Dehydration of supercritical carbon dioxide using dense polymeric membranes

Citation for published version (APA):

Document license:
CC BY-NC-ND

DOI:
10.1016/j.seppur.2019.05.027

Document status and date:
Published: 01/10/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dehydration of supercritical carbon dioxide using dense polymeric membranes: A techno-economical evaluation

Andrew Shamua,b, Henk Miedemaa, Zandrie Bornemanb,c, Kitty Nijmeijerb,c

Abstract

Supercritical CO2 (scCO2), used in the food industry as a water extraction agent, requires dehydration units for regeneration. The present study assesses the economics of membrane-based dehydration of scCO2. In contrast to earlier studies, the contribution, next to the membrane, also the contributions of the mass transfer resistances of the feed and permeate boundary are included, which have a dominant effect on the final process design and economics. In addition, our work also extrapolates the process to industrial scale evaluating different configurations and process conditions. Specifically, the contribution of the membrane and membrane unit costs is discussed in more detail. Including the mass transfer resistances of feed and permeate boundary layer reduces the water flux across the membrane up to a factor 150, implying a larger required membrane surface area for a given water removal rate, and thus higher costs. Using a SPEEK-based membrane, the total drying costs, normalized for the amount of water removed, minimize around a skin layer thickness of 1 μm, i.e., not too thin to permeate and thus spill too much CO2 and not too thick to hamper the H2O flux. Because the feed boundary layer dominates water transport, conditions that minimize its thickness reduce total costs. A reduction of the feed boundary layer dominance can be achieved by adjusting channel height, cross-flow velocity and the density and viscosity of scCO2, the latter two by increasing the operational temperature from 45 to 65 °C (at 130 bar). Compared to the benchmark zeolite process currently available, the membrane-based process for drying scCO2 outlined and optimized in the present study results in a 50% saving of total drying costs. These savings can be achieved by using a dense polymeric membrane with a H2O permeability of at least 10,000 Barrer and a CO2 permeability of at most 10 Barrer.

1. Introduction

Supercritical carbon dioxide (scCO2) is an inexpensive and therefore attractive solvent for the dehydration of food products because it combines non-toxicity with a near-ambient critical temperature, preventing thermal denaturation and a moderate critical pressure [1]. During supercritical dehydration, the product does not experience any capillary stresses due to the absence of clear liquid-vapor interfaces. In conventional evaporation processes, these interfaces cause shrinkage and structural damages of the product [2]. This defines scCO2-based dehydration as a very gentle process able to preserve the texture of the food [3]. After food dehydration, scCO2 is easily separated from the food product through depressurization, resulting in the discharge of gaseous CO2. Depressurization is also used to regenerate, i.e., dehydration, scCO2, by making use of the fact that the solubility of H2O in scCO2 shows a minimum near the critical pressure of 74 bar [4,5]. However, this regeneration method is rather energy-consuming due to the necessity to repressurize CO2 afterwards to its extraction pressure. More energy efficient is the adsorption-based regeneration using zeolite [6], displayed in Fig. 1. Here, humid scCO2, leaving the fruit extraction unit, is regenerated in the dehydration unit before its next re-injection into the extraction unit. The zeolite, located in the dehydration unit, adsorbs water up to its saturation level. The re-use of zeolite demands an energy-intensive reactivation step using hot air to desorb the water. A second, parallel regeneration unit ensures continuity of the scCO2 dehydration process. Common fluid pressures and temperatures of the food drying process are 130 bar and 45 °C, thus above the critical point of CO2 (Tc = 31.04 °C, Pc = 73.8 bar) [7].

Even though the zeolite-based regeneration of scCO2 is energy-wise more efficient than the depressurization of scCO2, the method still is...
rather energy-intensive. Lohaus et al. [8] showed that membrane-based dehydration of scCO2 can reduce the dehydration costs up to 20%. However, their conclusion was based on pilot plant-scaled processes having scCO2 flow rates of 200 kg/h, corresponding to a water removal rate of only 0.32 kg/h. Moreover, their analysis omitted considering the individual mass transfer resistances related to the membrane skin layer and its support as well as the feed and permeate boundary layer. Oppositely, in a recent publication, we did identify a distinct contribution of each of these mass transfer resistances though [9]. Whereas the feed boundary layer comprises up to 80% of the overall mass transport resistance of H2O, the dominant resistance for CO2 is located within the membrane itself, leading to different conclusions. Inspired by Lohaus et al. [8], the present study reassesses the economics of membrane-based dehydration of scCO2, including the contribution of individual mass transfer resistances and thereby extrapolating the process to industrial scale and evaluating configuration and process conditions. Also, in particular the contribution of membrane and membrane unit costs is discussed in more detail.

2. Techno-economic process description

2.1. Extraction unit

The starting point of the simulations is the extraction unit, displayed in Fig. 1. The determination of the water-removal rate of the process requires knowledge of the mass of food product, its initial and final moisture content and the dehydration time. Following Kaymak-Ertekin et al. [10] the initial and final moisture content is set to 82 wt% and 12 wt%, respectively, the latter representing the average of the moisture content of dried fruits (17 wt%) and vegetables (7 wt%) [11].

