Applicability and reproducibility of 2D multi-slice GRASE myelin water fraction with varying acquisition acceleration

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Applicability and reproducibility of 2D multi-slice GRASE myelin water fraction with varying acquisition acceleration

Gerhard S. Drenthen a,b,d, Walter H. Backes a,b, Albert P. Aldenkamp a,c,d, Jacobus F.A. Jansen a,b,d,*

a School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
b Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
c Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Sterkelaan 65, Heeze, the Netherlands
d Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands

ARTICLE INFO

Keywords:
Myelin water fraction
T2 relaxometry
Reproducibility

ABSTRACT

Non-invasive quantification of the in vivo myelin content may provide valuable information regarding healthy maturation of the brain, as well as insights into demyelination of several neurological disorders. However, these scans are often long thereby limiting acquisition of large brain parts in clinically feasible acquisition times. Therefore, fast acquisition of whole brain myelin content is important. To avoid errors related to slice-selective pulses, most of the previous whole brain studies on myelin content relied on a 3D acquisition. However, multi-slice (2D) acquisition methods are often faster, and less susceptible to motion artifacts. Therefore, multi-slice approaches can be beneficial in a clinical setting.

We investigated the applicability and reproducibility of whole brain multi-slice GRASE myelin-water imaging with post-acquisition slice-profile correction in healthy volunteers (aged 25-32y). The applicability was evaluated using the agreement between the multi-slice GRASE and the reference method for myelin-water imaging, single-slice multi spin-echo (MSE) acquisition. Additionally, we assessed the effect of varying acquisition acceleration using parallel imaging on the reproducibility values.

First, the multi-slice myelin-water maps showed good agreement with the single-slice reference method, with a bias of at most 1.2% in absolute MWF values. Second, we found an average within-subject coefficient of variation (CoV) of 5.9% and an average intra-class correlation coefficient (ICC) of 0.90 for myelin-water estimation using a multi-slice GRASE sequence without parallel acceleration (scan time 14:06 min), while acquisition with a parallel acceleration factor of 2 resulted in a slightly worse average within-subject CoV of 6.4% and an average ICC of 0.83 at half the scan time. Hence, a multi-slice GRASE acquisition with parallel acceleration factor 2 and a scan time of 7:30 min still provides an excellent reproducibility.

1. Introduction

Myelin is a layered, fatty substance wrapped around the axons that is comprised of lipids and proteins. The myelin acts as an electrical insulator, accelerating the transport of electrical signals along the axons. Myelination is a vital process for a healthy neuronal maturation and development. Disruptions in the myelin content can have severe consequences and are related to several neurological disorders (Nave and Werner, 2014). Non-invasive quantification of the in vivo myelin content may provide valuable information regarding healthy maturation of the brain, as well as insights into demyelination of several neurological disorders.

Magnetic resonance imaging (MRI) is a technique which is sensitive to cerebral white matter abnormalities and has therefore extensively been used to investigate the myelin content. For example, diffusion weighted imaging (DWI), T1/T2 ratio imaging, and magnetization...
transfer imaging have previously been used to assess the myelin content indirectly (Glasser and Van Essen, 2011; Hutchinson et al., 2010; van Buchem et al., 2001). While these methods provide markers that are related to the myelin content, they are not specific to the myelin content (Laule et al., 2007; Uddin et al., 2018a). Direct quantification of the myelin sheath can be achieved by ultra-short echo time (UTE) imaging (Sheth et al., 2016), however these sequences remain challenging on clinical MR systems due to hardware limitations (Seifert et al., 2017). Alternatively, myelin-water imaging using T2 relaxometry (Whittall and Mackay, 1989) or steady-state methods (mcDESPOT) (Deoni et al., 2008) have been applied to quantify the water components between the bilayers of the myelin sheath. These methods provide a specific marker of myelin content as water is an important component making up 40% of the total myelin volume (Alonso-Ortiz et al., 2015).

