

A scenario-aware dataflow programming model with support
for fault-tolerance
Citation for published version (APA):
van Kampenhout, J. R. (2019). A scenario-aware dataflow programming model with support for fault-tolerance.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 25/06/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Sep. 2024

https://research.tue.nl/en/publications/650d4f26-8d4a-4e35-9e88-8c466e004c52

A Scenario-Aware Data�ow Programming Model

with support for Fault-Tolerance

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 25 juni 2019 om 16:00 uur

door

Jacobus Reinier van Kampenhout

geboren te Beilen

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. J. H. Blom
1e promotor: prof.dr. K. G. W. Goossens
copromotor: dr.ir. S. Stuijk
leden: prof.dr. A. Kumar (Technische Universität Dresden)

prof.dr. S. D. Cotofana (Technische Universiteit Delft)
prof.dr.ir. C. H. van Berkel
prof.dr.ir. T. Basten

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming
met de TU/e Gedragscode Wetenschapsbeoefening.

A Scenario-Aware Data�ow

Programming Model

with support for Fault-Tolerance

Reinier van Kampenhout

Committee:

prof.dr. K. G. W. Goossen Eindhoven University of Technology, promotor
dr.ir. S. Stuijk Eindhoven University of Technology, copromotor
prof.dr.ir. J. H. Blom Eindhoven University of Technology, chairman
prof.dr. A. Kumar Technische Universität Dresden
prof.dr. S. D. Cotofana Delft University of Technology
prof.dr.ir. C. H. van Berkel Eindhoven University of Technology
prof.dr.ir. T. Basten Eindhoven University of Technology

' Reinier van Kampenhout 2019. All rights are reserved. Reproduction in whole or
in part is prohibited without the written consent of the copyright owner.

Cover design by Studio LEG.

Printed by ProefschriftMaken – The Netherlands.

A catalogue record is available from the Eindhoven University of Technology
Library.
ISBN: 978-90-386-4785-2

Summary

A scenario-aware data�ow programming model

with support for fault-tolerance

Real-Time (RT) embedded systems can provide solutions to a broad spectrum of ap-
plications in almost every domain. Systems that adhere to a common set of static
requirements can be designed with state-of-the art design �ows. Advances in func-
tionality and technology however lead to novel dynamic requirements that cannot
be met in existing �ows. Firstly, applications exhibit dynamic behaviour because
they must respond to input data. Secondly, the set of applications that is simultane-
ously executed on a system must change in response to the user and the environ-
ment. Therefore the application sets are dynamic as well. Thirdly, the decreasing
feature size of chip designs increases the power density and leads to hot spots which
cause intermittent and permanent processor faults. This means that the set of avail-
able processors is also dynamic. We see that there is dynamism in the applications,
application sets, and available processors. Existing design �ows can combine static
requirements with only one or two of these new dynamic requirements. In this the-
sis we extend the existing SDF3 design �ow and the CompSOC platform to handle
the static requirements along with all three dynamic requirements.

Applications must respond dynamically to changes in the input data. We select
the Finite-State Machine Scenario-Aware Data�ow (FSM-SADF) Model-of-Computation
(MoC) that can capture di�erent application behaviours in separate scenarios, and
can provide a bound on the minimum throughput of an application. There is no
Programming Model (PM) available to implement applications written in this MoC.
When a scenario is started at runtime, it may be necessary to process some of the
input data before the new application scenario can be identi�ed. It is therefore not
possible to decide which scenario graph should be started, we term this the causality
dilemma. In Chapter 3 we propose a PM for FSM-SADF that allows to schedule any
allowed sequence of scenarios at run-time. In our proposed design �ow the scenario
graphs are transformed into a scenario sequencing model that features a separate
detector scenario in which the current scenario is detected. This detector scenario
is always executed before a regular scenario, which solves the causality dilemma.
The timing behaviour of the sequencing model is identical to that of the original
graph and can be used to analyse the throughput of the application. The scenario
graphs of the sequencing model can be merged into a scenario execution model. To-
gether with the Rolling Static-Order (RSO) scheduling and a number of middleware
extensions the execution model can be executed on the CompSOC platform. The de-
sign �ow was extended to automatically generate and analyse these models. We also
supply models of our implementation that capture the exact timing behaviour. We

v

vi

contribute an FSM-SADF PM that consists of a method, design �ow, middleware and
analysis model for designing applications that can dynamically respond to input
data.

The active set of applications at run-time must change dynamically to allow the
system to respond to user and environment events. This means it must be possible
to start and stop an application at any time. In this thesis we select a three-layer
mapping and scheduling concept that maps applications to Virtual Processors (VPs)
at design-time, which are deployed (mapped and scheduled) to the physical proces-
sors at the application start at run-time. This separates design-time analysis from
run-time deployment. The selected architecture, middleware and timing analysis
ensure that VPs may be deployed to any processor at run-time if su�cient processor
capacity, memory and interconnect bandwidth are available. We propose to employ
a heuristic-based resource manager that can start and stop applications at any time.
The platform utilisation at the moment at which an application starts cannot be
predicted. If the resource requirements are unbalanced across the applications, the
probability of success of starting applications will be low. The existing Design Space
Exploration (DSE) trades the throughput of applications against the total memory
size, and attempts to reduce the processor utilisation only after these other param-
eters are �xed. In Chapter 4 we extend the DSE algorithm to uncover the trade-o�
between the required processor capacity and the required memory, while meeting
the throughput constraint. This results in a set of Pareto-optimal points with which
the designer can balance the processor and memory requirements and thus increase
the probability of successful deployment in systems that dynamically respond to the
user and environment.

Processor faults lead to dynamism in the set of available processors. We propose
to employ the resource manager to re-deploy all VPs from a faulty processor to un-
used capacity on other processors, avoiding the costly reservation of spares. As the
utilisation at the moment at which the fault occurs cannot be predicted, applica-
tions may fail because insu�cient processor capacity is available. Re-deployment is
essentially a bin-packing problem. In Chapter 5 we propose two contributions that
maximise the probability of successful re-deployment by changing the sizes of the
VPs. Firstly, mapping applications to more VPs of a smaller size at design-time comes
at the cost of a larger total VP size, but increases the probability that the bin-packing
is successful. Secondly, we split and resize VPs at the moment a fault occurs, and
possibly target them for a di�erent processor type. We exploit the contribution of
Chapter 4 by selecting Pareto points with minimal cost in terms of processor capac-
ity. The experiments show that both strategies increase the probability of successful
re-deployment and thereby the fault-tolerance of a system.

In conclusion, we present a design �ow and PM for RT embedded systems that
allows dynamic response to the input data, the user and environment, and to pro-
cessor faults. We implemented the concepts in algorithms and middleware libraries
that are presented in this thesis, and evaluate each contribution experimentally.

Contents

1 introduction to real-time embedded system design 1
1.1 Common requirements for real-time embedded systems 1

1.1.1 Use-case: point-to-point video surveillance 1
1.1.2 Use-case: adaptive cruise control 3
1.1.3 Common requirements . 4
1.1.4 Fault-tolerance . 5

1.2 Real-time embedded system design 5
1.2.1 The design steps in detail 6
1.2.2 Propagation of real-time requirements through the design �ow 7

1.3 Problem statement . 8
1.4 Contribution . 11

1.4.1 Existing platform and design �ow 11
1.4.2 Solutions to the sub-problems 12

1.5 Related work to overall thesis goals 18
1.6 Thesis outline . 20

2 background and terminology 21
2.1 Introduction . 21
2.2 Design �ow . 21
2.3 Model of Computation . 24

2.3.1 Comparison to other MoCs 25
2.3.2 Application scenarios . 25
2.3.3 Scenario graphs . 26
2.3.4 FSM-SADF applications . 28

2.4 Mapping and scheduling . 28
2.4.1 Storage distributions . 28
2.4.2 Mapping applications to VRs 30
2.4.3 Determining the VP size . 30

2.5 Programming model . 31
2.6 Middleware . 32

2.6.1 CoMik �kernel . 32
2.6.2 libFIFO . 33
2.6.3 libData�ow . 33

2.7 Hardware . 33
2.8 Summary . 34

3 a scenario-aware dataflow programming model 37
3.1 Introduction . 37
3.2 The causality dilemma . 37

3.2.1 Delayed scenario detection 37

vii

viii contents

3.2.2 Immediate scenario detection 39
3.2.3 Shared persistent tokens . 42
3.2.4 Contributions . 42

3.3 Scenario sequencing model . 43
3.3.1 Creating a sequencing model for applications with delayed

scenario detection . 43
3.3.2 Creating a sequencing model for applications with immedi-

ate scenario detection . 44
3.3.3 Timing analysis of applications with immediate scenario de-

tection . 48
3.3.4 Automatic creation of the scenario sequencing model 49

3.4 Scenario execution model . 49
3.4.1 Executing a sequence of scenarios 50
3.4.2 Executing schedules of applications with delayed scenario

detection . 52
3.4.3 Executing schedules of applications with immediate scenario

detection . 54
3.4.4 Implementation of switch and select actors 54
3.4.5 Implementation of shared persistent tokens 57

3.5 Extended Binding Aware Graph . 58
3.6 Experimental evaluation . 60

3.6.1 Delayed scenario detection 60
3.6.2 Immediate scenario detection 61
3.6.3 Results . 62

3.7 Related work . 62
3.7.1 Non-data�ow PMs . 63
3.7.2 Non-dynamic data�ow PMs 63
3.7.3 Dynamic data�ow PMs . 64

3.8 Summary . 65

4 trading virtual processor size against buffer size 67
4.1 Introduction . 67
4.2 Inter-application deployment . 68

4.2.1 Design-time deployment . 68
4.2.2 Run-time deployment . 68
4.2.3 Hybrid deployment and deployment 68

4.3 WCRT analysis for intra-application mapping 69
4.3.1 Platform preliminaries . 70
4.3.2 WCRT analysis . 70

4.4 Design Space Exploration . 73
4.5 Trade-o�: VP size against bu�er size 75
4.6 Experimental evaluation . 77
4.7 Related work . 82
4.8 Summary . 82

5 fault-tolerant deployment 85

contents ix

5.1 Introduction . 85
5.2 Recovering from processor faults 85
5.3 Mapping data�ow graphs . 88
5.4 Resource manager . 89
5.5 Fault model . 89
5.6 Fault-tolerance concept . 90

5.6.1 Re-deployment . 90
5.6.2 Resize and split . 91

5.7 Experimental evaluation . 92
5.7.1 Preliminary . 92
5.7.2 Mapping . 94
5.7.3 Re-deployment . 96
5.7.4 Resize and split . 98
5.7.5 Trade-o�s . 99

5.8 Related work . 100
5.8.1 Re-deployment . 100
5.8.2 Resource manager . 102

5.9 Summary . 102

6 conclusions and future work 105
6.1 Dynamic response to input data . 105
6.2 Dynamic response to the user and environment 106
6.3 Dynamic response to processor faults 107
6.4 Future work . 107

appendices 109

a use-case re�irements 111

b algorithms for fault-tolerant deployment 117

bibliography 121

list of acronyms 139

index 141

acknowledgments 143

about the author 145

list of publications 147

x contents

1
1 Introduction to real-time embedded system

design

1.1 Common requirements for real-time embedded systems

Embedded systems are electronic systems that are designed for a speci�c purpose
and are integrated into their environment. Contemporary embedded systems are
digital systems where software applications are executed on a hardware platform.
Such systems can provide solutions to a broad spectrum of applications in domains
such as health-care, transportation, and automation. In order to do so systems must
o�er complex functionality with high reliability at an acceptable cost, resulting in a
complex set of requirements.

We now give two representative use-cases and distill the system requirements that
they have in common. The use-cases as a whole are �ctional, but each requirement
is derived from a source that is supplied as a reference. For convenience the relevant
excerpts from these sources can be found in Appendix A.

1.1.1 Use-case: point-to-point video surveillance

The �rst use-case is a point-to-point video surveillance system for health-care ap-
plications, where a person under observation can be monitored by multiple sta�
members that carry wireless devices. An overview is presented in Figure 1.1 Each
monitor device decodes the received video stream. The video stream for each moni-
tor device is produced on a multi-processor platform at the patient’s location by an
encoder application. This use-case must satisfy the following requirements:

UC-1.1 the target frame-rate is 25 Frames Per Second (FPS) and the worst-case la-
tency of the stream must be under 300 milliseconds [17, 127];

UC-1.2 the system must function in a temperature range from 0� C to +85� C [61];

UC-1.3 the battery of the hand-held monitor devices must last for 32 hours [27];

UC-1.4 the cost must be competitive with comparable devices available on the con-
sumer electronics market [5, 18];

UC-1.5 the number of monitor devices must be adjustable at any time [16];

UC-1.6 to enhance the quality of each stream a compressed video format with dif-
ferent frame types must be used [152];

1

1

2 introduction to real-time embedded system design

battery

interconnect

processor1

encoder1

camera
interface

Wi-Fi
interface

memory

processorn

encodern

interconnect

processor

decoder

Wi-Fi
interface

memory

external powercamera

a) b)

...
platform

apps

Figure 1.1: An overview of the �rst use-case. a) The multi-processor platform at the patients
location is connected to a camera and WiFi device, and contains n processors that
run n encoder applications. b) Multiple single-processor battery-powered monitor
devices each run one decoder application.

UC-1.7 an alarm must be raised if the system encounters a fault, and the system
should try to recover while not interrupting functional streams [30].

We can sort the requirements in four categories: Real-Time (RT) constraints, resource
constraints, dynamic behaviour, and fault-tolerance. Timing requirement UC-1.1
means this system falls in the category of RT embedded systems that must produce
their results before a certain point in time, the deadline. A consequence of UC-1.2
is that the maximum power must be su�ciently low in order not to overheat. On
top of that the energy consumption and thus the average power of the device must
be constrained as dictated by UC-1.3. The cost of the system largely depends on
the hardware components that are used, so in order to satisfy UC-1.4 the memory,
interconnect and number of processors should be minimised. Power, energy and
system cost are all part of the resource constraints. Dynamic behaviour is suggested
by UC-1.5: the platform at the patient side must be able to start and stop encoder ap-
plications on-the-�y depending on the number of monitors. To meet UC-1.6 a video
format must be selected that enhances the quality of the stream through video com-
pression techniques. Commonly such formats transfer one full video frame followed
by a number of delta frames that describe only the changes relative to the full frame.
When a decoder receives a frame, it must decode the header to determine which type
it is and call the correct decoder function. This implies dynamism within the appli-
cation rather than in the application set. Lastly, some form of fault-tolerance must
be implemented to meet UC-1.7.

