Evolutionary approach to constructing a deep feedforward neural network for prediction of electronic coupling elements in molecular materials

Citation for published version (APA):

DOI:
10.1021/acs.jctc.8b01285

Document status and date:
Published: 12/03/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 27. Dec. 2019
Evolutionary Approach to Constructing a Deep Feedforward Neural Network for Prediction of Electronic Coupling Elements in Molecular Materials

Onur Çaylak,*† Anil Yaman,*‡ and Björn Baumeier*‡

1Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

2Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

ABSTRACT: We present a general framework for the construction of a deep feedforward neural network (FFNN) to predict distance and orientation dependent electronic coupling elements in disordered molecular materials. An evolutionary algorithm automates the selection of an optimal architecture of the artificial neural network within a predefined search space. Systematic guidance, beyond minimizing the model error with stochastic gradient descent based backpropagation, is provided by simultaneous maximization of a model fitness that takes into account additional physical properties, such as the field-dependent carrier mobility. As a prototypical system, we consider hole transport in amorphous tris(8-hydroxyquinolinato)aluminum. Reference data for training and validation is obtained from multiscale ab initio simulations, in which coupling elements are evaluated using density-functional theory, for a system containing 4096 molecules. The Coulomb matrix representation is chosen to encode the explicit molecular pair coordinates into a rotation and translation invariant feature set for the FFNN. The final optimized deep feedforward neural network is tested for transport models without and with energetic disorder. It predicts electronic coupling elements and mobilities in excellent agreement with the reference data. Such a FFNN is readily applicable to much larger systems at negligible computational cost, providing a powerful surrogate model to overcome the size limitations of the ab initio approach.

1. INTRODUCTION

Dynamics of electronic excitations drives the functionality of molecular nanomaterials in many energy applications, e.g., in organic photovoltaics, photocatalysis, thermoelectricity, or energy storage. The dynamics is governed not only by the chemical structure, architecture, or electronic structure of molecular building blocks but also by the local and global morphology of the materials and molecular interactions on the mesoscale.1−3 It is essential to understand how elementary dynamic processes, such as electron or energy transfer, emerge from an interplay of morphology and electronic structure. Such fundamental insight will eventually allow for controlling the above processes and pave the way for a rational design of molecular materials. While macroscale information can be obtained experimentally, zooming into the electronic dynamics at an (sub)atomic scale is nearly impossible.3

Computational modeling of, e.g., charge dynamics can provide valuable insight in this situation. The Gaussian disorder model and its various extensions5−8 have been used to study general aspects of transport, such as temperature or carrier density dependence.9,10 For material specificity, they require information about the width of the density of states, which is typically obtained by fitting to macroscale or device-scale observables, for instance, a current−voltage curve. These more descriptive models cannot provide detailed information about underlying intermolecular processes.

In contrast, bottom-up simulations of charge and exciton dynamics in large-scale morphologies aim to explicitly zoom into elementary charge transfer reactions at molecular level and predict the mesoscale charge dynamics using multiscale strategies which link quantum and supramolecular scales.11−13 Such approaches have shown a remarkable level of predictiveness5,14−16 but come at the price of high computational costs. They typically involve the determination of bimolecular electron transfer rates in explicit material morphologies, which in turn requires the calculation of intermolecular electronic coupling elements,17,18 or transfer integrals, of the form

$$J_{ij} = \langle \Psi_i | \hat{H} | \Psi_j \rangle$$

where $| \Psi_i \rangle$ and $| \Psi_j \rangle$ are diabatic states of molecules i and j, respectively, and \hat{H} is the Hamiltonian of the coupled system. Practical evaluation of eq 1 relies on quantum-mechanical information about the relevant electronic states of the two individual monomers, as well as of the dimer formed by them.

Received: December 21, 2018
Published: February 12, 2019
Based on density-functional theory (DFT) the necessary calculations for a morphology consisting of a few thousand molecules of moderate size can consume several hundreds of days of CPU time, even with techniques optimized for large-scale systems. Many relevant materials or processes, e.g., the system-size dependence of carrier mobility in dispersive transport, realistic carrier densities, or disordered interfaces in heterojunctions, can only be studied using significantly larger systems that are currently not accessible to multiscale models.

