\theta}{d \times M \times 10}$$

where θ is the ellipticity, d is the path length (cm), and M is the concentration (mol/L).

Transmission Electron Microscopy (TEM). Nanostructure formation was checked by TEM. Solutions of (EIS)$_2$-(I$_5$R)$_6$ and pA(EIS)$_2$-(I$_5$R)$_6$ were prepared by dissolving pure, lyophilized products in Milli-Q water to a concentration of 25 μM. These solutions were kept at 4 °C overnight to allow complete dissolution of the proteins. The samples were incubated at 37 °C for 15 min and analyzed directly. TEM measurements were performed using a FEI Quanta 200 FEG with no prior coating procedures. Pictures were collected by SEM at Landing E of 7.00 keV and Pressure of 0.7 Torr; afterward they were analyzed with ImageJ software.

Chondrocyte Isolation. Pig chondrocytes were isolated from knee joints of Dutch Land Raise Hybrid pigs, male or female, 5–7 months old.
months of age, 100–110 kg live weight. Small cartilage pieces were removed from the cartilage of the knee joints and were digested in a solution of 0.5% (v/v) collagenase (Prep0Tech) in high-glucose DMEM (supplemented with 10% (v/v), fetal bovine serum (FBS; HyClone, South America) Research grade, GE Healthcare, Eindhoven, NL), 1% (v/v) penicillin/streptomycin (Lonza, Westburg, Leusden, NL), 1% (v/v) amphotericin B (Life Technologies, Bleiswijk, NL). Digestion in 8 mL collagenase solution per gram of cartilage was executed for 16 h on a roller bank in the incubator. Subsequently, the cells were washed and filtered three times and stored in a cartilage medium until further use. The cartilage medium consisted of high-glucose DMEM medium supplemented with 1% (v/v) penicillin/streptomycin, 1% (v/v) amphotericin B, 1 mM sodium pyruvate (Life Technologies, Bleiswijk, NL), 40 μg/mL 1-proline (Sigma-Aldrich, Zwijndrecht, NL), 50 μg/mL L-ascorbic acid 2-phosphate (Sigma-Aldrich, Zwijndrecht, NL), 1% (v/v) ITS+ Premix (Corning, Fisher Scientific, Landsmeer, NL), and 100 nM dexamethasone (Sigma-Aldrich, Zwijndrecht, NL).

Hydrogel Formation and Embedding with Chondrocytes. Freeze-dried pA(EIS)$_2$-(I5R)$_6$ was dissolved in plain DMEM (Dulbecco’s modified Eagle medium; Life Technologies, Bleiswijk, NL) for 16 h at 4°C for 120 mg/mL. Afterward, the solution was placed at 37°C for 15 min, and the gel was formed. For the hydrogel embedded with chondrocytes (20 million cells/ml), the cells were mixed with the solution of pA(EIS)$_2$-(I5R)$_6$ dissolved in plain DMEM at 4°C. The mixture was placed at 37°C for 15 min, and the cell embedding gel was formed.

Cell Viability Assay. The viability of isolated chondrocytes embedded in pA(EIS)$_2$-(I5R)$_6$ hydrogels at 120 mg/mL was assessed by measuring the metabolic activity with PrestoBlue assay (A-13261, Invitrogen). Chondrocytes were isolated and mixed into the hydrogel according to the protocol described above. Of each hydrogel condition, 100 μL were pipetted into a 24-well Transwell tissue culture plate (Costar, Kennebunk, U.S.A) in quadruplicate and topped with 2 mL of cartilage medium. Culture time was 4 weeks at 37°C and 5% CO2. After letting the cells adapt overnight, metabolic activity measurements were conducted on days 0, 14, and 28. For this purpose, 2 mL of a solution of cartilage medium containing 10% PrestoBlue Viability Reagent (Life Technologies, Eugene, U.S.A) replaced the culture medium and was incubated in darkness for 2 h. Afterward, 100 μL of medium from within the Transwell insert, directly above the gel, was pipetted into a black 96-well plate in triplicate, and fluorescence was read out at an excitation wavelength of 560 nm and an emission wavelength of 590 nm with a plate reader (Bionova Científica, Molecular Devices).

In Vitro Study. In order to evaluate the performance of the pA(EIS)$_2$-(I5R)$_6$ hydrogel embedded with chondrocytes, a 4-week in vitro study was conducted. First, silicone cylinders were produced with an inner diameter of 4 mm and a height of 2 mm, in correspondence to the simulated cartilage defect in the ex vivo study. After autoclaving, these silicone cylinders were attached to the bottom of a 24-well plate. Next, 150 μL of the preannealed (EIS)$_2$-(I5R)$_6$, hydrogel embedded with chondrocytes (20 million chondrocytes/ml), and the pA(EIS)$_2$-(I5R)$_6$, hydrogel itself (as a control) were pipetted into the cylinders. After a gelation period of 15 min in the incubator at 37°C, the cartilage compartment was topped with 3 mL of cartilage medium. The bone compartment was filled with 3 mL of bone medium consisting of high-glucose DMEM medium supplemented with 10% (v/v) FBS, 1% (v/v) penicillin/streptomycin, 1% (v/v) amphotericin B, 50 μg/mL L-ascorbic acid 2-phosphate, 10 nM β-glycerophosphate (Sigma-Aldrich, Zwijndrecht, NL), and 100 nM dexamethasone. The medium was changed every 3–4 days, and explants were cultured for 28 days at 37°C and 5% CO2.

