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Abstract

Lung nodule diagnosis is a non trivial task. Often radiologists struggle with accurately diagnosing
nodules. Current diagnostic methods rely heavily on radiologists and their expert opinions. Many
spatial features have been shown in literature to correlate with the malignancy of a nodule, where
nodules are de�ned as abnormal tissue growth. These features are then used by radiologists, how-
ever variability between radiologists’ assessments is large. Several classi�cation algorithms have
been proposed in literature. Most recently these classi�ers are based on deep learning methods.
These classi�ers seem to be performing well but are of a black box nature. This means that the
users have no insight into how the algorithm decides. In this thesis we propose to use content
based image retrieval (CBIR) to show the radiologist what the algorithm thinks is a comparable
case. Recently two papers, one by Dhara et al.[7], and one by Ibanez et al.[15], have been published
which demonstrate CBIR to work rather e�ectively for lung nodules. Dhara et al. computation-
ally calculate features based upon the segmentation to create a feature vector. The method in
this thesis is more closely aligned with the method of Ibanez et al. who create a deep learning
encoder based on a CNN classi�er. In this thesis we experiment with segmentation networks in
combination with triplet networks to create an encoder for the nodules. The data used is publicly
available. Triplets are created based upon expert scores of the nodules. The results are compared
with the papers by Dhara et al. and Ibanez et al. based on the precision @ K performance metric.
The proposed method performs sub par as opposed to both other papers. Noteworthy is that
in this thesis a subset of the data has been blinded towards the algorithm as opposed to using
crossfold validation.
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Chapter 1

Introduction

1.1 Problem context

Among the general population, it is common knowledge that cancer is one of the leading causes
of death (2nd in the EU-28)[25]. Within cancer deaths, lung cancer is responsible for 20.1% of
deaths, making it the deadliest form of cancer. The Netherlands has the unpleasant honor of
leading the table of most deaths by lung cancer. Within the Dutch borders 7.5 % of all deaths are
caused by lung cancer. Early detection is of vital importance for survival rates. One year survival
rates for a stage one diagnosis are on average 92% whilst the stage 4 survival rate is around 10%
[2]. Another welcome bene�t is the cost aspect of early and accurate diagnosis. Treatment for
lung cancer can turn out to be expensive, which in health care systems such as the Dutch system
puts pressure on society as a whole. Current detection of lung nodules is done by radiologists
who examine chest X-rays or CT-scans. Whenever a nodule is found a judgment call has to be
made to determine whether the nodule is benign or malignant. This diagnosis is mainly based
on experience. The radiologist takes certain parameters into account such as tumor size, texture,
calci�cation, sphericity and location. All of these variables are an indication of the intra-tumor
heterogeneity. In other words the features such as sphericity are indications of how aggressive a
tumor is [17]. If a tumor is homogeneous in terms of its type of cells it is in general less aggressive.
Conversely, a tumor with a larger variety of tumor cells results in lower survival rates [28]. The fact
that this diagnosis is based on experience introduces great variance in the diagnostic judgment. To
illustrate this a statistical analysis was performed by us on a data set which is used in this thesis.
In this data set four radiologists diagnose the same nodule on 9 features. The features used are
spatial features such as sphericity and texture, more detailed information can be found in chapter
2. The scores for each feature range from 1 to 5. Shockingly for 6 of these 9 features the average
range in score between the radiologists was higher than 0.8. Meaning on average the di�erence
between the largest score and lowest score on the same nodule is 0.8 (or 16%). Experts are not
in agreement on the scores for the features on some of these nodules, causing both types of errors
where each error has obvious drawbacks. False negatives resulting in possible unnecessary deaths
and false positives result in an increased pressure on the collective health care system through
unnecessary treatment.
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CHAPTER 1. INTRODUCTION

1.2 Research goal

In this thesis we explore how to assist radiologists in increasing diagnostic accuracy on lung nodules
and provide quantitative insights to aid the decision process. The aim is to improve the accur-
acy through providing radiologists with relevant comparable lung nodules with a known outcome.
This deviates from most algorithms proposed in recent literature. Reviewing recent papers we
�nd many deep learning based classi�ers[13][24][3]. These classi�ers are a black box to the users,
and often to the creators alike. These black box type of classi�ers are received with skepticism in
the medical community. The radiologists are reluctant to adopt these methods. This is due to the
fact that the radiologists need to be able to provide solid reasoning for why they reach a certain
diagnosis. In this thesis the proposed algorithm provides the radiologist with nodules it �nds
comparable. Based on this the expert can evaluate the algorithm’s decision as being consistent or
inconsistent with current medical knowledge.

In order to retrieve relevant nodules an embedding has to be created which captures distin-
guishing features of the nodules. Lung nodules are given scores on certain features which indicate
their malignancy. The malignancy of a nodule indicates the perceived growth rate which directly
correlates with survival chances. Each nodule is checked for 9 features [17] which are then scored
on a 1-5 (or in the case of calci�cation 1-6) scale. The resulting feature vector should describe the
nodule such that all nodules with similar vectors should roughly result in similar survival chances.
The features currently used are proven to create relevant cohorts[17]. The feature embedding
needs to ensure that similar nodules (in the same cohort) are embedded close to each other, while
ensuring at the same time di�erent cohorts are separated within the feature space. This ensures
only relevant nodules are returned for the input nodule with respect to survivability.

A su�ciently accurate embedding should be able to predict survival probability. With a rel-
evant embedding, a feature space could be created where the geographical location of a nodule in
the space determines its malignancy score on a continuous scale. The query nodule would have
a distance relative to several embedded nodules. These distances could be averaged or summed
up, or even projected on a 1D line to provide a malignancy score on a continuous scale. In a
highly accurate feature space it could even be attempted to correlate speci�c treatments (di�erent
types of chemo for instance) with the clusters. The possibility of personalizing the treatment for
optimal survival chances is an exciting prospect. Current features are determined based upon
experience and perception of the radiologist. An automated method to score nodules would be a
big leap in nodule diagnosis. An automated score results in every party involved knowing which
score a nodule is. Unfortunately, in the current work 
ow, one radiologist might score a nodule 2
on malignancy and another scores the same nodule as 4.

Deep metric learning is especially suited to tackle this type of problem because of its ability
to create feature spaces based upon comparison between given data points. Triplet networks, or
deep metric learning models in general, compare inputs and try to minimize distance between
similar items and maximize distance between di�erent items at the same time. This results in the
research goal:

Our aim is to create a content based image retrieval algorithm to aid in lung nod-
ule diagnosis.

This research question goal results in the following sub questions:

1. How can relevant features be created to implement a content retrieval method?

2. How can deep (metric) learning aid in feature extraction?

3. How can a content retrieval system’s performance be evaluated?

In this thesis we propose a solution to the lung nodule diagnosis issue through 3D image retrieval.
Novel in the approach is the fact that the retrieval is not directly based upon the malignancy
outcome. Instead, retrieval is performed on nodule features created by a U-net based encoder. A
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CHAPTER 1. INTRODUCTION

new approach in the retrieval algorithm is the use of deep metric learning in combination with the
segmentation network U-net to create a feature extractor. This thesis has been researched in a
collaboration between the technical university of Eindhoven and the computational imaging and
bio-informatics laboratory of Harvard university (CIBL). Dr. C Parmar has been the supervisor on
behalf of CIBL. Dr. Parmar is a bio-statistician with extensive experience in medical imaging[1].
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CHAPTER 1. INTRODUCTION

1.3 Outline

This thesis is structured as follows. First in chapter 2 a detailed overview of the pulmonary nodule
classi�cation issue is given. Then in chapter 3 an overview and discussion of relevant literature
is provided. Both medical papers and deep learning related papers are discussed. This chapter
serves two purposes. First, to give the reader an insight in the current medical methodology of
analyzing lung nodules. Second, to give readers information on the current state of the art for
content based image retrieval and neural networks in the medical �eld.
In chapter 4 we introduce the proposed solution. After this in chapter 5 the thesis dives into the
experiments and their results. This chapter is split into two major sub chapters, 2D and 3D. Both
chapters give an overview of the data formats, segmentation, triplet networks and retrieval tasks.
Finally in chapter 6 a discussion is held to review the results of the experiments. After discussing
the results, recommendations will be given to continue this research.
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Chapter 2

Problem description

2.1 General description

Lung cancer is one of the leading causes of death in the Western world. Early detection is of
paramount importance for survival rates. However, detecting lung nodules is not an easy task
and requires experience and skill. Even among experienced radiologists mistakes are made. The
detection of nodules is not always the main goal of the image captured. Often, nodules are found
by "accident". Lung nodules are often asymptomatic. After locating the nodule there still is
the di�cult task of assessing whether or not the nodule is benign or malignant. Automated lung
nodule detection is a non-trivial task and an active �eld of research. To illustrate this in 2.1 a
small nodule is highlighted in green. Purposely no extra indication is included in the image. We
challenge the reader to locate the highlighted nodule.