Using T2 relaxometry techniques, the relaxation of the MRI signal due to dephasing of water protons can be used to determine the myelin-water content. A number of different water compartments are present in brain tissue, each with a distinct T2 relaxation time. Water trapped between the bilayers of the myelin obeys a faster T2 relaxation (15 < T2 < 40 ms) compared to more freely moving water in the intra- and extracellular spaces (80 < T2 < 100 ms) and cerebrospinal fluid (CSF) (T2 > 1000 ms). Multi-echo T2 signal decay measurements are composed of a superposition of the signals from all water compartments. For myelin-water imaging it is relevant to determine the shortest T2, myelin-water, component (Alonso-Ortiz et al., 2015). Subsequently, myelin content can be quantified by taking the fraction of myelin-water signal to the total signal, the so-called myelin water fraction (MWF).

For MWF imaging to become more clinically feasible in a variety of populations and disorders, a rapid whole brain coverage with reproducible results is essential. Often, rapid whole brain coverage is achieved by accelerating image acquisition using parallel imaging techniques. However, these techniques introduce noise which can hamper the quality and consequently the reproducibility of the results. Currently, the impact of parallel imaging on the reproducibility is underdetermined. Moreover, whole brain MWF quantification has mainly focused on 3D sequences which do not suffer from imperfect slice profiles caused by slice-selective excitation pulses (Prasloski et al., 2012). However, 3D imaging techniques do, in general, require longer acquisition times compared to multi-slice (2D) techniques and are more susceptible to motion artefacts. Therefore, multi-slice imaging with a correction for imperfect slice profiles has previously been introduced as a method for fast MWF quantification (Akhondi-Asl et al., 2016; Guo et al., 2013; Kumar et al., 2016; Lebel and Wilman, 2010; Petrovic et al., 2015). Guo et al. and Kumar et al. avoided the imperfect slice profile in multi-slice imaging by using a refocusing slice thickness three times the size of the excitation slice. However, this limits the number of slices (about 5) that can be acquired at once. Instead, previous studies used a post-acquisition correction by estimating the imperfect slice profile (Akhondi-Asl et al., 2016; Lebel and Wilman, 2010; Petrovic et al., 2015).

In this study, we evaluate the use of multi-slice gradient- and spin-echo (GRASE) sequences with slice profile correction to quantitatively map the in vivo MWF. First, the applicability is evaluated using the agreement of the multi-slice GRASE and the reference method for myelin-water imaging, a single-slice multi spin-echo (MSE) acquisition. Subsequently, the reproducibility of the multi-slice GRASE MWF estimation, as well as the effect of accelerated image acquisition through parallel imaging is investigated.

2. Materials and methods

2.1. MRI data acquisition

Six volunteers (mean age 28y, range 25–32y, 3 males) were scanned on a 3.0 T unit (Philips Achieva, Best, the Netherlands) using a 32-element head coil. Informed consent was obtained from all volunteers prior to inclusion. First, for anatomical reference, T1-weighted 3D turbo field echo images were acquired (repetition time (TR) = 8.2 ms, echo time (TE) = 3.7 ms, inversion time = 1010 ms, flip angle = 8°, voxel size 1 mm³). As a reference (Alonso-Ortiz et al., 2015; Mackay et al., 1994), single transverse slice MSE images were acquired (TR = 3000 ms, 32 echoes with the shortest possible echo spacing for this sequence of 12 ms, range 12–384 ms, field of view 240 × 198 × 4 mm, matrix 160 × 132, voxel size 1.5 × 1.5 × 4 mm and 2 signal averages) for comparison to the multi-slice MWF images. For segmentation of major white matter fiber bundles, DWI was performed (TR = 7012 ms, TE = 74 ms, voxel size 2 mm³, b value 1200 s/mm², 66 gradient directions and a single non-diffusion weighted b = 0 image, acquisition time 8:03 min).