Biochemical Analysis. DNA Quantification. The hydrogel samples were carefully and fully removed from the silicone cylinders (for the in vitro study), and from the osteochondral defect (for the ex vivo study) after the respective culturing period. They were then digested by a homogenizer (T 10 basic Ultra-Turrax IKA) until the gel was completely disrupted. The DNA content was determined by Pico Green assay. Briefly, Pico Green analysis for DNA content was performed in 96-well plates with standard fluorescein wavelengths (excitation: 480 nm and emission: 520 nm) according to the manufacturer’s instructions (Invitrogen) using an automated plate reader (Bionova Científica, Molecular Devices).

GAG Quantification. GAG content was determined with a modified DMMB (dimethylmethylene blue) assay according to Farnsdale et al.35 After the respective culturing period, the gels were

Figure 2. Ex vivo osteochondral culture platform mounting scheme.

(A) Creation of the full cartilage defects of 4 mm diameter with a biopsy punch. (B) Filling of the defects with 30 μL of pA(EIS)$_2$-(I5R)$_6$, hydrogel loaded with 600 000 chondrocytes and 30 μL of pA(EIS)$_2$-(I5R)$_6$, hydrogel itself (control). (C) Mounting of the expant in the inset with the exact interface between the bone and the cartilage.
removed, digested, and centrifuged in the same manner as for the DNA analysis. In brief, 40 μL of centrifuged samples were pipetted into 96-well plates; the same volume was pipetted for standards, which are a shark cartilage chondroitin sulfate reference (Sigma, Zwijndrecht, NL). Afterward, 150 μL of DMNB solution (containing 1-9-dimethylmethylene blue (Sigma-Aldrich, Zwijndrecht, NL)) was added in each well. Immediately afterward, absorbance was measured at 540 and 595 nm; was measured with a plate reader (CLARIOstar microplate reader, BMG LABTECH GmbH, Ortenberg, D), and the GAG concentrations were calculated.

Histological Analysis. For the histological analysis, all the samples were fixed in 4% formaldehyde in PBS 0.05 M (pH 7.3) at 4°C for about 18 h. Afterward, the samples were dehydrated and infiltrated by paraffin following the automatic procedure performed by the MICROM Tissue Processor. The resulting blocks were cut using a rotary microtome (Leica RM 2125 RTS, Leica Biosystems, Germany) into slices with a thickness of 4 μm. For general histo-morphological evaluation, the sections were stained with hematoxylin and eosin (H/E) according to standard protocols. In order to evaluate the collagen and glycosaminoglycan content produced by chondrocytes, the sections were stained with Picro-Sirius Red Stain and Safranin-O/Fast Green, respectively, according to common methods. Immunohistochemistry for collagen type I and II was performed on 4 μm sections following the manufacturer’s instructions and well-established protocols. The samples were immunostained with primary antibody mouse monoclonal anticallogen type I (dilution 1:100, Sigma), and with primary antibody mouse monoclonal anticallogen type II (dilution 1:00, Merck), then incubated with the secondary antibody Goat anti Mouse IgG conjugated with HRP (dilution 1:100, abcam). Immunostaining was developed using DAB (Thermo Scientific) followed by hematoxylin counterstaining (Sigma, St. Louis, MO).

Statistical Analysis. Values are expressed as mean ± standard deviation (SD). The data was examined with a one-way analysis of variance (ANOVA) followed by Tukey’s Honestly Significant Difference (HSD) post hoc test. If only two groups were being compared, an unpaired t-test was used instead of ANOVA to assess the statistical difference. All statistical analyses were performed with GraphPad Prism. A P-value lower than 0.05 was considered statistically significant.

Results

Circular Dichroism. Circular dichroism (CD) was performed in order to investigate the impact of the preannealing treatment on the (EIS)2-(I5R)6 on the consequent arrangement of the silk motifs into β-sheets. The silk motifs represented around 16% of the complete sequence of the (EIS)2-(I5R)6. The conformational state of ELRs is temperature-dependent as a consequence of the Tc behavior experienced by this class of molecules; thus, the CD spectra were recorded at different temperatures (4, 37, and 60°C) in order to verify if such temperature dependence remained operational for pA(EIS)2-(I5R)6 with 12, 24, 36, and 48 h of preannealing time. A sample of (EIS)2-(I5R)6 without preannealing was used as a control sample.