Surrogate stochastic models have been developed to overcome some of these limitations.19,20 They represent the molecular morphology by (random) point patterns and assign coupling elements between them by drawing from distributions with distance-dependent means and standard deviations, fitted to microscopic data. These models manage to reproduce, e.g., the field-dependence of the mobility stochastically, i.e., averages over several realizations are required to obtain a comparable behavior. While the generation of larger surrogate systems is computationally inexpensive, information about the molecular details is lost, and the models are not transferable to interfaces or heterostructures.

In this paper, we develop an alternative surrogate model which allows application to system sizes currently inaccessible to the multiscale ab initio approach while retaining its molecular level details. Focus is on removing the computational bottleneck associated with the explicit quantum-mechanical evaluations of electronic couplings using eq 1 with the help of Machine Learning (ML). ML has attracted considerable interest as a tool to save computational costs in large scale calculations,21 or in exploring chemical space, e.g., by predicting material properties.22–25 Different models differ by the representation of the molecular information (features) and the choice of a suitable ML algorithm, and their combinations have been optimized accordingly.23,26

For our goal of predicting electronic coupling elements, an appropriate data representation must accurately take distance and mutual orientations between two molecules of the same type, as given by the explicit atomic coordinates, into account. The machine learning algorithm must be capable of reliably predicting values of j_{ij} that can easily span several orders of magnitude, in particular in amorphous molecular materials. In this situation we turn to biologically inspired computational models known as artificial neural networks (ANNs).27 However, the construction of an appropriate network architecture is not trivial and may require a trial-and-error approach. We deal with this problem in a systematic way by using search algorithms such as evolutionary algorithms specifically developed for Alq$_3$ and are performed using Gromacs.28

In the obtained room-temperature morphology, the centers of mass of the molecules define the hopping sites for charge carriers. Pairs of molecules for which any intermolecular distance of the respective 8-hydroxyquinoline ligands is less than 0.8 nm are added to a neighborlist of possible charge transfer pairs. Transfer rates between two molecules i and j are calculated within the high-temperature limit of nonadiabatic transfer theory33 using the Marcus expression, which is given by

$$\omega_{ij} = \frac{2\pi}{\hbar} \frac{J_{ij}^2}{4\pi\lambda_{ij}k_BT} \exp\left[-\frac{(\Delta G_{ij} - \lambda_{ij})^2}{4\lambda_{ij}k_BT}\right]$$

where \hbar is the reduced Planck constant, T is the temperature, λ_{ij} is the reorganization energy, k_B is the Boltzmann’s constant, ΔG_{ij} is the free energy difference between initial and final states, and J_{ij} is the electronic coupling element, as defined in eq 1. A hole reorganization energy of 0.23 eV is obtained from DFT calculations with the B3LYP functional14 and a triple-ζ basis set.35 Site energies E_i are determined from a classical atomistic model that takes into account the effects of local electric fields and polarization in the morphology.16,35 Their distribution is approximately Gaussian with $\sigma = 0.20$ eV. The influence of an externally applied electric field is added to the site energy difference as $\Delta G_{ij} = \Delta E_i + \Delta E_{ij} = \Delta E_j + e \mathbf{F} \cdot \mathbf{r}_{ij}$, where \mathbf{r}_{ij} is the distance vector between molecules i and j. Electronic coupling elements are calculated using a diabatic projection technique based on DFT15 with the Perdew–Burke–Ernzerhof functional16 and the triple-ζ basis. All DFT calculations are performed with the Orca software package,39 while the VOTCA package14,40 is used for all charge transport related steps.

$$\omega_{ij} = \frac{2\pi}{\hbar} \frac{J_{ij}^2}{4\pi\lambda_{ij}k_BT} \exp\left[-\frac{(\Delta G_{ij} - \lambda_{ij})^2}{4\lambda_{ij}k_BT}\right]$$
The molecular centers of mass and the hopping rates between the molecules can be interpreted as the vertices and edges of a weighted directed graph. In a system with only one charge carrier, the time evolution of the occupation probabilities P_i is described by the Kolmogorov forward equation (Master equation)

$$\frac{dP_i}{dt} = \sum_j P_j \rho_{ji} - \sum_j P_j \omega_{ij}$$

(3)