Figure 2.1: Highlighted in green a small lung nodule in a patient
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CHAPTER 2. PROBLEM DESCRIPTION

One can see how this is di�cult to �nd for radiologists. The amount of "nodule" voxels
versus "healthy" voxels is tiny, causing most automated solutions to have mediocre performance.
However, this thesis is not focused on �nding nodules in a screening setting. Multiple researchers
around the globe are actively working on the detection problem [14]. This thesis, as will be
explained in detail in the scope section, is not concerned with detection. The goal of this thesis is
to improve diagnosis after detection. Having said this, it is important for readers to have an idea
of what kind of data radiologists work with.

2.2 Benign vs malignant

After detecting the nodule a new problem arises. Radiologists need to determine whether a
nodule is benign or malignant. To determine if a nodule is benign or malignant (the vast majority
is benign) certain features of the nodule are checked.

1. Location

2. Size

3. Texture

4. Sphericity

5. Calci�cation

6. Subtlety

7. Internal structure

8. Lobulation

9. Spiculation

For more information on these features and their de�nitions we refer to Erasmus et al.[17]. These
features are assessed based on experience. Radiologists see example nodules during their training
and are taught certain thresholds. For example a nodule size table [18] 2.1:

Size Total Malignancy
< 4mm 2038 0%
4-7 mm 1034 1%
8-20 mm 268 15%
> 20mm 16 75%

Table 2.1: Nodule sizes

For most of these features a guideline exists. To illustrate the real world, an example is provided
of a benign versus malignant nodule in �gure 2.2. These images have been pre-processed, to provide
a better view. The patch in the images is zoomed in to 64� 64 pixels in size.
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CHAPTER 2. PROBLEM DESCRIPTION

a: Benign nodule b: Malignant nodule

Figure 2.2: A benign and malignant nodule side by side

It is dangerous to compare nodules like this since this view only provides 1 slice. Nonetheless, the
di�culties of assessing benign vs malignant are immediately clear. These nodules do not di�er too
much on size alone, in this image all voxels have been re-spaced to (1�1�1) mm. To an untrained
eye even features such as texture might not seem too di�erent. Unfortunately this problem does
not only exist for the untrained eye. The scores by 4 radiologists for the nodule in 2.1b:

Reader Subtlety Internal Structure Calci�cation Sphericity Margin Lobulation Spiculation Texture Malignancy
Reader 0 4 1 6 4 5 1 1 5 3
Reader 1 3 1 6 3 3 3 3 4 3
Reader 2 2 1 6 4 3 1 1 3 3
Reader 3 2 1 6 4 3 1 1 5 2
Average 2.75 1 6 3.75 3.5 1.5 1.5 4.25 2.75

Table 2.2: Nodule sizes

In table 2.2 the scores from 4 readers and their average is given. All features except for
calci�cation, which is scored 1-6, are scored on a 1-5 scale. In this example the scores are actually
reasonably close between the readers. Even in this example where most of the readers seem to
agree one of the readers would have diagnosed this nodule as benign. Thus one reader would have
classi�ed this nodule as harmless, while the other three readers classify this nodule as malignant
(malignancy � 2:5).

Subtlety Internal Structure Calci�cation Sphericity Margin Lobulation Spiculation Texture Malignancy
Mean 1.13 0.03 0.26 1.07 1.08 0.94 0.80 0.65 1.06
Max 4.0 3.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0

Table 2.3: Average and maximum range between readers per feature

In table 2.3 a summary of the range statistics is given. For each nodule the range was calculated
between the readers. Both the average ranges are shown and the maximum found range. The
mean was taken over 746 patients and thus is reasonably robust.

2.2.1 Segmentation variance

In table 2.2 an example of four readers on one nodule was shown. Whilst in this example the
di�erences are not even that great it still shows an important issue. Radiologists evaluate the exact
same tumor in totally di�erent ways. Take for example the margin feature, this feature should
in theory be exactly the same everywhere. Margin is simply a measured value, the maximum
diameter of the tumor. In this case the diameter was then binned into a score bin. Still one of the
radiologists scores the margin 5 whilst the other readers score it 3. The possible underlying cause
could be a wide variety of things. In principle it comes down to the radiologist’s experience and
judgment as to how certain features are scored. In the clinic these scores are rarely documented,
instead the radiologists comes to a conclusion after examining the images. Once we look at
segmentations of the nodules instead of these scored features, some of the variance in the scores
becomes clear. An example is presented in �gure 2.3.
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Figure 2.3: segmentations side by side on the same slice (center)

Clearly the 2 readers here do not completely agree on where the boundary of the nodule is.
This will also result in di�erence in certain features. Some of the variance is simply due to the
operator working on such a small space. Other sources of variance are disagreements between the
readers on where nodules start and end. In some of the more extreme cases the readers are not
even in agreement about the existence of a nodule.

Figure 2.4: For this suspected nodule only 1 reader identi�ed it, the other 3 did not �nd it.

Figure 2.4 shows a CT scan marked with a nodule. The interesting fact here is that only 1
reader marked this blob as a nodule. Indicating that either the other readers did not �nd the
nodule or that the other readers disagree with the fact that this is a nodule.
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2.3 Scope

Due to the complexity of medical data it is vital to set a prede�ned scope. The problem statement
is only concerned with the nodules themselves. Automated detection of lung nodules within a
CT scan is a complicated task and an active research area. For this reason in the remainder of
this thesis it is assumed that the nodule center is provided, either by a radiologist or some sort
of algorithm. This thesis will not focus on the process of staging cancerous tumors. The goal is
to create an algorithm which creates insights into whether a nodule is benign or malignant. An
important constraint on the algorithm is to avoid a black-box like model. In the medical world
black-box algorithms are treated with suspicion. It is important that the user (radiologists) can
visually see and compare what the algorithm is doing. This might change over time, if the medical
domain becomes more accustomed with machine learning algorithms. In the current work 
ow
the radiologist is the responsible party and thus will want to know why an algorithm comes to
certain conclusions.

2.3.1 Assumptions

1. Ground truths provided by the radiologists are valid.

2. Lung nodules with comparable features have similar optimal treatment methods.

3. Relevant nodule features are visible on a CT scan.

4. Nodule center points are given.
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Chapter 3

Literature review

In this chapter relevant literature with regards to both pulmonary nodules and content based
image retrieval (CBIR) is discussed. In the �rst section of this chapter the medical angle to the
problem is discussed. The current metrics and procedures in use by radiologists are reviewed and
discussed for their relevance in section 3.1. In section 3.2.3 an overview of the current state of the
art algorithms is given. Then in section 3.2.4 an overview of medically oriented CBIR algorithms
is discussed. Finally in section 3.2.5 a summarizing discussion is held to review how this thesis
can build upon the existing literature and expand it.

3.1 Pulmonary nodule feature literature

This section serves to provide the reader with an intuition on the used feature variables. The
correlation of the features towards the clinical outcome is brie
y discussed. Pulmonary nodules
are often detected accidentally. While most of the discovered nodules have benign causes, a
signi�cant portion is of the malignant type. Malignant nodules often represent stage 1 lung cancers.
Evaluation of speci�c morphological features through imaging techniques can help di�erentiate
benign versus malignant nodules. In the study of Jeremy J. Erasmus et al.[17] an overview of
the features and their correlation with malignancy is given. The study splits the features into 2
distinct groups:

1. Size, Margins and Contour

2. Internal Characteristics

In the �rst group features are related to outline and volume of the nodules. Generally smaller
nodules are more likely to be benign, 80% of the benign nodules are less than 2 centimeters in
diameter. However a small diameter does not exclude malignancy, 15% of malignant nodules are
below 1 centimeter in diameter and 42% are below 2 centimeters. Nodule margins are classi�ed
as smooth, lobulated, irregular or spiculated [17]. Similar issues as with diameter size are present
in these features. Most of the well de�ned smooth margins classify as benign but these features
can’t be used for diagnostic purposes in isolation. Of malignant nodules 21% have well de�ned
margins. Lobulation is the last feature in the �rst group. A lobulated contour implies uneven
growth which in general correlates with malignant nodules. However, in 25% of the benign nodules
lobulation also occurs. Irregular or spiculated margins are likely to be malignant but no percentage
is addressed to this.

In the second group of features, the internal features of nodules are compared. According
to the paper, there is considerable overlap between the benign and malignant cases for many of
the internal features. For example homogeneous attenuation (unusual densities in the nodule) is
found in 55% of benign nodules and 20% of the malignant nodules. Cavitation is mentioned in this
paper without any percentages tied to clinical outcomes. In the data sets available for this thesis
no score was present for cavitation. Cavitation uses wall thickness as a measure, most nodules
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with a wall thickness of over 16 millimeters are malignant and most nodules with a wall thickness
of below 4 millimeters are benign. There is signi�cant overlap which causes cavitation to be an
unreliable feature to di�erentiate on its own. The last internal characteristic is calci�cation which
is again part of the available data. The authors di�erentiate between 4 types of calci�cation:

1. Central

2. Di�use solid

3. Laminated

4. Popcorn-like

The �rst three of these patterns indicate some form of prior infection. The popcorn-like pattern is
a characteristic of chondroid1 calci�cation in a hamartoma 2. All of these patterns when present
indicate a benign nodule.