1

1.1 common re�irements for real-time embedded systems 3

sensors

signal
processing

applications

interconnect

general
purpose

detect
objects.1

interface

radar laser
stereo

cameras

interface interface

accelerator general
purpose

accelerator

memory

measure
distance.1

detect
objects.2

recognize
features.1

recognize
features.2

control
algorithm.1

unknown
app

recognize
features.3

platform

Figure 1.2: An overview of the second use-case: a heterogeneous platform with two general-
purpose processors and two accelerators is connected to multiple sensors. The
sensor data is the input to three signal processing applications executed on the
platform, each consisting of one or more tasks. There is also one task from an
unknown application.

1.1.2 Use-case: adaptive cruise control

The second use-case that we consider is an adaptive cruise control for automotive
vehicles, see Figure 1.2. Such systems use the input from multiple high-resolution
sensors including stereo cameras, lasers and radar. These data are analysed by signal
processing applications, whose results are the input to a control application that runs
on the same platform. The following requirements must be satis�ed in this use-case:

UC-2.1 the control loop must have a frequency of at least 1000 Hz [103];

UC-2.2 the system must function in a temperature range from �40� C to +125� C
[61];

UC-2.3 the application shares a heterogeneous multi-processor platform with other
applications, each of which is restricted to its own energy budget [87];

UC-2.4 the platform should host as many applications as possible to keep the cost
low and compete on the automotive market [81];

UC-2.5 the number and types of other applications that share the platform is un-
known at design-time and may change with each software update [1];

1

4 introduction to real-time embedded system design

UC-2.6 the cruise control must work under all circumstances, i.e. in tunnels, at
night, with rain, etcetera [79];

UC-2.7 the system must be detect and recover from hardware faults due to tempo-
rary overheating of on-chip components for at least 15 years [40].

Although the use-case is very di�erent, this is again a RT embedded system. The
required temperature range is wider than in the �rst use-case which means that the
hardware must be more resilient, but there is more headroom for energy consump-
tion and power. There is uncertainty regarding other applications on the platform,
implying dynamism on the system level. The system must be robust against changes
in the outside world (light, weather) which means the application must also dynam-
ically respond to input data. Robustness against system faults suggests some form
of fault-tolerance is again required.

1.1.3 Common requirements

The requirements of UC-1 and UC-2 can be grouped pairwise according to category,
UC-1.1 and UC-2.1 for example both capture the RT requirement. Requirements 2,
3 and 4 of both use-cases capture the resource requirements and can be merged
together.

Requirements UC-1.5 and UC-2.5 require special attention. In UC-1.5 multiple en-
coder applications may be started at run-time, whose characteristics are known at
design-time. UC-2.5 the platform is shared with an unknown number of unknown
applications that may change at run-time. To handle both it is necessary to follow
an approach in which any mix of applications can execute at run-time. We term this
a dynamically changing set of applications.

Extracting the common denominator of each pair of requirements leads to the
following list of common system requirements for RT embedded systems:

RQ.1 subject to RT constraints

RQ.2 subject to resource constraints, e.g. power, temperature, energy, memory,
processors and interconnect;

RQ.3 shared platforms must concurrently execute either:
a) a �xed set of applications, or:
b) a dynamically changing set of applications (in short: dynamic set).

RQ.4 must respond dynamically to data (in short: dynamic application);

RQ.5 must tolerate faults.

These system requirements are valid for many contemporary and future RT em-
bedded systems. Requirements RQ.3a and RQ.3b exclude each other, i.e. a system can

1

1.2 real-time embedded system design 5

support either one or the other. While each individual requirement is quite straight-
forward, multiple problems and complexities arise when attempting to combine all
of them into one system. These problems will be worked out in Section 1.3.

Requirements RQ.1–RQ.3a are standard in state-of-the-art RT systems, and de-
sign of such systems is well understood. We will refer to these as static RT sys-
tems. As the demand for functionality increases, new and dynamic requirements
such as RQ.3b–RQ.5 are added as we have seen in the use-cases. We refer to systems
where all requirements except RQ.3a must be met as dynamic RT systems.

1.1.4 Fault-tolerance

Requirement RQ.5 states that the systems must be tolerant to hardware faults, we
now discuss this requirement in more detail. Faults may have many di�erent causes
such as variations in hardware manufacturing, radiation, overheating and aging. Ad-
vances in Very Large Scale Integration (VLSI) design lead to a decrease of the feature
size, which increases the power density of chips and causes higher local temper-
atures. These hot spots prevent powering on all transistors simultaneously at the
nominal voltage, an e�ect known as dark silicon [53]. During operation hot spots
may cause intermittent faults that lead to temporary processor shutdowns [80, 124].
In the long term, hot spots cause increased electromigration and speed up the ag-
ing process [102]. These e�ects make multi-processor platforms more susceptible to
faults, and therefore fault-tolerance is an increasingly common requirement for RT
embedded systems.

In this work we focus on intermittent faults due to hot spots and permanent faults
due to aging and electromigration. As the power density is at its highest in the pro-
cessors, such faults are most likely to appear there. We therefore focus on processor
faults and will not consider the memory and interconnect. Fault-tolerance can be
achieved in hardware or software, either through fault masking or by fault detec-
tion, containment and recovery [7, 31, 88]. To o�er a platform-independent solution
we focus on providing fault-tolerance in software.

1.2 Real-time embedded system design

So far we have established the system requirements for static and dynamic RT em-
bedded systems. We consider this the �rst step in the design of such systems. The
rest of the design �ow must ensure that these requirements are met. A design �ow
for RT embedded systems typically consists of the following design steps:

DS.REQ requirements engineering;

DS.MOC description of the application behaviour using a Model-of-Computation
(MoC);

DS.M&S mapping and scheduling of applications onto a platform;

1

6 introduction to real-time embedded system design

DS.REQ

hardware
specification

DS.PM DW.M&S

DS.MOC

DS.HW

HW platform

application
specification

application
application

bundles

DS.MW

Figure 1.3: An example design �ow.

DS.PM application implementation using a Programming Model (PM);

DS.MW design of the middleware (�rmware, Operating System (OS), etc.);

DS.HW hardware platform design.

Other classi�cations are possible, but the above list is su�ciently detailed to explain
our contributions [111]. The design steps are ordered top-down from requirements
to hardware, but are not necessarily performed in that order. Often applications are
mapped to a given hardware platform with given middleware and PM. Figure 1.3
gives an example of a design �ow that consists of all the aforementioned steps. The
application speci�cation, hardware speci�cation and application are intermediate
results. The end result consists of a platform and a bundle for each application, i.e.
the code and data together with the mapping and scheduling speci�cation for that
application [45].

1.2.1 The design steps in detail

A Model-of-Computation (MoC) is an abstraction that models how a set of outputs
can be computed given a set of inputs, independent of how the computations are
performed. Examples are �nite-state machines, Turing machines, the time-triggered
MoC and Synchronous Data�ow (SDF) [35, 68, 74].

Mapping describes the process of allocating resources such as processors, mem-
ories and interconnect to tasks. The term task is used here to indicate the minimal
unit of a MoC that can be executed on its own, e.g. a computation, data transfer or
storage operation. Heterogeneous multi-processors contain many components, and

1

1.2 real-time embedded system design 7

mapping plays a prominent role in the design �ow. Scheduling describes the pro-
cess of allocating time to tasks on the resources to which they are mapped. These
terms are used for the creation of mappings and schedules, and should not be con-
fused with the execution of given mappings and schedules at run-time. Mapping and
scheduling are widely researched in the RT community [99, 120].

The Programming Model (PM) o�ers constructs that implement the computation
and communication speci�ed by the MoC, still independent of the hardware. Theo-
retically a PM is also independent of the programming language, but in practice each
PM is bound to at most a handful of languages. A PM may provide constructs that
are otherwise tedious and error-prone to create, e.g. for parallel execution of tasks.
Examples of PMs are PThreads, OpenMP, SDF and Giotto [11, 54].

Middleware o�ers hardware access through drivers and libraries, hiding imple-
mentation details from the PM and the programmer. It may include tasks that exe-
cute pre-de�ned mappings and schedules. Alternatively a resource manager may be
used that performs mapping and scheduling at run-time, and immediately executes
these mappings and schedules [128, 129]. This is what we term deployment in this
thesis.

The hardware platform performs the actual computations and communication op-
erations. We will not address hardware design in this thesis but assume platforms
that are designed according to the correct-by-construction approach [55]. This means
that the hardware is constructed in a way that guarantees certain properties that the
MoC requires.

1.2.2 Propagation of real-time requirements through the design �ow

Requirements have implications on the design �ow steps, which is especially true for
RT constraints. The MoC must be able to guarantee a lower bound on the throughput
or an upper bound on the latency of an application given the Worst-Case Response
Time (WCRT) of the tasks. The throughput determines the minimum number of it-
erations that must be completed per time unit. The latency captures the maximum
amount of time that may elapse before a system responds, i.e. gives an output.

The WCRT depends on the Worst-Case Execution Time (WCET) and the worst-
case waiting time [45]. The execution of task mapping and scheduling is part of
the middleware, and contributes to the waiting time. In turn, the WCET depends on
the PM constructs that implement computation and communication operations.

Another factor that must be included in the execution time of a task are hardware
mechanisms that arbitrate access to shared resources such as processors, memories
and the interconnect The type of hardware component to which a task is mapped
determines the WCET of a task [19, 34, 154]. Each processor may have a di�erent
clock speed and instruction set, and even an identical instruction may require a
di�erent number of clock cycles on each processor type. If it is not possible to give
an upper bound on the WCET or the waiting time in any of these design steps, the RT
performance cannot be guaranteed in the MoC. We see that the properties of each

1

8 introduction to real-time embedded system design

design �ow step are interdependent, and that the RT requirement can only be met if
it is supported in all stages of the design �ow.

1.3 Problem statement

We have presented the requirements for two use-cases, extracted the common de-
nominators for static and dynamic RT embedded systems and showed that each sys-
tem requirement has implications for every step in the design �ow. In Section 1.5
we show that existing design �ows can combine up to two requirements for dy-
namic RT systems with the requirements for static RT systems, but no prior work
has combined all requirements in one �ow. The main problem that we address in this
thesis is that no existing design �ow can address all the requirements for dynamic
RT systems listed in Section 1.1.

RQ.1: Real-time RQ.2: Resources

RQ.3b: Dyn.
sets

SP.1 SP.4
DS.M&S DS.MW DS.M&S

RQ.4: Dyn.
applications

SP.2 SP.5
DS.MOC DS.M&S DS.PM DS.MW DS.M&S DS.MW

RQ.5: Fault
tolerance

SP.3 SP.6
DS.M&S DS.MW DS.HW DS.M&S DS.MW

Table 1.1: A breakdown of the problem in six sub-problems SP.1–SP.6 that are each the prod-
uct of combining one dynamic requirement with one static requirement, and that
each a�ect one or more design steps (DS).

In this section we dissect the main problem in six sub-problems, each of which
translates to a design �ow requirement. The sub-problems originate from combining
each of the dynamic requirements RQ.3b–RQ.5 with each static requirements RQ.1
and RQ.2. Note that RQ.3a is mutually exclusive with RQ.3b and is ignored. Each sub-
problem a�ects one or more design steps. Thus we have a three-dimensional matrix
with the static requirements in the �rst dimension, the dynamic requirements in the
second, and the design steps in the third dimension. This problem space is visualised
in Table 1.1, where the cells list the sub-problems (SP) and corresponding design
steps. We thus identify six sub-problems that impact one or more design steps:

SP.1 For dynamic sets the number of possible combinations of mappings and sched-
ules grows exponentially with the number of applications and the number of
events, i.e. asynchronous starts and stops of applications. Large numbers of
mappings and schedules cannot be stored in memory-constrained embedded

1

1.3 problem statement 9

systems, which rules out static mapping solutions [8]. Mapping and schedu-
ling of dynamic sets must instead be performed at run-time by a resource
manager that computes the mapping and schedule in a bounded time. The
RT constraints of both the new and existing applications must be met at all
times, including during the mapping, scheduling and loading phases.
The resource manager consumes time and resources on the target platform,
and is therefore also an application. Its execution time must be predictable,
and should be minimised for two reasons: to maximise the available resources
for other applications, and to minimise the time required to start other ap-
plications. As the number of possible mapping and schedule combinations
grows exponentially with each event, the resource manager must explore
a vast solution space in little time. Use of heuristics is therefore inevitable,
which may be forced to select sub-optimal solutions. This sub-problem must
be addressed in the mapping, scheduling and middleware, design �ow steps
DS.M&S and DS.MW.
design flow re�irement: Each application, including the resource manager,
must meet its RT constraint independent of other applications, and the execution
time of the resource manager must be predictable and minimised.

SP.2 Applications that respond dynamically to data exhibit di�erent behaviours
depending on the input data. These behaviours can be captured in a �nite
number of application scenarios. Each scenario has its own WCET because
variations in the input data trigger di�erent computations and control �ow
paths. The WCET of the whole application also depends on the scenario tran-
sitions, which are modeled and analysed in the MoC (DS.MOC) at design-time.
A number of data�ow MoCs in which applications are captured as directed
graphs are able to do that, namely Scenario-Aware Data�ow (SADF), Finite-
State Machine Scenario-Aware Data�ow (FSM-SADF) and Mode-Controlled Data-
�ow (MCDF) 1 [83, 136, 138, 139]. Figure 1.4 shows two data�ow scenario
graphs. In data�ow the tasks are termed actors, which are the nodes of the
graphs. Actor a occurs in both scenarios, actors b and c only in S1 and actor
d only in S2. We select FSM-SADF because the analysis tools that exist for this
MoC can compute tighter throughput bounds than those that are available
for the others [3].

a b c a dS1 S2

Figure 1.4: Two scenario graphs S1 and S2 that describe di�erent behaviours
of an application.

However, no PM is available for FSM-SADF. Scenario transitions depend on
input data, and the next scenario can only be identi�ed after some of the input

1 In MCDF, scenarios are termed modes.

1

10 introduction to real-time embedded system design

data is processed. In Figure 1.4 for example actor a must be processed before
the next scenario is known. The scheduling of scenarios must therefore be
performed during execution. This causes a causality dilemma, as we cannot
know which scenario graph to start with. The causality dilemma must be
solved in the PM, and the timing of executing scenario transitions must be
correctly captured by the MoC analysis model. This concerns design steps
DS.M&S, DS.PM and DS.MW.
design flow re�irement: The design �ow must contain a PM for FSM-SADF
that solves the causality dilemma.

SP.3 Fault-tolerance mechanisms to detect and contain faults can be implemented
in DS.HW and DS.MW in a way that is transparent to the other design steps
[31]. Checkpointing and restart is a suitable technique for fault recovery of
data�ow applications as we will see in Chapter 5, and a�ects DS.M&S and
DS.MW. Fault recovery in software a�ects the timing behaviour, so we must
ensure that other running applications are not a�ected.
design flow re�irement: The design �ow must implement software fault
recovery that may not interfere with other running applications.