However, in this work, we are interested in a system that is in a steady state. This restriction allows us to write eq 3 as

$$\sum_j P_j \rho_{ji} - \sum_j P_j \omega_{ij} = 0 \Rightarrow WP = 0$$

(4)

Here, the matrix W can be constructed from the Marcus rates ω_{ij}. The field-dependent mobility $\mu(F)$ can be obtained from steady state occupation probabilities via the relation

$$\langle v \rangle = \sum_i \sum_j P_j \rho_{ji} (r_i - r_j) = \mu(F)F$$

(5)

where $\langle v \rangle$ is the average velocity.

3. MACHINE LEARNING MODEL

3.1. Data Representation. Explicit structural information on molecular pair geometries is extracted from MD simulations and used to construct the features of the data set. Feature selection is the process of encoding molecules into vectors, where each vector gets a label, in this case $\log_{10}\left(\frac{J_{ij}}{eV}\right)^2$.

Coupling elements between molecular pairs are translation and rotation invariant, which is not accounted for in the plain atom coordinates R. The Coulomb matrix (CM) representation is capable of capturing this invariance and is used in the following to encode crucial information into the data set’s features.

For every molecular pair the entries c_{ij} of the corresponding Coulomb matrix C are computed according to

$$c_{ij} = \begin{cases} \frac{1}{2} \frac{Z_i^2 Z_j^2}{||R_i - R_j||^2} & \text{if } i = j \\ \frac{Z_i Z_j}{||R_i - R_j||} & \text{if } i \neq j \end{cases}$$

(6)

where Z_i is the nuclear charge of atom i. Figure 1 illustrates the building blocks of the CM representation applied to a pair of molecules. One obtains a symmetric matrix that consists of four equally sized block matrices. The upper-right block
Figure 3. Flowchart of the evolutionary algorithm used for optimizing the deep FFNN. The initialization process consists of generating $k = 30$ arbitrary FFNN architectures $\{n_1, \ldots, n_k\}$. (a) The weights of the networks are then optimized with a backpropagation algorithm. (b) For every optimized network n_i, the predicted electronic coupling elements J_{ij}^{FFNN} are used in eq 2 to determine the matrix W. After solving the stationary Master eq (eq 4) and calculation of the field-dependent mobility, the fitness of the architectures is evaluated. (c) The architectures are then ordered based on their fitnesses and selected according to the roulette wheel principle. (d) After applying the crossover and mutation operators, a new generation of feedforward neural networks is generated, and the whole process is repeated until one of the stopping criteria is satisfied.

indicates the intermolecular orientations, whereas the upper-left and lower-right matrices represent the intramolecular conformations.

Before being usable as input for the FFNN, the calculated CMs must be preprocessed, as illustrated in Figure 2(b,c). This step involves the removal of the lower triangular entries including the diagonal elements and scaling of the values to the interval $[0,1]$. Subsequent vectorization yields the instances of the descriptor space as input to an artificial neural network.

3.2. Deep Feedforward Neural Networks and Evolutionary Algorithms. Artificial neural networks consist of a number of artificial neurons typically arranged as layers with specific connectivity referred to as topology. Among the ANNs, feed forward neural networks arrange a certain number of consecutive layers of neurons where each neuron in each layer is directionally connected to all neurons within the next layer. The activation a_{ij}^m of neuron i in layer m is computed from the activations of neurons in the $m-1$-th layer according to

$$a_{ij}^m = f \left(\sum_{k=0}^{n_{ij}^m} w_{ij}^{m-1,m} a_{ij}^{m-1} \right)$$

(7)

where w_{ij} is the weight of the connection between the neurons, and f is an activation function. For our purposes this activation function is given by a sigmoid function.