To determine the MWF reproducibility of multi-slice GRASE imaging, for every volunteer two GRASE images were acquired (TR = 3000 ms, 32 echoes with 10 ms echo spacing, range 10–320 ms, EPI factor = 3, Turbo factor = 32, 26 slices, field of view 240 × 198 × 130 mm, matrix 160 × 132, voxel size = 1.5 × 1.5 × 4 mm) with and without parallel acquisition (sensitivity encoding, SENSE = 2), resulting in an acquisition time (TA) of 14:06 min and 7:30 min per GRASE scan, respectively. The relatively long TR warrants that T1 weighting is reduced substantially. To include variation related to repositioning, the volunteers went off the scan table after acquiring the first set of GRASE images (with and without parallel acquisition). After repositioning, the second GRASE set (with and without parallel acquisition) was acquired. The order in which the with/without parallel acquisition scans were acquired was switched after half of the volunteers were scanned to prevent a bias caused by the scanning order. For one volunteer, also multi-slice GRASE images were acquired with SENSE = 3 (TA: 5:06 min), 4 (TA: 4:12 min) and 8 (TA: 2:44 min) with the same spatial coverage.

2.2. Analysis

2.2.1. Preprocessing

For each volunteer, the GRASE and T1-weighted data were registered to the first echo image of the acquired first GRASE dataset (before repositioning) using the coregistration algorithm of the statistical parametric mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) toolkit (Friston et al., 2007). The diffusion MRI data was first corrected for head displacement, including B-matrix rotation, and eddy current induced geometric distortions using ExploreDTI v4.8.6 (Leemans et al., 2009). Subsequently, the DWI images were also registered to the native GRASE space.

A singular value decomposition (SVD) filter (Bydder and Du, 2006) was used to reduce noise in the multi-echo data, and a Gaussian kernel of 1.1 mm FWHM served to spatially smooth the GRASE and MSE images.

2.2.2. Regions of interest

Whole brain fiber tractography was performed using the diffusion tensor with a uniform seed point of 2 mm³, a step size of 1 mm and a fractional anisotropy threshold of 0.2. Next, the fiber bundles of interest, the major and minor forceps, were extracted by selecting only those fibers going through the splenium and genu of the corpus callosum, respectively. Thereafter, the splenium and genu were manually delineated on these fiber bundles. Furthermore, using Freesurfer (version 5.3 (Fischl and Dale, 2000)), the corpus callosum, all white matter, cortical gray matter, caudate nuclei, thalamus and putamen were automatically segmented from the T1 weighted images. This resulted in 6 white matter regions of interest (ROIs) (major and minor forceps, the genu and splenium of the corpus callosum, the whole corpus callosum and all white matter) and 4 gray matter ROIs (cortical gray matter, caudate nuclei, thalamus and putamen).

2.2.3. Multi-exponential T2 relaxometry analysis

Multi-exponential analysis of the multi-echo data was performed using the non-negative least squares (NNLS) algorithm (Whittall and Mackay, 1989). To solve the NNLS, a basis set of 120 logarithmically spaced relaxation functions (T2 range 15–2000 ms) was used. The
algorithm was regularized using an additional minimal energy constraint that allows an increased misfit between 2 and 2.5\% (1.020 ≤ χ_{reg}/χ_{min} ≤ 1.025) (Skinner et al., 2007).

Due to B1 inhomogeneities and imperfect slice profiles, the T2 relaxation does not behave as a pure exponential decay. To model the decay more accurately, the extended phase graph (EPG) was used to determine the T2 decay based on non-ideal refocusing pulses. The slice profile was estimated based on the Fourier transform of the slice-selective excitation pulse and, subsequently, the basis set was constructed by integrating the EPG decay profiles across the slice (Lebel and Wilman, 2010).

The B1 inhomogeneities were calculated by solving the multi-exponential problem for a range of possible B1 errors and subsequently selecting the B1 error that corresponds to the lowest residual of the fit. Determination of the B1 error is a noise sensitive procedure, therefore, to select the B1 error that corresponds to the lowest residual of the exponential problem for a range of possible B1 errors and subsequently integrating the EPG decay pro.