"Unfortunately, 38% to 63% of benign nodules are not calci�ed, and the reported
prevalence of calci�cation in hamartomas at CT varies from 5% to 50% "

Calci�cation being an indication of prior conditions does not mean cancerous nodules do not
display calci�cation. The author therefore warns that care must be taken when diagnosing on cal-
ci�cation alone. In CT-scans 6% of the lung cancer cases display calci�cation. Such calci�cation
is usually di�use and amorphous. Punctuate calci�cation can occur in lung cancer due to engulf-
ment of preexisting calci�ed granulomatous lesion3 and metastases. The author clearly states that
misdiagnosis can be avoided, if densely calci�ed solitary pulmonary nodules in patients with a
history of primary bone-forming malignancies are not automatically interpreted as benign lesions.
Thus calci�cation is in general an excellent indicator towards a benign nodule but in special cases
where pre-existing conditions apply radiologists need to take these into account.

Radiologist variance

Not all features have clearly de�ned metrics which radiologists can use. For example calci�cation
has 4 classes but the interpretation of the boundaries of classes depend on the radiologists’ exper-
ience and judgment. Studies show that inter and intra-class variation agreement is only moderate
as demonstrated by van Riel et al. [16].

"By considering all possible reading pairs (28 possible combinations of observer pairs
160 nodules = 4480 possible agreements or disagreements), a discordant nodule

classi�cation was found in 36.4% (1630 of 4480), related to presence or size of a solid
component in 88.7% (1446 of 1630). Two-thirds of these discrepant readings (1061 of

1630) would have potentially resulted in di�erent nodule management."

The �ndings of this study are in line with the data which is used for this thesis. The average
ranges of the features in the available data set is also rather large, as discussed in chapter 2. To
illustrate this problem, consider �gure 3.1 where the same radiologist segmented the same nodule
with a time T in between.

1chondroid tissue. n. Tissue resembling cartilage and occurring in adults. pseudocartilage. An early form of
cartilage occurring in an embryo.

2Hamartomas result from an abnormal formation of normal tissue, although the underlying reasons for the
abnormality are not fully understood. They grow along with, and at the same rate as, the organ from whose tissue
they are made, and, unlike cancerous tumors, only rarely invade or compress surrounding structures signi�cantly

3Granuloma is an in
ammation found in many diseases. It is a collection of immune cells known as macrophages
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Figure 3.1: Top view segmentation same radiologist same nodule

3.1.1 Discussion

Whilst a lot of the determined features do show correlation with the clinical outcome, one needs
to take into account the full context of the nodule. One feature on its own hardly tells the
entire story, with perhaps the exception of calci�cation. Radiologists need to take into account all
features and reach a diagnosis based on all features. In the medical literature often the analysis
on the morphological features is done univariately, such as in the paper by J. Erasmus et al.[17].
Machine learning models could in theory be able to pick up on the complex interaction between
features and therefore outperform the traditional methods. One of the bene�ts of algorithms would
be to eliminate the variance between readers. If an algorithm is used as a standard, radiologists
are (even if the algorithm is wrong) at least communicating about the same measure. Currently
one radiologist scoring texture as a 3 could be another radiologist’s 5. This presents issues in
communication and diagnosis. Content based image retrieval could aid in standardizing these
measures.

3.2 Content Based Image Retrieval literature

In this section a literature overview is given on content based image retrieval. First, an overview of
the current state of the art for content based image retrieval is given in section 3.2.3. Afterwards
in section 3.2.4 a review of literature on content based image retrieval in the medical �eld is given.

3.2.1 General Content Based Image Retrieval

A brief overview of the �eld is given in this section. In the paper by A.W.M Smeulders et al.[29]
a comprehensive review is given for content based image retrieval up until the 2000’s. The idea
of content based image retrieval is that when given a query image, similar images are returned.
The system needs several steps in order to be able to produce a valid output. An algorithm is
needed to extract features from images and encode the image in a meaningful feature space. This
feature embedding needs to be created for a database of known images such that there are images
to return. Based on the embedding or features some sort of comparison needs to be made. Once
images are ranked according to a comparison metric the best ranking images are returned to the
user. A schematic overview can be found in �gure 3.2.
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Figure 3.2: Schematic overview of a content based image retrieval system [22]

The paper describes concepts still relevant up to this day. 2 important concepts are:

1. Sensory gap

2. Semantic gap

The sensory gap describes the gap between the real world and what an image or CT scan in this
case can capture. Not all features which exist in the real world are represented in the images.
Traditionally in 2D images the sensory gap is often about displaying 3D objects in 2D images. In
the medical setting the images themselves are 3D but these 3D images consists of 2D slices over
time. The time axis is just one of the problems in the sensory gap of medical images. Over time
patients move which causes distortion in the image. An even more problematic part of the sensory
gap in CT scans is the fact that CT is not able to capture all tissue types. A CT scan makes
use of X-rays and thus tissue with high density values is easier to detect (bone). Soft tissue can
disappear in the surrounding tissue. Often radiologists need to rely on expert knowledge to know
how a certain organ is represented within a CT-scan. Within the sensory gap the author discusses
the domain width. Distinguishing 2 separate domain sizes, a broad domain and a narrow domain.

A narrow domain has a limited and predictable variability in all relevant aspects of
its appearance.

A broad domain has an unlimited and unpredictable variability in its appearance
even for the same semantic meaning.

The domain size is a major factor in retrieval systems, in a narrow domain the limited scope
ensures less di�culty in creating accurate algorithms. In a narrow domain images are well de�ned
and created in a standardized method. For example frontal views of faces against a clear back-
ground are mentioned by the author as a narrow domain. In a broad domain the images are only
partially described. Objects might be in the image which are unknown to the algorithm and even
the interpretation of the image might not be uniform accross readers. The author mentions that
domain knowledge can be of vital importance to reduce the sensory gap.

The semantic gap is de�ned by Smeulders as:

The semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for a

user in a given situation.

In other words the semantic gap describes the gap between what an algorithm can identify as
features in the image and what the user can identify. A human observer can view images with a
given context, where algorithms are bound to solely the pixel data. In the medical setting some
obvious examples exists. A radiologist has patient history when looking at a scan and uses this
information, consciously or subconsciously, in assessing a scan. An algorithm often only has the
voxel data to work with.
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Figure 3.3: Semantic vs Sensory gap visualized [9]

3.2.2 History of CBIR

Feature extraction

Feature extraction is the part of CBIR where an image is condensed into a compressed format. This
compressed format needs to represent the essence of the original image as accurately as possible.
Before the breakthroughs of deep learning for computer vision, researchers mostly worked with
handcrafted/rule based feature extraction. Feature extraction has mostly been based upon visual
features. When discussing visual features one can think of features such as:

1. Color

2. Texture

3. Shape

These features were, and still are, extensively used in CBIR systems. However in the early 2000’s
(before the deep learning breakthroughs) these features were used rather primitively. Meaning
colours were compared between images, similarities sought and returned on either local as well
as global scale. For local comparison a patch based approach was often used. However this type
of feature extraction presents one important issue. Correlation between these features was hard
to detect and quantify. Thus for example, correlation and therefore the meaning between various
detected shapes is not encoded. This results in a system that for example does �nd a rectangle
and a triangle shape, but is unable to detect the house which is made out of these two shapes.
In the paper made by Muller [10] the problem of correlation between features is discussed. The
conclusion of this paper is: segmentation is an unsolved issue while the current state of the art in
deep learning shows accurate segmentation and object detection.
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Figure 3.4: Feature detection with state of the art methods in the year 2000

The �gure above (Figure 3.4) shows a representation of an example used in the year 2000. This
image clearly shows that it was hard for the algorithms to understand a meaning in the image.
The algorithms pick up on certain features but had di�culty "understanding" what its exactly
looking at. However, this is where tremendous progress has been made with deep learning. The
hierarchy in features and combining them to come up with a sense of "meaning" is where deep
convolutional networks shine.

Comparison techniques

Once the images have been condensed into a compressed format, for example a vector of a certain
size, a comparison between the query image and the images in the database needs to be made. This
comparison is what in the end will determine which images are returned as similar and which are
not. It is vital that the feature extraction mechanism extracts relevant features from the images
but a solid comparison between extracted features determines the end result. Most of the early
systems use Euclidean vector models to compare images. Where the distance between the image
vectors represent similarity of the images. In Muller’s paper [10] several comparison methods are
described:

1. Euclidean distance

2. City-Block distance

3. Mahalanobis distance

4. Histogram intersection

According to Muller [10] all of these methods need to be used with precaution. The conclusion of
this paper is that high-dimensional feature spaces present many problems. Muller calls it "the curse
of dimensionality". Another comparison method named by Muller is the probabilistic method,
where a probability of an image being relevant is determined, for example by using support vector
machines to classify images into relevant and irrelevant classes.
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3.2.3 CBIR: current state of the art

Deep convolutional networks have had a major impact on the computer vision �eld. Classi�cation
accuracy has been steadily rising ever since the Alexnet’s win of the Imagenet competition[20].
This presented opportunities for retrieval engines. Deep convolutional neural networks used as
encoders created increasingly more accurate representation of images. Due to their relative small
size and accurate representation the neural encodings are well suited for retrieval tasks. In the
paper by Krizhevsky and Hinton [19] an algorithm is described which uses deep convolutional auto
encoders to create dense representations of the images. Then the authors make use of semantic
hashing to retrieve images based upon the neural encoding. The authors show that their method
is fast while still preserving retrieval accuracy.

