Bridging the controller design-implementation gap for image-based control systems

Citation for published version (APA):

Document status and date:
Published: 19/03/2019

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. May. 2019
1. Image-based Control (IBC)
- IBC systems are a class of data-intensive feedback control systems whose feedback is provided by image-based sensing [1].
- Embedded platform (discrete-time)
- Dynamic system (continuous time)

![Camera](image)

Figure 1. An image-based control system: block diagram
- Here, the sampling period (h) and the sensor-to-actuator delay (τ) are greater than the frame arrival duration (see Fig. 2), i.e. \(h > \text{fps} \). fps denotes the camera frame rate per second.

2. Controller Design vs Implementation
- The timing values for the worst-case (WC) workload are used for controller design [2].
- Sensing task is a black box
- Controller design is a black box

![Gantt Chart](image)

Figure 2. IBC system gantt chart
- The execution time for sensing task depends on image workload variations that can be statistically analysed (e.g. as a PERT [3]).
- The designer can classify frequently occurring workload scenarios and always we observe that worst-case workload rarely occurs.
- An average workload scenario results in idling of the resource.
- A WC workload-based implementation means that frames have to be dropped even though the resource is idle/available.

3. Bridging The Gap
Can we jointly optimise control performance and platform resource utilisation considering workload variations?

4. Approach
- We propose a structured Scenario- and Platform-Aware Design (SPADe) flow for IBC systems assuming it is a white box [1]:
 1. optimises control performance or quality-of-control (QoC),
 2. maximises effective resource utilisation and
 3. adheres to platform constraints (given allocation and fps).

![Model Diagram](image)

Figure 4. SPADe approach for IBC
- The SPADe approach involves the following aspects (see Fig. 4):
 a) Formal Modelling: i) identify and model the parameters that characterise workload variations, and ii) model application considering workload variations and platform considering platform constraints.
 b) Analysis and Design: Analyse application and platform models to design system configurations.
 c) Reconfiguration mechanism for run-time implementation.

5. Results & Conclusion
- SPADe maximises effective resource utilisation and improves the settling time for the control system compared to WC design.
- Considering workload variations is definitely beneficial for design.

![Graph](image)

Figure 5. SPADe results: vision-based lateral control system [1]

6. Next Challenges
Extend SPADe approach for: i) (reconfigurable) pipelined controller design and implementation; ii) approximated image processing algorithms; and iii) communication-aware design for distributed IBC.

Acknowledgement
This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 674875.

References