One of the conventional ways of training the FFNNs is the backpropagation algorithm with stochastic gradient descent. However, the number of layers and the number of neurons per layer should be defined before the training. These parameters are referred to as hyperparameters and play an important role in the performance of the networks. Although there are some “rule of thumb” guidelines established based on empirical studies, the selection of a proper set of hyperparameter settings may require a great deal of expert knowledge and/or trial-and-error. This can be avoided by search algorithms like Genetic Algorithms (GAs). GAs are population based global search algorithms inspired by biological evolution. The research field known as Neuro-evolution employs evolutionary computing approaches to optimize artificial neural networks. Adopting the terminology from biology, the genetic material of a population of individuals encodes parameters of the ANNs. The encoding depends on the parameters of the ANNs to be optimized (topology and/or weights). The workflow of such a genetic algorithm is shown schematically in Figure 3. It starts with randomly initializing a population of individuals (Figure 3(a)), where each individual is evaluated and assigned a fitness value (Figure 3(b)) to measure its performance. The main part of the algorithm performs selection, crossover, and mutation operations aimed at iteratively improving the fitness values. The selection operator (Figure 3(c)) selects the individuals with better fitness values to construct a next generation of individuals. One of the most commonly used selection operators is roulette wheel selection, in which individuals are selected with a probability proportional to their fitness values. The stochasticity of this selection process may occasionally cause the best individuals to disappear from the population. It can be combined with the elitist selection scheme, which selects the top l best ranked individuals, such as n_1 and n_2 in Figure 3(c), and transfers them unchanged directly to the next generation. The crossover operator combines two individuals selected by the roulette wheel operator (parents, n_1 and n_2 in Figure 3(d)), to generate two new individuals (offspring, n' and n^*). In particular, the 1-point crossover operator selects, with a probability of p_c, a random point to copy two different parts of two parents to generate offspring. Subsequently, a mutation operator flips the bit value in components of the binary representation of the offspring individuals randomly with a small probability p_m. Overall, the GA is run for a certain number of iterations or until a satisfactory solution, defined, e.g., by a threshold fitness value, is found.

3.3. Construction of a Deep FFNN for Prediction of Electronic Coupling Elements. In this work, we use a genetic algorithm to optimize the topology parameters (the number of hidden layers and the number of neurons in each hidden layer) of the feedforward neural networks. Each individual $n_i \in \mathbb{K}$ in the population is represented as five dimensional strings, where

$$\mathbb{K} = \{ n := (i_1, \ldots, i_5) | i_j \in \mathbb{N} := \{0, 50, 100, \ldots, 1000\} \}$$

(8)
which encodes an ANN topology. Therefore, the maximum number of hidden layers a network can have is set to 5, and the number of neurons each hidden layer is taken from the set of 21 discrete values. We limit the FFNN topologies in this manner to reduce the search space and computational complexity. Consequently, our genetic algorithm aims to find the optimum model settings in \(21^5 = 4084101 \) number of possible networks.

The FFNNs are trained on a training data set using backpropagation to minimize the error between the target \(\log_{10}(f_{\text{DFT}}^{\mu}/eV)^2 \) (actual labels of the input data) and predicted outputs \(\log_{10}(f_{\text{FFNN}}^{\mu}/eV)^2 \). We use three distinct snapshots extracted from different MD simulations for training and validation. Each snapshot contains 4096 Alq3 molecules with approximately 24000 pairs in the neighbor list as described in section 2. The first snapshot is used to optimize the weights of a chosen neural network, while the second snapshot is used for selecting the neural network architectures based on their fitness values. The third data set is used to analyze the performance of the constructed final neural network on completely unseen data.

The fitness value of a given feedforward neural network architecture is determined by evaluating the mean squared error of the difference between the mobility \(\mu_{\text{FFNN}} \) and the reference mobility \(\mu_{\text{DFT}} \)

\[
\Xi = \left(\frac{1}{N_F} \sum_{k=1}^{N_F} (\mu_{\text{DFT}}^k - \mu_{\text{FFNN}}^k)^2 \right)^{-1}
\]

(9)

where \(N_F \) stands for the number of field values. For each \(|F| = b \cdot 10^n \ V/m\) with \(b \in \{3,4,5,7,9\} \), the mobility is obtained as an average over \(\pm x, \pm y, \pm z \) directions of the applied field.