2.2.5. Image quality

To estimate the level of noise in the GRASE images with varying acceleration factors, the spatial variation, the signal-to-noise ratio (SNR_{raw}) of the raw images, and the SNR of the multi-exponential fits (SNR_{N}) were calculated. The spatial variation was defined as the standard deviation of MWF values in the relatively homogeneous splenium. Since a multi-channel head coil was used, the calculation of the SNR_{raw} is not straightforward. For such cases, Wu et al. proposed a general framework for assessing SNR_{raw}, calculating the noise as mean of the background (Wu et al., 2010). Therefore, the SNR_{raw} was estimated as the mean signal obtained from a relatively homogeneous region of interest in the splenium (TE = 10 ms image) divided by the mean signal of the noise, measured in the noise regions of the air. The SNR_{raw} was estimated as the mean signal of the splenium (TE = 10 ms image) divided by the standard deviation of the fit residuals (Macmillan et al., 2011).

3. Results

3.1. Applicability

To investigate whether the multi-slice acquisition yields similar results compared to the reference method for MWF estimation, the single-slice reference MWF maps were compared to the corresponding slice in the multi-slice GRASE MWF maps. Due to variations in slice positioning, not all ROIs are available in all of the subjects. In Fig. 1, the agreement of the GRASE and reference MWF estimation is shown. On average the MWF values reported using the GRASE are approximately higher by 0.9\% absolute MWF values compared to the MSE. Only the MWF in the cortical gray matter is found to be lower using the GRASE. When comparing the MSE to the GRASE with an acceleration factor of 2, a comparable bias of 0.8\% absolute MWF values is observed.

3.2. Reproducibility

The LoA and reproducibility measures of the GRASE MWF estimation, as well as the mean and between-subject standard deviation of the MWF for both measurements, are shown in Table 1 for an acceleration factor of 1, and in Table 2 for an acceleration factor of 2. The ICC for both acceleration factor 1 and 2 is indicative of a good reproducibility. None of the ROIs showed a bias between the measurements that was significantly different from 0 (p > 0.05).

Furthermore, the BA plots are shown in Fig. 2. The mean LoA for both acceleration factors are added for visualization.

![Fig. 1. The relation of the MWF values obtained using the reference MSE sequence, and the multi-slice GRASE sequence without parallel acceleration.](image-url)
Table 1
Mean and standard deviation of the MWF values in the ROIs are shown for the first and second GRASE measurement (indicated by 1 and 2), both performed with an acceleration factor of 1. Additionally, the LoA and reproducibility measures are shown for each ROI, as well as a mean of all ROIs. CC, corpus callosum; WM, white matter; cGM, cortical gray matter; ROI, region of interest; MWF, myelin-water fraction; LoA, limits of agreement; RC, repeatability coefficient; CoV, coefficient of variation; ICC, intra-class correlations coefficient.