At 4°C (Figure 3A), an intensely negative band at 197 nm is displayed for all the curves, which indicates a predominant disordered structure; however, it is possible to see clearly the differences along the curves. The signal of the (EIS)2-(I5R)6(control) reaches lower values compared with the pA(EIS)2-(I5R)6 values with different preannealing times. At this temperature, in the band at 197 nm, a trend is appreciable (corresponding to the preannealing samples) between the 4 curves regarding the different preannealing times. The 12 h curve values are lower than the 24, 36, and 48 h; moreover, the 24 and 36 h curves show the same behavior, whereas the 48 h curve values are higher, showing a more ordered structure. Such a reduced negative band at 197 nm suggests the presence of a mixture of β-turns and β-sheet structures, and agrees with the contribution of elastin and silk moieties to the final conformation. A shoulder is also present at 4°C at 210 nm for all the curves where the signal of the control reaches lower values compared with the pA(EIS)2-(I5R)6 values with a different preannealing time; all the curves maintain the same trend seen at 197 nm.

At 37°C (Figure 3B), the CD spectra for all the curves clearly displays a less negative signal at 197 nm compared with...
4 °C. Yet, at 37 °C, a clear difference is still present between the control curve and the pA(EIS)2-(I5R)6 curves with different preannealing times. Furthermore, almost no difference is appreciable between the preannealed curves, apart from the 12 h curve which shows lower values compared to the 24, 36, and 48 h curves. Moreover, for all the curves, the magnitude of the signal at 210 nm increased, and such trend is also maintained when increasing the temperature to higher values (60 °C) (Figure 3C), which suggests the induction of a type II β-turn conformation with an increase in temperature, as it has previously been observed for EL macromolecules.47,49

Finally, also at 60 °C, the 197 nm values recorded for the control curve are lower compared to the pA(EIS)2-(I5R)6 curves with different preannealing times, which all show similar values.

Transmission Electron Microscopy (TEM). Transmission electron microscopy (TEM) was used to visualize the supramolecular structures comparing (EIS)2-(I5R)6 and pA-(EIS)2-(I5R)6 with 12, 24, 36, and 48 h of preannealing time. The TEM image for the (EIS)2-(I5R)6 indicated the ability of this SELR to form spherical nanoparticles (Figure 4A). The TEM images for pA(EIS)2-(I5R)6 with 12, 24, 36, and 48 h of preannealing time revealed the emergence of additional and different fibrillary structures (Figure 4B–E). Moreover, a difference is appreciable in the density of the network of fibers between the 12 h treatment (Figure 4B) and the group of 24, 36, and 48 h (Figure 4C,E), where a more dense network of fibers is evident for this group. Thus, the preannealing treatment enhanced the ability of the recombinamer to form a fibrillary structure.

Visualization of the Sol–Gel Behavior. The pure recombinamers pA(EIS)2-(I5R)6 at each preannealing time (12, 24, 36, 48 h) were dissolved in PBS at 4 °C for 16 h at a concentration of 100, 120, 150, and 180 mg/mL. Afterward the solutions were placed in an oven at 37 °C for 15 min. For all the preannealed (EIS)2-(I5R)6 at different annealing times, the lowest concentration possible to form a hydrogel within 15 min was 120 mg/mL (Figure 5). Moreover, the solution of the (EIS)2-(I5R)6 (without preannealing) subjected to the same procedure showed the incapacity to form a stable hydrogel. As it was already demonstrated by Fonseca et al., where the minimum concentration to form a gel was 145 mg/mL.57 In order to verify the stability of the hydrogel, identical parameters to our application were selected (see Hydrogel Formation and Embedding with Chondrocytes in Materials and Methods). The hydrogel at 120 mg/mL was placed in an excess of water and showed the ability to remain stable after 1 week at 37 °C (Figure 5E,F).

Characterization of the Sol–Gel Behavior. In order to understand the driving force of the gelation of the pA(EIS)2-(I5R)6, a rheology study was performed. First of all, an in situ
gelation experiment was carried out for a solution of 120 mg/mL. The solutions dissolved in PBS at 4 °C for 16 h were placed in the rheometer plate at 37 °C, where a time sweep experiment was carried out for 30 min (Figure 6A). The complex modulus increased with time in agreement with the study performed by Colino et al.26 As can be seen, a clear difference is present between the (EIS)2-(I5R)6 curve (control) and the pA(EIS)2-(I5R)6 curves with different preannealing times. Along the preannealing conditions, no noticeable differences were observed in the complex modulus for the preannealing times of 24, 36, and 48 h at the end of the measuring time (around 1 kPa). Yet, a final complex modulus around 200 Pa was found for a preannealing time of 12 h.

Therefore, the preannealing time of 24 h was selected, and several concentrations were considered (100, 120, 150, and 180 mg/mL) (Figure 6B). A clear difference was observed between the concentration of 100 mg/mL and the rest of the concentrations, in agreement with the sol–gel behavior qualitatively observed in Figure 5.

Finally, the effect of the preannealing time for different concentrations can be found in Figure 6B, where the concentration of 100 mg/mL was preannealed for 48 h. It could be expected to find similar modulus for samples preannealed for 48 h at a concentration of 100 mg/mL and for samples preannealed for 24 h at a concentration of 120 mg/mL, considering that the lower concentration could be compensated by longer times of preannealing. Instead, as can be seen, the curves of 100 mg/mL for 24 and 48 h in Figure 6B are similar, and a lower complex modulus was obtained with respect to the concentration of 120 mg/mL preannealed for 48 h.

