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Abstract

This thesis considers the `1 optimal control problem. The objective of `1 optimal control is
to minimize the effects of disturbances, which are measured by the `∞ norm. We consider a
state-space representation of a linear dynamical system, which is discrete in time. We use
an alternative approach to find an `1-optimal controller. In `1-optimal control, it is desired
to find a feedback controller which aims to minimize the amplitude of the output, given
a bounded persistence disturbance. In this thesis, we desire to find a feedback controller
that aims to maximize the bound of the disturbance, such that for any kind of disturbance
satisfying this bound, the output meets certain constraints.

This idea is based on a paper by Jeff Shamma [10]. Shamma discusses an algorithm
to construct a subset of the state space that meets our constraint on the output, given the
bound of the disturbance. The resulting set is called the controlled invariant set. By using
a well-chosen notation, he is able to construct (various) input vectors which make sure
that the next state vector remains in the controlled invariant set, regardless of the specific
value of the disturbance. The algorithm provides the maximal bound of the disturbance
for which the controlled invariant set exists.

In this thesis, we improve the original algorithm of Shamma in various ways. As Shamma’s
algorithm requires some restrictive assumptions on the system, we determined a method
where we do not need these assumptions, while being able to obtain the same results.
Besides that, we also improve the efficiency of the algorithm in this thesis. When the
number of states and the number of controls become bigger, the algorithm needs to solve
many finite linear programs. Therefore, the computational time increases rapidly. By
keeping track of which calculations have already been done in the previous steps of the al-
gorithm, we make sure that no unnecessary calculations are done. In this way the number
of linear programs decreases significantly. We also implement the possibility to add extra
constraints on the maximum values that the controlled input can attain. This is done for
practical purposes. In theory, it may be possible to exert an enormous amount of power.
However, in industrial applications there exists a limit to that. As a result, we give the
possibility to add these restrictions for the controlled input. Finally, when the controlled
invariant set does not exist, we are still able to make conclusions about the performance
based on the completed steps of the algorithm.
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Chapter 1

Introduction

When driving a car with the ability to use cruise control, people normally do not think
about how this is achieved. Regardless of whether the car is turning, going up or down the
hill, or is just simply going straight, when using cruise control a constant desired velocity
is maintained. This is all realized with the use of control theory.

Control theory is concerned with the control of dynamical systems in engineering processes
and machines. The objective of control theory is to impose a certain desired behavior on
a system. We can categorize controllers in two main types:

1. Open-Loop controllers.

2. Feedback / Closed-loop controllers.

To explain the difference, we consider the example of cruise control in a car.

Suppose that, while cruise control is activated, the power of the engine is controlled. When
using an open-loop controller, we would have to determine the amount of power that is
needed from the engine before we start the cruise control. If the road is straight the entire
drive, then the engine needs to maintain the same amount of power from beginning to end.
If we happen to know that there is a hill on our route, then we can take this into account.
We can adjust the amount of power at specific points in time, such that the speed will
remain the same during the whole drive. Similarly, we can take into account any turns we
have to make. But what happens when we are halfway to our destination and suddenly
there is a very strong wind blowing in opposite direction. If it is hard enough, then it
slows down our car. Meaning that it will take longer to get to the hill that is coming up.
We did not calculate the effect of the wind before the start of the drive. As a result, there
exists a point in time where we exceed our desired speed, because the controller says that
we should increase the power, but we have not yet arrived at the start of the hill. This
problem can be overcome by using a feedback controller.

When using a feedback controller, the controlled input is based on a certain measured
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quantity. Suppose that it measures the velocity of the car. When the wind starts blow-
ing, resulting in the car slowing down a bit, this will be measured. The controller reacts
on it, by giving a signal to the system that the amount of power needs to be increased.
Because the amount of power increases, the speed of the car increases. If the amount of
power becomes so high that the car starts driving faster than its desired speed, then this
is measured again. As a reaction the controller corrects the amount of power again. This
goes on in the same manner, until the desired speed is reached again.

The main difference between these two types of controllers is that an open-loop controller
acts without knowing what the system actually does, while a feedback controller is acting
based on some kind of measured output. In this thesis we consider feedback controllers only.

In optimal control, we define the control objective as a cost function that we want to
maximize or minimize. Examples for objectives are tracking problem, performance robust-
ness and disturbance rejection. In this paper we consider the objective to be the latter.
Disturbance rejection means that we try to find a controller such that the output of the
system maintains a certain performance for some kind of restricted disturbance. Obviously,
if the disturbance did not have any restrictions and is unpredictable, it is very hard to cre-
ate a controller that guarantees the system would remain stable and achieves a desired
performance. We can phrase these conditions as an induced norm optimization problem.
For this, we define an operator H, describing the relation from the disturbance input w to
the output z. Next we define the induced norm on H as

||H||· = sup
w 6=0

||z||·
||w||·

.

Note that we do not specify the type of the norms yet. In the optimization problem, we
want to find a feedback controller to minimize this induced norm. Hence, given the value
of the norm of the disturbance, we would like to construct a feedback controller such that
the norm of the output divided by the norm of the input is minimized. The final question
is, what norm best captures the behavior we want to impose on our system? For this we
discuss two concepts, H∞-optimal control and `1-optimal control.

In H∞-optimal control problems, the performance is measured in terms of the L2-induced
norm. When applying this norm in our optimization problem, physically speaking, we
minimize the maximum possible amplification of signal energy. The big advantage of these
norms is that they are derived from an inner product. The maximal energy of the dis-
turbance will be given, and we must determine a feedback controller such that the energy
of the output is minimized. There are many ways to derive such a controller, e.g., state
space solutions as shown in [5] and references therein. However, we do encounter a problem
when using these norms. The performance is measured by energy in this case, while there
are many cases where we are more interested in the performance measured in amplitude.
Therefore we consider `1-optimal controllers.
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`1-optimal control considers the performance measured in terms of the `∞-induced norm.
Physically speaking, it measures the worst case amplification of the maximum amplitude
of a disturbance signal to its output. Therefore, we want to construct a feedback controller
to minimize

||H||1 = sup
w 6=0

||z||∞
||w||∞

.

Unlike L2 norms, the `∞ norms are not based on an inner product. However, these norms
are often more useful for problems in physical aspect. Consider the following examples.

When using a printer, to print this thesis for instance, it is desired that the letters do
not overlap. If they do overlap, words become unclear, which makes it very hard to read
the text. We describe the system of the printer in the following way. The ink roller is put
on the paper just as the computer commands it. If the printer can follow the commands of
the computer exactly, then we have our desired reference output z. However, if our printer
has aged, some parts of it will wear out and it will be harder to print the letters exactly
at the desired location. We can see the wear of the printer as a disturbance.

As long as the printed letters are not yet overlapping, the printer still works properly.
However, if the maximum disturbance becomes to big, the letters will start overlapping
and the print quality cannot be guaranteed anymore. Hence, we want a feedback controller
that minimizes the amplitude of the output, given a maximal amplitude of the disturbance.

We can also consider our `1 control problem in another way. Consider the cruise con-
trol example again. As stated before, we want to find a feedback controller such that a
constant desired velocity is maintained. We can define the reference output as the desired
velocity of the car. We say that the cruise control is behaving adequate if the velocity does
not deviate with more than 1 km/h from the desired velocity. In mathematical terms, we
desire ||z||∞ ≤ 1. We want to construct a feedback controller such that the desired per-
formance is achieved for any kind of disturbance. Since this is not possible, we would like
to maximize the amplitude of the disturbance for which there still exists a feedback con-
troller such that ||z||∞ ≤ 1 is achieved. This is exactly the problem we discuss in this thesis.

Over the years, there have been written many papers, books and articles about `1 op-
timal control. Blanchini and Miani wrote a book, [2], about a set-theoretic approach in
control systems. The book has many intersections with other areas in control theory, mak-
ing it a useful source. Some of the references in this book consider a state space approach,
in particular [4], [10] and [11]. The paper that stands out is the one from Shamma [10].
Together with his earlier work, [9], we consider his work in this thesis.

The remainder of this thesis is organized in the following way. Chapter 2 presents the
notation used in this thesis. Along with a detailed problem formulation, we state which
approach we use to find an `1 controller. Chapter 3 provides some background materials,
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regarding set-valued maps. Chapter 4 is concerned with the notion of controlled invari-
ance, which is the central concept in this thesis, and the notion of a controlled invariant
kernel. Chapter 5 shows that the notions from Chapter 4 can be applied to the problem
formulated in Chapter 2. The numerical implementation of the controlled invariant kernel
algorithm is described in Chapter 6. Chapter 7 addresses the novelty of the developed
approach. Numerical tests are presented in Chapter 8 and Chapter 9, starting with aca-
demic examples, we tested the method for an industrial application. Finally, we state some
concluding remarks and perspectives in Chapter 10.
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Chapter 2

State Space Systems and Feedback
Control

2.1 Notation

We state some of the notation regarding norms and vector spaces, that will be used through-
out this paper. The set N is all integers, including 0. The halfspace of all nonnegative real
numbers is denoted as R+. Let `∞n (N) denote the vector space of all bounded one-sided
sequences in Rn.

For any matrix A ∈ Rm×n we define the following:

A(i,j) is the element of A on row i and column j,

A(i,:) is the ith row of matrix A,

|A(i,:)| =
n∑
j=1

|A(i,j)|,

|A| = max
i=1,...,m

|A(i,:)|.

For any vector x ∈ Rn we define:

xi denotes the ith component of vector x,

|x| = max
i=1,...,n

|xi|, which we call the norm of a vector.

For any sequence f ∈ `∞n (N) we define

||f || = sup
k∈N
|f(k)|, which we call the amplitude of a vector.

For any operator T : `∞n (N)→ `∞m (N) we have the usual operator norm, defined as

||T || = sup
f∈`∞n (N)
||f ||>0

||Tf ||
||f ||

.
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2.2 Problem Description

We consider a linear, time-invariant state-space system S that is discrete in time. The
dynamics are described in the following way.

x(k + 1) = Ax(k) +B1w(k) +B2u(k), (2.1)

z(k) = Cx(k) +D1w(k) +D2u(k), (2.2)

y(k) = x(k), (2.3)

x(0) = 0, (2.4)

where k ∈ N. At any point in time, the system has a current state vector, denoted as
x(k) ∈ Rn. The system has two inputs, u(k) ∈ Rm and w(k) ∈ Rq, representing the
controlled input and disturbances acting on the system, respectively. The outputs of the
system are denoted by the measured output y(k) ∈ Rn and the regulated outputs are
z(k) ∈ Rp. Based on this we can say that our system is a mapping
S : `∞m (N)×`∞q (N)→ `∞p (N)×`∞n (N). The measured output is used as input for a feedback
controller K. It is a standing assumption that the whole state is measured, making the
controller K a full state feedback controller. The controller K : Rn → Rm is defined as a
mapping from state vector x(k) to the controlled input u(k). The matrices A, B1, B2, C,
D1 and D2 are assumed to be static and to have the appropriate dimensions. The dynamics
of the closed-loop system are depicted in Figure 2.2.

w-

u -
S

z -

y

�K

Figure 2.2: Graphical representation of a state space system S with feedback controller K.

The closed-loop transfer from disturbance w to output z can be described by the mapping
SK : `∞q (N)→ `∞p (N) defined as

SK(w) = z.

Our main goal is to find a controller K, such that we minimize ||SK||, since it can be written
as

||SK|| = sup
w∈`∞q (N)
w 6=0

||z||
||w||

.

In order to determine the controller, we start by stating what forms of K are allowed.
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Definition 2.2.1. We define two admissible classes for K.

1. Linear dynamic state feedback. Then the mapping K is of the form

xK(k + 1) = AKxK(k) +BKy(k),

u(k) = CKxK(k) +DKy(k),

where xK(0) = 0. The matrices AK, BK, CK and DK have the appropriate dimensions.

2. Nonlinear static state feedback. Then the mapping K is of the form

u(k) = g(x(k)),

where g : Rn → Rm is continuous and g(0) = 0.

Now we know which forms of K are considered. But any controller must satisfy certain
conditions. Besides, we would like to measure the performance of the controller in some
way. Therefore we introduce the following definition.

Definition 2.2.2. Let K be an admissible controller. Then K is said to be internally
stabilizing with performance γ if it satisfies the following conditions:

1. For w = 0, the system is globally exponentially stable. In other words, the state will
decay exponentially to zero over time.

2. ||SK|| ≤ γ.

We define γoptimal as

γoptimal = inf
K admissible

{||SK|| : K internally stabilizing} .

Our main goal is to construct an algorithm such that we can determine an optimal admis-
sible internally stabilizing controller K with performance γ for a linear system, where γ
can be determined as close to γoptimal as is desired.

2.3 Invariance of Subsets in the State Space Approach

According to Shamma’s earlier work in [9], we have the following theorem.

Theorem 2.3.1. If there exists a linear dynamic feedback controller that is internally
stabilizing with a performance of γ, then there exists a continuous nonlinear static feedback
controller that is internally stabilizing with a performance of γ.
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In the proof of this theorem, it is assumed that there exists a linear dynamic feedback
controller that derives a subset of the state space which can be made invariant under feed-
back. We define invariance under feedback later, in Definition 4.0.5. The invariance of
this subset implies achieving the desired performance. Shamma continues by showing that
there must exist a nonlinear static feedback which makes the same subset invariant and
therefore also achieves the desired performance.

Hence, we can construct a nonlinear static feedback controller with a performance that
is equal to or even lower than the performance of an optimal linear dynamic feedback
controller. Therefore, we want to construct a nonlinear static feedback controller K that
is internally stabilizing with a performance that is desirably close to γoptimal.

The proof of Theorem 2.3.1 states that a subset of the state space can be made invariant
under feedback. In order to obtain this subset, we are going to construct the so-called
Controlled Invariant Kernel algorithm. It is based on the algorithm of Shamma, described
in [10]. With a few adjustments, we want to improve the speed and reduce the number
of inequalities that are needed in the original algorithm. In order for us to use the orig-
inal algorithm in the first place, we need to introduce set-valued maps and some of their
properties.
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Chapter 3

Set-valued Maps

The definition of a set-valued map is very intuitive. Instead of mapping one point to
another, we can map one point to a set. Although the term set-valued map is not so
common, it is relatively easy to understand from the following example.

Example 3.0.1. Consider the inverse map of the sine function. We know that sin(x) = 0
for x = kπ, where k ∈ Z. Therefore, we see that the pre-image of 0 can be defined as

sin−1(0) = {. . . ,−2π,−π, 0, π, 2π, . . .}.

Similarly, the pre-image of sin(x) = y is a set for any y ∈ [−1, 1]. As a result, we can say
that sin−1 is a set-valued map.

�

Most inverse functions of surjective maps can be called set-valued maps. Set-valued maps
are used in optimal control theory, as in [10],[9], and viability theory [1]. Here it is used
when there is a parameter uncertainty. In this thesis, the system is perturbed by an
unknown disturbance, while we want to guarantee a certain performance of the system.
Only the maximum amplitude of the disturbance is known. Based on that, we can define
a set-valued map.

Definition 3.0.1. A set-valued map is a map F : Rn → P(Rm), where some value x ∈ Rn

has a multi-valued image. In other words, F (x) = D, with D ⊂ Rm.

P is defined as in Definition 3.0.2.

Definition 3.0.2. We define P(Rn) as the power set of Rn, i.e., the set of all subsets of
Rn.

With these definitions we can define a set-valued map for our regulated output, that we
defined in (2.2). For example, if we have a single-input single-output (SISO) system and we
know that the disturbance has the restriction −10 ≤ w ≤ 10, then z(k) ∈ F (x(k), u(k)),
where the set-valued map F is defined as

F (x(k), u(k)) = {Cx(k) +B2u(k) +B1w : w ∈ [−10, 10]} ,
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assuming B1 6= 0. Notice that we write z(k) ∈ F (x(k), u(k)) and not z(k) = F (x(k), u(k)).
This is due to the fact that when the system is active, the disturbance will assume only
one value. Hence, z(k) is single-valued. However, we do not know its exact value, only
that it is contained in F (x(k), u(k)).

We can do something similar for the state equation (2.1), even though this is a differ-
ence equation. In this difference equation, we calculate the next step of the state. We
do not know its exact value, but we know the set in which it is contained, based on the
restrictions of the disturbances as described above. Hence, we can define a set-valued map
F such that x(k + 1) ∈ F (x(k), u(k)). This is called a difference inclusion.

Definition 3.0.3. Let F : Rn × Rm → P(Rn) be a set-valued map. Then

x(k + 1) ∈ F (x(k), u(k)), for every k ∈ N,
x(0) = x0,

is called a difference inclusion.

In order to apply the algorithm of Shamma [10], we need to define multiple properties of
set-valued maps. We start with the following.

Definition 3.0.4. The domain of a map F : Rn → P(Rn) is defined as

dom(F ) = {x ∈ Rn : F (x) 6= ∅} .

Continuity is very different for set-valued maps than for single-valued maps. For set-valued
maps there are multiple concepts of continuity, all with different properties. For single-
valued maps, we have the following definition.