<table>
<thead>
<tr>
<th>ROI</th>
<th>Acceleration factor 1</th>
<th>Acceleration factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MWF</td>
<td>LoA</td>
</tr>
<tr>
<td>White matter</td>
<td></td>
<td>RC</td>
</tr>
<tr>
<td>Genu</td>
<td>14.8 ± 2.1</td>
<td>3.2 ± 1.1</td>
</tr>
<tr>
<td>Splenium</td>
<td>20.0 ± 2.0</td>
<td>2.1 ± 1.1</td>
</tr>
<tr>
<td>Major forceps</td>
<td>14.0 ± 1.9</td>
<td>1.3 ± 1.0</td>
</tr>
<tr>
<td>Minor forceps</td>
<td>10.7 ± 1.7</td>
<td>1.1 ± 1.1</td>
</tr>
<tr>
<td>CC</td>
<td>16.8 ± 1.7</td>
<td>2.1 ± 1.7</td>
</tr>
<tr>
<td>WM</td>
<td>13.7 ± 1.5</td>
<td>1.3 ± 1.6</td>
</tr>
<tr>
<td>Gray matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cGM</td>
<td>5.0 ± 1.1</td>
<td>2.6 ± 2.1</td>
</tr>
<tr>
<td>Caudate nuclei</td>
<td>6.9 ± 1.0</td>
<td>2.5 ± 2.0</td>
</tr>
<tr>
<td>Thalamus</td>
<td>10.5 ± 1.5</td>
<td>2.4 ± 2.1</td>
</tr>
<tr>
<td>Putamen</td>
<td>7.5 ± 1.1</td>
<td>2.6 ± 2.1</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Mean and standard deviation of the MWF values in the ROIs are shown for the first and second GRASE measurements (indicated by 1 and 2), both performed with an acceleration factor of 2. Additionally, the LoA and reproducibility measures are shown for each ROI, as well as a mean of all ROIs. CC, corpus callosum; WM, white matter; cGM, cortical gray matter; ROI, region of interest; MWF, myelin-water fraction; LoA, limits of agreement; RC, repeatability coefficient; CoV, coefficient of variation; ICC, intra-class correlations coefficient.

<table>
<thead>
<tr>
<th>ROI</th>
<th>Acceleration factor 2</th>
<th>Acceleration factor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MWF</td>
<td>LoA</td>
</tr>
<tr>
<td>White matter</td>
<td></td>
<td>RC</td>
</tr>
<tr>
<td>Genu</td>
<td>14.5 ± 2.9</td>
<td>3.6 ± 1.3</td>
</tr>
<tr>
<td>Splenium</td>
<td>19.7 ± 3.4</td>
<td>1.7 ± 2.6</td>
</tr>
<tr>
<td>Major forceps</td>
<td>14.4 ± 2.7</td>
<td>1.5 ± 2.6</td>
</tr>
<tr>
<td>Minor forceps</td>
<td>10.2 ± 1.6</td>
<td>2.4 ± 2.2</td>
</tr>
<tr>
<td>CC</td>
<td>16.3 ± 2.2</td>
<td>3.1 ± 4.0</td>
</tr>
<tr>
<td>WM</td>
<td>13.4 ± 1.4</td>
<td>1.6 ± 2.0</td>
</tr>
<tr>
<td>Gray matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cGM</td>
<td>5.0 ± 1.0</td>
<td>2.4 ± 2.0</td>
</tr>
<tr>
<td>Caudate nuclei</td>
<td>7.2 ± 1.9</td>
<td>1.9 ± 2.6</td>
</tr>
<tr>
<td>Thalamus</td>
<td>10.0 ± 1.7</td>
<td>1.9 ± 2.7</td>
</tr>
<tr>
<td>Putamen</td>
<td>7.3 ± 1.4</td>
<td>2.6 ± 3.6</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3. Image quality

The MWF maps of one subject are shown in Fig. 3 for the various acceleration factors. The spatial variation of the MWF values in the splenium increases for increasing acceleration factors (Fig. 4A). Up to factor 4, white matter and gray matter can still be distinguished to some extent.

The SNR_{raw} decreased for an increasing acceleration factor (Fig. 4B). Furthermore, the SNR_{raw} shows a similar decrease for acceleration factors up to 4 (Fig. 4C). Thereafter, for an acceleration factor of 8, a very steep drop in SNR_{raw} is observed, indicating a steep reduction in the accuracy of the fits.

3.4. Further acceleration

The effect of an increased acceleration factor is shown in Fig. 5, where the MWF values estimated from scans with varying acceleration factors are shown with respect to no parallel acceleration. The bias and LoA are also plotted in the figures.