SP.4 In SP.1 we have seen that a run-time heuristic is required to map and schedule
starting applications on a platform. Because the set of running applications
is dynamic, the platform utilisation is unpredictable. Therefore it cannot be
guaranteed that the resource manager can �nd su�cient free resources to
map and schedule an application that needs to start. To increase the proba-
bility of success of future run-time mapping and scheduling actions the ap-
plication resource requirements must be balanced with respect to the target
platform. If the resource requirements of the applications are not balanced
the resource manager will soon run out of one type of resources, prevent-
ing the start of other applications. Balancing resource requirements must be
build into step DS.M&S of the design �ow.
design flow re�irement: The design �ow must balance the resource require-
ments of applications to increase the probability of success of future run-time
mapping and scheduling actions.

SP.5 As explained in SP.2 the application behaviour is di�erent in each scenario,
and therefore the resource requirements also vary per scenario. The time at
which scenario transitions occur is unpredictable. This means that the re-
source requirements of each application �uctuate unpredictably over time.
This moment to moment variation in resource requirements means that a
running application may fail because insu�cient resources are available for
a scenario switch. Such uncertainty is not acceptable for running applica-
tions, once an application has started it must always receive the resources
that it requires independent of other applications. This must be implemented
in steps DS.M&S and DS.MW of the design �ow.

1

1.4 contribution 11

design flow re�irement: Once an application is started it must receive its
required resources at all times, independent of its scenario switches.

SP.6 Providing fault-tolerance in software comes at the cost of resources. Firstly,
techniques for fault detection, containment and recovery require modi�ca-
tions to DS.MW that increase the resource requirements. Secondly, recover-
ing from intermittent and permanent faults using checkpointing and restart
in DS.M&S requires free resources to relocate the restarting application to.
Similar to SP.4, it is not possible to guarantee that su�cient resources will
be available for the re-mapping and re-scheduling, meaning that a fault may
result in the failure of one or more applications. To avoid this the design �ow
must minimise the probability that a running application fails because of a
processor fault.
design flow re�irement: The design �ow must maximise the probability of
success of future run-time re-mapping and re-scheduling actions due to proces-
sor faults.

1.4 Contribution

The main goal of this thesis is to propose a design �ow to create RT systems that ad-
here to the dynamic requirements introduced in Section 1.1. In Section 1.3 we re�ned
this goal to six sub-problems SP.1–SP.6 by combining each dynamic requirement
with each static requirement. Some of these sub-problems may be solved (partly) in
hardware. To achieve a general, platform independent solution however we propose
solving them in software, speci�cally in design steps DS.MOC, DS.M&S and DS.PM.
This software approach must be supported in design steps DS.MW and DS.HW. For
these latter design steps we use existing implementation of middleware and hard-
ware that we describe next.

1.4.1 Existing platform and design �ow

We select an existing design �ow named SDF3 [131] and platform named Composable
System-on-Chip (CompSOC) [45] that feature a two-level mapping and scheduling
approach, see Figure 1.5. During the intra-application mapping and scheduling at
design-time the actors of each data�ow application are mapped to Virtual Resources
(VRs) that are to be deployed at run-time. Processors for example are replaced by
Virtual Processors (VPs), and a Static-Order (SO) schedule is generated for each set of
actors that is mapped to the same VP. See the upper half of Figure 1.5, the SO sched-
ules are indicated in the VPs. A VP is a budget that describes a claim to a fraction of
the total capacity of a physical processor. Similar budgets are created for the mem-
ory, interconnect and other resources. As our contributions focus on processors, we
will use VPs as the running example. The collection of budgets combined with the
application form a bundle. Design-time timing analysis of a mapped data�ow ap-

1

12 introduction to real-time embedded system design

ba c

VP1

[a]
VP2

[b,c]

VP1 VP2

P1 P2

ba c

intra -application:
mapping: actors to VRs
scheduling: actors per VR
create bundle for 1 mapping

inter-application (deployment):
check availability of resources
load bundle

run-time, at
start of each app

design-time,
independently
for each app

Figure 1.5: The two-layer mapping and scheduling of SDF applications in the existing design
�ow. Upper layer: the data�ow actors are mapped and scheduled onto Virtual Re-
sources (VRs) during design-time, creating one bundle per application that consists
of the application and its absolute resource speci�cations. Lower layer: run-time
deployment checks whether the required resources are available and if so, loads
the bundle.

plication gives guarantees on the throughput if the budgets are met. The existing
platform supports SDF data�ow applications without scenarios.

At run-time the bundles are deployed on the physical resources when an applica-
tion starts. To ensure that each VP is granted its budget, all VPs on a processor are
scheduled using Time-Division Multiplexing (TDM) scheduling [45]. See the lower
half of Figure 1.5, processors P1 and P2 each have four TDM slots of which two are re-
served for the application. The mapping and schedule specify which slots on which
processors are reserved for the application, i.e. VPs cannot be moved around and
the reservation is absolute. The resource manager deploys applications by checking
whether those speci�c resources are available, and loads the bundle if this is the
case.

The middleware and hardware of the CompSOC platform are composable, mean-
ing that the timing behaviour (and therefore the performance) of one application is
completely independent of the other applications executing on the same resources.
Applications can be veri�ed independently and no system-wide re-veri�cation is
necessary after integration.

1.4.2 Solutions to the sub-problems

In the remainder of this section we present a speci�c solution to each sub-problem,
and di�erentiate between solutions (SL) that originate from related work and the
contributions (CB) made in this thesis. An overview of the solutions and contribu-

1

1.4 contribution 13

RQ.1: Real-time RQ.2: Resources

RQ.3b: Dyn.
sets

SL.1 CB.4
DS.M&S DS.MW DS.M&S

RQ.4: Dyn.
applications

CB.2 SL.5
DS.MOC DS.M&S DS.PM DS.MW DS.M&S DS.MW

RQ.5: Fault
tolerance

SL.3 CB.6
DS.M&S DS.MW DS.HW DS.M&S DS.MW

Table 1.2: A overview of the solutions to the sub-problems. Green cells indicate the contribu-
tions of this thesis, yellow cells indicate solutions from related work.

tions is given in Table 1.2, solutions are marked in yellow and contributions in green.
Now follows a list of the solutions and contributions. The numbers correspond to
the sub-problem that is solved, we repeat each design �ow requirement for conve-
nience:

SL.1 design flow re�irement: Each application, including the resource manager,
must meet its RT constraint independent of other applications, and the execution
time of the resource manager must be minimised.
The CompSOC platform detailed in Subsection 1.4.1 is both predictable and
composable. Predictability is a necessary property to compute a WCRT for RT
MoCs as described in Section 1.2. Composability ensures that the WCRT cal-
culated for an application cannot be invalidated by the execution or loading
of other applications. Together, these properties are su�cient for executing
dynamic sets of RT applications.
However, the mapping and scheduling concept of the selected design �ow
does currently not support dynamic sets as described in RQ.3b because the
resource budgets are absolute. To deploy applications on any set of resources
whose available capacity meets the budgets in the bundle, the resource bud-
gets must be relative. Composability guarantees the absence of interference
between applications, regardless to which resources their VPs are mapped.
This property can be exploited to realize run-time deployment of dynamic
sets with relative resource budgets, where the actual resources to which a
VP is mapped are only decided when an application starts. This extension of
the mapping and scheduling concept is depicted in the middle layer of Fig-
ure 1.6. During deployment the actors can be mapped and scheduled to any
physical resource that has su�cient capacity. If more than one resource of
the required type ful�lls this requirement, the resource manager must select
one.

1

14 introduction to real-time embedded system design

intra -application:
mapping: actors to VRs
scheduling: actors per scenario

and per VR
�F�U�H�D�W�H���E�X�Q�G�O�H�V���I�R�U���=1 mappings

inter-application (deployment):
mapping: VRs to resources
scheduling: VR per resource
load bundle for 1 mapping

intra -application
scheduling: scenarios per app

design-time,
independently
for each app

run-time, at
start of each app

run-time,
continuously

ba c

VP1

[a]
VP2

[b,c]
[d]

S1

daS2

b
a

c

VP1 VP2

S1

d
S2

Sdet

S
w

P1 P2

Figure 1.6: The proposed three-layer mapping and scheduling of FSM-SADF applications. In
the �rst layer scenarios S1 and S2 are mapped and scheduled to the same set of
VRs, the relative resource speci�cations. In the second layer the VRs are mapped
and scheduled to the physical resources, after which the bundle is loaded. In the
third layer the scenarios are scheduled inside each application, while executing
detector scenario Sdet the switch actor Sw is con�gured to forward data to the
correct scenario.

This is an instance of the bin-packing problem, which is known to be NP-hard
[112]. The resource manager must use a heuristic to minimise its execution
time for solving this problem. This mapping and scheduling concept greatly
reduces the complexity of the resource manager, as it only needs to ensure
that the resource budgets are met and is not concerned with the RT require-
ments of the applications [85]. The resource manager can be treated as just
another application to pro�t from the predictability and composability [9].
For the contributions presented in this thesis the resource manager concept
described in this solution is su�cient, we do not need an implementation.
Resource managers of similar design have been implemented in related work
[9, 82, 125]. The existing design �ow is explained in detail in Chapter 2.
solution: We select the existing SDF3 design �ow and CompSOC platform which
ensure that each application meets its RT constraints independently of others.
The two-layer mapping and scheduling concept simpli�es the run-time deploy-
ment heuristic, minimising its execution time and solving SP.1.

CB.2 design flow re�irement: The design �ow must contain a PM for FSM-SADF
that solves the causality dilemma.

1

1.4 contribution 15

The FSM-SADF MoC provides tight temporal analysis of scenario-based appli-
cations. In Chapter 3 we contribute a PM that implements this MoC [147].
Figure 1.6 shows the extended mapping and scheduling concept using an
example application with two scenarios. The intra-application mapping and
scheduling is now performed for each scenario, actors that occur in multi-
ple scenarios are mapped to the same VRs in each of these. The per-scenario
SO schedules are listed inside the VPs in the upper left of the �gure. The run-
time deployment of VPs has changed to use relative budgets as was explained
in SL.1.
The execution graph shown in the lower left of Figure 1.6 is a composition of
the detector scenario Sdet and the remainder of the two scenario graphs. The
detector graph is identi�ed as the common pre�x graph of all scenarios, after
whose execution the next scenario is known. A switch actor Sw is inserted in
between the detector scenario and the remainder of the scenarios. In essence
we add an additional layer of intra-application scenario scheduling at run-
time, thus solving the causality dilemma.
To analyse the exact timing impact of this run-time solution we extend the
extend the existing analysis model of the MoC, details are provided in Chap-
ter 3. The PM is both executable and analysable.
contribution: We contribute a PM for FSM-SADF in in Chapter 3 that solves
CB.2.

SL.3 design flow re�irement: The design �ow must implement software fault
recovery that may not interfere with other running applications.
The design �ow and platform introduced in solution SL.1 do not support
fault-tolerance. Existing methods for fault detection and containment can be
implemented in the platform with little or no timing impact. Fault recovery
through checkpointing and restart is a di�erent matter. We select a strategy
where the resource manager re-deploys all VPs deployed on a faulty processor
to the available capacity on other processors.
Re-deployment of an application is similar to deployment of a starting appli-
cation, except that it must be restored to the state that was captured in its last
checkpoint. The fault model that we use assumes that the instructions of an
applications are stored in a central, protected memory and are fetched once
when the application starts. The data communicated between the actors is
also stored in the central memory, even if two actors are mapped on the same
processor. This model is further detailed in Chapter 5. Therefore the state
will be consistent after a fault, and data memory access times are the same
on each processor.2 In this fault model the time for re-deployment depends
solely on the resource manager and the fetching of data and instructions,
which greatly simpli�es the analysis. As explained in SL.1, the behaviour of

2 In most real systems there will be minor di�erences, and we must consider the worst-case.

1

16 introduction to real-time embedded system design

the resource manager does not interfere with other running applications.
solution: We select a method for software fault recovery that relies on the re-
source manager which does not interfere with other running applications, solv-
ing SP.3.

CB.4 design flow re�irement: The design �ow must balance the resource require-
ments of applications to increase the probability of success of future run-time
mapping and scheduling actions.
In the selected design �ow, SDF3, the Design Space Exploration (DSE) trades
throughput against the memory footprint during step DS.M&S [132, 135]. In
Chapter 4 we introduce a third dimension to this trade-o�, namely the size of
the VPs, which determines the utilisation of the physical processors. We show
that this three-dimensional design space is too large to search exhaustively
even for a small example. The throughput changes independently with both
the VP size and memory footprint, and these dimensions should therefore
be explored simultaneously rather than one after another. We contribute a
heuristic to explore the trade-o� between VP size and memory footprint un-
der a �xed throughput constraint. The resulting DSE returns points that are
on a Pareto-optimal curve and allow a designer to balance the VP size and
memory footprint of applications. This can be used as a tool to shape the
solution space of the run-time mapping heuristic for dynamically changing
sets of applications.
contribution: We propose an extension of the SDF3 DSE that allows trading VP
size against bu�er size in Chapter 4, enabling resource balancing and increasing
the success of future run-time mapping actions, thereby solving SP.4.

SL.5 design flow re�irement: Once an application is started it must receive its
required resources at all times, independent of the scenario switches.
Applications transition unpredictably between scenarios, causing varying re-
source requirements. Let us divide the platform resources in two types, state-
less and stateful. In a stateless resource, data related to the state of an appli-
cation may be stored during the �ring (execution) of actors from that ap-
plication, but no state is stored in between actor �rings or when another
application executes on the resource. In the CompSOC platform a number of
measures are taken to guarantee that the processor is stateless from the appli-
cations view [92, 93]. The memories on the other hand are stateful resources,
i.e. they contain state even when no actor of that application is �ring.
Both types of resources of a running application can be allocated in two ways:
at the application start, or at the start of a scenario. Stateful resources, i.e. the
memory, are allocated at the application start which means that the state
does not have to be stored and loaded at each scenario switch. While this
avoids possible violations of the resource constraints, it means the memory
requirements for all scenarios are summed and are allocated as long as the

1

1.5 related work to overall thesis goals 17

application is running. Stateless resources, i.e. the processor and intercon-
nect, are allocated at the start of a scenario. To avoid that an application fails
at a scenario switch because insu�cient stateless resources are available, the
maximum over all scenarios and transitions (i.e. the worst-case) is allocated
as a budget for the application. In other words, the stateless budgets for each
application are su�ciently large to allow all on-demand allocations. Given
the constraints we consider this combination of resource allocation the best
possible solution.
This strategy for resource allocation is a simpli�cation that guarantees that
su�cient resources are available for each scenario transition, but may lead
to over-allocation of resources in the average case. The described solution is
already implemented in SDF3 and is not a contribution of this thesis.
solution: The stateful resources for a running applications are allocated at the
application start, whereas the stateless resources are allocated at the start of a
scenario. This strategy ensures that an application always receives it required
resources and prevents application failures at scenario boundaries, solving SP.5.