The water removal rate during one extraction cycle m_{H_2O} is defined by:

$$m_{H_2O} = \frac{m_{food} \cdot (M_{H_2O,in} - M_{H_2O,out})}{t_{cycle} \cdot M_{H_2O,in} + 1}$$

(1)

where m_{food} is the mass of undried food (kg), $M_{H_2O,in}$ and $M_{H_2O,out}$ are the initial and final moisture contents of the food given in ($kg_{H_2O}/kg_{dry mass}$), respectively and t_{cycle} is the duration of one food drying cycle.

The mass flow rate of scCO2 needed for extraction m_{scCO2}, is described by:

$$m_{scCO2} = \frac{m_{H_2O}}{w_{H_2O,in} - w_{H_2O,out}}$$

(2)

where $w_{H_2O,in}$ and $w_{H_2O,out}$ are the H2O weight fractions of scCO2 entering and exiting the extraction unit (\cdot), respectively. For both, the zeolite and the membrane-based process, the latter stream is considered saturated, implying that its H2O weight fraction is determined with the model developed by Spycher et al. [5]. The H2O weight fraction of the scCO2 stream entering the extraction unit differs for both processes. For the zeolite-based process, all the water dissolved in scCO2 is considered to be fully adsorbed in the dehydration unit, indicating a completely dry regenerated stream. For the membrane-based process, a full water removal would require infinite membrane area, which is not possible. Therefore, a minimal amount of water will stay present in the regenerated stream. Its concentration, being low enough to still enable food dehydration down to its final moisture content, is determined using the GAB model [10], as discussed in Section 2.2.

The volume of the extraction unit is determined using the mass of the fresh food and its bulk density (500 kg/m3). To include distribution equipment and free space into account as well, the total volume is multiplied by a factor of 1.2 [12].

The duration of one food drying cycle 4 hrs. This is slightly longer than the drying time of 2.5 h measured at lab-scale by Brown et al. [3], but necessary to avoid extensive shear stresses which the product is exposed to due to increased scCO2 velocities in the extraction chamber. This happens when scaling up from lab-scale to industrial scale while maintaining the retention time of the scCO2 in the extraction chamber.

2.2. Membrane-based process

Fig. 2 displays the default configuration of the membrane-based process, where the temperature and pressure of the feed cycle, thus in the extraction and membrane unit, are maintained at 45 °C and 130 bar. During the dehydration process, humid supercritical CO2 enters the feed channel of the membrane unit, is dehydrated and exits as a dry scCO2 stream ready for reuse as a drying agent. Pre-dried and heated CO2 at ambient pressures is used as a sweep gas to maintain a high driving force by removing water vapor at the permeate side of the membrane unit. The usage of pre-dried air instead as a sweep gas is strictly avoided, even though its usage might be more cost effective, due to air permeation into the feed, thus impurification of the feed cycle. During the drying process, CO2 permeates as well. To prevent any accumulation in the permeate cycle CO2 is re-injected into the feed cycle using a refill pump.

Based on the previous work [9], the membrane-based dehydration unit has a flat sheet membrane configuration (Fig. 3).

Multiple, parallelly arranged composite membranes, having a
These permeabilities probably do not reflect the skin layer permeability at supercritical conditions. To assess the effect of this, a sensitivity analysis of the H₂O and CO₂ permeability on the outcomes is performed.

To determine the H₂O and CO₂ flux (permeability is a membrane characteristic independent of the actual process conditions) through the membrane, the corresponding driving forces are required. The H₂O driving force equals the logarithmic mean fugacity difference of the feed, retentate, permeate and sweep gas:

\[\Delta f_{H_2O} = \frac{f^{F}_{in,H_2O} - f^{P}_{out,H_2O}}{f^{R}_{out,H_2O} - f^{F}_{in,H_2O}} \]

where \(\Delta f_{H_2O} \) is the H₂O driving force, \(f^{F}_{in,H_2O} \) and \(f^{P}_{out,H_2O} \) are the fugacities of H₂O in the feed and retentate stream and \(f^{F}_{in,H_2O} \) and \(f^{P}_{out,H_2O} \) are the fugacities of H₂O in the sweep gas and permeate stream (Pa). Since CO₂ fugacity of the permeate side is negligibly small compared to that of the feed and retentate stream, the CO₂ driving force equals the CO₂ fugacity difference between feed- and permeate stream.

The required H₂O and CO₂ fugacities are determined using,

\[f_i = \Phi_i \cdot y_i \cdot P_a \]

where \(\Phi_i \) and \(y_i \) are the dimensionless fugacity coefficient and mole fraction of component \(i \) in the fluid phase, respectively. \(P_a \) is the total fluid pressure (Pa). The CO₂ fugacity coefficient is determined using the model of Spycher et al. [5] whereas the former model and the Antoine equation [15] are used to determine the fugacity coefficient and mole fraction of H₂O at saturation for supercritical and ambient conditions, respectively.