Definition 3.0.5. A function f : Rn → Rm is said to be continuous if

∀x0 ∈ Rn ∀ε > 0 ∃δ > 0 such that ∀x ∈ Rn : 0 < |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

This means that for any vector x that is close enough to x0, the value of f(x) is close to
the value of f(x0). Unfortunately, we cannot simply say that the values of one set are close
to the values of another set. Hence, for set-valued maps different concepts of continuity
are required. There are two concepts for continuity that we consider in this thesis. They
are called lower semicontinuity and upper semicontinuity.

Definition 3.0.6. [1, p.57] A set-valued map F : Rn → P(Rm) is called lower semicontin-
uous if

∀x ∈ dom(F ), ∀y ∈ F (x) and for any sequence {xn}n∈N ⊆ dom(F ), where xn → x,

there exists a sequence {yn}n∈N such that yn ∈ F (xn) ∀n ∈ N and yn → y.
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Intuitively it means that for any fixed x ∈ dom(F ), where F is a lower semicontinuous
set-valued map, we have the following. Suppose we construct a sequence with x as its limit.
Every point in this sequence is projected to a set by F . Then, for any point y ∈ F (x) we
can construct a sequence that is contained in the projected sets and has y as its limit.

Definition 3.0.7. [1, p.56] A set-valued map F : Rn → P(Rm) is called upper semicon-
tinuous if

1. dom(F ) is closed; and

2. ∀x ∈ dom(F ) and ∀ε > 0∃δ > 0 such that x′ ∈ dom(F ) and |x′ − x| < δ together
imply sup

y′∈F (x′)

inf
y∈F (x)

|y′ − y| < ε.

Different from lower semicontinuity, upper semicontinuity has nothing to do with sequences.
Let F be an upper semicontinuous set-valued map. Then the definition describes that for
any x ∈ dom(F ) and for any ε > 0 we can determine some δ > 0 with the following
properties. For any x′ ∈ dom(F ) that is close enough to x (based on δ), we know that

sup
y′∈F (x′)

inf
y∈F (x)

|y′ − y| < ε. This statement seems complicated, but is actually quite simple.

We break it down step by step. First we have |y′−y|, which is simply the distance between
vectors y and y′. Then we consider inf

y∈F (x)
|y′ − y|. Note that y′ is some value of F (x′).

This statement describes the distance of the vector y′ to the set F (x). We can see that if
y′ ∈ F (x), then inf

y∈F (x)
|y′ − y| = 0. For any y′ /∈ F (x), the statement has a value greater

than 0, which is also possible. This is where the supremum is applied. The full statement
says that the maximal distance of any vector in F (x′) to the set F (x) will be less than ε,
given that the distance between x and x′ is less than δ.

To fully grasp the concepts of both lower and upper semicontinuity, we state two examples
in which it is proven whether a function satisfies the definitions or not.

Example 3.0.2. Define the set-valued map F : R→ P(R) as

F (x) =

{
0, for x 6= 0,

[−1, 1], for x = 0.

Since the function is obviously continuous for x 6= 0, we only look at the point x = 0.
To disprove lower semicontinuity, we choose y ∈ F (0) as y = 1 and let xn = 1

n
. Since

F (xn) = 0 ∀n ∈ N, we have yn = 0 ∀n ∈ N. Hence, yn 6→ y.
We can prove that this set-valued map is upper semicontinuous. Again, we only need to
prove the conditions are met for x = 0. Take ε and δ fixed. For any x′ ∈ dom(F ) such
that |x′| < δ it should hold that

sup
y′∈F (x′)

inf
y∈[−1,1]

|y′ − y| < ε.
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Regardless of the value of x′, we have y′ ∈ [−1, 1]. Therefore,

sup
y′∈F (x′)

inf
y∈[−1,1]

|y′ − y| = sup
y′∈F (x′)

0 = 0 < ε.

Hence, this set-valued map is upper semicontinuous and it is not lower semicontinuous in
0.

�

Example 3.0.3. Define the set-valued map F : R→ P(R) as

F (x) =

{
[−1, 1], for x 6= 0,

0, for x = 0.

Just as in the previous example, we only look at x = 0.
We can easily prove lower semicontinuity. We have y = 0, since F (0) = 0. Regardless of
our values of xn, we have yn ∈ F (xn) = [−1, 1]. A simple sequence to satisfy our condition
would be yn = 1

n
, given n > 0. Then our condition is met, since 1

n
→ 0.

Here we disprove upper semicontinuity. Let ε = 1
2

and choose δ > 0 arbitrarily. We choose
x′ 6= 0 such that it still satisfies |x′ − x| < δ. Then we find

sup
y′∈[−1,1]

inf
y∈{0}

|y′ − y| = sup
y′∈[−1,1]

|y′| = 1 > ε.

Hence, this set-valued map is lower semicontinuous and it is not upper semicontinuous in
0.

�

Based on these examples, we can conclude that upper and lower semicontinuity are not re-
lated to each other. But according to Aubin [1], we find that F is continuous at x ∈ dom(F )
if it is both lower and upper semicontinuous at x ∈ dom(F ). However, we do not discuss
this in this thesis.

There are two more properties that are used in this thesis regarding set-valued maps.
The first is locally boundedness. It is a definition that is the same for single-valued maps.
Intuitively we can say that a map is locally bounded if the output is bounded for every
bounded input. For example, even though the function f(x) = x is unbounded over R, the
function is still bounded over a bounded set K ⊂ R. Formally, we state the following.

Definition 3.0.8. Let F : Rn → P(Rm) be a set-valued map. Then F is called locally
bounded if for every bounded set K ⊂ Rn there exists an M ∈ R such that

|F (x)| ≤M, ∀x ∈ K.

12



Finally, when using a single-valued map, we generally do not think about whether the
image is open or closed. It is simply a point, which is closed. For a set-valued map, this
does not have to be the case. We could define a map F : R→ P(R) as

F (x) = (x, x+ 1).

Then the image of every x ∈ R is an open set. In this thesis, we require that any image of
set-valued maps is closed. Therefore, we state the following definition.

Definition 3.0.9. Let F : Rn → P(Rm) be a set-valued map. We say that F is closed
valued if F (x) ⊆ Rm is a closed set for every x ∈ Rn.

13
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Chapter 4

Controlled Invariant Kernel
Algorithm

In [10], Shamma introduced a Controlled Invariant Kernel (CIK) algorithm. The algorithm
constructs a controlled invariant kernel, based on the maximum amplitude of the distur-
bance signal w, for which system states will always be contained inside the constructed
kernel, regardless of the exact disturbance profile through time. This gives the major
advantage that the exact disturbance profile does not need to be known, to guarantee
performance of the system. We start with a notion of invariance, followed by an example.

Definition 4.0.1. Let F : Rn → P(Rn). A subset K ⊆ dom(F ) is invariant under F if
F (x) ⊆ K for every x ∈ K.

Example 4.0.1. Let F : [−2, 2]→ P(R) be defined as

F (x) = [−x2, x2].

We have dom(F ) = [−2, 2]. First we want to check if the domain of F is invariant under
F . We find that F (2) 6⊆ [−2, 2], due to the fact that F (2) = [−4, 4]. Hence, dom(F ) is not
invariant under F . We choose a subset K = [−1

2
, 1
2
] ⊂ dom(F ). We have F (1

2
) = [−1

4
, 1
4
] ⊇

F (x) for every x ∈ K. Since [−1
4
, 1
4
] ⊂ K, we know that K is invariant under F .

�

Invariance is a very useful property. When the set K is invariant under F for the next
step, it consequently means that we can apply F multiple times to values of K, while never
leaving the set K. From a control perspective it can therefore be useful to maximize the
set K such that it is still invariant under F . Therefore, we define the following, based on
[10].

Definition 4.0.2. Let F : Rn → P(Rn) and K ⊆ dom(F ). The largest closed subset of
K which is invariant under F is called the invariance kernel of K for F . It is denoted as
INV (K).

15



By definition, we have INV (K) ⊆ K. INV (K) always exists, but it may be empty.
Meaning that there is no invariant kernel of K. When considering Example 4.0.1, we have
INV (K) = K, since K is an invariant set. So this is not a very exciting example. The thing
that we are interested in right now is INV (dom(F )). Recall that dom(F ) is not invariant
under F , so what would be the largest closed subset of dom(F ) that is invariant under
F? When looking at the definition of F , we can conclude that INV (dom(F )) = [−1, 1].
However, we want a more systematic way to construct this set, that is applicable to more
complicated systems. That is why we define the following algorithm from [10].

Proposition 4.0.3 (Invariance Kernel Algorithm). Let F : Rn → P(Rn) be lower semi-
continuous and let K ⊆ dom(F ) be closed. Define the subsets Kj recursively by

K0 = K,

Kj+1 = {x ∈ Kj : F (x) ⊆ Kj}.

Then

INV (K) =
∞⋂
j=0

Kj.

Proof. If INV (K) = ∅, then we know that there is no subset of K which is invariant
under F . Therefore, we know that for every K̃ ⊆ K there exists some x ∈ K̃ such that
F (x) 6⊆ K̃. Since Kj are nested sets (Kj+1 ⊆ Kj), we know that for j large enough we

have Kj = ∅. Hence,
∞⋂
j=0

Kj = ∅. Then the inequality holds, because both are empty sets.

Now suppose INV (K) 6= ∅. By definition we find that INV (K) ⊆ K0 and that for any
x ∈ INV (K) we have F (x) ⊆ INV (K). Suppose for some j that we have x ∈ Kj,
where INV (K) ⊆ Kj. If x ∈ INV (K), then F (x) ⊆ INV (K) ⊆ Kj. Then we find that

INV (K) ⊆ Kj+1. Since INV (K) ⊆ K0, we find that INV (K) ⊆
∞⋂
j=0

Kj.

Before we prove INV (K) ⊇
∞⋂
j=0

Kj, we show that
∞⋂
j=0

Kj is closed. Suppose Kj is closed.

Let {xn}n∈N be a sequence in Kj+1 which converges to x ∈ Kj. By lower semicontinuity of
F , we know that for any y ∈ F (x) there exists a sequence {yn}n∈N such that yn ∈ F (xn)
∀n ∈ N and yn → y. Since xn ∈ Kj+1, we know F (xn) ⊆ Kj. Hence, yn ∈ Kj. Because
Kj is closed, we have y ∈ Kj. Since this holds for any y ∈ F (x), we know F (x) ⊆ Kj.
Hence, x ∈ Kj+1. Therefore Kj+1 is closed if Kj is closed. Because K0 is closed and the

intersection of closed sets is closed, we know
∞⋂
j=0

Kj is closed.

Finally, x ∈
∞⋂
j=0

Kj implies F (x) ⊆
∞⋂
j=0

Kj. Therefore
∞⋂
j=0

Kj is invariant under F . Hence,

INV (K) =
∞⋂
j=0

Kj. �
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We can check whether we determined INV (dom(F )) from Example 4.0.1 correctly by
applying the Invariant Kernel algorithm.

Example 4.0.2. Consider F from Example 4.0.1. Before using the Invariance Kernel
algorithm, we first must check if F is lower semicontinuous. Let us choose an arbitrary
x ∈ dom(F ) = [−2, 2]. For any y ∈ F (x) = [−x2, x2] and any sequence {xn}n∈N ∈ dom(F ),
where xn → x, we need to find a sequence {yn}n∈N with the properties yn ∈ F (xn) ∀n ∈ N
and yn → y. We separate two cases.
First, suppose that y ∈ (−x2, x2). Then there must exist a large enough n such that
y ∈ F (xn). So there exists an n0 such that yn = y for every n > n0.
Now let y = ±x2. Then we choose yn = ±x2n ∈ F (xn). By continuity xn → x implies
yn → y.
Hence, F is lower semicontinuous. We choose K0 = dom(F ) = [−2, 2]. Then we have

K1 =
{
x ∈ [−2, 2] : [−x2, x2] ⊆ [−2, 2]

}
= [−

√
2,
√

2].

For the next step we would have

K2 =
{
x ∈ [−2, 2] : [−x2, x2] ⊆ [−

√
2,
√

2]
}

= [− 4
√

2,
4
√

2].

So we try to prove by induction that

Kj = [− 2j
√

2,
2j
√

2].

Suppose that this is true for an arbitrary j. Then

Kj+1 =
{
x ∈ [− 2j

√
2,

2j
√

2] : [−x2, x2] ⊆ [− 2j
√

2,
2j
√

2]
}
,

= [−
√

2j
√

2,

√
2j
√

2],

= [− 2j+1√
2,

2j+1√
2].

Since it is also true for j = 1, we know the exact set of every Kj. Then by taking the limit,
we have

INV (dom(F )) = ∩∞j=0Kj,

= ∩∞j=0[−
2j
√

2,
2j
√

2],

= lim
j→∞

[− 2j
√

2,
2j
√

2],

= [−1, 1].

Hence, the algorithm constructs the same set that we determined earlier.

�
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Evidently, this algorithm is working well. The big advantage of this is that we can deter-
mine the maximal amplitude of the state for the system, giving the initial value is contained
in INV (K). In Example 4.0.2, we have

x(k + 1) ∈ F (x(k)) = [−x(k)2, x(k)2],

for any x(0) ∈ [−1, 1], k ∈ N, regardless of the specific values of x(k), k > 0. We can
determine that ||x|| ≤ 1. In this case, the result can be calculated easily, even without the
algorithm. But we are missing one crucial part, which is the controlled input. In order for
us to construct a similar algorithm with a controlled input, we need some more definitions.
Instead of a standard difference inclusion, we are going to use an uncontrolled difference
inclusion. The idea behind the uncontrolled difference inclusion is similar to the idea of a
difference inclusion. When using a difference inclusion, the set-valued map determines all
possible values that the next state can obtain, given the current state. For an uncontrolled
difference inclusion these new possible states do not only depend on the current state, but
also on all possible controlled inputs. We denote an uncontrolled difference inclusion in
the following way, based on [10].

Definition 4.0.4. Let F : Rn → P(Rn) and U : Rn → P(Rm) be set-valued maps and
f : Rn × Rm → dom(F ) be a single-valued map. Define

F̃ (x(k)) =

 ⋃
u(k)∈U(x(k))

F (f(x(k), u(k)))

 .

Then

x(k + 1) ∈ F̃ (x(k))

is the uncontrolled difference inclusion defined by (F,U, f).

Here, f is a function that relates the current state and the controlled input in a certain
way, dependent on the system itself. F (f(x(k), u(k))) states all possible values of the next
state, given the current state and the controlled input. U(x(k)) denotes all possible values
of the controlled input u(k), given the state vector x(k) and possibly desired constraints.
In this thesis, we use the desired constraint ||z|| ≤ 1 to compute U(x(k)), as is described
later in the next chapter. By taking the union for all u(k) ∈ U(x(k)) we have F̃ (x(k)),
which denotes all possible values of the next state, based on the current state and on every
possible value of the controlled input.

Since the definition of an uncontrolled difference inclusion differs significantly from a stan-
dard difference inclusion, we propose a new notion of invariance, based on [10].

Definition 4.0.5. Consider an uncontrolled difference inclusion defined by (F,U, f). A
subset K ⊆ dom(U) is controlled invariant under (F,U, f) if for every x ∈ K, there exists
a u ∈ U(x) such that F (f(x, u)) ⊆ K.

18



In contrast with an invariant set, we do not choose a subset of dom(F ), but a subset of
dom(U). Hence, we choose a set K such that for every x ∈ K there exists some input
u ∈ U(x). This set is called controlled invariant if we can find an input such that the state
does not leave K. As a result, we have a set which satisfies desired constraints for every
k ∈ N.

Example 4.0.3. Consider the following functions.

F (x) =
{

[−x2, x2] : x ∈ [−2, 2]
}
,

U(x) = {[−1, 1] : x ∈ [−2, 2]} ,
f(x, u) = x+ u.

The dynamics of F are the same as in Example 4.0.1. Recall that K = [−2, 2] is not
invariant under F . Now we will show that K is a controlled invariant set under (F,U, f).
Note that

F (f(x, u)) =
{

[−(x+ u)2, (x+ u)2] : x+ u ∈ [−2, 2]
}
.

Obviously, for every x ∈ [−2, 2] there exists a u ∈ [−1, 1] such that x + u ∈ [−1, 1], e.g.,
u = −1

2
x. Hence, there exists a u ∈ U(x) such that F (f(x, u)) ∈ [−1, 1]. Recall from

Example 4.0.2 that [−1, 1] is an invariant set under F . So for every x ∈ [−2, 2] there exists
a u ∈ U(x) such that F (f(x, u)) ⊂ [−2, 2]. Meaning that [−2, 2] is a controlled invariant
set.

�

Similar to the invariant kernel, we can now define a controlled invariant kernel, as is done
in [10].

Definition 4.0.6. Consider an uncontrolled difference inclusion (F,U, f). Let K ⊆ dom(U).
The largest closed subset of K which is controlled invariant under (F,U, f) is called the
controlled invariance kernel of K under (F,U, f). It is denoted as CINV (K).

Similar to the INV (K), we have CINV (K) ⊆ K and we know that CINV (K) always
exists, but it may be empty. Now we want to construct an algorithm, similar to the
Invariant Kernel algorithm, to determine the controlled invariant kernel of some set K.
But first we define local boundedness of a controlled difference invariance, based on [10].