The arrival of siamese and triplet networks presented a new leap in performance. In the paper
by Elad Ho�er and Nir Ailon [12] the authors show the improved embedding space when using
triplet networks over Siamese networks. The triplet network learns representations of the input
in an implicit manner. Triplet and Siamese networks are the only types of networks which expli-
citly seek to learn a metric instead of having it as a secondary e�ect. The triplet network is an
improvement over the Siamese network due to the reduced need for context. The triplet networks
are also less sensitive to parameter calibration in comparison with the Siamese networks.

The network needs to extract relevant features by comparison instead of by label. This provides
many bene�ts over the more traditional convolutional neural networks. An important character-
istic is that the class can be unknown. The authors display nicely separated feature spaces of
which an example is given in �gure 3.5.

Figure 3.5: Feature space projected on 2D from Elad Ho�er and Nir Ailon [12]

3.2.4 CBIR: in the medical field

A comprehensive overview of research done into CBIR for the medical domain was done by N.
Zin et al. [30]. The authors review the history of the �eld. In this review several approaches are
addressed, starting out with techniques based on keyword queries. In the realm of image queries
the authors explain that in the medical �eld feature extraction was done mostly by texture and
shape features. In this review, surprisingly, not many deep learning based solutions are presented.
The only deep learning based method reviewed is described by Liu et al.[21].The paper by Liu et
al. desribes a method where convolutional neural networks are used to create neural encodings to
assist with the retrieval task. Since this thesis is concerned with pulmonary nodules in speci�c,
as opposed to Liu et al. who are concerned with medical image retrieval in general, we review
the paper by A. Dhara et al.[7] more in depth. The paper is speci�cally aimed towards content
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based image retrieval for pulmonary nodules. This paper in speci�c is of great importance due
to the fact that the authors use the exact same features which are used in this thesis. On top of
this the paper utilizes the same LIDC data set. The methodology in the paper di�ers from the
methodology on the fact that this thesis tries to leverage deep metric learning towards representing
the nodules. In the paper by A. Dhara et al. the nodules are represented by features which are
calculated based upon the segmentation. The authors propose to calculate features based on a
plethora of 3D and 2D features of the nodule. The 3D shape features consist of:

1. Sphericity

2. Spiculation

3. Lobulation

The 2D shape features extracted from the biggest slice consist of:

1. Area

2. Perimeter

3. Equivalent diameter 2D

4. Convex area

5. Convex perimeter

6. Compactness

7. Major axis length

8. Minor axis length

9. Circularity

2D margin based features:

1. Acutance of nodule

2. HSAG (Histogram Spread Average Gradient)

2D texture based features:

1. Harlick features

2. Gabor features

3. HOG (Histogram Oriented Gradient)

For speci�c formulas for each of the features please review the paper by A. Dhara [7]. The paper
demonstrates that 60 out of a total of 68 features are considered statistically relevant. These
features are used to compute a feature vector for each nodule. The paper then proposes to use
these vectors to perform retrieval. The tested retrieval metrics are Euclidean distance, Manhattan
distance and Chebyshev distance. The author proposes to quantify the performance based on the
benign vs malignant outcome of the retrieved nodules. In speci�c the author uses precision:

P recision =
NumberOfRelevantNodules
NumberOfRetrievedNodules

(3.1)

The author shows that Euclidean distance and Manhattan distance have comparable results while
Chebyshev distance underperforms. The results for this type of retrieval using the precision metric
are outstanding. On K=100 (retrieved images) the author reports 0.9253 accuracy. The classes
range between 1 and 5. The result is based upon "leave one out" cross validation. This thesis

18 Content based CT retrieval for pulmonary nodules



CHAPTER 3. LITERATURE REVIEW

chooses to report results based on 100 blind nodules. In the qualitative results the author shows
retrieved images which are rather di�cult to analyze except (again) based on malignancy class.
For the examples shown the 5 nearest neighbors are given, the accuracy does not seem to be at
the 0.92 standard. To conclude, the author proposes to use an SVM (Support Vector Machine)
classi�er based upon the feature vectors. This increases the accuracy to 0.9459. A comparison
between the CBIR method and the SVM method is done based upon the ROC (Receiver Operating
Characteristic) curve. Here the �ndings are that both methods perform rather similarly. Another
paper concerned with pulmonary nodule retrieval in speci�c, is a paper by Ibanez [15] et al. In
this study a convolutional neural network is trained towards a classi�cation task. The feature
representation of a convolutional neural network is then used to perform retrieval. The CNN
features are then compared with handcrafted features for retrieval accuracy. The P @K metric
used in the paper by Ibanez et al. [15] is also used in this thesis, this metric gives an accurate
representation of how equal the set of retrieved nodules is. Another score used in by the authors
is the measure of accuracy, in their de�nition accuracy here is calculated according to if any of
the retrieved nodules has the same malignancy score. It is easy to see that this score naturally
correlates with the amount of neighbors K. Simply put, the more neighbors one retrieves the higher
the probability of all malignancy scores being present in the retrieved set. When all malignancy
scores are present the accuracy for this query is always 1. The malignancy scores are not uniformly
distributed but even so random guessing would perform rather well. A note to make here is that
for K = 1, P @K and this accuracy are the same measure. One would also expect these 2 scores
to have a negative correlation, retrieving more neighbors ensures that neighbors with a higher
distance are chosen in the retrieved set. Neighbors with a higher distance are less likely to have
similar characteristics, thus as K increases we expect P @K to decrease. In the same reasoning we
also expect the accuracy as described in the paper to increase with the amount of neighbors. We
feel the accuracy as described is a meaningless metric and choose to only report the P @K, albeit
with a twist. The metric is reported for each feature instead of only malignancy, more on this in
chapter 5.

3.2.5 Discussion

The current literature shows that CBIR for many applications is not a solved problem. Many dif-
ferent feature extraction and comparison methods exist, while no clear best performing methods
prevails. Deep learning does seem to be the most likely candidate for state of the art solutions.
Recent deep learning breakthroughs in many �elds show that deep learning based tools are out-
performing traditional algorithms [6]. There is no reason to suspect that computer aided diagnosis
is not one of the �elds which can bene�t massively from deep learning based solutions. Dhara et
al. show that CBIR speci�cally for lung nodules is indeed possible. The results of Dhara et al.
are vastly superior to previous methods, their combination of traditional features combined with
machine learning (SVM) creates a highly accurate classi�er. A remark on the accuracy can be
made due to the fact that the reported accuracy is measured with "leave one out" cross validation.
In this thesis retraining the model for each fold is unfeasible due to relatively long training times.
Therefore a more traditional approach is chosen where 100 nodules are removed from the training
set and are kept blind during training for testing purposes.
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Proposed algorithm

4.1 Motivation

In chapter 2, an extensive overview into the complexity of the problem has been given. The issue of
deep learning classi�ers being a black box leads to an unwillingness of adoption. In this proposed
algorithm adoption willingness is an important factor which is taken into account. Image retrieval
would provide radiologists with what the algorithm deems as similar cases. These similar cases
can be visually inspected by radiologists if needed. The historical data on these similar cases can
also back up the diagnosis, i.e if most (or all) of the retrieved images are benign, the nodule is
most likely benign as well. Often even the creator of the algorithm can’t explain why or how
certain networks come to conclusions.
If the retrieval is accurate and able to create sub-spaces in the embedding, the returned images
could also be more speci�cally suited comparables. Instead of returning a class from some subset
S, in the embedding there is an opportunity for clusters which represent sub-classes. In theory
these sub-classes should correlate with treatment paths.

4.2 Algorithm

In recent years U-net[23][4] has proven to be a valuable architecture for bio-medical image seg-
mentation. Both in 2D[23] and 3D[4] the results have been impressive. The fact that U-net is
capable of producing highly accurate segmentations implies that the network learns the underlying
structure of the images. In a recent paper by De Fauw et al.[5] it is also shown that this is indeed
the case. In this paper it is demonstrated that a classi�er is able to classify eye conditions based on
the segmentation of that eye by U-net. In theory U-net encodes the spatial features of whatever it
is segmenting. This information could therefore be leveraged to compare nodules on their spatial
features.
With this insight we propose to leverage the latent space of U-net to encode nodules into a mean-
ingful embedding. Initially a U-net is trained to segment nodules to the best of its abilities. Then
the bottom most layer of the U-net architecture is used as encoding: this is the last convolu-
tional layer after the last max-pool operation. In �gure 4.1 a visual representation of the original
architecture is shown.
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Figure 4.1: Original 3D U-net architecture

Expected was that this encoding would be too rough to serve any real purpose. Therefore it is
proposed to feed the U-net encoding into a triplet network[11]. The rationale behind this would
be that the triplet network performs a reasonable dimensionality reduction on the U-net encod-
ing. This dimensionality reduction is based upon a distance metric, enforcing maximum distance
between di�erent nodules and minimum distance between comparable nodules. The dimensional-
ity reduction should result in a feature vector which holds information that can distinguish nodules
from each other. Triplets try to optimize a distance metric to minimize distance between the an-
chor and a positive example and maximize distance between the negative example and the anchor.
Thus the features which should overlap between positive and anchor as well the features which
distinguish negative and the anchor should theoretically remain present in the feature vector. The
triplet is trained with a max-margin loss to achieve this. Max margin loss:

L =
X

max(0; 1� pi + ni) (4.1)

Where pi is the cosine similarity between the anchor and the positive example, ni is the cosine
similarity between the anchor and the negative example. In order to create triplets to feed into
this network a comparison metric needs to be used. Here the radiologists’ feature vectors come
into play. It is proposed to use the 9 features given by radiologists. Once the triplet creates a
meaningful embedding space, nearest neighbor is used to retrieve similar nodules from a database.
A full overview of the layers in the 3D encoding algorithm is given in table 4.1.
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Layer Kernel Size Output Shape Parameters Initialization
input InputLayer x 64, 64, 32, 1 0 U-net Weights
conv11 Conv3D (3� 3� 3) 64, 64, 32, 32 896 U-net Weights

batch normalization 1 x 64, 64, 32, 32 128 U-net Weights
conv12 Conv3D (3� 3� 3) 64, 64, 32, 64 55360 U-net Weights

batch normalization 2 x 64, 64, 32, 64 256 U-net Weights
pool1 MaxPooling3D (2� 2� 2) 32, 32, 16, 64 0 U-net Weights

conv21 Conv3D (3� 3� 3) 32, 32, 16, 64 110656 U-net Weights
batch normalization 3 x 32, 32, 16, 64 256 U-net Weights

conv22 Conv3D (3� 3� 3) 32, 32, 16, 128 221312 U-net Weights
batch normalization 4 x 32, 32, 16, 128 512 U-net Weights
pool2 MaxPooling3D (2� 2� 2) 16, 16, 8, 128 0 U-net Weights

conv31 Conv3D (3� 3� 3) 16, 16, 8, 128 442496 U-net Weights
batch normalization 5 x 16, 16, 8, 128 512 U-net Weights

conv32 Conv3D (3� 3� 3) 16, 16, 8, 256 884992 U-net Weights
dimred1 Conv3D (2� 2� 2), stride=2 8, 8, 4, 256 524544 Random Weights
dimred2 Conv3D (1� 1� 1) 8, 8, 4, 128 32896 Random Weights
flatten1 Flatten x 32768 0 Random Weights

dense1 Dense x 512 16777728 Random Weights
dense2 Dense x 64 32832 Random Weights

Table 4.1: Layers in the encoding model

The 2D version does not have any convolutional layers after the U-net encoder. Instead in this
version dense layers are added immediately. The layers reducing the dimensions into a vector of
size 64 are trained through a triplet network. The triplet network will serve to update the weights
of the encoder. A schematic overview of the triplet network is given in �gure 5.20. The triplet
network takes 3 inputs:

1. Anchor a: the nodule to which all inputs will be compared.

2. Positive p: A nodule with similar features.

3. Negative n: A nodule with di�erent features.

The triplets sets will be created with the function described in algorithm 1.

Algorithm 1 Generate Triplets(S; C)

triplets = []
for nodule in S do

pos = choose random from C[nodule] fC is a dict with a list of comparablesg
neg = choose random from S � C[nodule]
triplets.append([pos, nodule, neg])

end for
return triplets

Figure 4.2: Schematic overview of the triplet

Content based CT retrieval for pulmonary nodules 23



CHAPTER 4. PROPOSED ALGORITHM

Once the triplet network is trained to produce a meaningful embedding space an encoder can
be extracted from the triplet network. This encoder can then be used to embed the nodules in
the created feature space. Then for each query image the pipeline looks as follows:

1. Encode nodule with encoder

2. Retrieve nearest neighbors based on embedding

3. Return top 5 neighbors

To summarize, the proposed solution is to use a U-net trained on segmentation as part of an
encoder. This encoder then does additional dimensionality reduction on the features encoded by
the U-net part. The encoder is then tested for retrieval, which is evaluated by a Pi@K retrieval
performance metric. This Pi@K metric is explained in more detail in chapter 5.
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Chapter 5

Experiments

5.1 Datasets

5.1.1 The Lung Image Database Consortium image collection

This data set (which is abbreviated to LIDC) consists of CT scans with segmented and annotated
lung nodules. Seven academic centers and eight medical imaging companies collaborated to create
this data set. The data set consists out of 1018 separate cases. All cases are evaluated by 4
readers, the readers marked the nodules independently at �rst. In the second phase all readers
reviewed their own marking along with the anonymized markings of their colleagues. The data
set has been split into a training set and a test set. This test set is kept blind to the algorithm.
The training set will be used for both training and validation. After �ltering the set we are left
with:

LIDC summary
Train Test

Nodules 950 99
Unique patients 518 54

Benign 415 70
Malignant 535 29

Table 5.1: LIDC data summary

For each nodule the radiologists scored 9 features ranging from texture to malignancy, the
features are more closely described in chapter 2.

5.1.2 National Lung Screening Trial

The National Lung Screening Trial or NLST is a randomized screening test. The study had
54,000 participants enrolled in between 2002 and 2004 and randomly assigned to two study arms.
Participants were o�ered three exams at one year intervals. The 2 groups had di�erent types of
examinations, one group got low dose CT-scans while the other group was given single view chest
radiography. For the purpose of this thesis only data of the CT-scan group is relevant. For each
participant in this group 1 of the time points was taken, to be precise only scan T0. The goal of
the study was to asses whether or not low dose CT screening reduces lung cancer mortality rate
as opposed to chest radiography. For all patients with a tumor a segmentation is present. The
segmentation data alongside with the original scan and the clinical outcome is the data used in
this thesis. No additional data from the NLST set is relevant to the retrieval purpose.
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NLST summary
Train

Nodules 1058
Unique patients 520

Benign 907
Malignant 151

Table 5.2: NLST data summary

5.2 2D networks

Since 3D data is computationally heavy and introduces long run times it was decided to �rst test
2D networks. In the 2D setup certain slices of the nodule scans are used. Slices are 2D images of
(64� 64) pixels. The small size of the data creates the option to use lightweight neural networks
with fast training times. The disadvantage of 2D data is the information loss. An absence, or
presence for that matter, of features in the 2D plane provides no guarantees in 3 dimensions.
Therefore the 2D experiments are merely to build up an intuition and do not provide exclusions
or proof for 3 dimensional experiments. Imagine a nodule which in the 2D plain is a round dot
but in the Z direction is large in size. The 2D approach will never get an accurate representation
for this nodule.

Figure 5.1: 2D slice of the CT and its segmentation side by side

5.2.1 Data

The data sets used for the 2D experiment is the data sets LIDC as described in the previous section.
LIDC is used as a training and validation data set, where the validation set is 100 nodules. The
independent test in the 2D experiments are 100 nodules which are kept out of the training and
validation cycle. The data sets are split such that instead of (32� 64� 64) cubes the input is an
array of (64� 64) grids. For testing purposes di�erent variations of the data sets are created. The
following variations have been made:

1. All slices
2. All slices which have a nodule present

These variations have been made to test performance of the segmentation network. One of the
tests includes feeding all the 2D slices to the network, where it was expected that the performance
would be impacted in a negative sense. This is due to the fact that most slices actually do not
contain any nodule pixels.
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5.2.2 Segmentation

Architecture

For 2D segmentation the U-net architecture as described in [23] was used. A visual representation
can be seen in image 5.2.

Figure 5.2: 2D U-net as designed by Ronneberger et al.

This architecture was chosen due to its outstanding results on bio-medical segmentation tasks.
Many publicly available implementations exist at this time and U-net has become the standard for
bio-medical image segmentation tasks. In the 2D experiment no other depths of U-net were tried.
Often researchers vary the amount of down steps in U-net and �nd an empirical optimum. In this
thesis however, the 2D approach was only used to con�rm the concept. This combined with the
fact that the original architecture performed relatively well on the segmentation task caused the
decision to move on to 3D instead of experimenting with di�erent U-net depths.