For non-saturated streams, the actual H₂O fugacity is lower than the corresponding H₂O fugacity at saturation, being determined by the model of Spycher et al. [5] and the Antoine equation [15]. Therefore, the H₂O fugacity at saturation of equation (4), is reduced by the water activity of the non-saturated stream as shown by:

\[f_{H_2O} = a_w f_{H_2O, sat.} \]

where \(f_{H_2O} \) and \(f_{H_2O, sat.} \) are the required H₂O fugacity and H₂O fugacity at saturation (Pa), respectively and \(a_w \) is the water activity being dimensionless.

The water activity of the feed stream entering the membrane unit is fully saturated (\(a_w = 1 \)). The water activity of the retentate stream, leaving the membrane unit is dependent on the final moisture content of the food product (12 wt%) and is determined using the Guggenheim–Andersen–de Boer (GAB) model [10]. This model links the equilibrium moisture content of food products to the water activity of the surrounding fluid at atmospheric pressures:

\[M = M_0 \frac{C \cdot K \cdot a_w}{(1 - K \cdot a_w)(1 - K \cdot a_w + C \cdot K \cdot a_w)} \]

where \(M_0 \) is the monolayer moisture content given in (kg H₂O/kg dry matter), \(C \) and \(K \) are dimensionless empirical GAB parameters and \(a_w \) is the water activity (–). Assuming pressure insensitivity of the H₂O fugacity on the equilibrium moisture content of food products, the model can be extended to supercritical pressures. By doing so, the water activity of the retentate stream equals 0.25, considering an equilibrium moisture content of 12 wt% of the food product at 45 °C and 130 bar. The water fugacity of the retentate is determined with equation (5). Here the calculated water activity and the water fugacity of saturated air at the corresponding temperature at atmospheric pressures are used.

The weight fraction of H₂O in the retentate stream needed for equation (2) is derived from its corresponding molar fraction which is determined by rearranging equation (4).

Before entering the permeate side, the sweep gas is pre-dried using a refrigeration dryer, which uses the water solubility lowering effect of gas compression and cooling for gas drying. Cooling down the sweep...
gas to +3 °C (a typical temperature for refrigeration dryers [18]), while compressing it to 3 bar results in a dew point temperature of −11.6 °C. Using the Antoine equation [15], the water activity of the pre-dried sweep gas entering the membrane unit is 0.026 at 45 °C. For the exiting humidified sweep gas stream a water activity of 0.45 is considered, which is high enough to enable water removal with a moderate sweep gas volume flow rate while being low enough to maintain a sufficient driving force for the H2O transport.

To withstand high pressures, the membrane unit is considered to be a cylindrically shaped pressure vessel containing a stack of flat sheets. This stack is square-shaped whereas its diagonal is considered to be equal to the vessels diameter. An increase in the considered vessel diameter results therefore in increased stack height and width thus to a larger membrane sheet (due to increased stack height) and a larger number of flat sheets placed within the stack (due to increased stack width), when keeping the feed and permeate channel heights constant. Knowing the volume flow rate of the feed and permeate streams and the number of feed and permeate channels including their cross-sectional areas, one can determine the channels fluid velocities and the mass transfer resistances in the channels. This together with the mass transfer properties of the composite membrane results in an overall mass transfer coefficient for H2O and CO2, which describes their transport from feed to permeate side. Previous work [9] gives a detailed description of the overall mass transfer coefficient determination and we follow a similar approach.

Together with the water transport driving force the required membrane area for the dehydration of humid scCO2 can now be determined:

\[A = \frac{\dot{m}_{\text{H}2\text{O}} \cdot R \cdot T}{M_{\text{H}2\text{O}} \cdot k_{\text{m,H2O}} \cdot \Delta f_{\text{H2O}}} \]
(7)

where \(\dot{m}_{\text{H}2\text{O}} \) is the permeated mass flow rate of water (kg/s), \(R \) the ideal gas constant (J/(mol·K)), \(T \) the dehydration temperature in the membrane unit (K), \(M_{\text{H}2\text{O}} \) the molar mass of water (kg/mol), \(k_{\text{m,H2O}} \) the overall mass transfer coefficient (m/s) and \(\Delta f_{\text{H2O}} \) the process driving force (Pa).

The volume flow rate of the sweep gas stream (\(\dot{V}_{\text{sweep}} \)), given in m³/s, is determined by:

\[\dot{V}_{\text{sweep}} = \frac{\dot{m}_{\text{H}2\text{O}} \cdot R \cdot T}{M_{\text{H}2\text{O}} \cdot (\dot{V}_{\text{out,H2O}} - \dot{V}_{\text{in,H2O}})} \]
(8)

Using the membrane area and the number and thickness of the membrane sheets, the length of the stack equals:

\[L = \frac{A}{N_{\text{sheet}} \cdot h_{\text{sheet}}} \]
(9)

where \(N_{\text{sheet}} \) is the number of membrane sheets (−) and \(h_{\text{sheet}} \) the height of one flat sheet membrane including spacer and channel height (m). The vessel of the membrane unit is considered 1.2 times longer than the calculated membrane stack height to ensure enough space for equipment, distributing the feed and sweep gas streams into its corresponding channels and collecting these streams afterwards [12].