Definition 4.0.7. Consider an uncontrolled difference inclusion (F,U, f). It has the locally
bounded property if either one of the following holds:

1. U is locally bounded.

2. (a) ξ ∈ F (ξ) for any ξ ∈ dom(F ); and

(b) |u| → ∞ implies |f(x, u)| → ∞ for all x ∈ Rn.
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This means that when using an uncontrolled difference inclusion with the locally bounded
property, we have one of the given cases. In the first one, we have a locally bounded U .
Hence, for every value of x ∈ dom(F ) the set U(x) is bounded. So there is a limited set of
values that a controlled input u can assume, given the state vector x.

When the second statement holds, we have the same result, but this is due to different
reasons. Note that the difference inclusion is used to describe the dynamics of a dynamical
system in discrete time. We do not want a situation where for a bounded x(k) the next
step x(k+ 1) could be infinitely large. We assume that ξ ∈ F (ξ) for every ξ ∈ dom(F ). So
for every x and u we have f(x, u) ∈ F (f(x, u)) if f(x, u) ∈ dom(F ). Then we know that
there is only a bounded subset I ⊂ U(x), such that F (f(x, u)) does not go to infinity, due
to the fact that |u| → ∞ implies |f(x, u)| → ∞ for every x ∈ Rn. Hence, there is a limited
set of values that a controlled input u can assume, given the state vector x.

Now we have all the required components to construct the CIK algorithm from [10].

Proposition 4.0.8 (Controlled Invariance Kernel Algorithm). Let the uncontrolled differ-
ence inclusion (F,U, f) have the locally bounded property. Assume f is continuous, dom(F )
is closed, F is lower semicontinuous and U is upper semicontinuous and closed valued. Let
K ⊆ dom(U) be compact. Define the subsets Kj and Kj 1

2
recursively by

K0 = K,

Kj 1
2

= {ξ ∈ dom(F ) : F (ξ) ⊆ Kj} ,

Kj+1 =
{
x ∈ Kj : ∃u ∈ U(x) such that f(x, u) ∈ Kj 1

2

}
.

Then

CINV (K) =
∞⋂
j=0

Kj.

Proof. If CINV (K) = ∅, then there exists no subset of K that is a controlled invariant
set. Hence, for every K̃ ⊆ K there exists some x ∈ K̃, such that for every u ∈ U(x) we
have F (f(x, u)) 6⊆ K̃. Since Kj are nested sets, we know that there is a Kj, with j large

enough, such that Kj = ∅. Hence,
∞⋂
j=0

Kj = ∅. Then the equality holds.

Now suppose CINV (K) is non-empty. For every x ∈ CINV (K) there exists a u ∈ U(x)
such that F (f(x, u)) ⊆ CINV (K). By definition we have CINV (K) ⊆ K0. Suppose that
CINV (K) ⊆ Kj for some j. Let x ∈ Kj. If x ∈ CINV (K), then we already know we
can find a control input u ∈ U(x) such that f(x, u) ⊆ CINV (K) ⊆ Kj. Hence, we know

CINV (K) ⊆ Kj+1. Since CINV (K) ⊆ K0, we know CINV (K) ⊆
∞⋂
j=0

Kj.
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Before proving CINV (K) ⊇
∞⋂
j=0

Kj, we show that
∞⋂
j=0

Kj is closed. From the proof of

Proposition 4.0.3, we already know that if Kj is closed, then Kj 1
2

is closed. Now we show

that if Kj 1
2

is closed, then Kj+1 is closed. Let {xn}n∈N be a sequence in Kj+1 that converges

to x∗ ∈ Kj. Since we have xn ∈ Kj+1, we know there exists some un ∈ U(xn) such that
f(xn, un) ∈ Kj 1

2
for every n ∈ N. Consider the set R = {u ∈ U(x) : x ∈ Kj+1}. By the

locally bounded property, we can conclude that R is bounded.

Suppose 1 from Definition 4.0.7 holds. Then we know R is bounded, because U(x) is
bounded for any x ∈ Kj+1. Note that Kj+1 is a bounded set, because Kj are nested sets
and K0 is compact.

Now suppose that 2 of Definition 4.0.7 holds. Because x ∈ Kj+1, we know that there
must exist a u ∈ U(x) such that f(x, u) ∈ Kj 1

2
. Since Kj 1

2
is bounded, we know that there

exists some M ∈ R such that |f(x, u)| ≤ M must be true. Therefore, we know that there
must be an N ∈ R such that |u| ≤ N . Hence, R is bounded because of the locally bounded
property of (F,U, f).

Because R is bounded, we know that there exists a subsequence of un, denoted as unl ,
which converges to u∗. Since U is closed valued and upper semicontinuous, we can prove
that u∗ ∈ U(x∗). Upper semicontinuity shows that if |xnl − x∗| < δ, then

sup
u∈U(x∗)

inf
unl∈U(xnl )

|unl − u| < ε.

Hence, the set of U(x∗) is relatively close to the set U(xnl), for n large enough. Because U
is closed valued and the fact that unl goes to u∗, we can conclude that u∗ ∈ U(x∗).

By continuity of f , we have f(xnl , unl) → f(x∗, u∗). Because Kj 1
2

is closed, we see that

f(x∗, u∗) ∈ Kj 1
2
. This implies that x∗ ∈ Kj+1. Hence, Kj+1 is closed. And since K0 is

closed, we have proven by induction that
∞⋂
j=0

Kj is closed.

The final piece of the puzzle is to prove that CINV (K) ⊇
∞⋂
j=0

Kj. To do this, we show

that
∞⋂
j=0

Kj is a controlled invariant set. We define the sets R0(x) = U(x) and

Rj+1(x) =
{
u ∈ U(x) : f(x, u) ∈ Kj 1

2

}
.

Rj+1(x) represents the set of controlled input values u such that x ∈ Kj+1. Note that we
have already shown that Rj+1(x) is bounded by the locally bounded property. By conti-
nuity of f and the fact that Kj 1

2
is closed, we can conclude that Rj+1(x) is closed. By the

Heine-Borel theorem, we know Rj+1(x) is compact.
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Since Kj is not empty, we have Rj(x) is not empty for every x ∈ Kj. Therefore,
∞⋂
j=0

Rj(x) is

not empty for every x ∈
∞⋂
j=0

Kj. By definition we have x ∈
∞⋂
j=0

Kj and u ∈
∞⋂
j=0

Rj(x) implies

F (f(x, u)) ⊆
∞⋂
j=0

Kj. So we can conclude that
∞⋂
j=0

Kj is a controlled invariant set. Since

CINV (K) is the largest controlled invariant set, we have CINV (K) ⊇
∞⋂
j=0

Kj. Hence,

CINV (K) =
∞⋂
j=0

Kj. �

The CIK algorithm produces the largest controlled invariant subset. If CINV (K) exists
in finitely many steps, then we obtain some Kj such that Kj+1 = Kj. The beauty of
this algorithm is that we can determine some useful invariance properties, even though
the CINV (K) is empty, or if the nonempty CINV (K) is computed in infinitely many
steps. For any x(k) ∈ Kj, we know that there exists a controlled input such that the state
remains within K for j time steps, i.e., x(k + j) ∈ K. As a result, we can determine a
number of steps before the CIK algorithm is terminated. For the remainder of this paper,
we consider the case where CINV (K) is computed in finitely many steps.

If CINV (K) is nonempty, then we know that for every state x(k) ∈ CINV (K) there
exists an input u(k), such that the next state vector remains in the kernel. Unfortunately,
the algorithm does not synthesize a controller. However, it is clear that memoryless non-
linear static feedback suffices, because the input is based on the current state vector only!
We now continue with a specific notation such that we can determine a controller in the
case of system (2.1)−(2.4).
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Chapter 5

Existence of an Admissible Controller

Henceforth, we consider the system defined as in (2.1)−(2.4) with the following properties.

1. The pair (A,B2) is controllable, as defined below.

2. There are no redundant control inputs, i.e., the column rank of B2 equals m.

Definition 5.0.1. We say that the pair (A,B2) of a system defined by (2.1) − (2.4) is
controllable if the controlled input has the ability to move the state of the system from any
initial state to any other final state in a finite time interval, given w = 0.

We can check whether (A,B2) is controllable or not, using the following definition, based
on [7].

Definition 5.0.2. The system defined by (2.1) − (2.4) with w = 0 is controllable if and
only if the matrix C ∈ Rn×nm, defined by

C =
(
B2 AB2 A2B2 . . . An−1B2

)
,

has full rank, i.e., rank(C) = n.

Note that our assumptions are less restrictive than those of Shamma in [10]. For a system
defined as in (2.1)−(2.4), he requires the following.

1. B1 and C have column rank n.

2. DT
2 C = 0 and DT

2D2 > 0.

3. B2 has column rank m.

Both the first and second condition of Shamma are restrictive. Shamma uses them, be-
cause they offer considerable simplifications. However, they are not realistic for industrial
applications, e.g., Chapter 9, and the are not necessary, as is shown in this thesis.

We want to apply the CIK algorithm to our system. Therefore, we need to create an
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uncontrolled difference inclusion that describes the dynamics of our system. We start by
rewriting

x(k + 1) = Ax(k) +B1w(k) +B2u(k).

It is stated earlier that the disturbance w is assumed to be bounded. We assume that w
has a maximal amplitude of 1

γ
, i.e., ||w|| ≤ 1

γ
, for some γ > 0. Note that the exact values

of any w(k) are not known beforehand. Therefore, we can write a difference inclusion of
the form

x(k + 1) ∈
{
Ax(k) +B1w +B2u(k) ∈ Rn : |w| ≤ 1

γ

}
for any k ∈ N. Note that we do not write w(k) anymore. Since the maximal amplitude
of the disturbance is known, we know all possible values of w(k) for any k ∈ N. Because
these possible values do not depend on k, we simply write w, where w ∈ Rq.

To write this in the form of an uncontrolled difference inclusion, we define f : Rn×Rm → Rn

and Fγ : Rn → P(Rn) by

f(x, u) = Ax+B2u, (5.1)

Fγ(ξ) =

{
ξ +

1

γ
B1w ∈ Rn : |w| ≤ 1

}
. (5.2)

Then we can write

x(k + 1) ∈ Fγ(f(x(k), u(k))).

This is a way to rewrite our state equation (2.1). Now consider output equation (2.2).
Suppose we want our regulated output z to be bounded by ||z|| ≤ 1. Note that ||w|| ≤ 1

γ

still holds. So we have to choose an controlled input u(k) such that

|z(k)| = |Cx(k) +D1w +D2u(k)| ≤ 1, ∀|w| ≤ 1

γ
, ∀k ∈ N.

Therefore, we define

Uγ(x(k)) =

{
u ∈ Rm :

∣∣∣∣Cx(k) +
1

γ
D1w +D2u

∣∣∣∣ ≤ 1, ∀|w| ≤ 1

}
. (5.3)

Now we have the difference inclusion (Fγ, Uγ, f), which describes the dynamics of (2.1)−
(2.4) for ||w|| ≤ 1

γ
and ||z|| ≤ 1. But in order to determine if we can use the CIK algorithm,

we need the following proposition.
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Proposition 5.0.3. The difference inclusion (Fγ, Uγ, f), as defined by (5.1), (5.2) and
(5.3), satisfies the conditions of Proposition 4.0.8 for every γ > 0 such that dom(Uγ) is
nonempty.

Proof. First we prove that f is continuous, using Definition 3.0.5. Suppose δ = max
{

ε
2|A| ,

ε
2|B2|

}
and choose

(
x0
u0

)
arbitrarily. Then ∀

(
x
u

)
∈ Rn × Rm such that

∣∣∣∣(xu
)
−
(
x0
u0

)∣∣∣∣ < δ we

have

|f(x, u)− f(x0, u0)| = |Ax+B2u− Ax0 −B2u0|,
= |A(x− x0) +B2(u− u0)|,
≤ |A||x− x0|+ |B2||u− u0|,
< (|A|+ |B2|)δ,
≤ ε.

Since x0 and u0 were chosen arbitrarily, we know f is a continuous function.

Then we need dom(Fγ) closed. This holds because dom(Fγ) = Rn from any γ > 0 and Rn

is a closed set.

Next we prove that Fγ is lower semicontinuous by using Definition 3.0.6. Choose an ar-
bitrary ξ ∈ Rn and any η ∈ Fγ(ξ). We know that there exists a vector v ∈ Rq such that
ξ + v = η. Since η ∈ Fγ(ξ), we know that v = 1

γ
B1ṽ, where |ṽ| ≤ 1. Let {xi}i∈N be a

sequence in Rn such that xi → ξ. We define yi = xi + i−1
i
v for any i > 0. Obviously we

have yi → ξ + v = η, so we only need to prove that yi ∈ Fγ(xi) for every i > 0. We can
rewrite yi as yi = xi +

1
γ
B1

(
i−1
i
ṽ
)
. Since we have | i−1

i
ṽ| ≤ |ṽ| ≤ 1 for every i > 0, we know

yi ∈ Fγ(ξ) for every i > 0. Hence, Fγ is lower semicontinuous.

To prove that (Fγ, Uγ, f) has the locally bounded property, we show that the second state-
ment of Definition 4.0.7 holds for every γ > 0. We know we have dom(Fγ) = Rn. It is
obvious that |w| ≤ 1 is satisfied for w = 0. So we know that ξ ∈ F (ξ) ∀ξ ∈ Rn. And
because B2 has column rank m, we know |u| → ∞ implies |B2u| → ∞. Therefore |u| → ∞
implies |f(x, u)| → ∞ for all x ∈ Rn. Hence, (Fγ, Uγ, f) has the locally bounded property
for any γ > 0.

Now we need to proof that Uγ is closed valued. We do this by using Definition 3.0.9.
Let x /∈ dom(Uγ). By Definition 3.0.4 we know Uγ(x) = ∅. The empty set is closed.
Now let x ∈ dom(Uγ). Then we know that there exists a u ∈ Rm such that

|Cx+
1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1.
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If D2 = 0, then Uγ(x) = Rm, which is a closed set.
Assume D2 6= 0. By using a row-by-row analysis, we can rewrite the equation above to(

C
−C

)
(i,:)

x+
1

γ

(
D1

−D1

)
(i,:)

w +

(
D2

−D2

)
(i,:)

u ≤ 1, ∀|w| ≤ 1, ∀i = 1, . . . , 2q.

Because |w| is the infinity norm of a vector w ∈ Rq, we can say that u ∈ Uγ(x) must satisfy(
C
−C

)
(i,:)

x+
1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣+

(
D2

−D2

)
(i,:)

u ≤ 1, ∀i = 1, . . . , 2q.

Since x ∈ dom(Uγ) is fixed, we have the explicit expression(
D2

−D2

)
(i,:)

u ≤ 1−
(
C
−C

)
(i,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣ , ∀i = 1, . . . , 2q. (5.4)

Now suppose we have a sequence {un}n∈N ⊂ Uγ(x) such that un → u∗, where u∗ /∈ Uγ(x).
Then we know that there exists some k such that(

D2

−D2

)
(k,:)

u∗ > 1−
(
C
−C

)
(k,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(k,:)

∣∣∣∣∣ .
Let us choose ε > 0 such that(

D2

−D2

)
(k,:)

u∗ = 1−
(
C
−C

)
(k,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(k,:)

∣∣∣∣∣+ ε. (5.5)

By convergence we have

un − u∗ → 0.

Then it should also hold that(
D2

−D2

)
(i,:)

(un − u∗)→ 0, ∀i = 1, . . . , 2q.

Consider i = k. Then by combining (5.4) and (5.5) we have(
D2

−D2

)
(k,:)

(un − u∗) ≤ −ε, ∀n ∈ N,

which is a contradiction. Hence, u∗ ∈ Uγ(x). Therefore Uγ(x) is closed for every x ∈ Rn,
i.e. Uγ is closed valued.
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Finally, we need to prove that Uγ is upper semicontinuous. We use Definition 3.0.7. In
case D2 = 0, we know

dom(Uγ) =

{
x ∈ Rn : |Cx+

1

γ
D1w| ≤ 1, ∀|w| ≤ 1

}
.

We have assumed γ is large enough such that dom(Uγ) is not empty. Just as above, we
consider a row-by-row analysis to conclude the explicit expression(

C
−C

)
(i,:)

x ≤ 1− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣ , ∀i = 1, . . . , 2q.

With a similar argument as above, we can conclude that dom(Uγ) is a closed set. By using
the fact that Uγ(x) = Rm for any x ∈ dom(Uγ) in this case, we can conclude that

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′ − u| = 0,

for every x, x′ ∈ dom(Uγ). Hence, Uγ is upper semicontinuous when D2 = 0.

Now suppose D2 6= 0. Now we have

dom(Uγ) =

{
x ∈ Rn : ∃u ∈ Uγ(x) such that |Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
.

We know dom(Uγ) is not empty by assumption. We consider a row-by-row analysis to
obtain (

C
−C

)
(i,:)

x+

(
D2

−D2

)
(i,:)

u ≤ 1− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣ , ∀i = 1, . . . , 2q.

Reconsider our function f(x, u), defined as in (5.1). We have proved this function is

continuous. By replacing A with

(
C
−C

)
and B2 with

(
D2

−D2

)
, we can conclude that the

left-hand side of the inequality above is continuous. Then we can conclude that dom(Uγ) is
closed by using similar arguments as when we proved Uγ(x) is closed for every x ∈ dom(Uγ).