Results

The results of the segmentation task depend heavily on the input data. Initially all slices of the
cube were used. This results in a vast majority of input images having no nodules. This causes the
network to be biased towards no output. The dice score[26] for that training runn was extremely
low (<.05 Dice). Because dice score can not be taken at face value, since it is merely an estimate
of performance, a visual inspection was done. In the visual inspection almost every input resulted
in an empty mask. Only occasionally there were a few pixels found in the center.
In fact, all of the methods where the input data also included "empty" inputs, empty meaning no
nodule pixels, performance of the network was rather bad. U-net seems to converge rapidly in the
earlier epochs toward some local minimum.
This can also be seen in 5.2, after 100 epochs the network does not seem to learn anymore. The
curves of both the validation and training are nicely correlated with each other indicating that the
network is really learning and not just over-�tting onto the known data. The method where only
inputs were given with actual nodules present performed well. The resulting dice scores are given
in table 5.3. An overview of the training and validation scores can be found in �gure 5.3. The
training and validation scores show near perfect correlation throughout the training cycle. This
provides con�dence that the network is truly �nding useful features. As previously mentioned,
dice scores only give an indication to the actual performance. Therefore at random results were
inspected. After discussion with Dr. Parmar the results were considered to be decent. In �gure
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Data set Dice nodule only All slices
Training 0.86 0.02

Validation 0.85 0.02
Test 0.80 -

Table 5.3: Dice scores 2D segmentation

Figure 5.3: Training and validation dice score

5.4 an automated segmentation is shown next to an actual segmentation provided by an unknown
reader and its original input. Whilst not being an exact match the segmentation does �t rather
nicely on top of the nodule for most of the cases. In some cases, it could even be argued that the
automated segmentation is more precise. Several reasons could be underlying to the network being
more precise. One of the most obvious candidates however is the fact that humans have di�culty
being accurate on such a zoomed-in scale. The network can compare voxel by voxel, where human
readers have to use a mouse to draw in the segmentation. This hand drawing introduces variance.
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Figure 5.4: 6 random nodules U-net trained on only nodule images

One remark is that when given an empty input the produced segmentation masks are sub-par.
The network does not know how to deal with images where no nodule is present as is displayed
in 5.5. In this image we clearly see that the network always searches for nodules. Even worse is
that it apparently is always looking in the center. Important to note is that the input images are
augmented through shift, zoom and rotations. Another interesting example in this image is the
6th row where the network indicates two nodules instead of one, whilst it has never seen 2 nodules
in 1 image.
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Figure 5.5: Slices without nodule and their prediction

The scope of the thesis clearly de�nes that the input to the networks are center points of
nodules. Thus, while this is an issue which requires more testing and research, it is not an issue
this thesis will address.

5.2.3 Triplet

The U-net weights were then used to construct a triplet network. The triplet which uses the U-net
network previously mentioned as encoder compares center slices of each nodule. The similarity
in the 2D experiment was based upon the benign malignant classi�cation instead of the feature
vectors. This is due to the fact that one 2D slice most likely can not contain the information needed
to create the feature scores as given by the radiologists. The triplets were made using the center
slice only. The reasoning is that center slices should convey more information on malignancy than
any other slice on its own. Immediately one can see why the 2D experiments are merely seen as
a proof of concept for the theory. One slice has a massive amount of information loss as opposed
to the 3D volume.

Architectures

The triplet architecture used is similar to the 3D version displayed in 5.20. The main di�erences
are that in this 2D version the U-net encoder is extended with dense layers directly. These dense
layers serve the purpose of dimensionality reduction. In the 3D model extra convolution is needed,
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the output of the U-net encoder in this 3D model is a cube of (32� 32� 16� 256). This results in
too many parameters when directly connected with dense layers. To combat this, two convolving
layers are added, one layer with a (2�2�2) kernel with stride 2 and a layer with a (1�1�1) kernel
to reduce the feature maps. Three versions of these models have been tested. One where the full
model is initialized with random weights, one version where the U-net segmentation weights are
used to initialize the encoder and only the dimensionality reduction part is �ne-tuned and last a
version where the U-net segmentation weights are used to initialize and are set to trainable. 5.4.

Description
Type I U-net initialized encoder(�xed weights) dimensionality reduction layers trainable
Type II Unet initialized encoder with all layers trainable
Type III Randomized initialized weights and all layers trainable

Table 5.4: Types of networks with regards to weight initialization and trainable layers

Results

Because the triplet has a high amount of weights to update, it was feared the triplet would simply
over-�t to the training data. When looking at the training cycle it becomes clear that there is a
di�erence between the strategies. Looking at �gure 5.6 it is clear that the type I version needs
more epochs to �nd a minimum ,while type II quickly �nds an optimal point after only 10 epochs.

a: Type I training loss b: Type II training loss

Figure 5.6: Type I and II training cycle side by side

Figure 5.7: Type III training loss

Solely looking at the training loss nothing can justi�ably be determined. More thorough
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analysis can be done by examining the PCA (Principal Component Analysis) decomposition of
the feature vectors produced by the triplet encoder. In �gure 5.10 two very di�erent shapes appear.
The trainable version (Type II) is able to make an orthogonal shape clearly separating the two
classes. The shape does look like it has been over-�tted but validation and test sets should provide
more clarity. First the comparison with the type I version needs to be made. In �gure 5.7a there
is a separation which is unlike the other two versions presented. The type I version has a clear
separation along a vertical axis. However, there seems to be more uncertainty in this shape along
the separation axis. It also lacks the orthogonal characteristic which the other two versions do
display. The type III triplet has very similar characteristics to the transfer learned version (Type
II) if we look at the PCA decomposition. Both display orthogonal separation of the classes with
a similar amount of malignant data points inside the benign cluster.

a: Type I �rst 2 components PCA train data b: Type II �rst 2 components PCA train data

Figure 5.8: Type I and II PCA side by side on train data

Figure 5.9: Type III �rst 2 components on training data

In �gure 5.10 the PCA decomposition of the validation data is displayed. The validation data
in this case is data originating from the LIDC data set which was kept blind to the triplet and
U-net during the training phase. Here we see that the type I version appears random, which is
a clear indication that type I over-�tted the training data. This conclusion is drawn due to the
fact that the training data is separated while the validation data seems to be scattered rather
randomly. The type II version shows more promise. There seems to be great uncertainty among
most cases but the orthogonal shape is still present and for some cases we can �nd very clear
clusters, such as the benign cases in the right part of �gure 5.9b. The type III version shown in
�gure 5.11 has similar characteristics to the transfer learned (type II) version. The type III triplet
does show a more ’neat’ shape with better de�ned bounds on the clusters.
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a: Type I �rst 2 components PCA validation datab: Type II �rst 2 components PCA validation
data

Figure 5.10: Type I and II PCA side by side on validation data

Figure 5.11: Type III �rst 2 components PCA validation data

As an independent test the NLST data was also encoded by the same 3 encoders. The resulting
PCA decompositions can be found in �gure 5.12 and 5.13.

a: Type I �rst 2 components PCA test data b: Type II �rst 2 components PCA test data

Figure 5.12: Type I and II PCA side by side on test data
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Figure 5.13: Type III �rst 2 components PCA on test data

From these �gures it is clear that on the independent test set the type I encoder does not create
separation between the classes. The PCA decomposition tries to keep as much of the variance in
the lower dimensions as possible. Therefore it is reasonable to assume that separation in higher
dimensions is also di�cult. This assumption gains strength when looking at the results in the
next chapter where nearest neighbor has di�culties in classifying based on this embedding. The
transfer learned encoder (Type II) seems to do better. The image still has a lot of randomness
in it but some sort of clustering within the ’blob’ occurs. In the type III encoder however, the
orthogonality is reasonably clear and on top of that there are more clearly de�ned clusters. On the
outskirts there are mainly blue dots where in the center of the shape the red dots are clustered.

5.2.4 Evaluation

The 2D approach provides valuable insight into how the nodule data separates in feature spaces
and how the triplet behaves with transfer learning. The transfer learning from U-net does seem
to have e�ect, the training time is shorter and results within the same data set are reasonable in
a visual inspection. Indicating that the hypothesis of U-net encoding spatial features related to
the clinical outcome seems valid. The type III triplet seems to result in the best feature space
on visual inspection. In the following experiments this knowledge has been taken into account.
Retrieval has not been tested on this approach since we aim to do retrieval based on the 8 metrics
radiologists currently use instead of retrieval on benign/malignant.

There is a severe limitation in the 2D approach which causes 2D to be a sub-optimal solution. In
order to present radiologists with similar tumors according to the current metrics spatial features
need to be compared. With the 2D approach a lot of spatial information gets lost. If a tumor for
example is small in the XY plane but very large in the Z direction the 2D approach as described
above would not capture this. An option is to explore 2.5D however, there the same issues are
present. Especially for metrics such as sphericity 2.5D will be sub-optimal. In this 2D approach
the comparison between nodules was made based on a binary score (benign and malignant). While
this is obviously the end goal of any algorithm the goal of the thesis is to provide a radiologist more
insights into why an algorithm reaches a certain conclusion. In our opinion the best method to do
so is to present similarities according to the current used metric (sphericity, texture, calci�cation
etc.). The triplet as presented above does not �t this goal due to its inability to capture full 3D
spatial features.
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5.3 3D networks

In these experiments the LIDC data is used. For all nodules a cube was cut of size 64 � 64 � 32
around the center of the nodule. This size was chosen on recommendation of Dr. Parmar, with
previous classi�cation networks this format has shown promising results.

5.3.1 Segmentation

Architecture

For 3D segmentation the U-net architecture was chosen as the architecture. In order to reduce the
complexity the amount of down steps is reduced from 4 to 2. The down and up-step con�guration
can be found in 5.5. In this table the number of kernels is displayed as a variable.

Down step
Layer Type Size Nr kernels

1 Convolve 3D (3,3,3) x
2 BatchNorm - -
3 Convolve 3D (3,3,3) 2 � x
4 Maxpool 3D (2,2,2) -

Up step
Layer Type Size Nr Kernels

1 Upsample 3D (2,2,2) x
2 Concatenate(skip) -
3 Convolve 3D (3,3,3) x
4 Maxpooling 3D (3,3,3) -

Table 5.5: Layers within the Down and Up steps

Below in 5.6 the full architecture can be found. Note that the used version here of U-net is
smaller than the original as displayed in 5.2. This is due to the smaller input size of (64�64�32).
The original 2D U-net was created for (572 � 572). Training a U-net with 4 down steps would
result in an very large amount of trainable parameters. This is not justi�able taking into account
the size of the images and the complexity of the data used. GPU memory constraints need to be
taken into account as well due to the triplet architecture adding more parameters on top of the
encoder. Deeper U-nets were tested but did not result in better segmentation accuracy.