The membrane unit length is therefore indirectly a function of its diameter. As in the previous study [9], its length is limited by the maximally allowed pressure drop of 1.5 bar and 50 mbar in the feed and permeate channel, respectively. The pressure drop \(\Delta P \), given in Pa, is determined using [19]:

\[\Delta P = 4 \cdot f \cdot \frac{l}{d_h} \cdot \frac{\rho \cdot v^2}{2} \]
(10)

where \(f \) is the Fanning friction factor (−), \(l \) is the length of the membrane (m), \(\rho \) is the fluid density (kg/m³), \(v \) is the fluid velocity in the feed/permeate channel (m/s), \(d_h \) is the hydraulic diameter (m) which is for rectangular channels with much greater width than height, twice the height. At laminar conditions, the Fanning friction factor is the quotient of 14.227 and the Reynolds number, whereas for turbulent conditions the following relation is used [19],

\[f = \left(-4 \log \left(\frac{0.274}{Re} \right) + \left(\frac{1}{Re} \right)^9 \right)^2 \]
(11)

where \(c \) is the surface roughness coefficient of the channel walls, which is assumed similar to the value of polyvinyl chloride (2.1·10⁻⁶ m) [20].

Now after determining the final dimensions of the membrane unit, the mass of permeated CO2 can be determined. For this, the overall mass transfer coefficient of CO2, its driving force and the membrane area are implemented into the rearranged equation (7).

2.3. Zeolite-based process

The mass of zeolite needed for adsorption (\(m_{\text{zeol}} \)) is determined by:

\[m_{\text{zeol}} = \frac{m_{\text{H}2\text{O}}}{(X_{\text{45}^\circ\text{C}} - X_{\text{260}^\circ\text{C}})} \]
(12)

where \(m_{\text{H}2\text{O}} \) is the amount of adsorbed water per drying cycle (kg), \(X_{\text{45}^\circ\text{C}} \) and \(X_{\text{260}^\circ\text{C}} \) are the zeolite water adsorption capacities being 0.20 and 0.02 kg H2O/kg zeolite, respectively [21]. Previous adsorption capacities, determined at near atmospheric pressures, were considered due to the absence of high pressure adsorption capacities. The zeolite mass, \(m_{\text{zeol}} \), is used together with the zeolite bulk density, 728.8 kg/m³ [22], to determine the volume and dimensions of the dehydration vessel. Likewise to the extraction unit, the total volume is multiplied by 1.2 to account for additional vessel height due to implemented distribution equipment, required for an uniform dispersion of the humid scCO2 in the adsorption column.

Lohaus et al. [8] considered 3.3 kWh as the total energy demand needed to remove 1 kg of water from zeolite. This mass-specific energy includes desorption and heating of the zeolite and its periphery (i.e., adsorption column). The product of this mass-specific energy demand and the adsorbed water mass per drying cycle equals the thermal energy needed for zeolite reactivation, being provided by hot air, which mass (\(m_{\text{air}} \)) is:

\[m_{\text{air}} = \frac{E_{\text{rea}}}{c_{P,\text{air}} \cdot \Delta(T_{\text{rea,in}} - T_{\text{rea,out}})} \]
(13)

where \(E_{\text{rea}} \) is the required thermal energy (kJ), \(c_{P,\text{air}} \) is the isobaric heat capacity of air (kJ/(kg·K)), \(T_{\text{rea,in}} \) and \(T_{\text{rea,out}} \) are the temperatures of the air entering and exiting the zeolite column (K) and \(m_{\text{air}} \) is the required mass of air needed for reactivation (kg). The latter is used to determine the heat duty of the fired air heater:

\[W_{\text{heat}} = m_{\text{air}} \cdot c_{P,\text{air}} \cdot \Delta(T_{\text{air,out}} - T_{\text{air,in}}) \]
(14)
where $T_{\text{air, in}}$ and $T_{\text{air, out}}$ are the temperatures of the in- and outlet of the direct-fired heater (K), t_{react} is the time considered for the reactivation (s) and W_{heat} is the thermal performance of the direct-fired heater (kW).

All parameters needed for the determination of the heat duty of the fired heater are displayed in Table 3

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet air temperature of the reactivated zeolite column ($T_{\text{zeol, in}}$)</td>
<td>260 °C</td>
<td>[23]</td>
</tr>
<tr>
<td>Outlet air temperature of the reactivated zeolite column ($T_{\text{zeol, out}}$)</td>
<td>175 °C</td>
<td>[23]</td>
</tr>
<tr>
<td>Inlet air temperature of the direct-fired heater ($T_{\text{air, in}}$)</td>
<td>20 °C</td>
<td>[est.]</td>
</tr>
<tr>
<td>Outlet air temperature of the direct-fired heater ($T_{\text{air, out}}$)</td>
<td>260 °C</td>
<td>[23]</td>
</tr>
<tr>
<td>The isobaric heat capacity of air ($c_{\text{p, air}}$)</td>
<td>1.04 kJ/(kg K)</td>
<td>[19]</td>
</tr>
<tr>
<td>Reactivation time per zeolite column (t_{react})</td>
<td>1.5 h</td>
<td>[est.]</td>
</tr>
<tr>
<td>Time for the mounting and down-cooling of the reactivated zeolite column</td>
<td>0.5 h</td>
<td>[est.]</td>
</tr>
<tr>
<td>Adsorption time</td>
<td>2 h</td>
<td>[est.]</td>
</tr>
<tr>
<td>Energy demand for reactivation of Zeolite (E_{react})</td>
<td>$11,880 \text{ kJ/kg}_{\text{H_2O}}$</td>
<td>[8]</td>
</tr>
</tbody>
</table>

* est. = estimated.