CB.6 design flow re�irement: The design �ow must maximise the probability of
success of future run-time re-mapping and re-scheduling actions due to proces-
sor faults.
Re-deployment (inter-application mapping and scheduling at run-time) can
be considered as a three-dimensional bin-packing problem, where the VPs
are the items and the processors, memories and connections the bins. The
probability of successful re-deployment of VPs after a fault depends on the
space in the bins, of which the processor capacity is especially crucial as
one bin was just removed by the fault. Applications have to be dropped if
there is insu�cient capacity for re-deployment. The balancing of processor
capacity and memory footprint presented in contribution CB.4 somewhat in-
creases the probability of success. We propose two methods that focus only
on the processor capacity and further maximise the probability of successful
re-deployment in Chapter 5 [148].
Firstly, we map each application to more VPs of a smaller size at design-time
to increase the probability of successful bin-packing at run-time, at the cost
of an increase of the sum of all VP sizes. Secondly we generate multiple map-
pings at design-time in which VPs are split or resized, and allow switching to
such an alternative mapping at run-time.
Contribution: We propose to map the applications to more VPs of a smaller
size in Chapter 5, thereby maximising the probability of successful future re-
deployment after a fault, thus solving SP.6.

1

18 introduction to real-time embedded system design

RQ.1 RQ.2 RQ.3a RQ.3b RQ.4 RQ.5
this thesis X X X X X
existing SDF3 and CompSOC [2] X X X * X
Schor [113] X X X X X
van Stralen and Pimentel [149] X X * * X
Wildermann et al. [153] X X * * X
Quan and Pimentel [101] X X * * X
Weichslgartner et al. [150] X X * X X
Moreira [86] X X X X X

Table 1.3: A comparison of the design �ow described in this thesis with related work. A check-
mark (X) indicates that a requirement can be met, an asterisk (*) means that it can
be partly met and a cross (X) means that a requirement cannot be met in that design
�ow. Note that RQ.3a and RQ.3b are mutually exclusive.

1.5 Related work to overall thesis goals

A number of design �ows described in related work implement one or two of the
three new requirements RQ.3b–RQ.5 with the �rst four. In this section we discuss
all related work that implements two of the three requirements, and omit work that
implements only one. Table 1.3 lists the work discussed in this section and indicates
which requirements can be satis�ed in each �ow. Note that some requirements can
be satis�ed only partially, indicated by an asterisk (*). We will now discuss each of
these works in detail.

The combination of the existing SDF3 design �ow and CompSOC platform was in-
troduced in Section 1.4, and will be discussed in detail in Chapter 2 [2, 45, 131]. The
SDF3 �ow creates absolute resource budgets for �xed sets of applications, RQ.3a.
Though SDF3 supports the FSM-SADF MoC there is no PM, hence RQ.4 is only par-
tially met. Finally fault-tolerance is not supported in either SDF3 or CompSOC.

A design �ow for mapping dynamically changing sets of applications onto het-
erogeneous multi-processors is proposed in [113, 114]. It supports RQ.3b and RQ.5,
although they use the term scenario for what we call dynamic sets. Scenarios for dif-
ferent application behaviours as considered in this thesis are not supported. How-
ever, they use the Kahn Process Network (KPN) MoC in which dynamic application
behaviour is not explicit in the model, which complicates design-time analysis [63].
Precise timing analysis of this model is not possible, instead the timing behavior
may be analysed statistically which does not result in hard guarantees [89]. There-
fore this work strikes a trade-o� between RQ.1 and RQ.4, but does not completely
full�ll either. A number of optimal mappings is calculated at design-time, which
means only a limited number of events can be handled at run-time. Spare processors

1

1.5 related work to overall thesis goals 19

are reserved to which the tasks of a faulty processor may be migrated at run-time.
Therefore the probability of successfully handling one fault without dropping appli-
cations is 100%. Additional faults however cannot be handled, while our approach
may handle multiple faults depending on the initial platform utilisation.

The following works all propose a solution to sub-problem SP.1 and to some de-
gree implement RQ.3b and RQ.4, but not RQ.5 [101, 149, 150, 153]. We will now dis-
cuss the di�erences to solution SL.1, which itself is not a contribution of this thesis
but the foundation on which we build our contributions.

The work described in [149] proposes a solution to sub-problem SP.1 that ad-
dresses RQ.3b and RQ.4 at the same time. They consider intra-application scenarios
which are identical to our scenarios, and inter-application scenarios that describe
which sets applications may run concurrently. In other words, mappings of di�er-
ent applications sets are �xed at design-time between which resource manager may
switch at run-time. This solution is in between RQ.3a and RQ.3b and does not of-
fer the freedom to start and stop applications at will, ruling out online software
updates. Requirement RQ.4 is also met only partially, as the intra-application sce-
nario is �xed in each mapping. The design space is explored using a coevolutionary
genetic algorithm and results in a representative subset of mappings that combine
intra- and inter-application scenarios. Fault-tolerance is not considered but could be
implemented using inter-application scenarios.

In [153] the border between intra- and inter-application scenarios is blurred and
generalised in the term multi-mode systems, where a mode is a �xed set of applica-
tions that are each in a speci�c scenario. Again multiple mappings of �xed applica-
tion sets are calculated at design-time so that RQ.3b and RQ.4 are both partially met.
This solution is comparable to [149].

An improvement on [149] and [153] is presented in [98, 101] by combining design-
time mapping with a two-step run-time mapping. In the �rst run-time step, a map-
ping is selected that matches the workload scenario. In the second step minor map-
ping customisations are performed to optimise that mapping. This allows a wider
selection of mappings at run-time without having to store them all. While this o�ers
more freedom than the previous two approaches, requirements RQ.3b and RQ.4 are
still not fully met.

The work in [150] is similar to the design �ow that we selected, as it combines
design-time static performance analysis with an isolated execution environment per
application at run-time. This guarantees that the design-time guarantees are not
violated. After selecting a set of Pareto-optimal operating points (mappings) in the
DSE, one operating point is selecting at run-time by solving a constraint satisfaction
problem. Complexity at run-time is reduced because the resource manager does not
have to consider all possible combinations but only a representative subset. This
works for a relatively small set of applications, but as the size of the set increases
the number of operating points to be stored still increases exponentially and so does
the time to select one. Another limitations is that new applications cannot be added
to the system during run-time. Thus requirement RQ.3b is satis�ed to a large degree,
but not completely. This work does not consider dynamic applications, RQ.4.

1

20 introduction to real-time embedded system design

A two-layer scheduling approach for dynamic sets on heterogeneous multi-
processors similar to the one used in this thesis is presented in [86]. It mixes TDM
scheduling of clusters of actors (what we call VPs) with SO scheduling within each
cluster. A scheduling �ow is presented that �nds combined TDM and SO schedules
in which the applications meet a minimum throughput and maximum latency. Both
types of schedules are modeled in Homogeneous Synchronous Data�ow (HSDF) graphs
by adding nodes and edges. This �ow is very similar to the existing design �ow that
we selected [2].

1.6 Thesis outline

At the start of this chapter we introduced two use-cases and extracted the common
requirements for static and dynamic RT systems. We introduced a general design
�ow template in Section 1.2. The main goal of this thesis is to create a design �ow
for dynamic RT systems that adheres to all requirements listed in Section 1.1. Six
sub-problems must be addressed to achieve this goal, which are found in Section 1.3
by combining each static with each dynamic requirement.

To solve these sub-problems we select three solutions from related work in Sec-
tion 1.4, including an existing design �ow that is detailed in Chapter 2. The three
contributions that solve the other sub-problems are the core of this thesis, and are
presented in Chapters 3–5. The �rst contribution, CB.2, is a PM for FSM-SADF. It
is build on a concept for scenario sequencing that solves the causality problem,
and is presented in Chapter 3. Chapter 4 contains the second contribution, CB.4,
in which we explore the trade-o� between the processor utilisation and memory
requirements. This leads to a three-dimensional design space that now includes the
VP size, we propose a DSE algorithm to explore this space.

Contribution CB.6 is presented in Chapter 5 and consists of two methods that
increase the fault-tolerance. We introduce the fault model and zoom in on re-
deployment of the VPs from a faulty processor with the aid of mappings calculated
at design-time. Each chapter contains an experimental evaluation that shows the
validity of the proposed concepts. The conclusions and suggestions for future work
can be found in Chapter 6

.

2

2 Background and terminology

2.1 Introduction

In Section 1.2 we introduced the steps that make up a design �ow for RT embedded
systems, and in Section 1.4 we selected an existing design �ow as solution SL.1 for
sub-problems SP.1 and SP.6. To solve the three open sub-problems we extend the
selected �ow in Chapters 3, 4 and 5 of this thesis. In this chapter we provide the
background knowledge and explain the terminology that is necessary to understand
these contributions.

We start with an overview of the existing �ow in Section 2.2, and highlight where
the �ow will be extended in the later chapters. All steps of the �ow are explored
in detail in the remaining sections. The FSM-SADF MoC is explained in Section 2.3
using the example of a video decoder. A concept for the mapping and scheduling
has been given in Section 1.4, more terminology and technical details are provided
in Section 2.4. The SDF PM is the foundation for the FSM-SADF that we present in
Chapter 3, and is discussed in Section 2.5. Similarly, the libraries that implement
SDF are discussed in Section 2.6. More details on the CompSOC hardware platform
are presented in Section 2.7. The chapter concludes with a summary.

2.2 Design �ow

The selected design �ow [2, 46] consists of the SDF3 tool for analysis, mapping and
scheduling of RT data�ow applications [38, 62, 131, 133, 134, 137], and the CompSOC
hardware platform and middleware [44, 45, 48].

A �owchart of the existing design �ow is depicted in Figure 2.1. The blocks are
color coded to indicate whether the algorithms are part of SDF3 or CompSOC, and
whether �les are input or output. The matching design step from Section 1.2 is de-
noted besides each block, and the mapping and scheduling concept corresponds to
that in Figure 2.1. This design �ow is extended in the context of this thesis, the
updated �ow is shown in Figure 2.2, whose mapping and scheduling concept corre-
sponds to that in Figure 1.6. The contributions are indicated by a darker shade and
white text, some existing algorithms have been updated and a few new ones added.
The algorithms and �les of Figure 2.1 are explained in the remainder of this chapter.
Figure 2.2 will be explained step by step in the remaining chapters of this thesis.

Step DS.REQ, the requirements, is conceptual. Requirements may be expressed
textually as has been done in Chapter 1, or graphically, e.g. using the Uni�ed Model-
ing Language (UML) [151]. Requirements form the foundation for writing FSM-SADF

21

2

22 background and terminology

computeStorage
Distributions

architecture
specification

application &
requirements

application
1 mapping

platform
(FPGA / ASIC)

mapToVRs

HW platform
generation

generate
Application

foundValid
Mapping?

yn

compilation
VPSizing

scheduleSO

middleware:
CoMik

libFifo
libDataflow

input

SDF3

CompSOC

output

file

algorithm

actor
source code

selectStorage
Distributions

flow failed
n

y

DS.M&S

DS.REQ

DS.M&S

DS.MOC

DS.M&S

DS.M&S

DS.M&S

DS.PM

DS.MW

DS.M&S

DS.HW

DS.PM

analyseBAG

application
bundle

synthesis

DS.PM

DS.HW

DS.HW

Figure 2.1: A �owchart of the existing design �ow. The corresponding design step is denoted
besides each block.

2

2.2 design flow 23

application &
requirements

mapToVRs

mergeScenarios

foundValid
Mapping?

yn exploreStorage
Distributions

mapping
constraints

createDetector
Scenario

reduced
TDMSize?

y

n

input

SDF3

CompSOC

output

file

algorithm

VPSizing

scheduleSO

VPSizing

analyseBAG

computeStorage
Distributions

selectStorage
Distributions

flow failed
n

y

Ch.3

Ch.3

Ch.5

Ch.3

Ch.3

Ch.4

Ch.4

Ch.5

analyseBAG

architecture
specification

platform
(FPGA / ASIC)

HW platform
generation

compilation

actor
source code

synthesis

application
bundle

middleware:
CoMik

libFifo
libDataflowlibDataflow

generate
Application

application
�=1 mappings

Ch.3

Ch.5

Ch.3

Ch.3

Figure 2.2: The extended design �ow. Design steps that are new or updated to implement the
contributions are indicated by a darker shade and white text. The corresponding
chapter is denoted besides each contribution.

2

24 background and terminology

applications using the SDF3 syntax [146]. The only requirement that is directly con-
tained in the input �le applications & requirements is the throughput constraint.

Step DS.MOC, the MoC, is a mathematical model composed of de�nitions and for-
mulas and will be presented in Section 2.3. The design �ow manipulates and analyses
applications that are designed using the MoC using software algorithms contained in
the analyseBAG algorithm in Figure 2.1. The Binding-Aware Graph (BAG) and intra-
application SO scheduling will be further explained in Section 2.4.

The mapping and scheduling, step DS.M&S, is implemented in a loop that contains
three algorithms. This loop is explained in Section 2.4 and extended for contributions
CB.2 and CB.6 in Chapters 3 and 5. Contribution CB.4 requires a second loop for
exploring the storage distributions, which is added in Chapter 4.

Step DS.PM, the PM, consists of the generateApplication algorithms and a number
of �les. The actor source code is inserted into a framework of empty actors generated
by the algorithms, and the libDataflow library is compiled into the system to exe-
cute these actors according to the MoC rules. One mapping is created per application,
corresponding to Figure 1.5. More details are provided in Section 2.5.

The CompSOC middleware, step DS.MW, implements the PM. It comprises the
CoMik �kernel that implements the inter-application scheduling of VPs, and libFifo
that provides an implementation for data�ow channels. Together with libDataflow
these libraries implement the PM for HSDF, SDF and Cyclo-static Data�ow (CSDF), the
basics of which will be elaborated in Section 2.6.

Step DS.HW, the hardware, is implemented by the remaining CompSOC blocks and
results in a platform bit�le for Field Programmable Gate Array (FPGA) or Application
Speci�c Integrated Circuit (ASIC). In case of an FPGA bit�le the application bundles
may either be combined into the bit�le if a static mapping is desired, or the bun-
dles can be loaded at run-time as shown in 2.1 [121]. The hardware properties and
concepts that are of interest for the contributions of this thesis are discussed in Sec-
tion 2.7. The existing �ow presented thus far can handle HSDF, SDF and CSDF appli-
cations. The SDF3 tool can also analyse, map and schedule FSM-SADF applications,
but these are not supported by CompSOC PM and middleware.