Before proving the rest of the statement, we need the following statement. Consider some
u ∈ Rm. We use an orthogonal decomposition u = uR+uN , where uN is in the null space of
D2, i.e., D2uN = 0. Then we know that there exists some α > 0 such that |D2u| ≥ α|uR|.
[6]

Now choose any x ∈ dom(Uγ) and fix ε > 0. We want to find a δ > 0 such that for any
x′ ∈ dom(Uγ), where |x′ − x| < δ, we have

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′ − u| < ε.
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Let δ = |C|
α
ε. For any x′ such that Uγ(x

′) ⊆ Uγ(x), we know that

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′ − u| = 0.

So suppose u′ ∈ Uγ(x′) and u′ /∈ Uγ(x). Then u and u′ must satisfy the following inequalities(
D2

−D2

)
(i,:)

u ≤ 1−
(
C
−C

)
(i,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣ , ∀i = 1, . . . , 2q, (5.6)

(
D2

−D2

)
(i,:)

u′ ≤ 1−
(
C
−C

)
(i,:)

x′ − 1

γ

∣∣∣∣∣
(
D1

−D1

)
(i,:)

∣∣∣∣∣ , ∀i = 1, . . . , 2q, (5.7)

(
D2

−D2

)
(k,:)

u′ > 1−
(
C
−C

)
(k,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(k,:)

∣∣∣∣∣ for some k ∈ {1, . . . , 2q}. (5.8)

To use these inequalities, we first use the orthogonal decomposition as described above.
Since the null space of a matrix is closed, we have

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′ − u| = sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′R + u′N − uR − uN |,

= sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′R − uR|,

≤ sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

1

α
|D2(u

′ − u)|,

=
1

α
sup

u′∈Uγ(x′)
inf

u∈Uγ(x)
|D2u

′ −D2u|.

By definition we have

|D2u
′ −D2u| = max

i=1,...,2q

(
D2

−D2

)
(i,:)

u′ −
(
D2

−D2

)
(i,:)

u.

We can see that if we want to obtain the infimum of this, we need u to be as close as
possible to u′. As said before, if u′ ∈ Uγ(x), then we simply choose u = u′ and we have
|D2u

′ −D2u| = 0. For any u′ /∈ Uγ(x), we obtain the infimum if u ∈ ∂Uγ(x). Hence, there
is some j ∈ {1, . . . , 2q} such that(

D2

−D2

)
(j,:)

u = 1−
(
C
−C

)
(j,:)

x− 1

γ

∣∣∣∣∣
(
D1

−D1

)
(j,:)

∣∣∣∣∣ .
Since the maximum of

(
D2

−D2

)
(i,:)

u′−
(
D2

−D2

)
(i,:)

u is found in the row where (5.8) holds,

take j = k to obtain

inf
u∈Uγ(x)

max
i=1,...,2q

(
D2

−D2

)
(i,:)

u′ −
(
D2

−D2

)
(i,:)

u =

(
D2

−D2

)
(k,:)

u′ − 1 +

(
C
−C

)
(k,:)

x+
1

γ

∣∣∣∣∣
(
D1

−D1

)
(k,:)

∣∣∣∣∣ .
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By using (5.7) we get

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|D2u
′ −D2u| ≤

(
C
−C

)
(k,:)

(x− x′),

≤ |C|δ.

Hence, for any x′ ∈ dom(Uγ) such that |x′ − x| < δ, we have

sup
u′∈Uγ(x′)

inf
u∈Uγ(x)

|u′ − u| < 1

α
|C|δ = ε.

So Uγ is upper semicontinuous. �

Based on Proposition 5.0.3, we are allowed to construct a CIK of system (2.1)−(2.4) for
||w|| ≤ 1

γ
and ||z|| ≤ 1. If dom(Uγ) is closed and bounded, we can choose to construct

CINV (dom(Uγ)). However, this is not necessarily the case, since we do not have the
restriction that C is full rank. Therefore we define the following set.

Definition 5.0.4. Let K ⊂ Rn be defined as

K :=

{
dom(Uγ) ∩ {x ∈ Rn : |x| ≤ L} , if dom(Uγ) is not bounded,

dom(Uγ), if dom(Uγ) is bounded.

for L ∈ R sufficiently large.

For the remainder of this paper, we assume that K is defined according to Definition 5.0.4.
How large L must be chosen is discussed later.

Now we can construct CINV (K), regardless of the boundedness of dom(Uγ). We want
to show the following. If CINV (K) exists and is nonempty, then there exists a nonlinear
static feedback controller K such that ||SK|| ≤ γ. In order to prove this, we need the
following lemma.

Lemma 5.0.5. If CINV (K) is nonempty, then it has the following properties.

1. It is symmetric with respect to the origin.

2. It is convex.

3. The origin is an interior point.

Proof. We start by checking if dom(Uγ) has all three properties. We have assumed that γ
is large enough such that 1

γ
|D1w| < 1 for every |w| ≤ 1, since CINV (K) exists. Suppose

x ∈ dom(Uγ). Then there exists a u ∈ Uγ(x) such that |Cx + 1
γ
D1w + D2u| ≤ 1 for every

|w| ≤ 1. We have

U(−x) =

{
u ∈ Rm : | − Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
.
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By symmetry of |w|, we have the following equality.{
| − Cx+

1

γ
D1w +D2u| ≤ 1 : |w| ≤ 1

}
=

{
|Cx+

1

γ
D1w +D2(−u)| ≤ 1 : |w| ≤ 1

}
.

Hence, −u ∈ U(−x). Then we can conclude that −x ∈ dom(Uγ). Hence, dom(Uγ) is
symmetric.

Convexity of dom(Uγ) is easily proven. Take x, y ∈ dom(Uγ) and λ ∈ (0, 1). Let a
sufficient controlled input for x be denoted as ux and for y be denoted as uy. Then you
can show that λx + (1 − λ)y ∈ dom(Uγ) by using controlled input λux + (1 − λ)uy and
applying the triangle inequality.

To prove the origin is an interior point of dom(Uγ), we state that γ is fixed such that
1
γ
|D1w| = 1 − ε, ∀|w| ≤ 1, where ε > 0. If this is not true, then dom(Uγ) has no interior

at all. Then we simply choose controlled input u = 0. By applying the triangle inequality,
we have{
x ∈ Rn : |Cx+

1

γ
D1w| ≤ 1, ∀|w| ≤ 1

}
⊇
{
x ∈ Rn : |Cx|+ 1

γ
|D1w| ≤ 1, ∀|w| ≤ 1

}
,

⊇ {x ∈ Rn : |Cx| ≤ ε} .

Since ε is fixed and greater than 0, we know 0 is an interior point of dom(Uγ).

Now that we know dom(Uγ) has all the properties of Lemma 5.0.5, we need to show
that K has the same properties in the case that dom(Uγ) is unbounded. Note that the set

{x ∈ Rn : |x| ≤ L for L ∈ R sufficiently large}

satisfies all three properties. Therefore, K has symmetry with respect to the origin, be-
cause both sets are symmetric with respect to the origin. Because the intersection of two
convex sets is convex, K has the second property as well. And since K is the intersection
of two sets with the origin as an interior point, we can conclude that K has the origin as
an interior point as well.

By an induction argument, we show that CINV (K) is symmetric with respect to the
origin. Let Kj and Kj 1

2
be defined as in the Controlled Invariant Kernel algorithm. Sup-

pose Kj is symmetric with respect to the origin. Because Fγ(ξ) is a symmetric set with
respect ξ for every ξ ∈ Rn, we know that Kj 1

2
is symmetric with respect to the origin.

Suppose x ∈ Kj+1. Then we know that f(x, u) ∈ Kj 1
2

for some u ∈ U(x). We have shown

already that −u ∈ U(−x). And we know that −f(x, u) ∈ Kj 1
2
. The way we defined f

shows us that −f(x, u) = f(−x,−u). Then we can conclude that f(−x,−u) ∈ Kj 1
2

for

−u ∈ U(−x), i.e., −x ∈ Kj+1. Hence, Kj+1 is symmetric with respect to the origin. By
induction we know that CINV (K) is symmetric with respect to the origin.
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Suppose Kj is a convex set. Since Fγ(ξ) is a convex set for every ξ ∈ Rn, we can de-
duce that Kj 1

2
is a convex set as well. Now suppose x, y ∈ Kj+1. Let u ∈ U(x) such that

f(x, u) ∈ Kj 1
2

and v ∈ U(y) such that f(y, v) ∈ Kj 1
2
. Let λ ∈ (0, 1). By triangle inequality

it is easy to show that λu + (1 − λ)v ∈ U(λx + (1 − λ)y). By convexity of Kj 1
2

we know

that λf(x, u) + (1− λ)f(y, v) ∈ Kj 1
2
. By our definition of f we have

λf(x, u) + (1− λ)f(y, v) = f(λx+ (1− λ)y, λu+ (1− λ)v).

So we can conclude that λx+ (1− λ)y ∈ Kj+1. Therefore Kj+1 is a convex set. Since the
intersection of nested convex sets is a convex set, we know CINV (K) is convex.

The only thing left is to prove that the origin is an interior point of CINV (K). First
we show that 0 ∈ CINV (K). We do this by using the symmetry with respect to the
origin and the convexity of the set. For any x ∈ CINV (K) we know −x ∈ CINV (K).
Then we also know 0 = 1

2
x + 1

2
(−x) ∈ CINV (K). Now consider a u ∈ Uγ(0). Then

Fγ(B2u) ⊆ CINV (K). Because of the symmetry with respect to the origin, we know
Fγ(−B2u) = −Fγ(B2u) ⊆ CINV (K). If B1 has rank n, then both sets have a nonempty
interior. By convexity we have 1

2
Fγ(B2u) + 1

2
Fγ(−B2u) ⊆ CINV (K). Hence, the ori-

gin is an interior point. Now suppose B1 has a rank lower than n. Then we have a
direction which is not affected by the disturbance. Due to the fact that we have a control-
lable system, we know that this direction remains untouched through the whole process
of Kj. Hence, we have the same bound as the original dom(Uγ). For dom(Uγ) we deter-
mined that the origin is an interior point already. Combining this with the argument of
1
2
Fγ(B2u) + 1

2
Fγ(−B2u) ⊆ CINV (K), we can conclude that the origin is an interior point

of CINV (K) regardless of the rank of B1. �

Lemma 5.0.5 basically says that a nonempty controlled invariant kernel of a set based on
system S is symmetric, convex and centered at the origin. These properties are very useful
for multiple reasons, which we will discuss later.

Theorem 5.0.1. Let CINV (K) be nonempty for a given γ > 0. Then there exists an
internally stabilizing controller K with a performance of γ of the form described in the
second case of Definition 2.2.1.

Proof. Define the set

K∞ 1
2

=

{
ξ : ξ +

1

γ
B1w ∈ CINV (K), ∀|w| ≤ 1

}
.

And let the set-valued map R : CINV (K)→ P(Rm) be defined as

R(x) =
{
u ∈ Uγ(x) : Ax+B2u ∈ K∞ 1

2

}
.
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K∞ 1
2

denotes the set where f(x, u) should be in, because then we have the assurance that

the state vector remains in the controlled invariant kernel. The set R(x) is characterized
by the set of admissible control values. Since CINV (K) is a compact set, we can see that
K∞ 1

2
is also compact. From the proof of Proposition 4.0.8, we see that a similarly defined

set Rj+1(x) is compact for every x ∈ Kj. By using the same arguments, we determine that
R(x) is compact for every x ∈ CINV (K).

We know CINV (K) is convex. Due to the definition of |w|, this implies K∞ 1
2

is also

a convex set. For any fixed x ∈ CINV (K), we can conclude that R(x) must also be a
convex set.

We want to prove that R is a lower semicontinuous map. We choose some x ∈ CINV (K).
Let u ∈ R(x). Suppose we have a sequence {xn}n∈N ⊆ CINV (K) such that xn → x.
Now we need to construct a sequence {un}n∈N such that un ∈ R(xn) for every n ∈ N and
un → u. Note that if u ∈ R(xn) for every n > n0, where n0 is large enough, then we simply
choose a sequence such that un = u for every n > n0. So suppose u /∈ R(xn) for every
n > n0 for some n0 ∈ N. Let {un}n∈N be a sequence such that un ∈ R(xn) for every n ∈ N
with Axn + B2un ∈ ∂K∞ 1

2
. Here ∂K denotes the boundary of the set K. Because K∞ 1

2

is closed, we have ∂K∞ 1
2
⊂ K∞ 1

2
. By continuity of f and the fact that K∞ 1

2
is closed, we

know that f(xn, un) → f(x, u) and f(x, u) ∈ K∞ 1
2
. Therefore, we can conclude that R is

lower semicontinuous.

By Theorem 10.2.1 in Appendix A, we now know that there exists a continuous selec-
tion function denoted as g : Rn → Rm. How we determine this continuous selection is
discussed in the next chapter. We know that g ensures that CINV (K) is invariant under
the difference inclusion

x(k + 1) ∈
{
Ax(k) +

1

γ
B1w +B2g(x(k)) : |w| ≤ 1

}
.

Since CINV (K) is a subset of the set for which ||z|| ≤ 1 for every disturbance that satisfies
||w|| ≤ 1

γ
, we know that this controller has a performance of γ. Note that g : Rn → Rm

is a continuous function that can be used as an internally stabilizing controller with a
performance of γ, but it does not necessarily have the property g(0) = 0. However, we
see that 0 ∈ R(0). In a construction of a continuous selection function g : Rn → Rm, we
see that there exists a selection with g(0) = 0. How we construct this specific selection is
discussed in the next chapter. �

Recall that our goal is to find a controller with performance that is desirably close to
γoptimal. Based on these results, we can redefine γoptimal as

γoptimal = inf {γ : CINV (K) is nonempty} .

Note that the existence of CINV (K) depends on the system dynamics only and not on
any particular controller.
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By the use of the CIK algorithm we can approximate γoptimal in the following way.

1. Initialize γ > 0 and K0 = K.

2. Execute the Controlled Invariant Kernel algorithm to compute Kj and Kj 1
2
.

(a) If any Kj is empty, then CINV (K) is empty. Increase γ and restart.

(b) If CINV (K) is nonempty, then execute one of the following:

i. Decrease γ and restart.

ii. Construct an internally stabilizing controller K which achieves a perfor-
mance γ.

There are two problems with the presented procedure. The first is that we do not have an
explicit way to construct a controller K. The second is that we have no way to determine
when to construct the controller or to decrease γ. We start with a way to construct the
controller K.
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Chapter 6

Implementation of the Controlled
Invariant Kernel Algorithm

In order to implement our algorithm in Matlab, we need to define some new concepts.
Using these concepts, we can construct the CIK algorithm for 4 separate cases. This way
it is easier to show how the implementation is executed. We start by providing an ex-
plicit implementation of the CIK algorithm in the case where D1 = 0, D2 = 0, u ∈ R and
dom(Uγ) is bounded. Followed by the case where D1 6= 0 and/or D2 6= 0. Then we consider
u ∈ Rm, with m > 1. And finally, we show the algorithm in the case that dom(Uγ) is not
bounded.

But we start with introducing a new concept. From Lemma 5.0.5 we know that Kj is
a convex set for every j ∈ N, if it is nonempty. The way we have defined our Kj enables us
to view the set as the intersection of halfspaces [3]. In mathematical terms, we can create
a corresponding matrix Mj ∈ Rl×n and a corresponding vector bj ∈ Rl such that

Kj = {x ∈ Rn : Mjx ≤ bj} , ∀j ∈ N.

Here l is the number of halfspaces that is needed to construct Kj. Since the origin is
an interior point of a nonempty set Kj, as proven in Lemma 5.0.5, we can use a scaling
argument such that all inequalities can be written in the form (Mj)(i,:)x ≤ 1, for every
i = {1, 2, . . . , l}. Now we can define the following.

Definition 6.0.1. Let 1 ∈ Rn denote the n-dimensional column vector, where every com-
ponent equals 1.

Definition 6.0.2. Let M ∈ Rl×n. We define Set(M) ⊆ Rn such that

Set(M) = {x ∈ Rn : Mx ≤ 1},

where 1 ∈ Rl.

Using these definitions, we construct the first algorithm.
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6.1 Algorithm Case 1

In case 1 we have u ∈ R and assume D1 = D2 = 0, i.e., we have a single input and the
output is not dependent on the controlled input or the disturbances. Then our initial set
is

K0 = dom(Uγ) = {x ∈ Rn : |Cx| ≤ 1, ∀|w| ≤ 1} .

It is fairly easy to see that we can rewrite K0 to

K0 =

{
x ∈ Rn :

(
C
−C

)
x ≤ 1

}
.

Hence, by choosing M0 =

(
C
−C

)
we have K0 = Set(M0).

The next step in the algorithm is to determine the set K 1
2
, defined as

K 1
2

= {ξ ∈ dom(Fγ) : Fγ(ξ) ⊆ K0} .

Using (5.2) and our new notation for K0, we can rewrite this to

K 1
2

=

{
ξ ∈ Rn : ξ +

1

γ
B1w ∈ Set(M0), ∀|w| ≤ 1

}
.

We want to construct a matrix M 1
2
∈ R2q×n such that K 1

2
= Set(M 1

2
). Note that the

size of M0 is determined already and the size of M 1
2

is the same. In order to obtain the
appropriate matrix, we look at the constraints of the definition of K 1

2
.