4. Discussion

Initial MWF research has mainly focused on slow single-slice MSE acquisitions. Recently, methods that allow a whole brain coverage in clinically applicable scan times have emerged (Nguyen et al., 2016; Prasloski et al., 2012). Most of these whole brain methods are performed using a 3D acquisition mode. While this prevents distortions from slice-selective excitation pulses, scanning time is often relatively long and subject motion can corrupt the acquired 3D image. In this study, we have shown the applicability and reproducibility of MWF estimation using fast whole brain multi-slice GRASE imaging with post-acquisition slice-profile correction for varying acceleration factors using parallel imaging.

When we consider not only the parallel acceleration techniques but also the image resolution and FOV, the multi-slice GRASE sequence proposed in this study is roughly twice as fast compared to the 2D CPMG sequence proposed by Akhondi-Asl et al. (2016), as well as other 3D GRASE methods (Fairzy et al., 2018; Ocklenburg et al., 2018; Prasloski et al., 2012; Uddin et al., 2018b). Although, it should be noted that compared to 3D alternatives the coverage of multi-slice GRASE is reduced by 20% due to the slice gap of 1 mm.

4.1. Applicability

The MWF values obtained with the multi-slice GRASE sequence are generally in good agreement with those estimated with the reference MUSE sequence, showing a slight bias between the two methods of at most 0.9% in absolute MWF. Magnetization transfer effects introduced by the slice-selective excitation pulses likely have an influence on the determination of the MWF (Akhondi-Asl et al., 2016). Slice-selective pulses cause off-resonance excitation of bound hydrogen protons (i.e. macromolecules) in neighboring slices. The magnetization of these macromolecules exchanges with the more freely moving proton pool, subsequently decreasing its visibility and the pertaining signal. This effect could have a direct consequence on the MWF, as the myelin content is determined relative to the total signal. A decrease in signal could artificially increase the apparent MWF, resulting in a (slightly) higher MWF in multi-slice GRASE sequences compared to the reference MUSE sequence. However, a previous study showed that for MUSE, the signal of the myelin-water pool decreases even more due to magnetization transfer effects, subsequently lowering the MWF (Vavasour et al., 2000). Therefore, the exact role of the magnetization transfer effects on the reported bias of the multi-slice GRASE relative to the reference method remains unclear. Previously, two studies investigated the agreement between a 3D GRASE and 3D MUSE sequence and showed excellent agreement (Ljungberg et al., 2017; Prasloski et al., 2012). Interestingly, in this study the cortical gray matter and thalamus show a higher MWF value using the MUSE sequence. This
aberrant behavior could be caused by flow artifacts, since it was previously found that the MSE is affected by flow artifacts differently than the 3D GRASE sequence (Prasloski et al., 2012). Further differences between the two methods could be caused by the differences in echo spacing, where the MSE sequence had an echo spacing of 12 ms (the shortest possible on our clinical system), the GRASE sequence that was used here had a shorter, and more ideal, echo spacing of 10 ms.

4.2. Reproducibility

The reproducibility of MWF estimation has a direct implication on the applicability in clinical studies. In the current study, we found a within-subject CoV of 6.1% (range 2.9–10.2%) and an ICC of 0.88 (range 0.71–0.96) for MWF estimation using a multi-slice GRASE sequence without parallel acceleration. Acquisition with an acceleration factor of 2 resulted in comparable values, a within-subject CoV of 6.7% (range 2.8–12.6%) and an ICC of 0.80 (range 0.58–0.94). Previous studies that investigated the MWF reproducibility reported a within-subject CoV of 19% (range 7–40%) and 12.6% (range 4.4–25.1%) for a single-slice MSE sequence (Levesque et al., 2010; Vavasour et al., 2006), while a CoV of 3.99% (range 1.77–8.93%) and ICC of 0.76 were found for a 3D MSE sequence (Meyers et al., 2013). Furthermore, in a 3D GRASE sequence a CoV of 13.2% (range 2.2–55.3%) (measured in a single subject) (Meyers et al., 2017), and an ICC of 0.83 (range 0.79–0.88) (Arshad et al., 2017) were previously reported. Hence, the multi-slice GRASE acquisition with acceleration factor 2 still provides a reproducibility that is comparable to or even better than previous studies.