2.4. Cost estimation

In this study, the costs of the membrane and zeolite-based processes are sub-divided in process operation costs and investments costs. Process operation costs include consumption costs for i.e. the electrical energy, natural gas or cooling water. The investment costs, being financed annual expenses [24], are assigned to the purchase and mounting of the processes operation units. Since the investment is exclusively funded through loans, it is composed of the interest payment and the principal repayment [25].

Costs related to labor are not taken into account in this assessment since their prediction cannot be made without large error margins. However, fewer shifts are needed for the continuously running membrane-based process than for the semi-batch zeolite-based process, indicating lower labor costs for the membrane-based process.

Table 4 displays a price list of various utilities, which are needed for the operational costs calculation of both processes. Since membranes have a limited lifetime of 4 years, the mean annual expenditure assigned to their purchase is included in the costs of the membrane-based process [8]. The same applies to the zeolite, which has an estimated lifetime of 2 years [8].

The major part of the electricity is used by compressors to pressurize CO$_2$ to its supercritical state or to recirculate or transport large air to the fired direct heater in case of the zeolite-based process. The electrical power consumption of compressors is determined using the adiabatic compressor power equation for high pressures (above 70 bar) [28], as described by:

$$W_j = \frac{1}{\varepsilon} P_{in} V_{\text{flow}} - k_l - \left(\frac{P_{out}}{P_{in}}\right)^{\frac{k_l}{k_i}} - 1 \left(\frac{Z_{out} + Z_{in}}{2Z_{out}}\right)$$ (15)

where P_{in} and P_{out} are the pressures at the compressor in- and outlet (Pa), V_{flow} is the volume flow rate of the transported fluid at the compressor outlet (m^3/s), k_l is the ratio of the specific heat capacities at constant pressure and constant volume and ε is the compressor efficiency, both being dimensionless (–). The compressor efficiency is considered to be 0.7 [25]. The required heat capacities are obtained from the official website of the National Institute of Standards and Technology (NIST) and averaged for the required pressure ranges [29]. The electrical power consumption of commercially available air driers is used [30].

The compressors used in both processes run throughout the year (8760 h/year). Only the compressor blowing air through the direct-fired heater is not in use during the cool-down phase of the zeolite, which makes up, according to Table 3, 25% of the time.

The starting point for the determination of the investment costs is the estimation of the total costs related to the purchase and implementation of the considered units (incl. piping and instrumentation) into the process. The investment costs (IC) of the process units are determined through the widely used method developed by Guthrie [24]:

$$IC = BC - UF - (MPF + MF - 1)$$ (16)

where BC are the purchase costs of the basic version of the process unit for a particular year given in €, UF is the update factor (–) taking the price increase of the unit through inflation from the particular year to presence into account, MPF is the materials and pressure correction factor which accounts for additional material and design costs of the process unit beyond its basic configuration (–) and MF is the module factor (–) which takes the costs of piping instruments, labor during mounting and accessories into account.

The basic costs for the considered heat exchangers and the direct-fired heater are obtained from Peters et al. [25] whereas the basic costs for the used compressors, vessels, and columns are obtained from Biegler et al. [24]. The basic cost obtained from Peters et al. [25] and Biegler et al. [24] are dated back to the years 1990 and 1969, respectively. The basic costs of vessels are used for the housing of the membrane unit, the zeolite columns, and the extraction unit. However, these costs are increased by 100% for the housing of the membrane unit and 20% for the extraction unit and the zeolite columns due to the higher complexity (i.e., stack frame, distribution equipment, fixtures, trays, sensors) compared to a simple vessel.

To determine the annual expenses related to the investment, the total investment costs are multiplied by the so-called capital-recovery factor CRF which is represented by:

$$CRF = \frac{(1 + i)^n - i}{(1 + i)^n - 1}$$ (17)

where i is the interest rate (%), and n is the loan duration (years).

Table 4 lists the relevant parameters used for the determination of the costs of the use of the capital to purchase the equipment.
For SPEEK the total drying costs show a minimum for a skin layer thickness of approximately 0.1 μm. At a thickness > 10 μm, costs increase because the permeability of the SPEEK layer to CO2 becomes too high (due to the low thickness of the membrane unit). At a thickness < 0.1 μm, costs increase because the permeability of the SPEEK layer to CO2 becomes too low, resulting in large required membrane surface areas. From 10 μm downward, membrane unit costs remain unchanged because at these skin layer thicknesses concentration polarization effects dominate H2O transport.