Our GA starts with randomly initializing 30 individuals and evaluating the fitness of the constructed FFNNs, respectively, as illustrated in Figure 3. We use the roulette wheel selection with the elitism of \(I = 2 \) and standard 1-point crossover operators with the probability of \(p_c = 1 \). The mutation operator selects a random component of a string with a probability \(p_m = 0.1 \) and replaces it with a randomly selected value from \(N \). The probability of selecting \(0 \in N \) for the mutation is 0.3, and the rest of the values share 0.7 with equal probabilities to encourage smaller networks. The GA was run until there is no fitness improvement for 20 generations.

4. RESULTS

In Figure 4 we show the calculated field-dependence of the hole mobility in Alq3 for various different models (a) without \(\mu(\Delta E_\| = 0) \) and (b) with \(\mu(\Delta E_\|) \). The energetic disorder taken into account in eq 2. The data indicated by the orange squares has been obtained by the ab initio model as described in section 2 and serves as the reference for the FFNN model.

In particular, we chose the disorder-free case as in Figure 4(a) in the evaluation of the fitness (eq 9) during the evolutionary FFNN optimization. Here, the rates and concomitantly the mobility are solely determined by the topological connectivity of the charge transporting network given by the electronic coupling elements. The reference mobility has a minimally negative slope with increasing field strength, which is attributed to the system being in the inverted Marcus regime for \(\Delta E_\| = 0 \). Light green triangles show \(\mu_{\text{FFNN}}(F) \) as it results from two individuals in the first generation FFNN, with vastly different performances. The first one yields completely unphysical behavior with mobilities on the order of \(10^5 \text{ cm}^2/(\text{V s}) \), about 5 orders of magnitude larger than the ab initio reference. In comparison, the second model is much closer but underestimates \(\mu_{\text{DFT}}(F) \) consistently by about a factor of 10. While this agreement appears acceptable, a closer inspection of Figure 5(a) reveals a low fitness value \(\Xi = 1.5 \times 10^4 \text{ V}^2\text{s}^2/\text{cm}^4 \). The predicted \(\log_{10}(f_{\text{FFNN}}^{\mu}/eV)^2 \) shows a MAE of 1.80 and is only weakly correlated to the DFT reference, as can be seen in Figure 5(c). From this starting point, the evolution of the FFNN results in an initially slowly increasing fitness. Going through 25 generations the fitness...
only improves by a factor of 2. This slow growth is followed by a rapid fitness evolution that takes place within only six generations, after which it stops quickly, and the process ends up in an equilibrium situation. Such a phenomenon of instantaneous change is not unique to our evolutionary FFNN, and it has also been observed in evolutionary biology with similar patterns in the fossil records known as punctuated equilibrium.46 The last generation FFNN consists of two layers with 800 and 550 neurons, respectively, and is characterized by a fitness value of $\Xi = 2 \times 10^6 \text{V}^2 \text{s}^2/\text{cm}^4$, an improvement of 3 orders of magnitude over the first model. This is also reflected by the obtained hole mobility (circles in Figure 4(a), which is practically indistinguishable from the ab initio reference, see also Table 1. The MAE is reduced to 0.55, and the correlation in Figure 5(b) is clearly improved.

With a FFNN model at hand that shows good characteristics and performs well for the disorder-free case, we now evaluate its applicability in the realistic scenario with energetic disorder taken into account. This constitutes an important test for the FFNN model of the electronic coupling elements. While optimization of the model based on the disorder-free case should, ideally, predict the connectivity of the charge transporting network accurately, it does so for a completely flat energy landscape. It cannot be excluded a priori that coupling elements that are below the percolation threshold ($J < 4 \times 10^{-7} \text{eV}^2$), and hence insignificant for $\mu(\Delta E_{\text{eq}} = 0)$, provide low-probability, but crucial, additional pathways to the case. With the large energetic disorder of $\sigma = 0.20 \text{eV}$ the ab initio reference model exhibits a mobility reduction of about 6 orders of magnitude, see squares in Figure 4(b), and a noticeable positive field-dependence known as Poole-Frenkel behavior with $\mu(F) = \mu_0 \exp(\alpha F)$. The FFNN model reproduces this behavior extremely well, with an observed maximum error of $5.0 \times 10^{-9} \text{cm}^2/(\text{V s})$ and a MAE of $2.7 \times 10^{-9} \text{cm}^2/(\text{V s})$, which are both smaller than the average standard error of the mean of $\mu_{\text{DFT}} = 5.4 \times 10^{-9} \text{cm}^2/(\text{V s})$, see Table 1. Poole-Frenkel slopes of $\alpha_{\text{DFT}} = 4.2 \times 10^{-3} \text{cm}/\text{V}^{1/2}$ and $\alpha_{\text{FFNN}} = 3.2 \times 10^{-3} \text{cm}/\text{V}^{1/2}$ are in reasonable agreement with each other, taking the bounds of the respective errors of the individual mobility values as given in Table 1 into account.