While the reproducibility for the acquisition without parallel acceleration is on average slightly better compared to an acceleration factor of 2, there are no large differences in reproducibility. Therefore, the increased noise due to the parallel acquisition cannot be the determining factor that influences the reproducibility in this study. Instead, other factors such as
differences in slice position due to repositioning, the influence of B1 and B0 inhomogeneities, and the noise susceptible ill-posed NNLS could be important factors explaining the variation between the multi-slice scans.

4.3. Further acceleration

As expected, a higher acceleration factor leads to an increased spatial variation and decreased SNR_{raw} and SNR_{fit}. Previously, it was stated that the results from the multi-exponential fit become inaccurate when the SNR_{raw} drops below a certain threshold (approximately 100) (Meyers et al., 2009). The SNR_{raw} for acceleration factors up to 4 sufficiently fulfills this requirement, indicating that there are no major inaccuracies in the multi-exponential analysis. However, it is clearly observed that the LoA with respect to no parallel acceleration are wider for acceleration factor 4, indicating a reduced reproducibility. Interestingly, based on the LoA, an acceleration factor of 3 seems to be comparable or even better as an acceleration factor of 2, possibly indicating that these results are still reproducible. However, since these results are obtained in a single subject this conclusion cannot be drawn formally.

4.4. Clinical perspectives

Previous clinical studies investigating white matter myelin abnormalities in multiple sclerosis typically reported a difference of approximately 2-5% in absolute myelin content compared to controls (Laule et al., 2004; Vargas et al., 2015; Vavasour et al., 2006). Here we found that the average RC of the multi-slice GRASE acquisition with acceleration factor up to 2 is about 2%, indicating that such differences in myelin content can be found in 95% of the observations. Furthermore, the multi-slice acquisition is less susceptible to subject motion compared to 3D acquisition, where motion can corrupt the entire image volume. This is especially relevant in specific subject/patient groups, such as young children or patients with claustrophobic anxiety. While subject motion cannot be prevented with a 2D acquisition, it does not compromise the entire dataset.

4.5. Study considerations

In this study, the slice-profile was estimated from the slice-selective excitation pulse using a small-tip-angle approximation. While this approximation is generally considered to be a useful approximation of the Bloch equations for small flip angles (up to approximately 90°), it is not as accurate as solving the Bloch equations numerically. However, a recent study compared fitting T2 relaxation signals using the small-tip-angle approximation to numerically solving the Bloch equations, and found that in case of adequate SNR_{raw} (i.e. > 100) and a three-parameter approach (estimating T2 time, amplitude and B1 error) the small-tip-angle approximation can still provide reliable multi-exponential fits (McPhee and Willman, 2017). Hence, we chose to employ the much less complex small-tip-angle approximation.

5. Conclusions

In this study, the applicability and reproducibility of multi-slice myelin-water imaging is evaluated. It was shown that the multi-slice GRASE images are in excellent agreement with the single slice reference method for MWF imaging, with a bias of no more than 0.9% in absolute MWF values. Furthermore, the multi-slice GRASE MWF estimation without parallel imaging acceleration and with an acceleration factor of 2

Fig. 5. Bland-Altman plots of the MWF values obtained using acceleration factor of 2 (A), 3 (B), 4 (C) and 8 (D) plotted versus the MWF values obtained with an acceleration factor of 1. The solid lines represent the bias between measurements, and the dotted lines shows the limits of agreement between the measurements. MWF, myelin-water fraction; AF, acceleration factor.
are found to be highly reproducible, with an average ICC of 0.80. Hence, a multi-slice GRASE acquisition with parallel acceleration factor 2 and a scan time of 7:30 min still provides an excellent reproducibility.

Declaration of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of interest

None.

References