Therefore, the concentration of 120 mg/mL preannealed for 24 h presents a threshold for gelation, and these conditions were selected as the most suitable candidate for an injectable hydrogel for cartilage repair.

Viscosity Measurements of the Solutions. Rheological flow measurements were carried out in order to find the evolution of the viscosity of the preannealed (EIS)2-(I5R)6 dissolutions with the shear rate. Since viscosity is the resistance of a fluid to flow upon the application of stress, the viscosity value and its dependence on shear rate provide some insight about the interactions between the micro/nanostructures in our dissolution. These measurements provide some insight into the injectability of the solutions of 120 mg/mL for different preannealing times. To guarantee injectability, the solution should be of sufficiently low viscosity to allow the use of a small-gauge needle.51

In Figure 7, the dependence of the viscosity on the shear rate has been plotted in a lin-log scale for the control sample (without annealing), and for four preannealed samples at several annealing times (12, 24, 36, and 48 h). As can be seen, when the shear rate is higher than 200–300 s⁻¹, all the curves overlap on a viscosity value around 70–80 mPa s. Yet, a significantly different evolution of the viscosity is observed in the shear rate range of 0.1–50 s⁻¹. Whereas no evolution of the viscosity with the shear rate is observed for the control sample (Newtonian fluid), the annealed samples show a decrease of the viscosity (shear thinning) with an evident linear dependence of the viscosity in the lin-log scale. Specifically, two slopes are detected in the experimental data.

On the contrary, as can be seen in Figure S6 in Supporting Information (SI) obtained for an identical recombinant lacking the silk motifs, no dependence of the viscosity with the shear rate for any annealing time was detected.

A noticeable difference was observed in the viscosity of samples for 24, 36, and 48 h with respect to the sample for 12 h (Figure 7). The viscosity for the sample at 48 h was slightly higher than that of the samples at 24 and 36 h. This trend for pA(EIS)2-(I5R)6 with different annealing time corroborates the behavior recorded with CD for at 4 °C (Figure 3A).

Thus, from the viewpoint of injectability, the preannealing time of 24 h seems to be the most appropriate, considering the sufficient maturation of the β-sheet structures and an adequate viscosity to make the injection process easier.

Rheological Characterization of the Hydrogels. Immediately after the 30 min of the in situ hydrogel gelation
was finished, oscillatory rheological measurements were done, with special attention paid to the concentration of 120 mg/mL preannealed for 24 h. First, a sweep in the amplitude of the test signal was carried out in a strain sweep test, which provided the linear range where the rheological characterization should take place. According to Figure S7 (SI), a wide linear range was obtained. As a trade-off between linearity and noise, a strain of 1% was chosen for every subsequent rheological measurement. Moreover, this figure also includes the results for the concentrations of 100, 150, and 180 mg/mL, showing a clear trend: the higher the concentration, the higher the complex modulus.

Dynamic frequency sweep measurements were performed in the frequency range of 0.1 and 50 Hz. The evolution of the storage modulus (G') and the loss modulus (G'') as a function of the frequency are represented in Figure 8A. Whereas a dependence of G' on frequency is observed, no significant dependence for G'' is found up to 10 Hz. It should be pointed out that the value of G' is significantly higher than G'', which is calculated by the loss factor $\tan \delta \equiv G''/G'$ (data not shown). Specifically, δ is around 12–13° for the frequency of 1 Hz, indicating a viscoelastic hydrogel behavior.

In order to obtain some information about the physical mechanisms that determine the frequency dependence of $|G^*|$, the dependence of $|G^*|$ on $f^{1/2}$ for the hydrogel of 120 mg/mL is drawn in Figure 8B. A linear dependence based on two different slopes was found in the frequency range considered.

Scanning Electron Microscopy. pA(EIS)$_2$-(I$_5$R)$_6$ hydrogel at 120 mg/mL shows a pore size of 10.23 ± 2.87 μm and wall thickness of 0.71 ± 0.12 μm (Figure 9). pA(EIS)$_2$-(I$_5$R)$_6$ hydrogels at 150 and 175 mg/mL, respectively, a pore size of 6.97 ± 2.30 μm and 5.22 ± 1.87 μm; and wall thickness of 1.85 ± 1.40 μm and 2.85 ± 1.11 μm (SI Figure S8). The pA(EIS)$_2$-(I$_5$R)$_6$ hydrogels at all of the concentrations showed a 3D porous environment with an interconnected structure.

Cell Viability Assay. The chondrocytes (20 million cells/ml) were mixed with the hydrogel as described in Material and Methods. The mixture was further stained with DAPI (nuclear counterstain) according to the standard protocol. As shown in Figure S9 (SI), the cells were uniformly distributed. A metabolic activity assay was performed for the in vitro study at time 0, 2, and 4 weeks of culture. The cell viability analysis revealed an increase of metabolic activity, especially within the first 2 weeks, most likely due to the increase in number of cells; moreover, the viability of the cells remained high throughout the 4 weeks of culture, proving a suitable concentration of pA(EIS)$_2$-(I$_5$R)$_6$ hydrogel (Figure 10).