Based on this comparison, we conclude that the FFNN provides very reliable predictions of electronic coupling elements in Alq$_3$ over a wide range of magnitudes taking into account explicit details of molecular orientations in large-scale morphologies. It also comes at a significantly reduced computational cost compared to the ab initio model. For a single frame containing N molecules and (on average) kN hopping pairs, the total CPU time for the coupling elements is $T_N \approx kN T_{\text{coupl}}$, where T_{coupl} is a typical CPU time per coupling element. Using the DFT based method as described in section 2 consumes about $T_{\text{coupl}} = 20 \text{min}$ on one thread of an Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00 GHz for Alq$_3$. With $k \approx 5.5$, one obtains $T_{4096} = 312 \text{d}$. These calculations are however easily parallelizable in high-throughput settings, so that transport simulations can be performed within an acceptable total simulation time of, e.g., 1 week. For the 4096 molecule system of Alq$_3$, this can be achieved by using about 45 threads simultaneously. It is apparent that due to the linear scaling of T_N with the number of molecules, studying even slightly larger systems (which might be necessary when transport properties are size-dependent or to investigate realistic carrier transport properties) becomes very expensive. It is thus vital to use the most efficient methods available. The results are system-size dependent or to investigate realistic carrier transport properties.
concentrations) implies a linear increase in either total simulation time or number of simultaneously used threads. Note that we are not addressing issues related to memory or storage. Compared to the cost of the DFT calculations of the reference data, the cost for training the FFNN is small. Within the search space, training of a single neural network, making use of a Nvidia Titan Xp GPU (3840 CUDA cores running at 1.6 GHz), takes about 5 min. Solving the Master equation (eq 4) for fitness evaluation as part of the EA approach was performed on a single CPU thread in a few seconds. The complete training procedure as in Figure 5 takes in total about 3 days. With the trained FFNN at hand, the evaluation of a coupling element is practically instantaneous, which removes the above costs and restrictions of the ab initio model.

To demonstrate the applicability of the FFNN in this context, we have also simulated Alq₃ morphologies containing 8192 and 32769 molecules, respectively, following the same procedure as before, except for the calculation of the OPT, which would have taken $T_{8192} = 624$ d and $T_{32769} = 2496$ d. Applying the FFNN model, the hole mobilities are calculated, and the results are shown in Figure 4 and in Table 1. In the disorder-free case (Figure 4(a)), the mobility is as expected practically independent of system size. With energetic disorder taken into account, the situation in Figure 4(b) is markedly different. Doubling the system size from 4096 to 8192 molecules lowers the mobility by about 1 order of magnitude, while another quadrupling further reduces the mobility by the same amount. Such a behavior is indicative of dispersive transport and is related to the fact that the mean transport energy of the charge carrier depends on the system size.

All in all, the FFNN constructed with the evolutionary approach described in this work based on training of a single neural network, making a Monte Carlo Simulation Study. Status Solidi B 1993, 175, 15–56.

(15) Schrader, M.; Fitzer, R.; Hein, M.; Elschner, C.; Baumeier, B.; Leo, K.; Riede, M.; Baeuerle, P.; Andrienko, D. Comparative Study of

(27) Haykin, S. O. Neural Networks and Learning Machines; Pearson Education: 2011.