2.3 Model of Computation

Data�ow is a natural way to describe data-dependent application behaviour [74]. We
selected the FSM-SADF MoC in Contribution CB.2 as it supports dynamic responses to
data, RQ.4. An FSM-SADF application consists of a collection of scenario graphs that
adhere to the SDF rules and could be executed stand-alone as SDF applications. It is
possible to switch between scenarios after one full iteration (execution) of a scenario
graph. The switches that are allowed are captured in a Finite-State Machine (FSM).
In this section we motivate our choice for this MoC compared to two other suitable
MoCs and go through its properties in detail.

2

2.3 model of computation 25

2.3.1 Comparison to other MoCs

The advantage of data�ow MoCs over others such as the Time-Triggered (TT) model
[68] is that they are work-conserving when combined with the proper scheduling
algorithm [64], yet it is possible to �nd a tight bound on the throughput [41, 132].
In Section 1.3 we saw that there are three data�ow variants that support scenarios,
namely SADF, FSM-SADF and MCDF. Two types of throughput analysis are available
for SADF. The �rst of these is based on Markov chains, which allows evaluation of
any long-term average or worst-case performance metric [139–142]. In the second
method each SADF scenario is converted to an SDF graph, that is suitable for state-
space analysis. The overall throughput is the worst-case, i.e. the maximum over all
scenarios, which essentially negates the performance bene�t achieved by scenarios.

The �rst method is preferred as it exploits the performance bene�t. The proba-
bility of each scenario transition is captured in a Markov chain, and scenario tran-
sitions within a scenario iteration are allowed. The analysis must implement these
operational semantics, which leads to a much larger state-space than that of SDF
analysis. FSM-SADF captures scenario transitions in an FSM and MCDF encodes these
in a mode controller [83, 136]. Both are a restricted version of SADF, which means
that the analysis must implement fewer operational semantics.

Multiple analysis methods are available for FSM-SADF and MCDF. Firstly, they may
be converted to HSDF graphs, after which the throughput can be calculated with a
Maximum Cycle Ratio (MCR) analysis given the actor WCETs [3, 26, 75, 76]. In such
a conversion the information on scenarios is lost, which again negates their perfor-
mance bene�ts. Secondly, simulation-based analysis may be performed using reg-
ular state-space or (max , +) analysis [36]. Regular state-space exploration searches
the entire state-space. This may lead to a state-space explosion because the size of
the state-space grows exponentially with each additional scenario. Analysis using
(max , +) algebra constructs the state-space more e�ciently, although state-space ex-
plosions may still occur [37, 123]. Other methods exist but are not exact and therefore
inferior to (max , +) analysis, though they may be faster [66, 83].

FSM-SADF and MCDF are similar in terms of expressiveness, but (max , +) analy-
sis is not implemented for the latter and other tools are not readily available. We
therefore select FSM-SADF as our MoC of choice.

2.3.2 Application scenarios

In requirement UC-1.6 of the �rst use-case in Section 1.1 we saw that a video decoder
application must determine whether an incoming video frame is a full frame or a
delta frame, and call the appropriate decoding function. In a sequential language a
programmer may solve such a dependency with a straightforward if-else construct
as shown in Algorithm 1.

Static MoCs such as SDF cannot respond to input-dependent behaviour, resulting
in a conservative throughput bound. Consider Algorithm 1, where decode_full()

2

26 background and terminology

Algorithm 1 Pseudo-code of an abstract video decoder.
1: frame = bu�er_frame()
2: if detect_frame_type(frame) = full then

3: x = decode_full(frame)
4: sub = subtitle_overlay(x)
5: else

6: x = decode_delta(frame)
7: end if

8: output = construct_frame(x)
9: display(output, sub)

has a longer WCET than decode_delta(). Yet due to data dependencies invisible
at this level of control �ow, the WCET of construct_frame() might be longer for
a delta frame. SDF analysis will consider the WCET of decode_full() and longest
WCET of construct_frame() at the same time, although this situation can never
occur. This results in an overly negative throughput bound [42]. FSM-SADF analysis
considers a unique WCET for each actor in each scenario, and is therefore able to ex-
clude such situations that cannot occur in reality. The worst worst possible scenario
sequence must be accounted for in the FSM [138]. It has been shown that FSM-SADF
can provide a tight bound on an applications worst-case throughput [37].

FSM-SADF allows describing di�erent behaviours of the application by capturing
these in scenarios. For example, di�erent control �ows can be captured by varying
the graph topology. Another use for scenarios is to vary the degree of parallelism in
an application to deal with varying resource availability or Quality-of-Service (QoS)
requirements. The designer must capture each behaviour of an application in a sce-
nario graph, possibly based on existing sequential code.

2.3.3 Scenario graphs

The scenario graph for decoding a full video frame (Sfull) is a directed graph, see
Figure 2.3a. The nodes represent the actors, each with a known WCET. The actor
names in Figure 2.3a are abbreviations of the functions in Algorithm 1, e.g. bf for
buffer_frame(). An actor is the minimal schedulable unit in data�ow terminology,
we will from now on use this term instead of task. The edges represent channels,
the rates at their start and end indicate how many data tokens are produced and
consumed each time the actors �re (execute). If the rate is not denoted on a channel,
it is one.

A scenario graph may furthermore contain persistent tokens that are present at the
start and end of each iteration of the graph, these are indicated with labels such as
ti. The graph completes one full iteration when all actors have �red at least once and
all persistent tokens have returned to their starting positions. A token is persistent

2

2.3 model of computation 27

so

cf

t1 t3t2

df
2 2

dft dis
4 4

bf

t4

2
2

cf

t1 t5t2

dddft dis
4 2

2

bf

t4

2

Sfull Sdelta

a)

b)

c)

Sfull

Sdelta

Figure 2.3: a) Scenario graph for decoding a full video frame, Sfull. b) scenario graph for de-
coding a delta video frame, Sdelta. c) The FSM of the video decoder.

if it exists in between the iterations of a graph. Tokens are units of data and can have
a di�erent size in each channel, but must always have the same size in one channel.

Actors communicate by exchanging tokens of data that propagate through the
channels. Each channel has a production rate at the output port of the source ac-
tor, and a consumption rate at the input port of the destination actor. The directed
edges resembling channels point from source to destination. The production rate
and consumption rates of the channel from actor d� to df for example are both 4.
By convention the rates are omitted when they are 1. Di�erent rates may result in
a di�erent repetition vector entry, which is the number of times an actor �res each
iteration.

An actor may �re if the amount of tokens on each of its incoming channels is
equal to or greater than the consumption rate. When an actor �res it consumes a
number of tokens equal to the consumption rate from each incoming channel. It then
executes the program code embedded in that actor, and concludes by producing a
number of tokens on each outgoing channel equal to the production rate of that
channel. Actors themselves are stateless, that is, they cannot store data in between
subsequent �rings.

A channel with the same source and destination actor is termed a self-edge, see
actors d�, df and dis. Self-edges can be used to model state and to limit multiple
simultaneous actor �rings (auto-concurrency).

2

28 background and terminology

2.3.4 FSM-SADF applications

An FSM-SADF application consists of two or more scenarios and an FSM. The full
frame scenario Sfull described so far only captures one behaviour of the application,
namely the decoding of a full video frame. When a delta frame is detected, the ap-
plication behaviour and thus the scenario graph is di�erent, see Sdelta in Figure 2.3b.
Some actors occur in both scenarios, possibly with di�erent rates: fbf , d�, cf , disg.
Other actors occur only in one scenario but might consume a persistent token that
occurs in multiple scenarios: fdf , dd, sog).

The allowed scenario sequences are speci�ed by the FSM in Figure 2.3c. A video
sequence always starts with a full frame scenario, Sfull, this is indicated in the FSM
with an arrow that is not connected on one end. A full frame may be followed by
either scenario type, and the same goes for a delta frame. We see that in this appli-
cation all scenario sequences are allowed.

2.4 Mapping and scheduling

Design step DS.M&S indicated in Figure 2.1 shows the intra-application mapping
and scheduling of the existing design �ow, the upper layer of Figure 1.5. The map-
ping and scheduling concept of SDF3 has been described in [131]. We review the
relevant parts in this section.

2.4.1 Storage distributions

The �rst algorithm, computeStorageDistributions, takes as an input the application
�le and the architecture description. An application �le contains the following in-
formation:

� the throughput constraint;

� the scenario graphs;

� the resource requirements for each actor:
– the WCET on each processor type;
– the required amount of instruction memory;
– the required amount of data memory.

� the size of the tokens on each channel;

� the Finite-State Machine (FSM).

The CompSOC platform features multiple tiles that each contain one or more pro-
cessors, local memories, and interfaces to the interconnect. In this work we assume
there is one processor per tile that has separate on-tile instruction and data memo-
ries as well as one or more communication memories. An instance of the CompSOC

2

2.4 mapping and scheduling 29

platform may furthermore contain shared memories, an interconnect and peripheral
devices such as an Ethernet interface. We consider heterogeneous platforms that are
Globaly Asynchronous, Locally Synchronous (GALS), meaning that all elements on one
tile have the same clock but di�erent tiles and devices have di�erent clocks [71]. It
is not possible to make assumptions about synchronisation An architecture �le con-
tains the following information:

� a per tile description of:
– interfaces to the interconnect;
– the processor architecture;
– the processor arbitration method;
– the size of the instruction, data and communication memories.

� the interfaces to the interconnect and size of each shared memory;

� the connections within the interconnect;

� the interfaces to the interconnect and type of each peripheral.

yx

Figure 2.4: The size of the bu�er of a channel from actor x to y is modelled by the grey channel
and two persistent tokens, indicating a bu�er size of two.

In the MoC there is no notion of bu�er size, i.e. the number of tokens that can be
stored in a channel. In reality there is a limit on the number of tokens because they
must be stored in a physical memory. This has to be taken into account during the
mapping. A storage distribution is a list in which the bu�er size of each channel is
�xed. The bu�er size of a channel may be modeled in a data�ow graph by adding a
channel in the direction opposite to the original channel, and inserting a number of
persistent tokens equal to the bu�er size. See Figure 2.4, the channel from x to y has
a bu�er size of two tokens.

The storage distribution impacts the throughput of an application. For instance,
the graph will surely deadlock if the bu�er size is lower than the production or con-
sumption rate of a channel, resulting in a throughput of zero. The maximum possible
throughput on the other hand will be reached if the bu�er size of each channel is
made enormous, which con�icts with the desire to minimize resource usage (RQ.2).
The goal of the design �ow is to minimize the memory usage while meeting the
throughput constraint. Therefore the computeStorageDistributions algorithm creates
a set of storage distributions from which a subset is selected by selectStorageDistri-
butions to serve as the foundation for the mapping and scheduling.

2

30 background and terminology

2.4.2 Mapping applications to VRs

In the next algorithm, mapToVRs, a number of mappings is created for each storage
distribution. Each mapping is an allocation of actors to Virtual Resources (VRs), where
it is made sure that the memory requirements of the actors �t within the capacity
available on each tile. The mapping to processors (VPs) and memory are of special
interest in this thesis, other VRs such as the interconnect, shared Static Random-
Access Memory (SRAM), Dynamic Random-Access Memory (DRAM), and peripherals
will not be discussed in detail.

The size of the VP cannot be determined yet, as it depends on the intra-application
scheduling. An upper limit on the size of a VP is given by the maximum the proces-
sor capacity that a VP may consume, which is denoted in the architecture �le. If an
application is to be executed stand-alone on a platform, the full processor capacity
may be given in the architecture �le. If an application shares the platform with oth-
ers, the architecture should give the full capacity minus the size of the VPs required
for other applications.

The inter-application deployment of VRs is shown in the lower layer of Figure 1.5.
On the CompSOC platform the physical processor arbitration is implemented in the
CoMik �kernel using Time-Division Multiplexing (TDM) scheduling [45, 93]. TDM
scheduling divides the available capacity in a �nite number of TDM slots, this is
further detailed Section 2.6. The VP size is an absolute budget that describes the ex-
act TDM slots that the VP requires on a physical processor to meet the throughput
constraint. As discussed in SL.1 there is no obstacle to using relative VP budgets.

2.4.3 Determining the VP size

In the VPSizing algorithm the TDM slots required for each VP are determined using
a binary search. The search adjusts the TDM budget of all VPs at the same time
in an attempt to �nd the minimum budget for which the throughput constraint is
satis�ed. A SO schedule is created for each scenario in each VP using the scheduleSO
algorithm. A Static-Order (SO) schedule is a list that gives the order in which actors
will �re inside the VP during run-time.

To determine the throughput of a mapped application one must take into account
the timing e�ects of the scheduling, interconnect and remote memory accesses as
well as the interaction between actors mapped to di�erent VPs. This is solved in the
analyseBAG algorithm, in which the scenario graphs are annotated with models of
the middleware and hardware to construct the Binding-Aware Graph (BAG) of the
application. Data�ow models of the CompSOC hardware platform and middleware
are described in [92, 94]. SO schedules can be modeled as described in [20]. The WCET
of the additional actors generally decreases the throughput of the application. Once
the BAG is constructed according to the rules of the MoC its throughput is analysed
as described in Section 2.3.

2

2.5 programming model 31

A mapping is valid if the throughput constraint is satis�ed and the size of the VPs
does not exceed the maximum capacity that was given in the architecture �le. All
valid mappings are collected in a set. If the set is empty, the �ow attempts to select
other storage distributions. When no storage distributions are left, the �ow fails. If
one or more valid mappings were found, all Pareto-optimal mappings with respect
to the usage of memory, interconnect and processors are selected from this set. For
each of these mapping the generateApplication block creates an actor framework for
execution with the libDataflow library, see Section 2.6.

2.5 Programming model

A PM is a set of constructs that enables a programmer to write applications that
behave according to the rules of the MoC when running on a platform. In literature
the term PM is sometimes used interchangeably with Model-of-Execution (MoE) [89].
No PM is available for FSM-SADF on CompSOC or any other platform. PMs for HSDF,
SDF, KPN and CSDF are available for CompSOC in the form of the libDataflow li-
brary (formerly CompOSe and libPose), see Figure 2.1 [89–91, 94]. In this section
we describe the CompSOC SDF PM, which is the foundation for our FSM-SADF PM in
Chapter 3.