Biochemical Analysis. In order to quantify the GAG and the DNA content of the hydrogel embedded with chondrocytes for the in vitro and ex vivo study at day 0 and 28, a biochemical analysis was performed. In both studies, an increase in DNA content was recorded with more significance in the ex vivo study (Figure 11). Moreover, at day 28, the DNA...
content of the \textit{ex vivo} study was higher compared to the \textit{in vitro} study with a significant difference ($P < 0.001$).

The GAG content at day 0 has revealed the complete absence of polysaccharides, whereas at day 28, we recorded a large presence of glycosaminoglycan in both studies (Figure 11). Comparing the GAG content at day 28, the content was significantly higher in the \textit{ex vivo} study than the content in the \textit{in vitro} study ($P < 0.005$) (Figure 11). Biochemical analysis of the hydrogel itself was performed for the \textit{in vitro} and \textit{ex vivo} study at days 0 and 28. As represented in Figure S10 (SI), in both studies the values remained approximately zero, meaning the absence of contribution in GAG and DNA content from the surrounding tissue (in the case of \textit{ex vivo} study).

Histological Analysis. Histological analyses were performed for the hydrogels embedded with chondrocytes at day 28 for the \textit{in vitro} (Figure 12) and \textit{ex vivo} study (Figure 13).

For general histomorphological evaluation, the sections were stained with H/E; moreover, in order to evaluate the general collagen and GAG content produced by chondrocytes, the sections of hydrogels were stained with Picro-Sirius Red Stain and Safranin-O/Fast Green, respectively. For both studies, the H/E staining revealed a very homogeneous distribution of chondrocytes embedded in the hydrogel. The Picro-Sirius Red Stain and Safranin-O/Fast Green demonstrated how the cells started to produce and secrete collagen and GAG and thus began forming their own ECM (see Figure 12B,C for the \textit{in vitro} study and in Figure 13B,C for the \textit{ex vivo} study).

Ex Vivo Study. Immunohistochemistry (IHC). The sections of the samples from \textit{in vitro} study and \textit{ex vivo} study at day 28 were immunostained with primary antibody anticollagen type I and anticollagen type II, in order identify the types of collagen stained by the general Picro-Sirius.
immunohistochemistry revealed the absence of collagen type I produced by chondrocytes in both studies (Figure 14B). The positive control for collagen type I was obtained embedding the hydrogel with HFF1 (Human foreskin fibroblasts 1). It is well-known that HFF1 are responsible for the production of collagen type I, which is a sign of fibro-cartilage formation.52 Diversely, in both studies, the IHC showed a clear signal for the antibody against collagen type II (hyaline cartilage), which is a sign of adequate cartilage regeneration (Figure 14A).

■ DISCUSSION

Tissue engineering for cartilage repair lacks biomaterials that have adequate mechanical properties capable of rapidly forming a gel that can be delivered into the area of interest via sample injection. Considering the unique properties of ELRs and silk, we have focused our attention on SELR obtained by recombinant techniques. The composition of this SELR is based on synthesized block corecombinamers, which have silk motifs, elastin motifs, and bioactive sequence (RGD). This SELR sequence contains the optimal content of silk motifs for adequate thermosensitive properties and for the expression in bacteria.28 Moreover, a repetition of six RGD sequences was included in order to have a good cellular adhesion response.53 The elastin motifs were designed to comprise a hydrophobic and hydrophilic block. The copolymer structures have been reported to form elastomeric hydrogels, in which the hydrophilic blocks provide conformational elastic properties and the hydrophobic blocks form cross-links by hydrophobic aggregation.30,31 Thus, SELR hydrogels are formed by the physical interactions from elastin motifs and silk motifs. In the first part of this study, we set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures, in order to fulfill the required mechanical properties of hydrogels for cartilage repair. We finally obtained the proposed pA(EIS)$_2$-(I$_5$R)$_6$. Afterward, we have carried out the characterization of our material with the combination of several experimental techniques (CD, TEM, SEM, and rheology), providing a deeper insight into the material features.

The CD spectra recorded at all temperatures indicates a predominantly disordered structure, where a proportional trend toward a more ordered structure can be appreciated for increasing preannealing times. This trend is based on the increase of the magnitude of the signal at 210 nm and at 197 nm, associated with the presence of β-turns and β-sheet structures, respectively. Thus, CD has shown that the
preannealing treatment speeds up the arrangement of silk motifs into β-sheet conformation.

It has already been investigated that a closely related ELR containing silk motifs is able to self-assemble into nanofibers through an evolution which is not immediate. The nanostructure formation of the pA(EIS)2-(I5R)6 checked by TEM (Figure 4), shows how these gels are able to form a dense network of fibers immediately after injection. This is due to the phenomenon of thermal memory, by which the supramolecular rearrangement of the silk motifs into β-sheets has been enhanced by the preannealing treatment (and conserved by the freeze-drying step). The density of the network of fibers for the 12 h preannealing time appears lower than for the group of 24, 36, and 48 h.