Type kernel size Nr kernels
Down step (3,3,3) 32
Down Step (3,3,3) 64

Convolve 3D (3,3,3) 128
Batchnorm (3,3,3) -

Convolve 3D (3,3,3) 256
Batchnorm (3,3,3) -

Upstep (3,3,3) 128
Upstep (3,3,3) 64

Convolve 3D (1,1,1) 1

Table 5.6: Full U-net architecture

The architecture as shown therefore seems to be a good trade o� between a light model whilst
not sacri�cing accuracy. The segmentation training/validation split is again 85%/15% on the
LIDC data set. The NLST data set is used as independent test set.

Results

The large amount of neurons in the 3D U-net presents a situation that is prone to over-�tting.
Looking at the training and validation dice score 5.14, over time it becomes clear that the network
does indeed over-�t to the training data. This is even the case with the batch normalization in
place. To battle the over-�tting we added dropout to the model. The results of dropout versus
batch normalization are comparable, which is why we opted to keep batch normalization in place.
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Figure 5.14: Training and validation dice score

In �gure 5.14 it becomes clear the network is only learning training data speci�cs after ap-
proximately 65 epochs. The maximum validation dice score, 0.66, is at epoch 67. Up until this
point the trend of the dice score is trending upwards, meaning the dice still oscillates heavily on
the validation sets but the new lows are consistently higher than the previous ones. After this
epoch however the validation dice oscillates in a wider range. Therefore it was concluded that the
network is not learning additional generally applicable features after epoch 67. Whilst the dice
score does not change, the di�erent resulting networks do have varying ways of representing the
nodules, more on this in the triplet subsection.

Testing the network on the NLST data resulted in a dice score of: 0.63. The validation and
independent set are on par, indicating that the network is able to �nd general features to assign a
segmentation. Considering the fact that dice is only a rough indication, again a visual inspection
was done. After examining random tests the conclusion was made that the network produced neat
segmentations for most of the nodules.

a: 3D segmentation by a random reader b: Automated segmentation

Figure 5.15: Automatic vs reader segmentation on a random test nodule

In the example shown in �gure 5.15 the automatic segmentation tightly wraps around the
nodule, where the reader has a bit more empty space in the segmentation.
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On several nodules the automatic segmentation outperformed the human readers.
There are also obvious 
aws in the automatic segmentation such as the segmentation shown in
�gure 5.16. In this example the nodule itself is actually nicely segmented but the network identi�ed
a second small nodule on the left side. A human reader would not have made this mistake, even
an untrained observer would not make this mistake. The potential for these errors to distort the
retrieval process is signi�cant. In the embedding this extra nodule is also present. The triplet
could then make a distinction based upon this obvious 
aw since it is a very unique feature (no
inputs should have 2 objects present).

Figure 5.16: Faulty segmentation on a test nodule

After reviewing the randomized examples the conclusion was drawn that the segmentation was
performing on a level which was needed to continue with the triplet encoder. The segmentation
on visual inspection actually exceeded expectation on several occasions on its performance, being
more precise than the human readers. This is interesting since the network has only seen the input
of the human readers it was now outperforming. The increased performance could possibly be
attributed to the more meticulous nature of the algorithm checking the image, the algorithm can
view each image voxel by voxel. On top of this it uses knowledge of the averaged radiologist (it
has seen 4 segmentations of each nodule) to segment.

Content based CT retrieval for pulmonary nodules 37



CHAPTER 5. EXPERIMENTS

5.3.2 Triplet

In chapter 4 a psuedocode algorithm was given which explained the concept of how the triplets were
selected. The selection was done based upon equality in the feature vector created by radiologists.
In �gure 5.17 the distribution of the feature vectors is shown for the 2275 unique vectors.

Figure 5.17: Frequency of a unique vector

Immediately clear is the fact that for many of these vectors there will be no comparables or
very few comparables. To create a workable solution it was decided with the assistance of Dr.
Parmar that the vectors would be binarized. The binary vector distribution is shown in �gure
5.18. Instead of the 2275 unique vectors, the total amount of unique vectors is now brought back
to 79. These 79 vectors do not leave enough variability to create triplets.

Figure 5.18: Class variety in full binary mode

To correct this problem, a hybrid approach was chosen in which all features were binarized,
excluding malignancy which was kept at the average of the four radiologist readers. This hybrid
approach produced 327 unique vectors, ensuring variability between triplets, as shown in �gure
5.19.
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Figure 5.19: Feature vector frequency used (all binary except malignancy)

With these binary vectors the triplet was trained for 50 epochs. Out of the previously men-
tioned types in table 5.4, two were used: type II and type III. During training, the networks both
converged rather quickly and a training cycle of 50 epochs proved to be su�cient for convergence.

5.3.3 Retrieval

To compare the results with the current literature, we chose to use precision at K (P@K). Precision
at K is the ratio of relevant returned nodules out of K neighbors. In mathematical terms:

P@K =
Mi

K
(5.1)

Where Mi is the amount of nodules returned matching on feature i. This performance metric
is used by Ibanez et al.[15]. Ibanez et al.[15] calculate this metric solely for malignancy, in this
thesis we opt to calculate the P@K metric for each feature individually. Resulting in Pi@K where

�Pi@K is the average precision for feature i at K neighbors. Thus, for each feature we average for
all query nodules N , this results in

�Pi@K =
1
N
�

nX

i=1

Pni@K (5.2)

Where Pni@K is the precision for nodule n for feature i at K neighbors. The Pi@K metric is
calculated for each of the nodules LIDC validation set. This is data which both the triplet and the
segmentation algorithm have not seen before. For each of these nodules we retrieve K neighbors
based upon the Euclidean distance metric for vectors of size n

d(P; Q) =

vu
u
t

nX

i=1

(Pi �Qi)2 (5.3)
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We choose to use the range 1 to 21 with a step size of 2 for K. In �gure 5.21 the Pi@K score is
given for each of the features using the embedding from the type II encoder and compared with
the Pi@K when choosing random neighbors. The Pi@K values for the random retrieval are the
average Pi@K values over 100 runs.

Figure 5.20: Schematic overview of 
ow of information for evaluation

In �gure 5.20 a schematic overview of the triplet evaluation process is shown. A query nodule
is embedded with the triplet trained encoder. After this a nearest neighbor algorithm is used to
retrieve similar nodules. The neighbor nodules are retrieved from a database of embedded nodules.
After retrieving the neighbors the Pi@K score is calculated for all of the features in the original
feature vectors.
First we analyze the Pi@K for the binary scores of the nodules.
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Figure 5.21: Type II encoder precision @ K for each binary feature

In �gure 5.21 it becomes clear that the embedding retrieval for many of the features is approx-
imately similar to the random retrieval. The Pi@K for the features calci�cation and sphericity
are consistently better than random by using the embedding. All other features besides malig-
nancy are on par with the random retrieval or slightly below (such as texture). Positive is that
the embedding does seem to outperform on the malignancy retrieval. Malignancy is the most im-
portant feature since this is the feature on which follow-up decisions are made. The performance
of the Pm@K (malignancy) drops as more neighbors are retrieved and converges to the random
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performance. The decay in performance as K increases is natural and expected.
The embedding compared here is the optimal embedding from the training cycle. Other embed-
dings from earlier or later epochs performed worse. The intuition for this is that after approxim-
ately 30 epochs the network over-�ts towards the training data and below 30 epochs the embedding
is not yet fully converged to optimal.

Figure 5.22: Type III embedding (returning the same neighbor for almost all queries)
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In �gure 5.22 the Pi@K scores are given using the type III encoder. The embedding used
here is from the 40th epoch. In reality though it does not matter much which epoch is taken,
all embeddings after epoch 25 result in similar performance. Type III has more "freedom" while
searching for optimal weights due to a randomized initialization. The performance at �rst glance
seems promising. The Pm@K (malignancy) is around 68% which is outstanding. However, on
closer inspection we see that the same neighbor is returned for almost all queries. The triplet in
this case condenses the data points tightly together, nearly into a single point. The result of this
is that the most central vector is returned as �rst neighbors for all the queries. An interesting
observation here is that for 3 nodules a di�erent set of neighbors is returned, these 3 have the
same set every time but di�er from the others. All 3 have very low malignancy scores, 2 out of
these 3 have calci�cation present. Thus the network here is also returning images of which it is
certain are benign.
Thus, in the binary setting, always returning the most central vector vastly outperforms both
random neighbors and the type II embedding neighbors. This is mostly due to the class imbalance
within each of the features which is partly caused by the binarization and partly caused by the
(extreme) variance between the radiologists. this also shows when testing the same embedding
on the malignancy scale 1-5 as is shown in �gure 5.24. Embeddings from earlier epoch encoders
were also tested. However, these embeddings under-performed, meaning they did not beat random
guessing.
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Figure 5.23: Pi@K with malignancy 1-5