ξ +
1

γ
B1w ∈ Set(M0), ∀|w| ≤ 1.

We can rewrite this as

M0

(
ξ +

1

γ
B1w

)
≤ 1, ∀|w| ≤ 1.

We consider this inequality row by row. For any row we obtain

(M0)(i,:) ξ +
1

γ
(M0B1)(i,:)w ≤ 1, ∀|w| ≤ 1.

Since these inequalities must hold for every w that satisfies |w| ≤ 1, we only consider the
worst case for this inequality, which also needs to be satisfied. Hence, we know that ξ must
satisfy

(M0)(i,:) ξ +
1

γ

∣∣∣(M0B1)(i,:)

∣∣∣ ≤ 1. (6.1)
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Since for every nonempty Kj 1
2

we have symmetry with respect to the origin and know that
the origin is an interior point, we can conclude that we need the following restriction.

1

γ

∣∣∣(M0B1)(i,:)

∣∣∣ < 1.

Since this needs to hold for every row, we get

1

γ
|M0B1| < 1.

If this restriction does not hold, then γ needs to be increased. Now suppose that it holds.
Then we can rewrite the inequality in (6.1) as

1

1− 1
γ

∣∣∣(M0B1)(i,:)

∣∣∣ (M0)(i,:) ξ ≤ 1.

By defining the matrix M 1
2

for every row as(
M 1

2

)
(i,:)

=
1

1− 1
γ

∣∣∣(M0B1)(i,:)

∣∣∣ (M0)(i,:) ,

we can write our set as K 1
2

= Set(M 1
2
). The next step is to determine a matrix M1 ∈ Rl×n

such that K1 = Set(M1), where l denotes the number of constraints needed to represent
K1. Recall that we have

K1 =
{
x ∈ K0 : ∃u ∈ Uγ(x) such that f(x, u) ∈ K 1

2

}
.

Note that Uγ(x) = R for every x ∈ dom(Uγ), since D2 = 0. With the use of (5.1) and our
new notation of K0 and K 1

2
, we can rewrite the set as

K1 =
{
x ∈ Set(M0) : ∃u ∈ R such that Ax+B2u ∈ Set(M 1

2
)
}
.

In other words, we want to find the values of x ∈ Rn that satisfy

M0x ≤ 1, and (6.2)

M 1
2

(Ax+B2u) ≤ 1, (6.3)

for some u ∈ R. In order to determine the values of x ∈ Rn such that there exists a u ∈ R
for which (6.3) holds, we need to rewrite the statement to an appropriate form, which is(

M 1
2
A M 1

2
B2

)(x
u

)
≤ 1.
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With our notation we can define the set of combinations of x and u that satisfies this
inequality as

Set
(
M 1

2
A M 1

2
B2

)
=

{(
x
u

)
∈ Rn+1 :

(
M 1

2
A M 1

2
B2

)(x
u

)
≤ 1

}
.

This set contains all the combinations of x ∈ Rn and u ∈ R such that the second inequality
holds. But we are only interested in the values of x ∈ Rn for which there exists some
u ∈ R. In order to determine these values of x, we need the following definition, which is
based on [10].

Definition 6.1.1. Let M ∈ Rl×(n+1). Define Rack(M) as the set of matrices, M̃ , such
that

x ∈ Set(M̃) ⊆ Rn ⇔ ∃u ∈ R such that

(
x
u

)
∈ Set(M) ⊆ Rn+1. (6.4)

We apply Rack(M) to find the projection of Set(M) ⊆ Rn+1 to Set(M̃) ⊆ Rn, where
M̃ ∈ Rack(M). Note that we say M̃ ∈ Rack(M) because there exists more than one
matrix to describe the projection. Although the constraints of the projection are fixed, the
order of the rows of any matrix M̃ ∈ Rack(M) can alter, i.e., any Set(M̃) is the same set
for any M̃ ∈ Rack(M). In order for us to construct a matrix M̃ ∈ Rack(M), we need the
following proposition, from [10].

Proposition 6.1.2. Let M =
(
M1 M2

)
, where M1 ∈ Rl×n and M2 ∈ Rl. Let

Z+ = {i : (M2)i > 0} ,
Z− = {i : (M2)i < 0} ,
Z0 = {i : (M2)i = 0} .

Let the rows of the matrix M̃ be formed by

ρi+,i− =
1

(M2)i+ − (M2)i−

(
(M2)i+(M1)(i−,:) − (M2)i−(M1)(i+,:)

)
, ∀i+ ∈ Z+, ∀i− ∈ Z−,

ρi0 = (M1)(i0,:), ∀i0 ∈ Z0.

Then M̃ satisfies (6.4), i.e., M̃ ∈ Rack(M).

Proof. In order to prove that M̃ ∈ Rack(M), we show that M̃ satisfies (6.4).

First we show (6.4) ’⇒’: Since M̃ ∈ Rack(M), we know how the rows of M̃ are con-
structed. For any x ∈ Set(M̃) we have M̃x ≤ 1. We consider that inequality row by row.
The rows of M̃ are denoted as ρi+,i− and ρi0 , where i+ ∈ Z+, i− ∈ Z− and i0 ∈ Z0. If

Z0 = ∅, then there does not exist a row of M̃ of the form ρi0 . If either Z+ or Z− is an
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empty set, then there does not exist a row of M̃ of the form ρi+,i− .

For every x ∈ Set(M̃) we want to determine a u ∈ R such that M(i,:)

(
x
u

)
≤ 1 for every

i = 1, . . . , l. To prove this, we could consider all cases of the emptyness or nonemptyness
of Z+, Z− and Z0 separately. Fortunately, we do not need to check all the cases. For
instance, it is not possible that all three sets are empty. Assume only Z0 is nonempty, i.e.,
there is no constraint on u. By definition we have

M(i,:)

(
x
u

)
= (M1)(i,:)x,

= ρix ≤ 1.

In this case every u ∈ R suffices, since there are no restrictions on it. Hence, a row of the
form ρi0 does not apply any restriction on u for every i0 ∈ Z0. Therefore we assume Z0 to
be empty for the remainder of the proof.

This leaves us with three more cases. First assume that both Z+ and Z− are nonempty.
Then every row of M̃ is of the form ρi+,i− , where i+ ∈ Z+ and i− ∈ Z−. We have

1 ≥ ρi+,i−x =
1

(M2)i+ − (M2)i−

(
(M2)i+(M1)(i−,:) − (M2)i−(M1)(i+,:)

)
x, (6.5)

for any i+ ∈ Z+ and i− ∈ Z−. We choose

u = min
i+∈Z+

1− (M1)(i+,:)x

(M2)i+
. (6.6)

We need to show that this choice of u satisfies M(i,:)

(
x
u

)
≤ 1 for every i = 1, . . . , l. We

know that i is an element of Z+ or Z−. For i ∈ Z+ we have

M(i,:)

(
x
u

)
= (M1)(i,:)x+ (M2)iu,

= (M1)(i,:)x+ (M2)i

(
min
i+∈Z+

1− (M1)(i+,:)x

(M2)i+

)
,

≤ (M1)(i,:)x+ (M2)i

(
1− (M1)(i,:)x

(M2)i

)
= 1.

Our condition is satisfied. Now suppose i ∈ Z−. For convenience, we say that

min
i+∈Z+

1− (M1)(i+,:)x

(M2)i+
=

1− (M1)(j,:)x

(M2)j
.
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Because i ∈ Z− and j ∈ Z+, we can apply (6.5), resulting in

M(i,:)

(
x
u

)
= (M1)(i,:)x+ (M2)iu,

= (M1)(i,:)x+ (M2)i

(
min
i+∈Z+

1− (M1)(i+,:)x

(M2)i+

)
,

= (M1)(i,:)x+ (M2)i

(
1− (M1)(j,:)x

(M2)j

)
,

=
(M2)j
(M2)j

(
(M1)(i,:)x+ (M2)i

(
1− (M1)(j,:)x

(M2)j

))
,

=
1

(M2)j

(
(M2)j(M1)(i,:)x+ (M2)i − (M2)i(M1)(j,:)x

)
,

=
1

(M2)j

(
(M2)i + ((M2)j(M1)(i,:) − (M2)i(M1)(j,:))x

)
,

=
1

(M2)j
((M2)i + ((M2)j − (M2)i)ρj,ix) ,

≤ 1

(M2)j
((M2)i + (M2)j − (M2)i) = 1.

Hence, we have found a u ∈ R such that M

(
x
u

)
≤ 1 in this case.

However, if either Z+ or Z− is empty, then (6.5) does not hold, since ρi+,i− does not exist.

Therefore, Set(M̃) = Rn, i.e., M̃ is a zero matrix. This implies that we should be able to

find a u ∈ R such that M

(
x
u

)
≤ 1 for any x ∈ Rn.

First we consider the case where only Z+ is nonempty. Because we have not used (6.5)
while proving the equality for i ∈ Z+ in the previous case, we can conclude that (6.6)

satisfies M

(
x
u

)
≤ 1 for any x ∈ Rn.

Finally, let only Z− be nonempty. We choose

u = max
i−∈Z−

1− (M1)(i−,:)x

(M2)i−
. (6.7)

Then we have

M(i,:)

(
x
u

)
= (M1)(i,:)x+ (M2)iu,

= (M1)(i,:)x+ (M2)i

(
max
i−∈Z−

1− (M1)(i−,:)x

(M2)i−

)
,

≤ (M1)(i,:)x+ (M2)i

(
1− (M1)(i,:)x

(M2)i

)
= 1,
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for every i = 1, . . . , l and for every x ∈ Rn. Note that (M2)i is negative in this inequality.

As a result, we know M̃ satisfies (6.4) for ’⇒’. Now we prove ’⇐’.

We assume that there exists a u ∈ R such that M

(
x
u

)
≤ 1. We need to prove that

M̃x ≤ 1. Again we consider a row-by-row analysis. We consider the relevant cases of
emptyness and nonemptyness of Z+, Z− and Z0. Just as mentioned above, Set(M̃) = Rn

if only Z+ is nonempty or only Z− is nonempty. In that case we say M̃ is a zero matrix.
Furthermore, we have already seen that if only Z0 is nonempty, then

M̃x = (M1)x,

= M

(
x
u

)
≤ 1.

So the rows of M̃ based on ρi0 satisfy our inequality for every i0 ∈ Z0. In order for us to
prove the inequality for any ρj,i, where j ∈ Z+ and i ∈ Z−, we first state that we already
have the inequalities

(M1)(j,:)x+ (M2)ju ≤ 1,

(M1)(i,:)x+ (M2)iu ≤ 1.

We can rewrite these inequalities to obtain

(M1)(j,:)x ≤ 1− (M2)ju,

(M1)(i,:)x ≤ 1− (M2)iu.

These inequalities are used in the following

ρj,ix =
1

(M2)j − (M2)i

(
(M2)j(M1)(i,:) − (M2)i(M1)(j,:)

)
x,

=
1

(M2)j − (M2)i

(
(M2)j(M1)(i,:)x− (M2)i(M1)(j,:)x

)
,

≤ 1

(M2)j − (M2)i
((M2)j(1− (M2)iu)− (M2)i(1− (M2)ju)) ,

=
1

(M2)j − (M2)i
((M2)j − (M2)j(M2)iu− (M2)i + (M2)i(M2)ju) ,

=
1

(M2)j − (M2)i
((M2)j − (M2)i) = 1.

Since j and i were chosen arbitrarily, we have proved M̃x ≤ 1 holds. �

We explain the Rack function in an intuitive way using the set K1. We rewrite K1 to

K1 =

{
x ∈ Set(M0) : ∃u ∈ R such that

(
x
u

)
∈ Set

(
M 1

2
A M 1

2
B2

)}
.
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We are interested in every x ∈ Rn such that there exists a u ∈ R that satisfies(
M 1

2
A
)
(i,:)

x+
(
M 1

2
B2

)
(i,:)

u ≤ 1,

for every i = 1, . . . , 2q. Now we can construct the sets Z+, Z− and Z0 as defined in
Proposition 6.1.2. Consider i ∈ Z0, then we have(

M 1
2
A
)
(i,:)

x ≤ 1.

According to Proposition 6.1.2 this row is used directly for the matrix M̃ . And for good
reason, since this inequality is a restriction to x only. Now suppose that we have i ∈ Z+.

Consider looking at the u-axis of this halfspace. Since i ∈ Z+, we know that
(
M 1

2
B2

)
(i,:)

must be a positive number. Then we know that our halfspace crosses the u-axis above the
origin. Hence, for x = 0 we get u ≤ 1(

M 1
2
B2

)
(i,:)

, which is a positive number. If we would

compare this restriction with any j ∈ Z+, then we would get no restriction for x. Note
that we can choose some u ∈ R with the restriction

u ≤ min


1−

(
M 1

2
A
)
(i,:)

x(
M 1

2
B2

)
(i,:)

,
1−

(
M 1

2
A
)
(j,:)

x(
M 1

2
B2

)
(j,:)

 ,

for any x ∈ Rn. But if we compare any restriction of i ∈ Z+ with some j ∈ Z−, then we
can have a situation where there is no u possible to maintain both inequalities. For any
x ∈ Rn we can rewrite the corresponding inequalities such that u ∈ R must satisfy

1−
(
M 1

2
A
)
(j,:)

x(
M 1

2
B2

)
(j,:)

≤ u ≤
1−

(
M 1

2
A
)
(i,:)

x(
M 1

2
B2

)
(i,:)

.

There are a lot of cases where we can find some x ∈ Rn for which there exists no u ∈ R
that satisfies this inequality. But since we only want to know every x ∈ Rn for which there
does exist a u ∈ R satisfying our inequalities, we must put a restriction on x ∈ Rn. It is
shown in the proof that the choice of ρi+,i− is sufficient.

By constructing a matrix that contains all rows ρi+,i− and ρi0 , we have defined an ele-
ment of the Rack function. Since the order of the matrix N in our definition of Set(N)
does not matter, we can make the following conclusion.

K1 = Set(M0) ∩ Set(N),

where N ∈ Rack
(
M 1

2
A M 1

2
B2

)
. By choosing M1 =

(
M0

N

)
, we can denote

K1 = Set(M1).
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In a similar fashion, we can repeat this process recursively. First try to generate Mj 1
2

based
on Mj. If it exists, then continue to construct Mj+1 based on Mj 1

2
. If it does not exist,

then we need to restart with an increased value of γ. The algorithm can be summarized
in the following way.

1. Initialize γ > 0 and set j = 0 and

M0 =

(
C
−C

)
.

2. Execute the applicable step:

(a) If 1
γ
|(MjB1)| ≥ 1, then increase γ and restart the algorithm.

(b) If 1
γ
|(MjB1)| < 1, then set for every row(

Mj 1
2

)
(i,:)

=
1

1− 1
γ

∣∣∣(M0B1)(i,:)

∣∣∣ (M0)(i,:) .

3. Set

Mj+1 =

(
Mj

N

)
for any N ∈ Rack

(
Mj 1

2
A Mj 1

2
B2

)
. Execute the applicable step:

(a) If Set(Mj+1) = Set(Mj), then output Mj.

(b) If Set(Mj+1) 6= Set(Mj), then increase j by 1 and return to step 2.

The algorithm will restart whenever γ ≤ γoptimal. Otherwise, we have

CINV (dom(Uγ)) =
∞⋂
i=0

Set(Mi) = Set(Mj).

Note that this algorithm also works when B1 = 0, i.e., the state is not affected by distur-
bances. The only alteration is that Mj 1

2
= Mj, i.e., step 2 is skipped. However, physically

speaking it is not interesting. Therefore, we do not consider it as a separate case.

6.2 Algorithm Case 2

We now construct a similar algorithm in the case where D1 6= 0 and D2 = 0, i.e., the output
is influenced by the disturbance and not by the controlled input. The only difference from
the algorithm in case 1 is found in the initial set.

K0 = dom(Uγ) =

{
x ∈ Rn : |Cx+

1

γ
D1w| ≤ 1, ∀|w| ≤ 1

}
.
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Here we must construct M0 in a different manner. Similarly to how we define Kj 1
2
, we now

define the set K− 1
2

as

K− 1
2

=

{
ξ ∈ Rp : |ξ +

1

γ
D1w| ≤ 1, ∀|w| ≤ 1

}
.

By using a row-by-row analysis, we can construct the matrix M− 1
2

as

(M− 1
2
)(i,:) =

1

1− 1
γ
|(D1)(i,:)|

(
I
−I

)
(i,:)

,

where I is the identity matrix. This is done in a similar way as (6.1) is derived. Also
similar as in the construction of Mj 1

2
, we get a constraint. But this time, our constraint is

1

γ
|D1| < 1.

If this constraint is not met, then γ needs to be increased. Now we have a matrix M− 1
2

such that K− 1
2

= Set
(
M− 1

2

)
. Then we can write

K0 =
{
x ∈ Rn : Cx ∈ K− 1

2

}
,

=
{
x ∈ Rn : Cx ∈ Set

(
M− 1

2

)}
,

=
{
x ∈ Rn : M− 1

2
Cx ≤ 1

}
.

Hence, we have

M0 = M− 1
2
C.

The rest of the algorithm is the same as in the previous case. So we alter the first step
from the previous algorithm in the following way.