The TEM results corroborate the CD analysis, where a similar trend has been observed.

The visualization of sol–gel behavior (Figure 5) has shown that the rearrangement of silk motifs into β-sheet conformation has a direct influence on the gelation process, allowing the gel formation at a lower concentration. Thereby, the gelation process for all the pA(EIS)2-(I5R)6 processes was investigated by rheological characterization.

At the end of the measuring time (30 min), the corresponding complex modulus are 100 mg/mL: 512 Pa; 120 mg/mL: 1537 Pa; 150 mg/mL: 2040 Pa; 180 mg/mL: 3190 Pa (Figure 6B). This modulus increase with the concentration is possibly attributed to the increase of the hydrophobic interactions between the elastin motifs.

When the concentration is fixed (120 mg/mL), the dependence of moduli with the preannealing time shows a similar trend has been observed.

The higher concentration of pA(EIS)2-(I5R)6 in the hydrogel, the more difficult it is to dissolve the material but also to mix in cells, while still achieving a homogeneous cell distribution, because of the high viscosity. It can also be expected that more gel is lost during handling by attachment to syringes or pipet tips. Thus, solution viscosity is a significant parameter during the injection process.

The preannealing treatment affects the viscosity. It has been previously reported that the annealing time impacts the formation and maturation of the β-sheets existing in silk-based ELRs. Thus, this increased viscosity may be related to the different β-sheet structures induced by the annealing process. The dependence of viscosity on the shear rate (Figure 7) suggests modeling according to the equation

\[\eta(\text{sh-rate}) = \eta_{\infty} + \sum_{i=1}^{2} G_i \exp^{-\tau_i(\text{sh-rate})} \]

based on a series of two decreasing exponential functions (Maxwell dependence), where \(\tau_i \) are the relaxation time constants, and \(G_i \) are the weight of the \(\tau_i \)-type relaxation to the overall relaxation process that is mainly dominated by each time constant within the corresponding shear rate range. Finally, \(\eta_{\infty} \) corresponds to the viscosity at an enormous (infinite) shear rate.

The impact of the different annealing times on the viscosity corroborates the behavior recorded in the CD analysis at the same temperature (4 °C) (Figure 3A). Rheological flow measurements are in agreement with supramolecular analysis like CD and TEM. Moreover, considering that the temperature of the analysis for CD and rheological flow measurements is lower than the \(T_1 \) of the SELRs, we can assume that the beta-sheet structures formed by the preannealing treatment are conserved even after the freeze-drying step.

The experimental data of Figure 7 has been numerically fitted to eq 1, and all the parameters have been obtained (Figure 15A,B). As can be seen, a threshold is again observed for the preannealing of 12 h both for the weights and the time constants of relaxation. For a fixed relaxation process, no noticeable changes are found for samples annealed for 24, 36, and 48 h, although for G1 the weight for the 48 h annealed sample is slightly higher. The relaxation process 1 shows a very short relaxation time (lower than 0.1 s), while the time constant of the second relaxation process is higher than 1 s.

The annealing time of 24 h has been selected in our work as a trade-off between enough maturation of the β-sheet structures and to make the injection process easier.

The rheological properties of the pA(EIS)2-(I5R)6 hydrogels with 24 h of preannealing at 120 mg/mL are in agreement with the soft tissue engineering properties of hydrogel for biomedical application. Dynamic frequency sweep measurements show at the frequency of 1 Hz a G’: 1489 Pa and a G” : 334 Pa. As can be seen (where G’’ ≫ G’), the values of delta (specifically, \(\delta \)) is around 12–13° for the frequency of 1
Hz) for the pA(EIS)2-(I5R)6 hydrogels at 120 mg/mL are in agreement with the viscoelastic behavior that has also been demonstrated in cartilage.56

As for the physical mechanisms taking part in the rheological behavior of the hydrogel, the linear dependence of the complex modulus with $f^{1/2}$ (Figure 8B) indicates that a poroelastic mechanism dominates the viscoelastic behavior in this frequency range. In the viscoelastic mechanism, viscous drag of interstitial fluid (water) through the porous recombinamer network and fluid–solid frictional interactions due to fluid pressurization are predominant.57,58

The slope is related to the hydrogel permeability that is a macroscopic measure of the ease with which a fluid can flow through the hydrogel matrix. In our case, two slopes are observed, whose values were numerically fitted: 282 ± 6 Pa/Hz$^{1/2}$ for $f^{1/2} < 2.5$ Hz$^{1/2}$, and 753 ± 28 Pa/Hz$^{1/2}$ for $f^{1/2} > 2.5$ Hz$^{1/2}$. Thus, the slope increases when the frequency exceeds 6.25 Hz. A slope increase was associated with a decrease in hydrogel permeability.54,59 A similar behavior was reported for elastin-like catalyst free click gels55 and hybrid elastin-like recombinamer–fibrin gels.56 However, in both cases, a single slope was obtained throughout the frequency range analyzed.