The SDF PM consists of four main elements: First-in First-out (FIFO) bu�ers, func-
tions, �ring rules and SO scheduling. Channels are realised as FIFO style bu�ers in
which no data can be lost and the oldest tokens are the �rst to be consumed. Actors
are implemented as functions with two arguments. The �rst argument is a list of
the input tokens, the second a list of spaces into which the output tokens must be
produced

Before an actor may �re it must be checked whether su�cient input tokens are
available for consumption in the input FIFOs, and whether su�cient space is avail-
able in the output FIFOs to produce the output tokens. These conditions are termed
the �ring rules, and must be checked before an actor is started. If su�cient tokens
and spaces are available, the corresponding locations in the FIFO bu�ers are passed
to the actor. Once the computation has �nished and the output tokens are copied
into the FIFO bu�ers, input tokens may be released as empty bu�er spaces and the
actor has �nished its �ring.

The actors must furthermore be scheduled inside each VP according to the Static-
Order (SO) schedule created in the scheduleSO algorithm. The schedule lists the order
in which the actors should be �red. At run-time these steps are executed in the
following order. The scheduler selects the next actor to be �red, after which the
�ring rules are checked for that actor. If the rules are satis�ed the actor is called
with the corresponding tokens as arguments.

2

32 background and terminology

2.6 Middleware

The CompSOC middleware implements the VP deployment described in Section 2.4
and the PM described in Section 2.5. It consists of CoMik, libFifo and libDataflow,
see Figure 2.1. Other libraries are available but not relevant in the context of this
work [45].

Partitioning can be used for consolidating multiple applications on one platform
[52], but in order to meet RT requirements a partition must be temporally isolated
[93, 143, 156]. Partitioning of processor resources is of special interest in this the-
sis, as a dynamically changing set of applications must be executed on a hetero-
geneous multi-processor (RQ.3b). Composability means that the timing behaviour
(and therefore the performance) of one application is completely independent of the
other applications executing on the same resources [45].

2.6.1 CoMik �kernel

The CoMik �kernel implements composable partitioning of processors [50, 92, 93].
TDM processor allocation de�nes a �nite period for each resource, the TDM wheel.
This period is divided into a number of evenly spaced time slots of a certain length,
measured in clock cycles. The number of slots is the wheel size and must be a natural
number. We consider the VPs to be a requestor that consumes capacity on a processor.
Each requestor that needs to use the resource is designated a number of TDM slots,
the inter-application deployment. Within their slots a requestor has exclusive access
to the resource, while in all other slots it has no access to the resource and has to
wait.

On the CompSOC platform the VPs are deployed statically according to a given
table. The TDM slots are cycle-accurately composable, an application that executes
in one slot cannot a�ect an application in another slot even by a single cycle. In
between the TDM slots is a CoMik system slot that takes care of the scheduling,
interrupts, exceptions, power management and memory management. Within the
TDM slots reserved for a VP an application may execute bare-metal or start an OS
such as libDataflow. A side e�ect of this composable partitioning is that a VP may
be executed in any set of slots, as long as the total number of slots is equal to the
VP size that was calculated by the constructpVPSchedules algorithm. We exploit this
feature to perform re-deployment of VPs to achieve fault-tolerance in Chapter 5.
The technique of deploying applications onto a platform through dynamic loading
is described in [121]. However, no resource manager with a VP deployment heuristic
such as described in Chapter 1 is available for the CompSOC platform. Therefore the
platform has only been used with �xed actor to processor mappings (RQ.3a), and
mostly with �xed actor to connection mappings.

2

2.7 hardware 33

2.6.2 libFIFO

The libFifo library (formerly C-HEAP) implements the FIFOs as circular bu�ers
[45, 95]. Each FIFO has an administration block that must be initialised when the
system is started. The parameters that must be initialised include the size of the to-
kens, the total number of tokens (i.e. FIFO capacity), the rates and the address where
the bu�er resides. If the FIFO connects two actors in the same VPs, the bu�er may be
located in the local data memory or in a remote shared memory. Else if the FIFO con-
nects two actors in di�erent VPs, the bu�er can be located in a local communication
memory of one of the tiles to which a VP is mapped, or in a remote shared mem-
ory. When the actors are on di�erent VPs send and receive bu�ers are used because
the processors typically produce and consume tokens faster than the interconnect
can transport them. The administration block contains read and write counters that
track the status of the bu�er. The library furthermore provides functions to check
the current number of tokens and spaces, read and write tokens and release spaces.

2.6.3 libData�ow

The libDataflow library (formerly CompOSe [50] and libPose) implements the re-
mainder of the data�ow PM, namely the loading of persistent tokens, SO scheduling,
�ring rule checking, and starting of actors [89, 91, 92] The scheduling task selects
the next actor for execution. Scheduling is predictable, i.e. the worst-case perfor-
mance is guaranteed [45]. Two non-preemptive scheduling methods are available in
libDataflow, Round-Robin (RR) and SO scheduling. We use the SO scheduler, which
is supplied with a �xed schedule generated by SDF3 that indicates in which order
the actors must �re.

The �ring rule checking as has been explained in Section 2.5 is an administrative
task that loops over all the input and output FIFOs and checks if su�cient tokens and
spaces are available. If this is the case, the actor function is called with as arguments
the input tokens and spaces for the output tokens. Because an actor cannot start
before the required number of input tokens is available, the scheduling is data driven.
After the actor has �nished the FIFO administration is updated to indicated that the
former input tokens are now empty bu�er spaces, and that the former spaces in the
outgoing channels are now data tokens.

2.7 Hardware

The CompSOC hardware platform is a template from which di�erent implementa-
tions can be synthesised from an architecture �le, see Figure 2.1 [44, 45, 48]. A syn-
thesised platform typically consists of a number of tiles, an interconnect, a shared
memory and a number of peripherals. CompSOC is suitable to implement RT systems
that adhere to requirements RQ.1–RQ.3a because it is predictable and composable

2

34 background and terminology

. These terms were explained for the middleware in Section 2.6, in this section we
summarise how they are realised in hardware.

From the hardware point of view we consider an actor to be a requestor that con-
sumes capacity on resources such as a processor, memory and interconnect. A re-
quest for capacity from a requestor has a certain WCET on each resource. The WCET
must be safe, i.e. never underestimate the execution time, and should be tight, i.e. the
overestimation should be as small as possible. [155]. A safe and tight WCET can be
extracted only if each component is predictable. The WCRT accounts for the WCET
and the waiting time that is caused by other requests, possibly from the same re-
questor. This waiting depends for a large part on the arbitration method that is used.
Arbitration is predictable if it can guarantee a minimum performance, and is com-
posable if it is ensured that the assigned capacity (i.e. performance) is independent
of the behaviour of other applications. CompSOC implements multiple arbitration
methods that are both predictable and composable. It is therefore possible to com-
pute a WCRT which means that the worst-case behaviour of data�ow applications
can be statically analysed.

2.8 Summary

This chapter started with a �owchart overview of the existing design �ow shown
side-by-side with the extended �ow that we present in this thesis. We matched the
algorithms in the original �ow with the design steps from Section 1.2 and the ex-
tensions with the remaining chapters. We explained the existing design �ow step by
step, starting with the FSM-SADF Model-of-Computation (MoC) using the example of
a video decoder. Each scenario in itself is identical to an SDF application, the allowed
scenario sequences are captured in the FSM.

Mapping is performed on the basis of storage distributions that �x the size of each
channel. The actors are then mapped to available capacity on the physical proces-
sors. Channels are mapped to the memories and interconnect. Each cluster of actors
forms a VP for which a Static-Order (SO) schedule is created, and which itself is exe-
cuted on a physical processor using TDM scheduling. Once an application is mapped
and scheduled, the minimum size of each VP with which throughput constraint is
satis�ed can be determined . To do so a Binding-Aware Graph (BAG) is build that
models the application, SO schedule, middleware and hardware.

As there is no PM for FSM-SADF we reviewed the SDF PM that enables execution
of SDF applications according to the rules of that MoC. It de�nes channels as FIFO
bu�ers and actors as functions. The �ring rules check whether su�cient data tokens
and space are available in the respective input and output channels of an actor, in
which case an actor may be �red. An SO scheduler decides which actor must be �red
next according to the given schedule.

Two elements of the CompSOC middleware are relevant in this thesis. Firstly, com-
posable TDM scheduling of VPs is implemented by the CoMik �kernel. Secondly, the
SDF PM is implemented by libDataflow and libFifo. The CompSOC hardware is

2

2.8 summary 35

predictable and composable. Predictability means that a safe and tight WCRT can
be determined, which is necessary for the timing analysis of applications. Compos-
ability means that an applications performance is independent of other applications,
which is needed to keep the complexity manageable when executing multiple ap-
plications on one platform.

2

3

3 A scenario-aware data�ow programming model

3.1 Introduction

This chapter presents contribution CB.2, a Programming Model (PM) for Finite-State
Machine Scenario-Aware Data�ow (FSM-SADF). In Section 3.2 we review the prob-
lem in detail and sketch the solution, which is composed of the following elements.
A method and implementation for transforming an application into a scenario se-
quencing model that solves the causality problem is given in Section 3.3. We explain
how this model can be converted to a scenario execution model in Section 3.4, and
how it can be expanded into a Binding-Aware Graph (BAG) that captures the exact
timing behaviour in Section 3.5. The PM is evaluated experimentally in Section 3.6.
Related work is discussed in Section 3.7, and the chapter concludes with a summary
in Section 3.8. Earlier versions of this chapter have been published in [146, 147].
These versions do not cover applications with delayed scenario detection, which is
therefore a novel contribution of this thesis.

3.2 The causality dilemma

From the two use-cases in Section 1.1 we extracted common requirement RQ.4, dy-
namic response to input data. The control �ow of applications that respond dynam-
ically depends on the received data and can vary in each iteration. These variations
can be captured in scenarios, for instance using the FSM-SADF MoC that was intro-
duced in Section 2.3.

While FSM-SADF is an elegant model for tight analysis of dynamically responding
applications, there is no corresponding PM to execute such applications. During ana-
lysis the allowed scenario sequences are captured in an FSM. During execution the
actual scenario sequence must be detected. We recognise two di�erent cases. Firstly,
the current scenario may have been detected during execution of the previous sce-
nario graph, we term this delayed scenario detection. Secondly, the current scenario
may be detected during execution of the current scenario graph, we term this imme-
diate scenario detection. All scenarios of an application must be detected in either a
delayed or immediate fashion, the two types cannot be mixed.

3.2.1 Delayed scenario detection

Two example applications with delayed scenario detection are depicted in Figures 3.1a
and 3.1b. Both applications consist of two scenarios and an FSM. The initial scenario
that is to be executed during the �rst iteration after an application starts is �xed.

37

3

38 a scenario-aware dataflow programming model

a4detc) S1

S2

b

t2

cdet b

t2

4 2

det2ad) S1

S2

b

t1

t1

deta c

t1

t1

2 2

2
ba

a)

S1

S2

c

tdet

f

d g

4

ba

b)

S1

S2

c

t1 tdet

ed f

t1tdet

2 2

tdet

2 8

4 2 2

t2

t2

e

2 2

S2S1

S2S1 S2S1

S2S1

2

t3

t4

Figure 3.1: Four FSM-SADF applications that are supported by our PM. The applications in
a) and b) have delayed scenario detection and have a detector token tdet in each
scenario, those in c) and d) have immediate scenario detection and have a detector
actor det in each scenario.

3

3.2 the causality dilemma 39

This is indicated in the FSM with an arrow that is not connected at the source. In the
�rst iteration of both applications S1 is executed.

In all scenario iterations other than the very �rst the scenario was detected dur-
ing the previous iteration. The only possibility to transfer state between scenario
iterations is through persistent tokens. For our PM we require that the next sce-
nario identi�er is stored in a persistent token tdet. This detector token must appear
exactly once in each scenario graph and may be located on a di�erent channel in
each scenario, see Figures 3.1a and 3.1b. Our PM requires the detector token to be
identi�ed by the programmer. In the MoC there is no such requirement; to calculate
the worst-case scenario sequence it is su�cient to know the allowed scenario tran-
sitions indicated by the FSM. Figure 3.2a shows an application that is not supported
by our PM because tdet does not occur in S2.

The bene�t of delayed scenario detection is that the only constraint on the sce-
nario graphs is that one detector token must be present in each scenario, its location
is not relevant. Furthermore the scenario graphs do not have to be modi�ed to create
the scenario sequencing model as we will see in Section 3.3. An example of an appli-
cation where the next scenario is detected during execution of the current scenario
graph is a WLAN receiver [83]. Another example are applications that must either
respond to input from a user, e.g. changing the channel in a software-de�ned radio
application, or from another application, e.g. switching to a fail-safe scenario due to
an error detected by the resource manager.

However, in any application where the control �ow depends on the input data it
is not possible to detect the next scenario during execution of the current scenario
graph, and immediate scenario detection must be applied. An example of such an
application is the MPEG-4 video decoder [137]. Another example is object detection,
where the amount and type of processing steps is dependent on the objects that
are detected. In the Smallest Univalue Segment Assimilating Nucleus (SUSAN) edge
detection algorithm presented in Section 3.6 the choice between a sequential or par-
allelised version of the algorithm is made based on the detected resolution of the
input image.

3.2.2 Immediate scenario detection

Two example applications with immediate scenario detection are depicted in Fig-
ures 3.1c and 3.1d. The �rst scenario is �xed and indicated with an arrow.1 Unlike
applications with delayed scenario detection, the current scenario is detected when
a certain actor �res. After this detector actor has completed the current scenario is
known. The idea of detector actors originates from [140].

Note that from the video decoder example in Section 2.3 we know that the �rst
scenario is �xed by the speci�cation, but is still encoded in the input data. Our PM

1 For applications with immediate scenario detection the �rst scenario does not have to be �xed, as it is
detected during the �rst scenario iteration anyway. This change would however require a formal change
of the FSM-SADF MoC, which is outside of the scope of this thesis.

3

40 a scenario-aware dataflow programming model

a2det

a)

S1

S2

b

adet c
4 4

det2a

b)

S1

S2

b

t1

t1

detc d

t3

t2

4 2

2
c)b2aS1

S2

c

t1 tdet

ed f

t1

2 2

2

t2

t4

2

t2

t2

S2S1

S2S1

S2S1

d) a2detS1

S2

b

adet c
2 2

S2S1

4

Figure 3.2: FSM-SADF applications that are not supported by our PM, the problems are high-
lighted in red. a) Delayed scenario detection, but there is no detection token tdet
in S2. b) Immediate scenario detection, but the persistent token on the self-edge
and the production rate of det are di�erent in both scenarios. c) Immediate sce-
nario detection, but the pre�x graph that is executed before det is di�erent in both
scenarios. d) Immediate scenario detection, but the repetition vector entry of det
is di�erent in both scenarios.