In �gure 5.23 the same Pi@K score is shown as in �gure 5.21 with one exception, malignancy
is non binary. In �gure 5.23 the Pm@K (malignancy) score is precision for a scale between 1 and
5. Interestingly enough the Pm@K is consistently outperforming random guessing. This indicates
that the triplet does encode the malignancy scale rather well in the embedding. Remember in the
binary case the performance dropped as more neighbors were introduced. Thus,part of the decay
might be due to the loss of information on binarizing the malignancy score.
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Figure 5.24: Type III embedding (returning the same neighbor for almost all queries) for malig-
nancy 1-5 Pi@K

Thus the type II encoder is more robust and most likely generalizes better towards unseen
data. Type III seems to be very prone to over-�tting towards the training data.
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5.4 Euclidean loss triplet

Due to the mediocre results of the max margin loss, a new di�erent function was tested. In this
loss function the idea was to take the original euclidean distance between the feature vectors of
the radiologist and make use of the continuous values. Thus the loss function would be an L2 loss:

1
n
�

nX

1

(Yi � Ŷi)2

substituting for the euclidean distances of the anchor Ai, the left compared nodule LCi and the
right compared nodule RCi we get:

1
2n
�

nX

1

((d(Ai; LCi)� d(Âi; L̂Ci))2 + (d(Ai; RCi)� d(Âi; R̂Ci))2)

This loss function makes use of the full information encoded in the vectors of the radiologist. There
is no need to binarize the feature vectors, thus the triplet might be able to embed the nodules with
higher precision. The binarization caused a loss of information in an already limited size data set.
The euclidean distance method tries to make use of all of the information given by the radiologist.
Due to the fact that each nodule has four feature vectors, one for every radiologist, which gives
an extra degree of randomness here. For each anchor two samples are chosen at random, then
for each of the three nodules one feature vector is chosen at random. In each unique triplet there
is a hypothetical of 43 options. It is assumed here that, when given enough samples, the triplet
network will converge to the consensus of the radiologists.

5.4.1 Training

The training cycle for this loss function was 250 epochs where we can see a steady decline in the
loss function. The setup has only been tested with the type II 5.4 setup.

Figure 5.25: Euclidean loss training

To explore the embedding t-SNE (van der Maaten et al.[27]) is used. t-SNE tries to preserve
relative distance between data points and tries to group neighbors. Thus we can see if the encoder,
while preserving the neighbor characteristic, is encoding valuable information for retrieval. In
�gure 5.26 and 5.27 the benign cases are marked in blue and the malignant cases are marked in
red.
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Figure 5.26: t-SNE on training data from the euclidean loss triplet embedding

In the t-SNE visualization the data points are scattered in a seemingly random way. This as
opposed to for example �gure 5.7b. To compare apples with apples the PCA of this embedding is
also added in �gure 5.27.

Figure 5.27: PCA on training data from the euclidean loss triplet embedding

In �gure 5.27 it can be seen that while some cluttering of the classes arises it is not as structured
as in for example �gure 5.7b. This is of course expected since in the two �gures mentioned the
comparable nodules for the triplet were created based on class.

5.4.2 Retrieval

The test metric is a l2 loss, where the average distance in the embedding space of the returned
nodules is compared with the original average distance. Computing this MSE results in a value
of 8.50, taking

p
8:5 results in 3.74. The average distance between two data points in the original

feature space is 4.06. The error between the embedding and the original feature vectors seems to
be close to the average distance between two points in the original space. Meaning that the average
error between the embedding and the original space is almost as big as the average distance of two
data points in the original space. Thus, the embedding does not produce any signi�cant bene�t
over using the original feature space.
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Chapter 6

Conclusions

6.1 Discussion

In this thesis we set out to create an algorithm to support radiologists in their diagnostic decision
on pulmonary nodules. In chapter 2 we clearly illustrated the di�culty of diagnosing pulmonary
nodules. The medical �eld has a reluctancy to adoption of black box models, which many deep
learning based algorithms are. Therefore we introduce a retrieval based algorithm, here radiologists
can visually con�rm whether the algorithm’s decision makes sense. After a literature study it
was decided to try and create an embedding for retrieval with the aid of deep metric learning.
Within deep metric learning, triplet networks seem to be the current industry standard. The
embedding is created with triplets based on feature vectors created by radiologists. These feature
vectors were averaged for the four readers. After averaging, all features excluding malignancy
were binarized. These vectors were then used to create triplets. A triplet network with several
types of initialization, see table 5.4, is trained on these triplets. To evaluate the performance of
the retrieval model we introduce the Pi@K evaluation metric. The Pi@K metric is �rst evaluated
on full binary feature vectors, including malginancy. This sets a base line of performance of the
embedding versus random choice of neighbors.
The performance of the embedding created on a binary setting outperforms random choices for the
most important feature, malignancy. This is also the feature which the triplet received the most
information about. On the other binary features the performance is around random and, in some
cases, outperforms random. In the following comparison we only take into account the embedding
created by the type II encoder. This embedding is robust and generalizes better than the type
III based embedding. The Pi@K for malignancy can be compared with the P @K from Ibanez et
al.[15]. Our method here slightly outperforms the method of Ibanez et al.[15] in the binary case,
it has to be noted that this is expected. Ibanez et al. [15] perform P @K for a 1-5 scale thus
the task at hand there is much harder than the binary retrieval. Then we compare the retrieval
of our embedding on a 1-5 scale with that of Ibanez et al.[15]. Here Ibanez et al.[15] outperform
our method. We can also compare the result for malignancy with Dhara et al.[7] who achieved
signi�cantly higher Pm@K using computationally created features. These features are similar
to the features used in this thesis, with the important di�erence that in this thesis the features
are scored by radiologists and Dhara et al.[7] compute the feature scores based on predetermined
formulas.
Due to the fact that the performance metric in this thesis is the same metric as the performance
metric used in both the papers by Ibanez et al.[15] and Dhara et al.[23] we can compare them.
However, the comparison is not as straight forward as one would like. Both Ibanez et al.[15] and
Dhara et al.[7] make use of cross fold validation. Thus, both competing papers do not have a
blinded test set. This thesis does use a blinded test set, albeit a test set which stems from the
original data set. Usually the blind test set should stem from a di�erent data set altogether.
Unfortunately for the retrieval task it is, at the time of writing, impossible to �nd a data set with
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the features scored. Besides this Ibanez et al. [15] split the data set in two parts. One which has
nodules where all readers agree and one where they do not. In our opinion it is precisely the cases
where the radiologists do not agree which are interesting and vital to create an accurate prediction.
Therefore, we are of the opinion that training algorithms on these separate data sets is not an
optimal choice. Information which could (and maybe should) be shared across the "certain" cases
and the "uncertain" cases is not shared. The split in data makes the CNN prone to over �tting
towards these respective data sets. The accuracy metric used by Ibanez et al.[15] is as follows, the
average accuracy when at least one of the retrieved nodules malignancy is the same as the query
malignancy. In our opinion this metric is not meaningful, which is why this metric is not used
in this thesis. The fact that both the papers and this thesis do not have independent test data
makes the achieved performances di�cult to interpret. The retrieval embeddings created by all
authors could, and most likely are, heavily over-�tted to the data of LIDC. The LIDC data set is
an old data set with low resolution. Thus, if one would use these embeddings on current data the
performance would most likely not be any better than random guessing. (A quick KNN test on
the NLST data set with our best encoder revealed that only 0.06% of the malignant cases were
classi�ed correctly.)
The performance of the embedding in this thesis is sub par, most likely this is due to the variance
in the underlying data and the lack of data. A loss of information occurs on binarizing features.
This is a necessary step however to create a meaning full amount of triplets, to many nodules
would have no comparables if not for this step.

6.1.1 Recommendations

The most important recommendation, and with that one of the most important messages of this
thesis, is that a severe lack of data exists in the medical imaging �eld. In particular for the
retrieval task data is very scarce. Existing open source data is often of low quality. With low
quality we not only refer to the image quality, but also the meta data. As was discussed in chapter
2, radiologists’ scores vary a great amount. To ensure progression in the CBIR �eld for medical
images, high quality data sets need to be produced and opened to the research community. Besides
open sourcing data, it is important to have more inter-disciplinary discussions across the �elds of
computer science and the medical �eld. To aid in the lack of openly available data, a tool was
created in which radiologists can create triplet pairs in their browser. A screenshot of the tool
prototype is shown in �gure 6.1. A brief test with one radiologist showed that in this tool it took
approximately 15 seconds to create one triplet. This is orders of magnitude faster than letting a
radiologist score 9 features on a 1-5 scale. On top of this the �eld of psychometrics has known for
a long time that humans are notoriously bad at scoring items in tasks like those now performed
by radiologists in diagnostic procedures. Often a solution is to let humans rank things opposed to
each other, as humans are rather good at comparing objects’ qualities side-by-side as opposed to
scoring individual objects. (Fechner 1889 [8]).
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Figure 6.1: Nodule comparison concept

A second recommendation is for researchers who do have access to more data to test di�erent
deep metric learning architectures. One possibility would be to use the segmentation done by the
U-net as input into a triplet. This would more closely resemble the method used by De Fauw et
al.[5] with the important distinction that De Fauw et al.[5] do classi�cation instead of retrieval.
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