The preannealing treatment does have an effect on the gelation process. In fact, the observed increase in the storage modulus of pA(EIS)2-(I5R)6 hydrogels (Figure 6A) indicates the contribution of the preannealing treatment on the gelation process by the increase of the cross-linking network. Moreover, the preannealing treatment has an impact on the concentration of the hydrogel, allowing the formation of the hydrogel at a lower concentration than that observed by Fonseca et al.27

Fernandez-Colino et al. reported how the elastin contribution leads to the rapid and early formation of a hydrogel, whereas the silk domains can increase the modulus of the hydrogel over time.28 The same behavior has been recorded with the pA(EIS)2-(I5R)6 hydrogels, with regards to the preannealing treatment that accelerates the β-sheet formation. CD and TEM confirms this phenomenon of thermal memory based on the growth-boosting of the β-sheet formation, which exerts an indirect influence on temperature trigger gelation.

Therefore, taking into account the two slopes observed both in the evolution of the complex modulus with $f^{1/2}$ and in the viscosity dependence on the shear rate, we tentatively suggest that these two slopes are related to the two interactions existing in our silk-based ELR: the hydrophobic interaction associated with elastin and the β-sheet interaction due to the silk-block. Both of them contribute to the cross-linking network of the physical hydrogel. In the oscillatory measurements, the higher slope, corresponding to a higher hindrance of the fluid flow through the hydrogel structure, might be associated with the β-sheet structures, which are stiffer and more rigid than the elastin interaction.

As for flow measurements, because more rigid blocks take more time to respond, the first process (characterized by G1 and r1) might be related to the β-sheet structures. Following this idea, Figure 11 shows that both the β-sheets and the hydrophobic elastin interactions are affected by the preannealing time, although the former to a greater extent. Thus, it is suggested that both physical interactions are not independent but that the maturation of the β-sheet structures the spatial location of the hydrophobic blocks modifies, altering this interaction, as it has been recently reported by Fonseca et al.27

The morphology of the pA(EIS)2-(I5R)6 hydrogels at 120, 150, and 180 mg/mL was investigated by SEM (Figure 9 and Figure S8). The fibrillar structure, obtained by the preannealing treatment, does not negatively influence the porosity of the hydrogel; in fact, pA(EIS)2-(I5R)6 hydrogels show a homogeneous porous environment with an interconnected structure. Porosity plays a critical role in the outcome of a tissue-engineered scaffold; the cells seeded in there rely heavily on the void spaces within the construct for cellular in-growth, exchange of nutrients, and removal of waste products.60 In addition, the extent of ECM secretion also increases by increasing pore size.61 Moreover, the chondrocytes are the exclusive cells in articular cartilage, with a size of 10–13 μm diameters and are involved in the synthesis of the cellular matrix constituents.62 Considering the pore size of the pA(EIS)2-(I5R)6 hydrogels at 120 mg/mL: 10.23 ± 2.87 μm, pA(EIS)2-(I5R)6 hydrogel at 120 mg/mL presents a suitable pore size to create a 3D matrix embedded with chondrocytes.

In summary, the first part of the study intended to characterize the material proposed and to understand the physical contribution of the silk motifs in relation to the elastin motifs for the cross-linkage of the hydrogel. We have paid particular attention to the characterization of the pA(EIS)2-(I5R)6 hydrogels with different annealing times (12, 24, 36, and 48 h) and different concentrations (100, 120, 150, 180 mg/mL). From the combination of the experimental results obtained by various techniques, the concentration of 120 mg/mL preannealed for 24 h established a threshold for gelation, and these conditions were selected as the most suitable candidate as injectable hydrogel for cartilage repair. The second part of the study focused on the potential of the selected pA(EIS)2-(I5R)6 hydrogels with 24 h of preannealing at 120 mg/mL, as a good candidate for cartilage repair.

A well-accepted tissue-engineering paradigm is that, the most successful scaffold for tissue repair is a biomaterial that mimics the functional properties of native tissue extra cellular matrix (ECM), facilitates encapsulation of reparative cells and is supportive of cell repair activities, including proliferation and de novo production of ECM.63 Although the biocompatibility of ELR-based hydrogels formed through physical cross-linking has been extensively studied,64 in this study we have performed for the first time a 4 week culturing metabolic activity assay of the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes. The cell viability analysis has revealed that the selected concentration (120 mg/mL) supports cell viability and metabolic activity. In order to evaluate the regenerative abilities of our newly developed hydrogel-scaffold systems, a well established ex vivo model as a culture platform was used.57,65 The biggest advantage of using this ex vivo model is to test biomaterials in a native environment for relevant culture period, with the possibility to oversee the healing process monitoring the physiological and biochemical contents of the regenerated tissue.