3

3.2 the causality dilemma 41

requires the detector actor to be identi�ed by the programmer, it is labeled det in
Figures 3.1c and 3.1d. It is not required that the detected scenario is explicitly iden-
ti�ed in any of the tokens produced on detectors outgoing channels. However, it
should be possible to create new channels onto which such an explicit scenario to-
ken is produced, see Subsection 3.3.2. At run-time it is impossible to decide whether
to start with executing the scenario graph of S1 or that of S2, except in the �rst itera-
tion. This is the causality dilemma; during execution the current scenario is detected
only after the current scenario graph is partially executed.

For our PM we require that the detector actor is the same actor in each scenario.
Furthermore it must have the same consumption and production rates at its ports.
The consumption rate of a channel into which the detector actor produces tokens
may di�er in each scenario. Figure 3.2b shows an application that is not supported
by our PM because the token consumed by det and its production rate is di�erent in
both scenarios.

All actors that �re before the detector actor together with the channels connected
to those actors form the pre�x graph. We require this pre�x graph to be identical in
each scenario, i.e. it must have the same actors, topology, rates and persistent tokens.
If we would not introduce this constraint, there would be another causality dilemma
before the detector actor even �res. The example in Figure 3.1d has a pre�x graph
that consists of actor a, four channels, and tokens t1 and t2. Figure 3.2c shows an
application that is not supported by our PM because the pre�x graph is di�erent
in both scenarios. Note again that there is no such requirement in the MoC, during
analysis it is not relevant in which actor the scenario is detected.

Another requirement that we pose on applications with immediate scenario de-
tection is that the detector actor must have the same repetition vector entry in each
scenario. Were the repetition vector entry di�erent, another causality dilemma oc-
curs while executing the SO schedule of the pre�x graph. Figure 3.2d shows an ap-
plication that is not supported by our PM because the detector actor has a di�erent
repetition vector entry in both scenarios.

The bene�t of immediate scenario detection is that it suits applications that must
directly respond to the input data, and it is therefore the solution to RQ.4 and the
two use-cases in Section 1.1. The disadvantage is that we must pose a number of
constraints on the scenario graphs.

The existing timing analysis in SDF3 uses the operational semantics of applica-
tions with immediate scenario detection. The operational semantics of applications
with delayed scenario detection are di�erent because the actual scenario lags one
iteration behind the detected scenario. However, we argue that the throughput ana-
lysis is identical. The reason is that the analysis uses the FSM to determine the al-
lowed scenario transitions, but does not model the actual scenario detection. In other
words, it analyses all the possible scenario transitions, not the actual ones. The pos-
sible scenario transitions are the same in both cases, and therefore the throughput
is the same.

3

42 a scenario-aware dataflow programming model

3.2.3 Shared persistent tokens

The consistency of persistent tokens that occur in multiple scenarios must be guar-
anteed during scenario execution. Consider token t2 in Figure 3.1c. Once actor det
has �red and a scenario has been detected, say S1, actor a is enabled (ready to �re)
to �re twice in succession. In the meantime det may �re again and detect S2, which
will then execute in parallel to S1. This is an example of scenario pipelining. Actors
b and c may attempt to access t2 in the wrong order or at the same time. This is
allowed, but the behaviour is not speci�ed in the MoC. During scenario execution
however this behaviour must be speci�ed. The PM must clarify how the access to
shared persistent tokens is handled, this is solved in Subsection 3.4.5.

3.2.4 Contributions

The FSM-SADF MoC was not designed to be executed. In this section we have seen
that detector tokens or detector actors are necessary to execute scenario graphs,
and that the consistency of persistent tokens must be guaranteed. The PM that we
propose in this chapter addresses these issues through three contributions to the
design �ow.

Firstly we present a concept for executing scenarios after one another in Sec-
tion 3.3, the scenario sequencing model. Applications with immediate scenario de-
tection are the most challenging to implement because of the causality problem. We
give the createDetectorScenario algorithm that splits o� the detector token or detec-
tor actor together with the pre�x graph in a dedicated detector scenario. Once the
detector scenario has �nished, the next scenario is known and can be executed. The
scenario sequencing model solves the causality dilemma and is a crucial aspect of
the PM proposed in this chapter.

Secondly we present an implementation of the scenario sequencing model for the
CompSOC platform, the scenario execution model in Section 3.4. The implementation
is based on the existing SDF PM and re-uses the implementation of channels, loading
persistent tokens, SO scheduling, �ring rule checking and actor execution. The intra-
application scenario scheduling is added to the middleware libDataflow library,
see also see Figure 2.2. Consistency of persistent tokens is guaranteed by exploiting
the existing libFIFO library.

Thirdly, we capture the exact timing impact of the scenario execution model by
extending the existing FSM-SADF BAG in Section 3.5. This is necessary to obtain a
tight but safe throughput guarantee on the execution of a sequence of scenarios. In
short, this chapter presents a generalised concept for execution of FSM-SADF applica-
tions whose exact timing behaviour can be analysed. We implement the concept by
modifying and extending the existing SDF3 design �ow and CompSOC middleware.

3

3.3 scenario se�encing model 43

SdetS1 S2

a)

b)

c)

d)

ba c

t1 tdet

ed f

tdet t1

2 2

ls

tdet

Sdet

S1

S2

Figure 3.3: Scenario sequencing model of the application with delayed scenario detection in
Figure 3.1a. a) Detector scenario Sdet. b) Scenario S1 has not changed. c) Scenario
S2 has also not changed. d) The transformed FSM places Sdet before each regular
scenario.

3.3 Scenario sequencing model

In this section we present a method to convert FSM-SADF applications to a model
that allows to execute a sequence of scenarios. The converted application is also a
valid FSM-SADF application which we term the scenario sequencing model. The con-
version creates a detector scenario that is always executed before a regular scenario.
The next scenario is known when the detector scenario has �nished. Creating the
detector scenario requires a number of graph transformations on the scenario graphs
and the FSM. The conversions for applications with delayed scenario detection are
di�erent from those for applications with immediate scenario detection. After the
scenario transformations the scenario graphs still adhere to the FSM-SADF rules, and
the result of the timing analysis is identical to that of the original graph.

3.3.1 Creating a sequencing model for applications with delayed scenario

detection

We explain the algorithm to create a scenario sequencing model for applications
with delayed scenario detection using the application depicted in Figure 3.1a. All

3

44 a scenario-aware dataflow programming model

elements related to scenario detection will be isolated in the detector scenario. The
next scenario is stored in a persistent detector token that is duplicated in the detector
scenario. According to the data�ow rules a persistent token cannot hover in thin
air but must be attached to a channel. In turn, a channel must have a source and
destination actor. The detector token may be attached to a di�erent channel in each
scenario. We do not need to replicate these channels, instead we create a new actor
ls (load-schedule, see Section 3.4) in the detector scenario with a WCET of zero,
and a self-edge to which the detector token is attached. This concludes the �rst
graph transformation for applications with delayed scenario detection. The detector
scenario Sdet of the example application is depicted in Figure 3.3a.

The second and �nal graph transformation consists of changing the FSM so that
the detector scenario is the starting scenario and is always executed before any other
scenario. The transformed FSM of the example application is depicted in Figure 3.3d.
The two original scenario graphs are not modi�ed. Though the detector scenario is
executed before each of the regular scenarios, it does not change the timing analysis
at all because it does not contain actors with an execution time other than zero. This
scenario sequencing model enables scenario execution, see Section 3.4. To conclude,
two scenario transformations are necessary to convert applications with delayed
scenario detection to a scenario sequencing model (Delayed Model, DM):

DM.1 copy the detector token to the detector scenario and attach it onto a self-
edge on a newly created actor ls;

DM.2 add the detector scenario to the FSM, make it the starting scenario and en-
sure that it is executed before each regular scenario.

3.3.2 Creating a sequencing model for applications with immediate sce-

nario detection

We now explain the recipe of creating a scenario sequencing model for applications
with immediate scenario detection and use the video decoder that was introduced
in Section 2.3 as running example. The scenario graphs and FSM are repeated in Fig-
ure 3.4 for convenience. Creating the detector scenario requires a number of scenario
transformations.

The �rst transformation isolates all elements required for scenario detection and
inserts these in the detector scenario. These elements comprise the detector actor,
the pre�x graph, and all channels that connect the detector and pre�x graph to the
other actors, we term these the synchronisation channels. These elements are iden-
tical in each scenario and are copied once to the detector scenario, which leaves the
synchronisation channels connected on only one side. The same elements are then
removed from all regular scenarios except the synchronisation channels, which are
here now only connected on the other side. Any persistent tokens on the synchro-
nisation channels are copied to the detector scenario and removed from the regular
scenarios.

3

3.3 scenario se�encing model 45

so

cf

t1 t3t2

df
2 2

dft dis
4 4

bf

t4

2
2

cf

t1 t5t2

dddft dis
4 2

2

bf

t4

2

Sfull Sdelta

a)

b)

c)

Sfull

Sdelta

Figure 3.4: a) Scenario graph Sfull, b) scenario graph Sdelta and c) the FSM of the video decoder
that was introduced in Section 2.3. This �gure is identical to Figure 2.3 on page 27.

Detector scenario Sdet in Figure 3.5a clari�es this graph transformation, we focus
for now on the black elements. Actor d� is the scenario detector, it has a self-edge
with persistent token t1. The pre�x graph consists of actor bf and the channel from
bf to d�. There are two synchronisation channels, one from d� to df (Sfull) and dd
(Sdelta), and one from dis to bf . The latter carries persistent token t4, which is inserted
in Sdet and removed from the other scenarios.

After this �rst graph transformation the synchronisation channels are connected
on only one side in each of the scenarios, leaving the graphs in an invalid situa-
tion. To solve this we perform the second graph transformation, which is to insert
switch actors at the loose end of each synchronisation channel into which the detec-
tor scenario produces tokens, and select actors at the loose end of each channel from
which the detector scenario consumes tokens. These actors model the transport of
tokens from and to the detector scenario. The switch or select actor that closes the
same synchronisation channel must have the same name in each scenario. We iden-
tify them with a subscript to di�erentiate between these actors, they are assigned a
WCET of zero.

Furthermore a self-edge with a persistent synchronisation token is added to each
switch and select actor in each scenario. Actors with the same name must have
synchronisation tokens with the same name. This ensures that each synchronisation
token is modeled as one physical token during analysis, as proposed in [123]. In our

3

46 a scenario-aware dataflow programming model

Figure 3.5: Scenario sequencing model of the video decoder application in Figure 3.4 with
immediate scenario detection. a) Detector scenario Sdet. b) Full frame scenario Sfull.
c) Delta frame scenario Sdelta. d) The transformed FSM that now contains Sdet.

3

3.3 scenario se�encing model 47

example this second transformation creates actors Sw and Sel in each scenario as
well as persistent tokens tSel and tSw, indicated in grey in Figures 3.5a–c.

Persistent tokens on the synchronisation channels are a special case and require
a third transformation. In the detector scenario all select actors must �re �rst, and
all switch actors must �re last. Furthermore the repetition vector entry of existing
actors may not change. To accomplish this the persistent tokens on each synchro-
nisation channel are moved onto the self-edge of the switch or select actor to which
the channel is connected. The rates of that self-edge are then changed so that all to-
kens on the self-edge are consumed and produced with each �ring of the actor. We
show that this not in�uence the timing behaviour of the graph in Subsection 3.3.3.

In the example there is one such token, t4 in Figure 3.5a. We see that it was moved
onto the self-edge alongside synchronisation token tsel, and the production and con-
sumption rate of that channel are set to 2. If this transformation would haven been
skipped there would be two tokens on the channel from Seldet to bf after �ring of
the former actor, changing the repetition vector entry of bf and d� to 2. After the
transformation there is only one token on the synchronisation channel from Seldet
to bf after Seldet �res, and the repetition vector entries remain unchanged.

The fourth graph transformation adds control channels from the detector actor to
each switch and select in the detector scenario. The tokens produced into the con-
trol channels must identify the detected scenario. Because select actors model the
transport of tokens from the regular scenarios to the detector scenario they must
�re before any other actor in the detector scenario. Therefore a number of persis-
tent control tokens equal to the repetition vector entry of the actor is attached to
all control channels that go to select actors. The control channels and tokens are
indicated in grey in Figure 3.5a. Control token tctrl has been added to the control
channel from d� to Seldet.

Lastly the FSM is changed so that the detector scenario is the starting scenario
and is always executed before any other scenario, see Figure 3.5d. In conclusion,
�ve scenario transformations are necessary to convert applications with immediate
scenario detection to a scenario sequencing model (Immediate Model, IM):

IM.1 copy the pre�x graph and scenario detector actor to the detector scenario
once, and remove these elements from the original scenario graphs except
for the synchronisation channels;

IM.2 insert switch and select actors on the loose ends of the synchronisation
channels in each scenario, and add a self-edge with synchronisation token
to each of these;

IM.3 move any persistent token on the synchronisation channels to the self-edge
of the switch or select actor to which the channel is connected, and update
the rates to consume and produce all tokens at once;

IM.4 add control channels from the detector actor to each switch and select,
adding a persistent control token to all channels that go to a select actor.

3

48 a scenario-aware dataflow programming model

IM.5 add the detector scenario to the FSM, make it the starting scenario and make
it the initial state.

3.3.3 Timing analysis of applications with immediate scenario detection

The graph transformations described in Subsections 3.3.1 and 3.3.2 result in the sce-
nario sequencing model, which is a collection of valid scenario graphs and an FSM.
Timing analysis of these graphs yields exactly the same result as analysis of the
original graphs. To show this we will go through the timing analysis of the running
example shown in Figure 3.5.

Throughput analysis with SDF3 relies on the timestamps at which tokens are con-
sumed and produced, the actual data value of tokens is not relevant. Temporal analy-
sis of decoding a full video frame with SDF3 visits scenarios Sdet and Sfull as indicated
by the FSM in Figure 3.5d. Analysis proceeds through the following steps:
AS.1 Seldet is the only actor that is enabled initially, it �res and produces a token

on the channel to bf as well as the new tSel and t4 at time � 1;

AS.2 bf �res, followed by d� which detects scenario Sfull;

AS.3 d� produces its data tokens on the black channel to Swdet and a control token
onto each grey channel to the switch and select actors;

AS.4 Swdet �res and produces the new tSw at time � 2;
This concludes Sdet. Note that the Sw and Sel actors did not consume time, i.e. they
produce tokens immediately after consumption. Persistent tokens become available
in the next scenario from the moment they are produced. We will see that this
achieves synchronisation in Sfull:
AS.5 Swfull is blocked until � 2, then it �res and produces tSw and the data tokens

towards df ;

AS.6 df �res also at � 2, i.e. immediately after d�;

AS.7 Sfull continues to execute until dis �res;

AS.8 Selfull �res as soon as the token from dis is available, producing tsel at � 3.
This concludes the analysis of Sfull. Note that Sdet would be allowed to start again
while Sfull is underway were Seldet not blocked until � 3. This models the dependency
of bf on t4 in Figure 3.4a, e�ectively preventing scenario pipelining in this particular
case. If the channel from dis to bf would not exist, there would not be a select actor
and the scenarios could execute in a pipelined fashion as explained in [36]. We see
that the switch and select actors model the transport of tokens between scenarios
and ensure synchronisation from the end of one scenario to the start of the next
scenario. Note that the timing behaviour has not changed compared to the original
graph because the new actors have a WCET of zero. We omit the analysis of a delta
frame because it is very similar.