Table 5

<table>
<thead>
<tr>
<th>Costs parameters</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate of the loan</td>
<td>8.0%</td>
<td>[est.]</td>
</tr>
<tr>
<td>Duration of the loan</td>
<td>10 year</td>
<td>[est.]</td>
</tr>
<tr>
<td>Exchange rate USD in EUR</td>
<td>1.14 $/€</td>
<td>[31]</td>
</tr>
<tr>
<td>Capital-recovery factor</td>
<td>0.15356</td>
<td>[calc.*]</td>
</tr>
<tr>
<td>Annual operation hours</td>
<td>8760 h/yr</td>
<td>[32]</td>
</tr>
<tr>
<td>Chemical engineering plant cost index (Feb. 2017)</td>
<td>558.3</td>
<td>[33]</td>
</tr>
</tbody>
</table>

* calc. = calculated

Fig. 4. Total (normalized) drying costs using either a SPEEK, Nafion® 117 or PEBAX® 1074 selective membrane layer as a function of the skin layer thickness, for a dehydration rate (process scale) of 100 kg H2O per hour at 45 °C.

3. Results and discussion

3.1. Effect of skin layer thickness

Our previous study [9] suggests that for the membrane-based process there is an ideal skin-layer thickness at which the drying costs are minimal. Fig. 4 displays the effect of the skin layer thickness on the total drying costs normalized for the amount of water removed at 45 °C for SPEEK, Nafion® 117 and PEBAX® 1074.

All three membrane types show an optimum in skin layer thickness, i.e., a range at which the total drying costs are minimal. Despite the similarity, the membranes differ in the position of this minimum as well as the range over which this minimum extends. Fig. 5 explains in more detail the behavior observed, i.e., the shape of the curves, by showing the same SPEEK data but in addition the costs for CO2 refill and the membrane unit.

For SPEEK the total drying costs show a minimum for a skin layer thickness ranging from approximately 0.1 to 10 μm. At a thickness < 0.1 μm, costs increase because the permeability of the SPEEK layer to CO2 becomes too high (due to the low thickness of the layer), resulting in rising costs for CO2 refill. At a thickness > 10 μm, costs increase because the permeability towards H2O becomes too low, resulting in larger required membrane surface areas. From 10 μm downward, membrane unit costs remain unchanged because at these skin layer thicknesses concentration polarization effects dominate H2O transport.

Compared to SPEEK, the minima of Nafion® 117 and PEBAX® 1074 have shifted to larger skin layer thicknesses, reflecting that PEBAX demonstrates the lowest H2O/CO2 selectivity (notably due to a high CO2 permeability) whereas Nafion shows the highest H2O permeability combined with a moderate permeability towards CO2.

Fig. 5 displays the effect of the skin layer thickness on the total drying costs for SPEEK, Naflon® 117 and PEBAX® 1074 respectively. In addition, the costs of SPEEK remain at this minimum even at skin layers as thin as 0.1 μm, leading to less material required and thus cost savings.

3.2. Process configuration

The feed boundary layer is the dominant parameter in the H2O flux across the membrane [9]. As such, this mass transfer resistance should be taken into account as well, in addition to those related to the membrane itself. Fig. 6 exemplifies this argument and shows the calculated total membrane area required to permeate 100 kg of water per hour taking into account the individual effect of the mass transfer resistance of the skin layer, the feed boundary layer, the permeate boundary layer and the porous support.

As expected, the porous support (low resistance) and the permeate boundary layer hardly affect the required membrane area. In contrast, ignoring the feed boundary layer resistance lowers the required
membrane area by more than a factor of 40 (SPEEK) to 150 (Nafion® 117).

Given the overwhelming impact of feed boundary resistance on the required membrane area and the dominance of the required membrane area on membrane unit and CO₂ refill costs, we investigate strategies to lower this resistance by altering fluid dynamics within the membrane unit. Note that, a reduction of the required membrane area is accompanied by a reduction of the membrane unit and CO₂ refill costs.

Fig. 7 displays the required total membrane area in relation to the feed channel height, at different cross-flow velocities.

One method to reduce the feed boundary layer resistance is by increasing the cross-flow velocity, as experimentally observed by Metz et al. [15]. This way of invoking turbulent conditions leads to a steeper cross-flow velocity profile and thus to a thickness reduction of the boundary layer [34], in which H₂O is transported limited by diffusion. Decreasing the feed channel height while maintaining an average cross-flow velocity leads as well to a steeper cross-flow velocity profile and thus to a reduced fluid boundary layer thickness [34]. This together with an increase of the cross-flow velocity will lead to increased pressure drop, as is evident from Eq. (10). From here on, the feed channel height and cross-flow velocity adopt values of 0.8 mm and 1 m/s, respectively.

Another way of reducing the feed boundary layer resistance and thus the required membrane area is by altering the temperature and feed pressure. As argued in the previous study [9], high pressures and low temperatures, as present in the default membrane configuration (Fig. 2), lead to a more dominant feed boundary layer resistance, hampering the H₂O transport. Other process parameters, such as H₂O transport driving force, may be affected by pressure and temperature as well. Fig. 8 shows the required total membrane surface area in relation to the feed chamber pressure and temperature.