In Figure 11, DNA and GAG content is shown. In both cases, the content is obtained for a given volume of hydrogel analyzed.66,67 The increase in DNA and GAG content recorded through biochemical analysis shows how the pA(EIS)2-(I5R)6 hydrogel is an appropriate scaffold for chondrocytes embedding involved in cartilage repair. Furthermore, comparing the biochemical contents of the in vitro study with the ex vivo study, the DNA quantification shows how the osteochondral culture platform facilitates a better proliferation of chondrocytes. The same trend was observed with respect to GAG content, where the glycosaminoglycan content of the ex vivo study was higher compared with the in
vitro study. According to previous work, the GAG density observed in our study was still not in the same range of mature cartilage.68 This was expected, considering that 28 days is a short time to obtain a mature regenerated cartilage. Anyway, comparing our scaffold with other hydrogel systems for cartilage repair, the media GAG content normalized to DNA obtained for our system (427 μg of GAG per μg of DNA) demonstrated a larger production of glycosaminoglycan.69

The biochemical analysis for GAGs and DNA confirms that the ex vivo osteochondral culture platform is a good and representative model to evaluate the healing progress in created cartilage defects. Histological analysis confirms the biochemical results, showing a higher amount of GAGs stained by Safranin-O/Fast Green in the ex vivo study. Moreover, the Picro-Sirius Red Stain revealed a larger production of collagen by the chondrocytes cultured in the ex vivo osteochondral culture platform. Finally, for both studies, the H/E staining demonstrated a very homogeneous distribution of chondrocytes embedded in the hydrogel, showing efficient mixing of the matrix with the cells achieved by the adequate concentration of the hydrogel. Some cells look like they underwent mitosis step (Figure 12: 1A, 2A and Figure 13: 1A, 2A), and these results are in accordance with the values obtained by biochemical analysis for the DNA content.

Immunohistochemistry for collagen type I and collagen type II revealed the absence of collagen type I (a sign of undesired fibro-cartilage formation) in both studies. Diversely, the IHC in both studies showed a clear signal for the antibody against collagen type II (hyaline cartilage); furthermore, the IHC revealed a better production and secretion of collagen type II in the ex vivo study compared with the in vitro study. The absence of collagen type I and the production of collagen type II, which gives tensile strength to cartilage,70 proves that pA(EIS)_2-(I5R)_6 hydrogel is an excellent candidate for osteochondral repair.

As it is widely reported in literature, agarose and PEG hydrogels are considered one of the best alternatives for cartilage tissue engineering because of the good biological and mechanical properties.66,71,72 However, they do not provide specific biological functions, which could be obtained by the recombinant protein technique used in our study for a bioactive hydrogel. Moreover, after 28 days of culturing in the ex vivo platform, our hydrogel demonstrated a GAG production per μg of DNA around 10 times more than in the case of PEG or agarose based scaffolds.69

Finally, the analysis recorded for the ex vivo study with the osteochondral culture platform confirms the importance of a native environment for the production of hyaline cartilage by mature chondrocytes.

CONCLUSIONS

We developed and produced the preannealed Silk Elastin co-Recombinamer (pA(EIS)_2-(I5R)_6), which shows unique properties as a promising candidate for tissue engineering applications. We have focused on the need for biomaterials for cartilage repair, capable of being delivered into the area of interest, showing a rapid gelation and adequate mechanical properties when surrounded by synovial fluid. We have set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures and on the phenomenon of thermal memory. In this study, we have carried out the physical characterization of our material in order to provide a deeper insight into the material features, analyzing the contribution of each component (silk and elastin) for the cross-linking formation. The pA(EIS)_2-(I5R)_6 has shown a fast gelation, improved mechanical properties, and the presence of a fibrillar structure directly after injection of the hydrogel. Moreover, culturing the hydrogel embedded with chondrocytes in the ex vivo culture platform for weeks has exhibited good biocompatibility and remarkable advantages; such as the de novo ECM formation, the absence of fibro-cartilage, and the production of hyaline cartilage. The addition of the silk allows making hydrogels with a lower concentration, leading to larger pores, which is most likely responsible for better cell spreading and proliferation. In conclusion, the pA(EIS)_2-(I5R)_6 has been shown to have new outstanding properties, which make the hydrogel a promising injectable scaffold in the field of cartilage regeneration.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biomac.8b01211.

SDS-PAGE analysis, MALDI-TOF spectra, amino acid composition, FTIR spectra, DSC analysis, and H NMR spectra for the pA(EIS)_2-(I5R)_6 dependence of the viscosity for an identical recombinamer hydrogels lacking the silk blocks with different preannealing times; strain dependence of LG for the 24 h preannealed pA(EIS)_2-(ISR)_6 hydrogels at different concentrations; SEM analysis for the pA(EIS)_2-(I5R)_6 hydrogels at different concentrations; fluorescence microscope image of the hydrogel embedded with chondrocytes after DAPI staining; and biochemical analysis of the hydrogel alone for the in vitro and ex vivo study (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: fcipriani@tpnbtt.com.

ORCID

Filippo Cipriani: 0000-0002-9738-1449

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642687. The authors are grateful for the funding from the European Commission (NMP-2014-646075), the Spanish Government (PCIN-2015-010, MAT2015-68901-R, MAT2016-78903-R, MAT2016-79435-R), Junta de Castilla y León (VA015U16), and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León.

(46) Costa, R. R.; Custódio, C. A.; Arias, F. J.; Rodríguez-Cabello, J. C.; Mano, J. F. Layer-by-Layer Assembly of Chitosan and 17-

(2), 586