1. Initialize γ > 0 and set j = 0. Then execute the applicable action:

(a) If 1
γ
|D1| ≥ 1, then increase γ and restart the algorithm.

(b) If 1
γ
|D1| < 1, then initialize

M− 1
2

=



1
1− 1

γ
|(D1)(1,:)|

. . .
1

1− 1
γ
|(D1)(p,:)|

− 1
1− 1

γ
|(D1)(1,:)|

. . .

− 1
1− 1

γ
|(D1)(p,:)|


and define M0 = M− 1

2
C.
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Continue the algorithm with step 2 and 3 as defined in the previous case.

Now suppose D2 6= 0 and let D1 = 0, i.e., the output is influenced by the controlled
input and not by disturbances. Our initial set is now defined as

K0 = dom(Uγ) = {x ∈ Rn : ∃u ∈ R such that |Cx+D2u| ≤ 1} .

We can rewrite this set in the following way.

K0 = {x ∈ Rn : ∃u ∈ R such that |Cx+D2u| ≤ 1} ,

=

{
x ∈ Rn : ∃u ∈ R such that

(
C D2

−C −D2

)(
x
u

)
≤ 1

}
,

=

{
x ∈ Rn : ∃u ∈ R such that

(
x
u

)
∈ Set

(
C D2

−C −D2

)}
.

Using the Rack function from Definition 6.1.1, we can say that K0 = Set(M0) for any

M0 ∈ Rack
(
C D2

−C −D2

)
.

With M0 initialized, we can construct M 1
2

in the same manner as described in case 1.
Hence, step 2 remains the same as in case 1. Step 3 is different again. We have

K1 =
{
x ∈ K0 : ∃u ∈ Uγ(x) such that f(x, u) ∈ K 1

2

}
,

=

{
x ∈ Set(M0) : ∃u ∈ Uγ(x) such that

(
x
u

)
∈ Set

(
M 1

2
A M 1

2
B2

)}
.

In case 1, we have Uγ(x) = R. This does not hold in case 3. Now we have

Uγ(x) =

{
u ∈ R :

(
x
u

)
∈ Set

(
C D2

−C −D2

)}
.

Hence, we have 3 restrictions.

1. x ∈ Set(M0).

2. ∃u ∈ R such that

(
x
u

)
∈ Set

(
C D2

−C −D2

)
.

3. ∃u ∈ R such that

(
x
u

)
∈ Set

(
M 1

2
A M 1

2
B2

)
.

In order to obtain all restrictions for x, we define M1 =

(
M0

N

)
, with

N ∈ Rack

 C D2

−C −D2

M 1
2
A M 1

2
B2

 .
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Just as in case 1, we repeat step 2 and step 3. But step 3 is altered, in the sense that N
is now defined as

N ∈ Rack

 C D2

−C −D2

Mj 1
2
A Mj 1

2
B2

 .

When we have D1 6= 0 and D2 6= 0, i.e., the output is influenced by both the controlled
input and disturbances, we can almost combine the alterations of case 1 that are discussed
above. We start with constructing M− 1

2
as described above. Then we have

K0 =

{
x ∈ Rn : ∃u ∈ R such that |Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
,

=

{
x ∈ Rn : ∃u ∈ R such that M− 1

2

(
C D2

)(x
u

)
≤ 1

}
,

=

{
x ∈ Rn : ∃u ∈ R such that

(
x
u

)
∈ Set

(
M− 1

2
C M− 1

2
D2

)}
.

Hence, M0 ∈ Rack
(
M− 1

2
C M− 1

2
D2

)
. This difference from the case D1 = 0 and D2 6= 0

comes back similarly in step 3. We summarize the algorithm in the case D1 6= 0 and
D2 6= 0.

1. Initialize γ > 0 and set j = 0. Then execute the applicable action:

(a) If 1
γ
|D1| ≥ 1, then increase γ and restart the algorithm.

(b) If 1
γ
|D1| < 1, then initialize

M− 1
2

=



1
1− 1

γ
|(D1)(1,:)|

. . .
1

1− 1
γ
|(D1)(p,:)|

− 1
1− 1

γ
|(D1)(1,:)|

. . .

− 1
1− 1

γ
|(D1)(p,:)|


.

Now we define

M0 ∈ Rack
(
M− 1

2
C M− 1

2
D2

)
.

2. Execute the applicable step:

(a) If 1
γ
|(MjB1)| ≥ 1, then increase γ and restart the algorithm.
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(b) If 1
γ
|(MjB1)| < 1, then set for every row(

Mj 1
2

)
(i,:)

=
1

1− 1
γ

∣∣∣(M0B1)(i,:)

∣∣∣ (M0)(i,:) .

3. Set

Mj+1 =

(
Mj

N

)

for any N ∈ Rack

(
M− 1

2
C M− 1

2
D2

Mj 1
2
A Mj 1

2
B2

)
. Execute the applicable step:

(a) If Set(Mj+1) = Set(Mj), then output Mj.

(b) If Set(Mj+1) 6= Set(Mj), then increase j by 1 and return to step 2.

6.3 Algorithm Case 3

Now we assume that we have a multivariable controlled input, i.e., u ∈ Rm with m > 1.
In all the cases above, we use the Rack function. This function is based on a single control
input. Hence, we cannot apply it in the same way when u is not a single input. However,
we can use it in a different manner. Suppose we follow the algorithm in case 1 or 2,
whichever is applicable, but now we have u ∈ Rm with m > 1. Then we would encounter
a situation where we would need to use the Rack function at some point. The situation
can be sketched as the following problem:
We want to determine the set

S =

{
x ∈ Rn : ∃u ∈ Rm such that

(
x
u

)
∈ Set(M)

}
,

for some matrix M ∈ Rl×(n+m). To construct this set, we define v =

 u1
...

um−1

. Then we

can denote u =

(
v
um

)
. The first step is to construct the set

(
x
v

)
∈ Rn+(m−1) : ∃um ∈ R such that

 x
v
um

 ∈ Set (M)
 .

This set can simply be denoted as Set(Mtemp), where Mtemp ∈ Rack(M). Using this, we
can rewrite S as

S =

{
x ∈ Rn : ∃v ∈ Rm−1 such that

(
x
v

)
∈ Set(Mtemp)

}
.
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We can repeat these steps recursively m times to obtain a matrix N ∈ Rlm×n such that
S = Set(N), where lm denotes the appropriate number of rows of N . In other words, we
apply the Rack function m times. Therefore we have the following definition.

Definition 6.3.1. Let M ∈ Rl×(n+m) for m > 1. We define Rackm(M) as the set of
matrices M̃ , such that M̃ ∈ Rack(Mtemp) for some Mtemp ∈ Rackm−1(M).

Note that Rack1(M) is simply Rack(M) as defined in Definition 6.1.1. As a result we have
the following.

Proposition 6.3.2. Let M ∈ Rl×(n+m). Let M̃ ∈ Rackm(M). Then

x ∈ Set(M̃) ⊆ Rn ⇔ ∃u ∈ Rm such that

(
x
u

)
∈ Set(M) ⊆ Rn+m.

When we want to apply the Controlled Invariant Kernel algorithm with multi-variable
input, we simply follow the steps from either case 1 or case 2 (whichever is applicable),
but instead of Rack we use Rackm.

6.4 Algorithm Case 4

We assumed in all the cases above that dom(Uγ) is a bounded set, so we can construct
CINV (dom(Uγ)). Now assume that dom(Uγ) is unbounded. Then we want to construct
CINV (K), where K is defined as in Definition 5.0.4. We alter the algorithms from the
previous cases in step 1 only. Because the only difference is that K0 is defined as K, instead
of dom(Uγ). We start with the case D1 = D2 = 0. Then we have

K0 = {x ∈ Rn : |Cx| ≤ 1, |x| ≤ L} .

If we choose L very small, then we try to construct a controlled invariant subset of a very
small square/cube/hypercube. Since this is not useful most of the time, we want to choose
a large enough L such that the restrictions of dom(Uγ) are not redundant. Hence, we want
to cut off dom(Uγ) in the direction that is infinitely large. In order to do this, we would need
to construct dom(Uγ) in the usual way. Then we want to choose L such that no restrictions
of dom(Uγ) become redundant for K. Even better, we want to choose L such that most
constraints of |x| ≤ L become redundant. This can be calculated, and therefore we have a
lower bound for L. However, to determine this lower bound, or the exact value for L for
that matter, we need to know the dynamics of the system itself. It is even possible that
you can construct CINV (dom(Uγ)) even though dom(Uγ) is unbounded, because there is
some Kj that must be bounded. This is the case in the following example.

Example 6.4.1. Consider the system

x(k + 1) =

(
1 −1
0 2

)
x(k) + w(k) +

(
0
1

)
u(k),

z(k) =
(
1 0

)
x(k).
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Then we have

dom(Uγ) = {x ∈ Rn : |x1| ≤ 1} ,

which is clearly an unbounded set. Now if we choose L ≤ 1, then we have

K0 = K = {x ∈ Rn : |x1| ≤ 1, |x| ≤ L} = {x ∈ Rn : |x| ≤ L} .

Hence, the constraints from dom(Uγ) are redundant. Therefore it is possible that we
consider a set that is too small to have a controlled invariant subset. Because computing the
algorithm takes time, we want to do this as efficiently as possible. In this case, we can try
to compute the next step of the Controlled Invariant Kernel algorithm with K0 = dom(Uγ),
with γ > 0 sufficiently large. We have

K 1
2

=

{
ξ ∈ Rn : ξ +

1

γ
w ∈ K0 ∀|w| ≤ 1

}
=

{
ξ ∈ Rn :

1

1− 1
γ

|ξ1| ≤ 1

}

and

K1 =
{
x ∈ K0 : ∃u ∈ R such that Ax+B2u ∈ K 1

2

}
=

{
x ∈ K0 :

1

1− 1
γ

|x1 − x2| ≤ 1

}
.

Due to the dynamics of the system, we get restrictions in K1 that assures that the set is
bounded. Hence, CINV (dom(Uγ)) is bounded, while dom(Uγ) is unbounded.

�

In conclusion, an educated guess has to be made in order to determine L, but it is possi-
ble to construct a bounded controlled invariant subset, regardless of the boundedness of K0.

In the case where D1 6= 0 and D2 6= 0, we construct K0 as shown in the algorithm.
For example, we have constructed M0 ∈ Rl×n such that

dom(Uγ) = Set(M0).

Then we define

K0 = Set

 M0
1
L
I

− 1
L
I

 ,

where I denotes the identity matrix.

Now that we have shown how the Controlled Invariant Kernel algorithm can be imple-
mented in Matlab, we can construct the value of a controller.
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6.5 Construction of a Controller; Single-Input Case

When the applicable algorithm is finished, we have a nonempty CINV (K), that can be

described as the intersection of half-spaces. Hence, we have a matrix M̃ ∈ Rl̃×n such that
CINV (K) = Set(M̃). If we would apply step 2 and step 3 of the applicable algorithm one
more time, then we would construct a matrix M ∈ Rl×(n+m), such that M̃ ∈ Rackm(M).
Based on the matrix M , we construct explicit continuous selection functions.
We consider u ∈ R. During the proof of the Rack function, we have already shown two
controlled inputs of the form g : Rn → R.

Proposition 6.5.1. In the framework of Proposition 6.1.2, let Z+ and Z− be nonempty.
Based on (6.6), we define φM+ : Rn → R by

φM+ (x) = min
i+∈Z+

1− (M1)(i+,:) x

(M2)i+
.

Based on (6.7), we define φM− : Rn → R by

φM− (x) = max
i−∈Z−

1− (M1)(i−,:) x

(M2)i−
.

Then φM+ and φM− are continuous and satisfy(
x

φM+ (x)

)
∈ Set(M), ∀x ∈ Set(M̃),(

x
φM− (x)

)
∈ Set(M), ∀x ∈ Set(M̃),

where M̃ ∈ Rack(M).

This proposition is derived from the proof of Proposition 6.1.2. The functions φM+ and φM−
are explicitly constructed continuous selections from the set-valued map R(x), defined in
the proof of Theorem 5.0.1. In the proof of Theorem 5.0.1, it is also shown that R(x) is
compact-valued for every x ∈ CINV (K). Therefore, we can conclude that any convex
combination

λφM+ + (1− λ)φM− ,

where λ ∈ [0, 1], is also a continuous selection function. Recall that we desire a controller
with the property g(0) = 0. Since we have

φM+ (0) = min
i+∈Z+

1

(M2)i+
,

φM− (0) = max
i−∈Z−

1

(M2)i−
,
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we know that φM+ (0) = −φM− (0) by the symmetry with respect to the origin, from Lemma
5.0.5. Hence, if we define g : Rn → Rm as

g(x) =
1

2
φM+ (x) +

1

2
φM− (x),

then we have a continuous selection with the property g(0) = 0.

6.6 Construction of a Controller; Multiple-Input Case

For u ∈ Rm we cannot apply the Rack function. We worked around this problem by
defining Rackm. For the construction of a controller, we have shown that we are able to
construct it using the input of the Rack function. Recall that Rackm is actually the Rack
function applied recursively m times. We use this to construct a multi-variable controller,
as shown in [10].

We consider the situation where CINV (K) = Set(M̃), with M̃ ∈ Rackm(M), as described
in the previous section. We want to construct a continuous selection function g : Rn → Rm.
We construct this function step by step, starting with g1 : Rn → R. To do that, we
construct a matrix M∗ ∈ Rl∗×(n+1) such that M∗ ∈ Rackm−1(M). By the definitions of
Rack and Rackm, we know M̃ ∈ Rack(M∗). Then we apply the way we constructed a
controller in case we have single-input controller for g1, resulting in

g1(x) =
1

2
φM

∗

+ (x) +
1

2
φM

∗

− (x).

Next, we apply a similar step using the now known value of g1(x). We construct a matrix

M̂ ∈ Rl̂×(n+2) such that M̂ ∈ Rackm−2(M). Similar as above, we have M∗ ∈ Rack(M̂).
Then we define g2 : Rn → R as

g2(x) =
1

2
φM̂+

(
x

g1(x)

)
+

1

2
φM̂−

(
x

g1(x)

)
.

In order to construct the other component of g, we apply the same steps, expressing gi(x)
in terms of x and every gj(x) where j < i. The last component is described as

gm(x) =
1

2
φM̂+


x

g1(x)
...

gm−1(x)

+
1

2
φM̂−


x

g1(x)
...

gm−1(x)

 .

As a result, we have g : Rn → Rn with g(0) = 0.
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Chapter 7

Improvements on the Controlled
Invariant Kernel Algorithm

We have introduced a number of improvements in the CIK algorithm with respect to the
original algorithm. In this chapter we discuss these improvements.

7.1 Stopping criterion

One of the issues that arises in the algorithm is to determine whether we should decrease
γ or if we should construct a controller. We do that based on a pre-determined precision.
The CIK algorithm terminates whenever γ ≤ γoptimal and produces a matrix M̃ such that
CINV (K) = Set(M̃) whenever γ > γoptimal. Therefore we create the following algorithm.

1. Give the system and a desired precision as input.

2. One of the following is executed:

(a) If the system is not controllable, the algorithm is terminated.

(b) If the system is controllable, the needed parameters are initialized. We set γ = 0
and δ = 10.

3. The applicable CIK algorithm is executed.

(a) If the CIK algorithm is terminated, set γ = γ + δ and start the CIK algorithm
again.

(b) If the CIK algorithm produces a controlled invariant set, then execute one of
the following:

i. If δ is greater than the precision, then set δ = δ
2

and γ = γ − δ. Then start
the CIK algorithm again.

ii. If δ is less than or equal to the precision, then output the matrix M̃ and
the matrix M .
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We choose δ = 10 based on trial and error. M̃ is the matrix for which CINV (K) = Set(M̃).
The matrix M is needed to construct the feedback controller. In order to apply the knowl-
edge gained from this algorithm, it is sufficient to use the matrix M only. One can start the
system with zero initial conditions, and then determine the feedback controller based on
M . The matrix M̃ is given so the user can check if the state actually remains in CINV (K).

This algorithm requires a lot of computational power. It is beneficial if we can decrease
the computational time of this algorithm. We approach this problem in two ways.

7.2 Deletion of Redundancies

Shamma proposes in [10] that linear programs are required for computationally efficient
implementation to remove redundant constraints. Due to the Rack function, we may gain
several redundant constraints when making the step from Mj to Mj+1. We implemented
our algorithm in Matlab, enabling us to use the command convhulln. We give our matrix
Mj+1 as input. The matrix represents the set denoted by Set(Mj+1). The command con-
vhulln determines the convex hull of the given set. A convex hull of X is the smallest convex
set containing X. If Set(Mj+1) is not a convex hull, then convhulln(Mj+1) is described as a
subset of the rows of Mj+1. We remove all rows of Mj+1 that are not needed to construct
the convex hull, i.e., are redundant. With the removal of these rows, we have to make less
calculations when executing the next steps.

Unlike Shamma, we do not only remove redundant rows when computing Mj+1. We also
implemented several steps in our Rack function to remove redundant constraints. Since
Rackm is defined as applying the Rack function m times recursively, the number of con-
straints increases rapidly.