The general tendency is that high dehydration temperatures and low feed pressures result in a reduction of the required membrane surface area, an effect much more pronounced at lower temperature. At an operational pressure of 130 bar, increasing the temperature from 45 to 65 °C reduces the required membrane surface area from 455 m² to 127 m². Apart from the already argued effect on the feed boundary layer thickness, another reason for this drastic reduction in required membrane surface area can be found in the rise of the water fugacity coefficient from 0.143 (at 45 °C; 130 bar) to 0.278 (65 °C, 130 bar), resulting in a doubling of the water fugacity in the feed (see equation (4)) and thus to a rise of the driving force for water transport (water fugacity coefficient determined using the model of Spycher et al. [5]).

An additional reason for the strong reduction in the required membrane surface area may be an improved water diffusion through the feed boundary layer, due to a reduced CO₂ fluid density [9]. Even though the reduction of the membrane surface area to 127 m² results in a drop of the costs for CO₂ refill and the membrane unit, energy consumption will go up due to the heat exchangers needed to pre-heat and cool-down the scCO₂ before and after the membrane unit. A process based on this principle is displayed in Fig. 9. Noteworthy, an increase of the dehydration temperature to 75 °C will not significantly further reduce the required membrane surface area, but it will increase the costs for heat exchangers as well as the risk of material failure.

As indicated in Fig. 8, a further reduction of the required membrane area down to 61 m² can be achieved by reducing, at 65 °C, the feed pressure down to 100 bar. Here costs for the CO₂ refill and the membrane unit are further reduced. However, costs assigned to the
circulation of the scCO2 increase, due to the need of a costly compressor to pressurize the scCO2 steam back to 130 bar after exiting the membrane unit, accordingly the process scheme of Fig. 10.

Fig. 11 compares the total drying costs as function of process scale of all three membrane based configurations, as displayed in Figs. 2, 9, and 10, with the zeolite-based benchmark process of Fig. 1.

Fig. 11 gives rise to several conclusions. Firstly, all processes show a decrease in drying costs with increased process scale with, at larger scale, the drying costs become essentially insensitive to process scale. This effect, where the specific costs are reduced with rising process scale, is generally referred to as economy of scale [35]. Secondly, independent of scale, all membrane-based processes show lower drying costs than the zeolite-based process. Thirdly, the process displayed in Fig. 2 is the least cost-effective membrane-based configuration, even though no heat exchangers nor compressors are implemented on the high-pressure side. The costs assigned to the membrane unit and CO2 refill dominate the total drying costs. Lastly, Fig. 9 outlines the most cost-effective configuration, operating at a feed pressure and temperature of 130 bar and 65 °C. The cost-effectiveness of the latter configuration is the result of its small required membrane area, being, according to Fig. 8, one third of the size of the configuration operating at 130 bar and 45 °C and the absence of any compression and depressurization step in its feed cycle. Such pressure changes in the feed cycle, as occur in the configuration operating at 100 bar and 65 °C, result in inflated drying costs. The drying costs assigned to this configuration are approximately half (48–57%) the costs of a zeolite-based process. In absolute terms, the drying costs corresponding to Fig. 9 are 756 and 446 € per ton removed water, for a pilot plant scale (40 kg/h) and industrial scale (500 kg/h), respectively.

3.3. Membrane unit & membrane material

Based on the configuration of Fig. 9, Fig. 12 displays the membrane unit costs and its contribution to the total drying costs as a function of process scale.

Compared to the configuration and operational conditions displayed in Fig. 2 (130 bar, 45 °C), the contribution of membrane unit costs are reduced from 25 to 10%. With a membrane unit price of 4480 €/m² for pilot plant scale (40 kg/h) to 1520 €/m² for large industrial scale (500 kg/h), prices are considerably higher than those for membrane units operating near ambient pressures, 200 €/m² [36].

The combination of a costly housing for the membrane unit, built to withstand large operation pressures, and a low area to volume ratio of the membrane unit, is the primary cause for the inflated area specific costs. The low area to volume ratio of the current design, 65 m²/m³ compared to 100–300 m²/m³ of typical flat sheet units [37], is the result of wide sweep gas channels (3 mm) needed to pass sufficient sweep gas, without creating too-high-pressure drops. A vast quantity of sweep gas is needed to remove a sufficient amount of permeate water without becoming too humid, thereby impairing the driving force too much.

Fig. 13 displays the fictional membrane unit price at which the drying costs of the membrane-based process would comprise 60%, 80% and 100% of those of the zeolite process. Using Fig. 13 in practice, it becomes possible to determine the upper price limit for the purchase or development and construction of a membrane unit. To comprise 60% of zeolites drying costs, the price of the membrane unit has to triple at pilot plant scale (40 kg/h) and double at industrial scale (500 kg/h). This shows that the membrane-based process will continue to be cost efficient even with considerably higher membrane unit prices.

Not only the membrane unit price might be different in practice but also the considered permeability values of SPEEK obtained at 30 °C and near ambient pressures (feed pressure of 2.5 bar [14]) will most likely rise when applied at 130 bar and 65 °C. Bos et al. [38], who examined eleven glassy polymeric membranes (i.e., polysulfone, polyetherimide) observed a gradually progressing increase in CO2 permeability while...
 exceeding a specific pressure, called plasticization pressure, which ranges between 10 and 34 bar, thus far below the applied 130 bar of the dehydration process. This sudden change was assigned to a transition of the polymer state from glassy to rubbery. This transition leads to increased mobilization of the polymer chains and thus to increased penetrant diffusion. Penetrant diffusion is also promoted by higher temperatures [14]. Fig. 14(a) and (b) display the sensitivity of the drying costs on the variation of H₂O and CO₂ permeability in a SPEEK based system.

The drying costs displayed in Fig. 14(a) and (b) decrease with decreasing CO₂ permeability and with increasing H₂O permeability. This is in accordance to the findings of Fig. 5 where a more CO₂ permeable skin layer results in inflated CO₂ refill and thus drying costs and a less H₂O permeable skin layer leads to larger membrane areas and increased drying costs.

The drying costs are insensitive for H₂O permeabilities of 10,000 Barrer or higher and CO₂ permeabilities of 10 Barrer or lower. For skin layer materials lying within these boundaries, the drying costs maintain close to optimum, thus making them suitable alternatives to the current material of choice, namely SPEEK. However, the CO₂ permeability of SPEEK, being 0.11 Barrer (at 30 °C and 2.5 bar) might increase significantly when applied at the high feed pressure and temperature. Nafion® 117 lies within these boundaries whereas PEBAX® 1074 exceeds the boundary set by the CO₂ permeability. For a PEBAX® 1074 based system costs related to CO₂ refill would dominate the total drying costs up to an extent at which the process becomes more cost-intensive than the zeolite process.

Fig. 15 summarizes our findings and delineates the relative costs involved in the scCO₂ drying process using a SPEEK-based membrane with a skin layer thickness of 1 μm, operating at feed chamber pressure of 130 bar and temperature 65 °C, for two process scales, 40 and 500 kg/h. Investment and operational costs are represented by dark and light grey bar sections, respectively. Irrespective the scale, costs of the extraction chamber, i.e., steam and electricity costs for heating and cooling, dominate the picture. Nevertheless, even though total membrane costs (membrane material + housing) contribute far less, its share in total costs still mounts up to 10% and even more at pilot plant scale. Lohaus et al. [8], concluded that, based on their calculations, membrane costs can be considered negligible compared to the other costs. The discrepancy in outcome reflects the differences in analysis as the present study does include boundary layer effects and costs related to the membrane housing, not only those for the membrane material.

4. Conclusions

This study showed that there is an ideal skin-layer thickness at which the drying costs of scCO₂ reach a minimum. Too thin skin layers result in inflated CO₂ refill costs due to increased CO₂ permeation towards the permeate side, whereas a too thick layer, leads to lower H₂O permeation thus to larger membrane areas and inflated membrane unit costs. Based on a selection of different membrane materials, SPEEK was
considered the material of choice since it leads to the lowest drying costs over the broadest range of skin layer thicknesses. The consideration of concentration polarization effects in the feed boundary layer results in membrane areas which are 150 larger than when omitting these effects. To encounter these H₂O flux hampering effects fluid dynamics have to be altered, such as reducing the feed chamber height, increasing crossflow velocity or choosing feed pressures and dehydration temperatures at which the Reynolds number is maximal. The choice of feed pressure and dehydration temperature has a significant impact on the required membrane area. An increase of the dehydration temperature from 45 °C to 65 °C, while keeping the feed pressure at 130 bar, reduces the required membrane area to remove 100 kg of water per hour, from 455 m² down to 127 m². Therefore, three process configurations differing in their feed pressure and dehydration temperature and the zeolite-based benchmark process were compared regarding their drying costs, for various scales ranging from water removal rate from 40 kg/h to above 500 kg/h. The configuration having 130 bar and 65 °C as feed pressure and dehydration temperature proved to be the most cost-efficient comprising half the drying costs of the benchmark process based on zeolite and was therefore considered the process of choice. The membrane unit considered in this configuration comprises only 10% of the total drying costs but shows with 4480 €/m² (pilot plant scale) and 1520 €/m² (industrial scale) significantly high area specific costs. Reasons are found in the costly high-pressure membrane unit housing and the low area to volume ratio of the membrane unit. The drying costs are insensitive for H₂O permeabilities of 10,000 Barrer or higher and CO₂ permeabilities of 10 Barrer or lower. Skin layer materials lying within these boundaries are considered potential alternatives to SPEEK being the current material of choice for the dehydration of supercritical CO₂.

Acknowledgments

This work was performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the European Union Regional Development Fund, the Province of Fryslân, and the Northern Netherlands Provinces. The authors like to thank the participants of the research theme Dehydration (Feyecon, Avebe) for the fruitful discussions and their financial support.

References