Consider the framework of Proposition 6.1.2. Suppose that we want to determine an
element of Rackm(M), where M ∈ Rl×(n+m). In the worst case, we have Z0 as the empty
set and both Z+ and Z− with length 1

2
l. Since we combine every element of Z+ with every

element of Z−, we get a matrix M̂ ∈ Rack(M), where M ∈ R 1
4
l2×(n+m−1). Hence, the

number of constraints have already gone up by applying only one Rack function. When
we determine M̃ ∈ Rackm(M) without removing any redundant constraints, the matrix
M̃ implies a number of constraint of the order O(l2m).

To reduce the number of constraints that Rackm produces, we implement a series of steps.
By Lemma 5.0.5, we know that any set Kj is symmetric with respect to the origin. There-
fore, when applying Rack(M), we know that

∀i ∈ Z+ ∃j ∈ Z− such that M(i,:) = −M(j,:).

As a result, ρi,j is a row of zeros. Since a row of zeros implies no constraint at all, we can
remove these. This is easily done with the command any.
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Next, we remove any copies of rows. Since the ρi+,i− are scalings of M(i+,:) and M(i−,:), it
can happen that two different combinations result in the same rows. To remove the same
row, we use the command unique.

Finally, we apply our convhulln, which is already explained. The Rack function is im-
plemented in the following way.

1. Give the matrix M and the number of controlled inputs m as input.

2. Define M1, M2, Z+, Z− and Z0 as described in Proposition 6.1.2.

3. Construct all ρi+,i− and ρi0 and add them together in a matrix N . (The order does
not matter).

4. Remove any rows of zeros of N .

5. Remove any copies of rows of N .

6. Remove any redundant rows of N .

7. Execute one of the following:

(a) If m = 1, then output N .

(b) If m > 1, then execute the Rack function with the input N and m− 1.

By adding steps 4 through 6, the number of calculations is generally decreased a lot.
Since steps 4 and 5 hardly take any time to compute, this is very beneficial to reduce the
computational time.

7.3 Computational Storage

Suppose we start the CIK algorithm for a fixed γ. The matrices M0 and M 1
2

are determined

before applying the Rack function to the matrix N = M 1
2

(
A B2

)
. As mentioned in the

previous section, any row ρi+,i− in the Rack function is a scaling from the rows N(i+,:) and

N(i−,:). As a result, we construct the matrix M1 =

(
M0

M̃

)
, where M̃ ∈ Rack(N). After the

redundant rows have been removed from M1, it is possible that some of the rows of M1 are
also stated in M0. As a result, after determining M1 1

2
and applying the Rack function to

N2 = M1 1
2

(
A B2

)
, there are some rows ρ̂i+,i− based on (N2)(i+,:) and (N2)(i−,:) such that

(N2)(i+,:) = N(i+,:) and (N2)(i−,:) = N(i−,:). Hence, the calculation is unnecessarily repeated,
since the resulting ρ̂i+,i− is already represented by ρi+,i− . This is filtered by step 5 in the
previous algorithm, but it would be more efficient to remove the calculation in the first
place. Therefore, we have implemented the following solution.
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When Mj+1 is computed and Set(Mj+1) 6= Set(Mj), we check if there are rows which
also occur in Mj. We do this with the command ismember. The indices of the rows of
Mj+1 are stored in a new vector, called compRows. The next step in the CIK algorithm is
to construct M(j + 1)1

2
. Note that neither the size, nor the order of the rows is changed

with respect to Mj+1. Then the Rack function the applicable matrix. To ease the notation,

we assume the next step is to construct Rack of the matrix M(j+1) 1
2

(
A B2

)
. This matrix

has not changed the order and the number of rows with respect to Mj+1. Therefore, we
know that the combination of rows, with the indices stored in compRows, have already

been determined when Rack
(
Mj 1

2

(
A B2

))
was computed. By not determining the rows

ρi+,i− , where i+, i− ∈ compRows, we do not loose any constraints, since they were already
produced in Mj+1. To show how effective this can be, consider the following example.

Example 7.3.1. Assume we apply the CIK algorithm on a system with scalar control and
arrive at the matrix Mj ∈ R8×n. Based on Mj, we construct a matrix N ∈ R8×(n+1), such

that we need to calculate Rack(N). Suppose Z+ =


1
3
5
7

 and Z− =


2
4
6
8

. The number of

combinations from Z+ and Z− is then 16. Then we have to check whether constraints are
redundant for a matrix Mj+1 ∈ R24×n.

It is realistic to assume that 6 of the rows Mj were already in Mj−1. For example

compRows =


1
2
3
4
5
6

. This would imply that we do not have to check any combinations

involving two indices from compRows. Hence, we only have 7 combinations left, i.e., we
have to check for redundancies for a matrix Mj+1 ∈ R15×n.

�

In this example, the dimensions are relatively low, so the result should not be noticeable
when timing the algorithm. However, when the number of constraints is increased, the
impact of the compRows becomes more significant.

There is one problem with this algorithm. In case we have a system where D2 6= 0 and u ∈

Rm, with m > 1, then we need to determine an element from Rackm

 C D2

−C −D2

Mj 1
2
A Mj 1

2
B2

.

The indices of the first rows are elements of compRows after the first step for obvi-
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ous reasons. Now suppose that N ∈ Rack

 C D2

−C −D2

Mj 1
2
A Mj 1

2
B2

. If we use our knowl-

edge from compRows, a lot of constraints are not computed in N . The matrix M̃ ∈

Rackm

 C D2

−C −D2

Mj 1
2
A Mj 1

2
B2

 is based on M̃ ∈ Rackm−1(N). Therefore, we left out a lot of

constraints, before applying a Rack function.
The idea of compRows is that known rows are not compared with each other. When we
have u ∈ Rm with m > 1, we need to apply Rackm. In the first step of the Rackm, we
apply Rack. There we would filter out combinations of known rows, which results in all
new rows. Then the next steps of Rackm−1 consist of all new rows, which seems to be
what we want. However, we are missing a lot of constraints in this case. Consider the
first step again, but instead of filtering out the combinations of known rows, we store the
combinations of known rows as NewcompRows. As a result, the next step of Rackm−1

consists of combinations of known rows and new rows, resulting in constraints that we
would miss if we filtered combinations of compRows out in the first place. We keep track
of all known combinations during the first m−1 times the Rack function is applied. Then,
in the final step, we actually filter out all known combinations. To realize this construction,
we define the following Rack function.

1. Give the matrix M , the vector compRows and the number of controlled inputs m as
input.

2. Define M1, M2, Z+, Z− and Z0 as described in Proposition 6.1.2.

3. Compute all combinations of Z+ and Z− and denote it as matrix Z.

4. Execute one of the following:

(a) If m = 1:

i. Remove all elements of Z0 that are also in compRows.

ii. Remove all rows of Z of which both elements also occur in compRows.

(b) If m > 1:

i. Define all elements of Z0 that are also in compRows as NewcompRows.

ii. Add all indices of rows of Z of which both elements occur in compRows to
NewcompRows.

5. Construct all ρi+,i− and ρi0 based on Z+, Z− and Z0, and add them together in a
matrix N . (The order does not matter)

6. Remove any rows of zeros of N .

7. Remove any copies of rows of N .
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8. Remove any redundant rows of N .

9. Execute one of the following:

(a) If m = 1, then output N .

(b) If m > 1, then execute the Rack function with the input N , NewcompRows
and m− 1.

7.4 Implementation of Controlled Input Constraints

Up until this point, we have constructed constraints on our controlled input based on the
state and the output vectors. In the case where D1 = D2 = 0, we have Uγ(x) = Rm for
every x ∈ dom(Uγ). In other words, we are able to apply an infinitely large controlled
input, in theory. This is not possible in practical applications. Therefore, we implemented
an extra input to apply upper and lower bounds on the controlled input.

Suppose that the set of possible controlled input values can be described as Set(E), where
E ∈ Rl×m. Here l is the number of constraints and m is the dimension of the controlled
input. This notation already implies that the origin must be an interior point, and the set
of possible values must be convex, in order to implement the restrictions on the controlled
input.

The matrix E is given as another input in our algorithm. After determining that the
pair (A,B2) is controllable, the first step is to construct M0. Based on the system itself, a
different approach is applied. One way or another, we want to construct dom(Uγ). Recall
that this set is given by

dom(Uγ) =

{
x ∈ Rn : ∃u ∈ Uγ(x) such that |Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
,

where Uγ(x) is defined as

Uγ(x) =

{
u ∈ Rm : |Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
.

When the constraints on the controlled input u are applied, we obtain

Uγ(x) =

{
u ∈ Set(E) : |Cx+

1

γ
D1w +D2u| ≤ 1, ∀|w| ≤ 1

}
.

In the case where D2 6= 0, the matrix E is instantly needed, as the Rack function needs
to be applied. Recall that

M0 ∈ Rackm
(
C D2

−C −D2

)
,
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or

M0 ∈ Rackm
(
M− 1

2
A M− 1

2
B2

)
,

dependent on whether D1 = 0 or not. For argument sake, we assume that D1 6= 0. In order
to implement the constraints on the controlled input, we add the matrix

(
0 E

)
, where 0

denotes a matrix of n by n, as input in our Rack function. Resulting in

M0 ∈ Rackm
(

0 E
M− 1

2
A M− 1

2
B2

)
.

As a result, the matrix M0 represents the set of state vectors for which it is possible to
attain ||z|| ≤ 1 given the desired constraints on our controlled input.

Similar to the matrices

(
C D2

−C −D2

)
and

(
M− 1

2
A M− 1

2
B2

)
, the matrix

(
0 E

)
reoc-

curs every time the Rack function is applied. Note that when we do not assume that
Set(E) is symmetric with respect to the origin, then the resulting CINV (domUγ) is also
not symmetric with respect to the origin. However, the advantage of using a matrix E
such that Set(E) is a bounded set is that K1 has to be a bounded set, i.e., CINV (dom(Uγ)
may be constructed.
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Chapter 8

Numerical Results

In this chapter we consider several examples to describe different parts of the algorithm
proposed in Chapter 7. The first example is used to show how a controlled invariant kernel
is constructed step by step. Afterwards, we discuss the precision of the approximation of
γoptimal affects the computational time of the algorithm.

8.1 Step-by-Step Analysis

We start by showing how the presented algorithm constructs a controlled invariant set.
Consider the following system

x(k + 1) =

(
−1 1
0 2

)
x(k) +

(
1 0
0 1

)
w(k) +

(
1
1

)
u(k),

z(k) =

(
3 0
0 1

)
x(k),

with initial condition x(0) =

(
0
0

)
.

The first step is to construct K0, depicted in Figure 8.1.

−1
3

0 1
3

x1

1

−1

x2

Figure 8.1: The boundary of K0.
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The set K0 is represented by the matrix M0 =


3 0
0 1
−3 0
0 −1

. We assume for now that

γ = 4. Then we construct M 1
2

=


12 0
0 4

3

−12 0
0 −4

3

, which represents K 1
2
. In Figure 8.2, we

depict a sketch of both K0 and K 1
2
. We see that K 1

2
has only shrunk in size.

x1

x2

Figure 8.2: Sketch of K0 and K 1
2
, where they are represented by the red and blue lines

respectively.

The next step in the algorithm is constructing K1 with the use of the Rack function. This
time, we construct K1 step by step. Recall

K1 =
{
x ∈ K0 : ∃u ∈ R such that Ax+B2u ∈ K 1

2

}
.

In words, for every value of x ∈ K0, we compute Ax. Then we need to determine for what
values of x there exists a u ∈ R such that Ax + B2u ∈ K 1

2
. Therefore, our first step is to

depict Ax for every x ∈ K0, as done in Figure 8.3.
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Figure 8.3: Sketch of Ax for every value of x ∈ K0.
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Now we check for what values of u ∈ R we have Ax + B2u ∈ K 1
2
. We depict it in Figure

8.4.
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Figure 8.4: Sketch of Ax for every value of x ∈ K0, K 1
2

and lines constructed by B2u,
represented by the red, blue and green lines respectively.

The green lines represent the possible ways that the controlled input can push the state
vector to. Hence, every state x such that Ax lies between the two lines in the middle, can
be controlled into K 1

2
. The points that lie outside these lines cannot be controlled into

K 1
2
, as can be seen by following the top or bottom green line. As a result, we obtain the

extra constraints for K1, as depicted in Figure 8.5. In the algorithm, K1 is described by

the matrix M1 =


3 0
0 1
−3 0
0 −1
6
5

6
5

−6
5
−6

5

.

−1
3

0 1
3

x1

1

−1

x2

@
@@

@
@@

Figure 8.5: The boundary of K1, where the red lines are based on K0 and the green lines
are the new constraints.

Following these steps in the same manner eventually results in one of two ways. Either the
controlled invariant set, or there is some Kj 1

2
which is empty.
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8.2 Computational Times

In this section, we time the program for multiple cases to show where the weak points of
our algorithm are. Using the same system as described in the previous section, we apply
our algorithm with the stopping criterion described in chapter 6. By trial and error, we
found that γoptimal = 6 for this system before applying our algorithm. However, we will
not anticipate on this, and simply apply our stated stopping criterion.

In case we choose a precision of 0.1, we end up with γ = 6.0156 after 0.48 seconds.
When we choose a precision of 0.01, the algorithm ends after 6.67 seconds with γ = 6.0059.
Based on this data, we can conclude that having a better precision is not necessarily ben-
eficial. Note that γ is used to determine the maximum amplitude of the disturbance as
||w|| ≤ 1

γ
. Since the difference between these maximum amplitudes is approximately 0.003,

we can conclude that it was not worth the extra 6 seconds to compute a controller that
performs just a little bit better.

The reason that the algorithm is a lot slower when the precision is 0.01 is easily ex-
plained. When we try to compute a controlled invariant set with a value of γ that is just
below γoptimal, then the CIK algorithm makes a lot of steps before terminating. When the
precision is chosen as 0.1, the last step before completing the algorithm takes up 94 loops.
In the case of 0.01, the number of loops is significantly greater with 1535. Therefore, the
precision must be chosen with caution. In Appendix B we have added simulation results
using the constructed controllers for comparison in Figure 10.1 through 10.4.

Next we consider the system

x(k + 1) =

−1 1 0
0 2 0
1 0 1

x(k) +

1 0
0 1
1 1

w(k) +

1
1
1

u(k),

z(k) =

(
3 0 0
0 1 0

)
x(k) +

(
0 0
0 1

)
w(k) +

(
1
−1

)
u(k),

with initial condition x(0) =

0
0
0

. With a precision of 0.1 we find that γ = 9.921 after

0.64 seconds. The output can be found in Figure 10.5 in Appendix B. With a precision of
0.01, we find γ = 9.8926 after only 0.72 seconds. As a result, we see that a smaller precision
does not necessarily mean that the computational time is increased. In other words, in
this case it may be beneficial to find a sharper bound in γ, since the computational time
of the programm has not increased that much.

Note that the dimension of the state is increased in this case, but the computational
time does not change by that much. In fact, the computational time in case the precision
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is 0.01 is decreased in the second example. However, when the dimension of both the
state and the controlled input is increased much more than in the systems above, we are
not able to compute a controlled invariant set anymore. Due to the fact that the Rack
function increases the number of constraints every time it is applied, the program becomes
slower. However, Matlab runs out of memory due to rounding errors. At some point,
several constraints appear that actually should be the same. The only way to compute
any result with larger systems is to do it manually, which would take a very long time.
Another option is described in the next chapter.
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Chapter 9

Industrial Application

The problem description of this application is given to us by David van den Hurk, MSc.
This study is a lithographic application in which a wafer is exposed by a moving heat
load. Due to this exposure, the wafer will absorb significant amounts of heat, which
results in undesirable thermal stresses and deformations. To counteract these deformations,
actuators are placed at certain locations below the wafer such that forces can be applied
directly onto it. The aim of this study is to design an L1-optimal controller which will
generate optimal actuator forces to minimize the deformations induced by the scanning
heat load. To slightly simplify the problem, the wafer is considered to be a one-dimensional
beam, as shown in Figure 2.

x1 x2 x3 x4 x5

? ? ? ? ?

w1(t) w2(t) w3(t) w4(t) w5(t)

� � �F1 F2 F3

Figure 9.0: Problem setting.

The beam is discretized into a finite number of elements. At each boundary/node of these
elements (x1 through x5), we can define state variables of the system, e.g. temperature
or deformations. The scanning heat load is represented by individual heat loads w1(t)
through w5(t) at every node of the discretized beam.

9.1 Lithographic Model

The beam is assumed to be a flexible structure, of a finite number of segments, with stiffness

k =
EA

Li
,
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Figure 9.1: Mass spring damper representation of the beam.

where E is the Young’s modulus of the material, A is the area of the cross-section of the
beam, and Li is the length of one segment. At the actuator nodes, a spring kb is connected
to the fixed world, and to prevent unwanted oscillations of the system, every node of
the beam is connected to the fixed world using a damper with coefficient b. Additional
inputs to the beam are actuator forces Fact1 through Fact3, and the forces due to thermal
expansion. The magnitude of these forces is equal to EAαTi, where α is the coefficient of
thermal expansion (CTE) of the material and Ti is the average temperature increase of a
beam segment between two nodes with respect to T0 (typically T0 = 293.15 [K]), i.e.,

Ti =
Tileft + Tiright

2
,

with Tileft and Tiright the temperature at the left and right node of the beam segment. The
direction of the force due to thermal expansion is then negative for the left node, and
positive for the right node in case the material is expanding. A graphical representation
of the described model is given in Figure 9.1, and the corresponding dynamics are derived
as follows:

The dynamics of the system are based on Newton’s second law,

d2ux
dt2

=
Finternal
m

+ EAα∆T +
Fact
m

,

where Finternal are the internal forces on the nodes due to the damping, and elasticity of the
beam, Fthermal are the forces due to thermal expansion, and Fact are the actuator forces.
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We can then write this for every node as,

m
d2ux1
dt2

= k(ux2 − ux1)− bu̇x1 − EAαT1,

m
d2ux2
dt2

= −k(ux2 − ux1)− kbux2 + k(ux3 − ux2)− bu̇x2 + EAαT1 − EAαT2 + Fact1,

m
d2ux3
dt2

= −k(ux3 − ux2)− kbux3 + k(ux4 − ux3)− bu̇x3 + EAαT2 − EAαT3 + Fact2,

m
d2ux4
dt2

= −k(ux4 − ux3)− kbux4 + k(ux5 − ux4)− bu̇x4 + EAαT3 − EAαT4 + Fact3,

m
d2ux5
dt2

= −k(ux5 − ux4)− bu̇x5 + EAαT4.

To reduce the number of states in the state space description of this system, the tem-
perature profiles, and thus forces due to thermal expansion, will be provided, and are
determined by solving a separate model. Then the state space model is given with states

x =


ux1
u̇x1
...
uxn
u̇xn

, outputs z =

ux1...
uxn

, and disturbance w =

 T1
...

Tn−1

, where n = 5, and three

actuators u =

Fact1...
Factj

, where j = 3, of the form,

ẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = Cx(t).

The matrices are defined as

A =



0 1 0 0 0 0 0 0 0 0
− k
m
− b
m

k
m

0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
k
m

0 −2k+kb
m

− b
m

k
m

0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0 0 k
m

0 −2k+kb
m

− b
m

k
m

0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 k
m

0 −2k+kb
m

− b
m

k
m

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 k

m
0 − k

m
− b
m


,
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B1 =
EAα

m



0 0 0 0
−1 0 0 0
0 0 0 0
1 −1 0 0
0 0 0 0
0 1 −1 0
0 0 0 0
0 0 1 −1
0 0 0 0
0 0 0 1


, B2 =

1

m



0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0


,

C =


1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

 .

As stated in the introduction: The aim of this study is to design an L1-optimal controller
for the presented model which will generate optimal actuator forces to minimize the de-
formations induced by the scanning heat load/temperature profiles. Please refer to table
below for the parameter values.

E 130e9 [Pa]
ρ 2329 [kg/m3]
Li 0.025 [m]
A 0.775·10−3[m2]
kb 0.5e7 [N/m]
b 1000 [Ns/m]
α 2.6e-6 [1/K]

Table 9.1: Model Parameters.

9.2 Numerical Results

The algorithms discussed in this paper are based on dynamical systems that are discrete
in time. Therefore, in order to apply our algorithm, we need to discretize this system in
time. There are multiple ways to discretize a system. The standard ways to discretize are
the Forward and Backward Euler and the Central Difference methods. We choose to apply
the Forward Euler method, as an example.

The method results in the discretized system

x(k + 1) = Adx(k) +B1dw(k) +B2du(k),

z(k) = Cx(k),
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where the matrices are defined as

Ad = I + hA,

B1d = hB1,

B2d = hB2,

where h denotes the step size. We take h = 0.001, since it is reasonable for the given
situation that the actuators can be adjusted after every thousandth of a second.

Next, we need to specify desired criteria. In this study, any deformation of the nodes
is unwanted. However, we need to determine a criterion in order to apply one of the dis-
cussed algorithms. Therefore, we say that the system performs well if the deformation is
not bigger than one nanometer, i.e., we want ||z|| ≤ 10−9.

Since our algorithms construct a controlled invariant set such that ||w|| ≤ 1
γ

and ||z|| ≤ 1,
we need to rewrite our current system. This is done by a simple scaling argument.

We want to express z in nanometers. Therefore, we choose to substitute every 1 me-
ter to 109 nanometers for every parameter. As a result, the matrices Ad, B1d and B2d alter
and the state x is expressed in nanometers. Then we can choose to not change the matrix
Cd, since the output z is then expressed in nanometers, i.e., the desired criterion is ||z|| ≤ 1.

Finding a controlled invariant set, given a fixed γ, for a system with this many dimensions
takes a long time. In the algorithm designed to approach γoptimal, a controlled invariant
set is constructed for multiple values of γ. Hence, the time to compute the best possible
controller for this system takes a very long time. However, it might not even be necessary
to apply this algorithm, as we already know the maximal amplitude of the disturbance.
We have ||w|| ≤ 0.35349, hence, γ = 2.829. These numbers are provided by David van den
Hurk, MSc.

Notice that dom(Uγ) = {x ∈ R10 : |Cx| ≤ 1} is an unbounded set for every γ > 0. As
stated in Chapter 6, we choose a bounded set K0 = K ⊂ dom(Uγ) as defined in Def-
inition 5.0.4, so we may construct CINV (K). However, if we choose K0 = dom(Uγ),
then the algorithm produces a bounded set K1. Therefore we simply choose to construct
CINV (dom(Uγ)).

For γ = 0.2829, the CIK algorithm terminates after K1 is constructed. This is not sur-
prising, considering the value of γ. We cannot base any conclusions on this result, besides
that we are not able to maintain our performance for this amplitude of the disturbance.
However, this is an exceptional situation where we can control the disturbance input. The
heat load is applied by a laser, which we can switch off at any point in time. Since we know
the temperature profile of the model, we have a lot more knowledge about this problem
than we are able to use. It also means that we can search for a controlled invariant set with
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Figure 9.2: A graphical representation of the regulated output.

a lower disturbance amplitude. At the specific point in time where the heat load exceeds
our desired amplitude, we simply switch the laser off, until the heat load has decreased.

Due to a lack of time, we are not able to determine any γ > 0 for which there exists
a controlled invariant set. However, that does not imply that we have no result. For
γ = 30 we are able to construct the set K11 (the final step before the algorithm termi-
nates). Since our system has the initial value x(0) = 0, we know x(0) ∈ K11. The physical
interpretation of K11 is that for any value x(k) ∈ K11 we can construct an input u such that
x(k + 11) ∈ dom(U30) when the worst possible values of the disturbance is applied. The
set K11 is represented by the matrix M11 ∈ R20×10. Hence, the set K11 is an intersection
of 20 halfspaces.

The algorithm produced another matrix N ∈ R20×13, which is needed in order to con-
struct the controlled input. The matrix is defined as N = M10 1

2

(
A B2

)
. As a result, we

have M11 ∈ Rack3(N). Based on the matrix N , we construct a controller as defined in
chapter 6. The constructed controller ensures us that our performance is guaranteed for
0.011 seconds in the worst case scenario. Since the disturbance is known, and it is not the
worst case, we expect that this controller succeeds in maintaining our desired performance
for longer than 0.011 seconds.

Our expectations are met when applying a scaled heat load, as can be seen in Figure
9.2. 5 lines are depicted, representing the 5 regulated output components. To clearly show
that the system satisfies our desired condition ||z|| ≤ 1 for over 50 steps, i.e., more than
0.05 seconds, we added two dashed lines, representing the upper and lower bound.
Therefore, we can conclude that we may give a recommendation to use this information
in the following way. Since our constructed controller is discrete in time, we recommend
that the L1 controller is designed to adjust accordingly after every thousandth of a second,
based on the constructed `1 controller. Since we measure the state constantly, we know
the specific point in time when the system does not meet our desired condition anymore.
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When this happens, we are able to temporarily shut off the laser, while the actuators
remain active. According to Definition 2.2.1, the system is globally exponentially stable
when the disturbance disappears. In other words, the amplitude of the output decreases.
The laser can be switched back on again once the state has reached K11 again.

This specific case is not realistic in the sense that it is not beneficial to turn the laser
on and off again approximately every 0.05 seconds. Therefore, more research needs to be
done to find a more suitable controller based on the presented methods.
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Chapter 10

Conclusion

In this thesis, a new algorithm to solve state-space systems with feedback control has been
proposed. The constructed algorithm is applicable to all systems defined as (2.1)−(2.4),
with a controllable pair (A,B2). In order to prove the effectiveness of the algorithm, sev-
eral properties of set-valued maps and invariance have been defined. Based on a paper
of Jeff Shamma [10], the proposed algorithm involves several new ingredients leading to
improved performances. One major advantage is that the required assumptions meet more
realistic problems, while assuring the same accurate result. Moreover, the efficiency of the
algorithm has been improved, thanks to the introduction of new features. Numerical tests
have been successfully performed, including the application to an industrial problem.

The main ingredients of the proposed algorithm are summarized in the following.

• The matrices of a linear time-invariant system that is discrete in time,

• possible constraints on the controlled input,

• a tolerance.

When the algorithm starts running, a number of controlled invariant sets is constructed.
After each successfully constructed controlled invariant set, we check if the stopping crite-
rion is met. If it is, then the algorithm produces two matrices and a number γ as output.
The first matrix is needed to compute the CIK, using Definition 6.0.2. The second matrix
is required to construct a nonlinear continuous controller that is internally stabilizing with
performance γ. Here γ is an approximation of γoptimal, with a precision that is defined
as input. When applying this feedback controller, the regulated output has a maximum
amplitude of 1 or less. This holds for every kind of disturbance with a amplitude of 1

γ
or

less. In conclusion, the algorithm allows us to construct a near-optimal `1 controller.
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10.1 Future Research

With the improvements made in the original algorithm of Shamma [10], there are still a lot
of ways to make the algorithm run more efficient. In this section, we discuss what types
of research can be done in order to improve the algorithm presented in this thesis.

10.1.1 New Stopping Criterion

We have defined a stopping criterion in chapter 7. In the algorithm we set δ = 10. We
keep dividing δ by 2 if a certain criterion is met, until δ is less than or equal to our desired
precision. The value 10 is based purely on executed simulation results. It has no theoretical
support of any kind. Besides that, this approach has a slow convergence. With the use of
different optimization techniques, we should be able to develop a stopping criterion that
is way more efficient and theoretically supported.

10.1.2 Redundancy Determination

One reason that the presented algorithm has a large computational time when the di-
mensions increase, is due to the way we determine which constraints are redundant. We
currently use the command convhulln, because it is the fastest approach that we are aware
of. However, it still takes a long time to compute the convex hull when the number of
constraints is large. It might be possible to determine a faster approach. As a suggestion,
we recommend that the properties of Lemma 5.0.5 are used as an advantage. For example,
when we know that some row M(i,:) represents a redundant constraint, then we may also
conclude that −M(i,:) is a redundant constraint, based on the symmetry with respect to
the origin.

10.1.3 Constructing Controller

As Shamma has showed us in [10], it is possible to construct multiple controllers that have
the same performance. In Chapter 6 we have stated that both controllers in Proposition
6.5.1 and any convex combination of them achieves a performance of γ. Even though our
choice of g(x) = 1

2
(φM+ (x) + φM− (x)) is the only one such that g(0) = 0, this does not mean

that it outperforms any other convex combination of φM+ and φM− . Besides, this is not the
only way to construct controllers, as is shown in [9], where they use a scaling argument
to obtain g(0) = 0. It is possible that these controllers outperform the previously stated
controllers.
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10.1.4 Implementing Knowledge about Disturbances

During the computation of any of the Kj and Kj 1
2
, the maximum amplitude is the only

aspect taken into account, regarding the disturbances. However, we should be able to
construct bigger sets Kj and Kj 1

2
if we have some information about the disturbance at

specific points in time.

Consider the following. Assume we have a compact set K0. By definition, we have

K 1
2

=

{
ξ ∈ Rn : ξ +B1w ∈ K0, ∀|w| ≤ 1

γ

}
.

The set K 1
2

is literally based on every possible value that the disturbance w could assume.

If we know that w is going to be bounded within a certain set (so we use information
besides the amplitude), then we would obtain a bigger set than K 1

2
. For instance, suppose

that we have a disturbance w ∈ R+. Then we obtain the set

K̂ 1
2

=

{
ξ ∈ Rn : ξ +B1w ∈ K0, ∀w ∈ [0,

1

γ
]

}
⊃ K 1

2
.

However, the set K̂ 1
2

is not symmetric with respect to the origin.

We now propose another approach. Suppose that we have a disturbance w ∈ R2 and
we know that ||w1|| ≤ 1

γ
and ||w2|| ≤ 1

5γ
. Normally, we would construct K 1

2
as defined

above. But we can apply this knowledge about w2 to prevent a situation where K 1
2

is based

on values of w2 >
1
5γ

. Consider the following set:

K̃ 1
2

=

{
ξ ∈ Rn : ξ +B1

( 1
γ

0

0 1
5γ

)
w ∈ K0, ∀|w| ≤ 1

}
.

This is an effective way to make use of the provided information, without losing any of the
properties.

10.1.5 Different Performance Criteria

Throughout this thesis, we stated that we desired ||z|| ≤ 1, and wanted to find the max-
imum amplitude of the disturbance for which there still exists a controlled invariant set.
However, in the practical application we encountered a different situation. Here we know
the maximum amplitude of the disturbance and want to determine the smallest possible
amplitude for which there exists a controlled invariant set.

This can be achieved by using the presented algorithms. If we apply one of the algo-
rithms to our system, then we derive a controlled invariant set, which has the properties
||z|| ≤ 1 and ||w|| ≤ 1

γ
. Suppose that we know ||w|| = β. Then we can simply multiply

the whole system with a factor βγ, to obtain a controlled invariant set with the properties
||z|| ≤ βγ and ||w|| ≤ β.
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10.2 Recommendation

Because of its numerous applications, we started a research on `1 optimal control. It turns
out that there is little information to be found about this subject using a state space ap-
proach. The most substantial research is done by Jeff Shamma in [10] and [9]. In this
thesis, we have shown a few improvements on the algorithms that Shamma has discovered.
However, given the possibilities to expand this research, we conclude that the full potential
of `1 optimal control has not been discovered yet.

The most prominent subject, that the presented algorithms are based on, is viability the-
ory. Therefore, we recommend that in order to continue this research, one has to have
some basic knowledge about this subject. Note that we do not recommend that the con-
tinuation of this research must be based on viability theory alone. It is likely that further
improvements on `1 optimal control are based on different fields within mathematics.
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Appendix A

Consider the setting of Theorem 5.0.1. We need a so-called selection theorem. Ernest
Michael specialized in selection theorems. We use the following theorem of his.

Theorem 10.2.1. [8, Theorem 1]. The following properties of T1-space X are equivalent:

• X is paracompact; and

• If Y is a Banach space, then every lower semicontinuous set-valued map φ : X →
Fc(Y ) admits a single-valued continuous selection.

Fc(Y ) is defined as the family of all closed convex subsets of Y .

Here we show that we are allowed to apply this theorem to our set-valued map
R : CINV (K)→ P(Rm). We start at the beginning.

A T1-space is a topological space where for any two distinct pairs, they both have a neigh-
bourhood that does not contain the other. Note that Rn is obviously a T1-space. And so
is every subset of Rn, in particular CINV (K).

We need to show that CINV (K) is a paracompact set. By definition, CINV (K) is a
closed and bounded set. By the Heine-Borel theorem, we know that CINV (K) is com-
pact. Since every compact space is paracompact, we satisfy the desired condition.

We have Y = Rm. Since Rm is a Banach space, this part is not so exciting.

We have shown that R is lower semicontinuous in the proof of Theorem 5.0.1. But note
that R is a standard set-valued map, while φ is defined differently. So the last question
that needs to be answered is whether R is of the same form as φ?

We need R(x) ⊂ Rm to be a closed convex set for every x ∈ CINV (K). In the proof
of Theorem 5.0.1 it is shown that R satisfies these conditions. Hence, we are allowed to
use this selection theorem.
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Appendix B

We consider system A as

x(k + 1) =

(
−1 1
0 2

)
x(k) +

(
1 0
0 1

)
w(k) +

(
1
1

)
u(k),

z(k) =

(
3 0
0 1

)
x(k),

with initial condition x(0) =

(
0
0

)
. We consider system B as

x(k + 1) =

−1 1 0
0 2 0
1 0 1

x(k) +

1 0
0 1
1 1

w(k) +

1
1
1

u(k),

z(k) =

(
3 0 0
0 1 0

)
x(k) +

(
0 0
0 1

)
w(k) +

(
1
1

)
u(k),

with initial condition x(0) =

0
0
0

.

In the following figures, we depicted the CIK or the output of system A or B, with a
given precision 0.1 or 0.01. Every picture contains a pink set, which represents the con-
straints, and a blue line, which represents a simulation based on a random disturbance,
with the property ||w|| ≤ 1

γ
. The values of γ, which is our approximation of γoptimal, and

the time it takes to compute these results are stated in Chapter 8. Note that CIK of system
B is not depicted, because this is an unclear 3-dimensional figure.
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Figure 10.1: CIK of system A with precision 0.1.
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Figure 10.2: CIK of system A with precision 0.01.
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Figure 10.3: Output of system A with precision 0.1.
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Figure 10.4: Output of system A with precision 0.01.
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Figure 10.5: Output of system B with precision 0.1.
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Figure 10.6: Output of system B with precision 0.01.
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