3

3.4 scenario execution model 49

3.3.4 Automatic creation of the scenario sequencing model

We implemented the automatic creation of scenario sequencing models in the ex-
isting design �ow. Our current implementation can only handle applications with
immediate scenario detection and no pre�x graphs. We implemented one application
with delayed scenario detection manually, see Section 3.6.

As said, identi�cation of the detector actor is a task of the programmer. The subse-
quent steps have been automated in SDF3. The position of this createDetectorScenario
algorithm in the �ow can be found in Figure 2.2 on page 23. The implementation of
createDetectorScenario is listed in Algorithm 2.

Algorithm 2 Creating a scenario sequencing model.
1: function createDetectorScenario(scenarioGraphs, fsm, detectorActor)
2: check_detector_actor(scenarioGraphs, detectorActor)
3: detectorScenGraph = new scenarioGraph
4: copy_detector_actor(scenarioGraphs, detectorActor, detectorScenGraph)
5: insert_switch_select_actors(detectorScenGraph)
6: for sg in scenarioGraphs do

7: replace_detector_with_switch_and_select_actors(sg)
8: add_sync_and_control_tokens(sg, detectorScenGraph)
9: end for

10: scenarioGraphs.add(detectorScenGraph)
11: add_detector_scenario(fsm, detectorScenGraph)
12: end function

Line 2 in Algorithm 2 checks whether the scenario graphs satisfy the require-
ments that were posed in Subsection 3.2.2. An empty detector scenario is created in
line 3. The detector actor and its incoming and outgoing channels are copied to the
detector scenario in line 4, corresponding to IM.1 in Subsection 3.3.2. Switch and
select actors with self-edges containing the synchronisation tokens are inserted at
the open ends of the synchronisation channels in the detector scenario in line 5.
The detector actor is replaced by switch and select actors in each remaining sce-
nario in line 7, synchronisation tokens are added to these actors in line 8. Step IM.2
is implemented in lines 5–8, steps IM.3 and IM.4 in line 5.

The detector scenario graph is added to the list of all scenarios in line 10. The FSM
is transformed in line 11, implementing step IM.5.

3.4 Scenario execution model

Section 3.3 showed the transformation of FSM-SADF applications to scenario se-
quencing models. A sequencing model is a valid FSM-SADF application and its be-
haviour is identical to that of the original application graph, both logically and in the

3

50 a scenario-aware dataflow programming model

timing domain. Therefore the analyseBAG timing analysis algorithm in Figure 2.1 on
page 22 gives the same result for the original application and the sequencing model.

In this section we present the conversion from the scenario sequencing model to
the scenario execution model that allows to execute FSM-SADF applications in con-
cert with the middleware. For applications with immediate scenario detection we
show that the scenario sequencing model solves the causality dilemma because the
next scenario graph is only started after it is detected. We present the scenario ex-
ecution model in Subsection 3.4.1. The remaining subsections present solutions to
the following practical aspects: execution of schedules for applications with delayed
scenario detection in Subsection 3.4.2 and immediate scenario detection in 3.4.3, im-
plementation of switch and select actors in Subsection 3.4.4, and sharing persistent
tokens in Subsection 3.4.5.

3.4.1 Executing a sequence of scenarios

Executing the scenarios of an application with delayed scenario detection is straight-
forward because there is no causality dilemma. The scenario graphs may be executed
in any order indicated by the FSM, the actual order at run-time is determined by the
graph. The scenario execution model depicted in Figure 3.6 is almost identical to
the scenario sequencing model in Figure 3.3. The only di�erence is that additional
load-schedule (ls) actors are added until there are as many as there are VPs. This will
be clari�ed during the explanation of the tailored approach for schedule execution
in Subsection 3.4.2.

The causality dilemma that is encountered when attempting to execute an appli-
cation with immediate scenario detection is solved by splitting o� the detector actor
and pre�x graph into a detector scenario, see Section 3.3. During execution data to-
kens must be transferred from the detector scenario to the other scenarios and vice
versa.

To do so we merge the scenario graphs from the sequencing model into a scenario
execution model by merging the switch and select actors. Each switch or select ac-
tor in the detector scenario has a matching actor in every other scenario with the
same name. As an example see Figure 3.5, the actors that match Swdet are Swfull and
Swdelta. Every set of matching actors is merged. In the example the three match-
ing switch actors are merged into one switch actor Sw, see Figure 3.7a and b. The
three select actors are merged into one select actor Sel, see Figure 3.7c and d. The
�gures show that the newly created switch and select actors are connected to the
same channels as the actors from which they are created.

The result is one single data�ow graph that contains all scenarios, the scenario ex-
ecution model in Figure 3.8. As the scenarios are merged into one graph, a number
of transformations that were necessary for scenario synchronisation are reverted.
Firstly, the synchronisation tokens are no longer necessary and are removed. Sec-
ondly, step IM.3 is reversed because enforcing the actor ordering in the detector
scenario is no longer necessary. This means that any remaining tokens on the self-

3

3.4 scenario execution model 51

Figure 3.6: Scenario execution model of the application in Figure 3.1a, mapped to two VPs.
Blue actors are mapped to VP1, green actors to VP2.

VP1 VP2

Sdet [ls1] [ls2]

S1 [a, c] [b]

S2 [e, e] [d, f]

Table 3.1: The SO schedules of the mapped application in Figure 3.6 of each VP in each sce-
nario.

3

52 a scenario-aware dataflow programming model

edges of select actors are moved back to the synchronisation channel from which
they originated. As an example see t4 in Figure 3.7c and d. Thirdly, there are no
tokens left on the self-edges of the switch and select actors and these edges are re-
moved. Fourthly, the persistent control tokens added in step IM.4 are removed, see
tctrl in Figure 3.7c that is removed in 3.7d. The other actors do not change. The re-
sulting scenario execution model of the video decoder is shown in Figure 3.8, control
channels, load-schedule actors and the switch and select actors are indicated in grey.

The new switch and select actors correspond to the Boolean Data�ow (BDF) con-
cept [13]. A switch has one control input, one data input and two data outputs, see
Figure 3.7b. It forwards the data token(s) from the data input to one of the data out-
puts, the correct output is selected depending on the control input. A select has one
control input, two data inputs and one data output, see Figure 3.7d. It is the coun-
terpart of a switch and forwards the data token(s) on one of the inputs to the data
output based on the control input. A switch actor functions as a multiplexer, a select
as de-multiplexer.

A scenario execution model such as shown in Figure 3.8 is a BDF graph. As exact
analysis of BDF graphs is not possible, it would seem that this step invalidates the
timing analysis required to meet the RT constraint [138]. However, the scenario ex-
ecution model is not a pure BDF graph but a restricted variant. The graph topology
ensures that all switch and select actors always receive the same control token at
the same time, ensuring that all actors of one scenario are executed. This essentially
implements the FSM, the sequence of control tokens from the detector to all switch
and select actors is the actual sequence of FSM states. The timing behaviour of the
scenario execution model is identical to that of the scenario sequencing model. The
scenario execution model is therefore a restricted BDF graph whose behaviour is
identical to that of the original FSM-SADF graph, but it cannot be analysed itself.

Executable data�ow application code is generated from the scenario execution
model in the generateApplication algorithm, see Figure 2.2 on page 23. The actual
execution requires support from the libDataflow middleware library in that same
�gure.

3.4.2 Executing schedules of applications with delayed scenario detection

Mapping and scheduling is performed in algorithms mapToVRs and VPSizing, see
Figure 2.2 on page 23. A mapping is executed by the resource manager as described
in Chapter 1. Executing the SO actor schedule of FSM-SADF applications on the other
hand requires support from both the PM and middleware, DS.PM and DS.MW.

An SO actor schedule is calculated for each VP in each scenario during the map-
ping and scheduling. At run-time each application starts with the detector scenario,
regardless whether it has delayed or immediate scenario detection. The schedule of
the detector scenario of applications with delayed scenario detection consists only
of the load-schedule actor, abbreviated [ls] in our examples. The libDataflow li-
brary is modi�ed to execute a Rolling Static-Order (RSO) schedule that is initially set

3

3.4 scenario execution model 53

Figure 3.7: a) The switch actors and c) select actors in the scenario sequencing model are
merged into b) one BDF switch actor and d) one BDF select actor to create the
scenario execution model.

3

54 a scenario-aware dataflow programming model

to just the schedule of the detector scenario. Inside the load-schedule actor the de-
tector token is inspected, and the schedule that corresponds to the next scenario is
concatenated to the current RSO schedule followed by the next detector scenario. In
this way it is ensured that libDataflow does not run out of actors to schedule.

The example application depicted in Figure 3.3 is mapped to two VPs in Figure 3.6.
The SO schedules of each VP in each scenario are listed in Table 3.1. Let us assume
that the initial scenario stored in tdet is S1. Initially the schedule in both VPs consists
only of load-schedule actors [ls1] and [ls2]. Actor ls1 inspects the token tdet and
concatenates the actor sequence [a, c, ls1] to the RSO schedule on VP1. This actor
also produces a scenario token on the channel to ls2, which is the �rst actor to �re in
VP2. It concatenates the actor sequence [b, ls2] to the RSO schedule on VP2. Then all
actors �re in the order dictated by the schedule, actor c updates tdet with the next
scenario. During the second �ring of ls1 and ls2 the next scenario actor sequence is
concatenated to the RSO schedule, and so on.

3.4.3 Executing schedules of applications with immediate scenario detec-

tion

When executing applications with immediate scenario detection the detector sce-
nario is also scheduled �rst. The contrast with applications that have delayed sce-
nario detection is that the detector scenario contains a detector actor, after whose
execution the current scenario is known. To concatenate the correct sequence of ac-
tors to the RSO schedule, one load-schedule actor is again instantiated in each VP. A
control channel through which a scenario token can be transferred is instantiated
from the detector actor to each load-schedule actor. Again the libDataflow library
is called inside each load-schedule actor to extend the RSO schedule with the actor
sequence of the detected scenario, followed by that of the detector scenario.

As an example, consider the scenario execution model of the video decoder mapped
to two VPs depicted in Figure 3.8. The corresponding schedules are listed in Ta-
ble 3.2. Detector scenario Sdet is scheduled �rst, so the initial schedule of VP1 is
[d�, ls1, Sw] and that of VP2 is [bf , ls2]. After �ring d� the next scenario is known
and its schedule is concatenated to the RSO schedule in actor ls1. Assuming Sfull is de-
tected, the sequence [df , d�, ls1, Sw] is concatenated to the RSO schedule of VP1 and
[so, cf , cf , dis, Sel, bf , ls2] to that of VP2. We see that di�erent scenarios are sched-
uled inside each VP, implementing both the intra-application actor scheduling and
intra-application scenario scheduling as depicted in Figure 1.6 on page 14

3.4.4 Implementation of switch and select actors

The current libDataflow library supports SDF and CSDF, and does not implement
switch and select actors. Consider a switch, whose data tokens on the input port
are forwarded to one of the output ports. The rate on the other output is e�ectively

3

3.4 scenario execution model 55

Figure 3.8: Scenario execution model of the video decoder in Figure 3.4, mapped to two VPs.
Blue actors are mapped to VP1, green actors to VP2. This is a valid BDF graph.

VP1 VP2

Sdet [d�, ls1, Sw] [bf , ls2]

S1 [df] [so, cf , cf , dis, Sel]
S2 [dd, dd, cf , cf , dis] [Sel]

Table 3.2: The SO schedules of the mapped application in Figure 3.8 for each scenario in each
VP.

3

56 a scenario-aware dataflow programming model

Figure 3.9: Scenario execution model of the video decoder mapped to two VPs, annotated with
implementation details. Blue actors are mapped to VP1, green actors to VP2. The
swapping of FIFO channels is indicated with the electrical symbol for a switch, also
in grey. Token t2 is attached to a channel that is connected to multiple ports, see
Subsection 3.2.3. This is not a valid data�ow graph but shows how the application
graph is executed using the FSM-SADF PM.

zero. Neither changing rates within a scenario nor rates with value zero are currently
supported.

Switch and select actors could be implemented by allowing rates to change within
a scenario, and allowing rates with a value of zero. This is however not compatible
with SDF and CSDF and would break compatibility with these PMs. Instead we pro-
pose an implementation that exploits the fact that channels implemented by the
libFIFO library (see Figure 2.2 on page 23) can be disconnected and reconnected
without invalidating data.

For this purpose we added a set_scenario function call to libDataflow that
changes the channel-to-port connections at run-time. We instantiate a switch ac-
tor with just a single output port, and connect the correct channel by calling the
set_scenario function in the load-schedule actor of that VP. Conversely, a select
actor has just a single input port to which the correct channel is also connected
in the load-schedule actor. A load-schedule actor is always scheduled before any
switch or select actors, so the channels are guaranteed to be set up correctly before
a switch or select actor �res. The actual function inside switch and select actors is
straightforward, it copies the tokens from the input port to the output port.

To visualise this solution we annotated the scenario execution model of Figure 3.8
with implementation details, see Figure 3.9. The swapping of FIFO channels is indi-
cated with the symbol for an electrical switch. The leftmost switch symbol connected
to Sw connects its single output port to either the channel toward df or that toward
dd. The other channel is left unconnected on one end, e�ectively giving it rate zero
without a�ecting the �ring rules. Swapping the FIFO channels must take place be-

3

3.4 scenario execution model 57

fore the �ring rules of Sw are checked, i.e. before it �res, which is guaranteed by
locating the call in the load-schedule actors. This dependency is visualised with the
grey channels from ls1 to Sw and ls2 to Sel. The run-time steps (RS) can be matched
to the analysis steps in Section 3.3 as follows:

RS.1 the output port of Sw is connected to the FIFO towards df ;

RS.2 Sw �res and consumes all of its tokens (step AS.4);

RS.3 Sw produces tokens into the connected FIFO (AS.5);

RS.4 execution of Sfull continues as usual (step AS.6, AS.7, AS.8 and AS.1).

The select actor Sel is similar but de-multiplexes two channels to one.

3.4.5 Implementation of shared persistent tokens

Another di�erence between FSM-SADF graphs and SDF or CSDF graphs is that persis-
tent tokens may appear in multiple scenarios. To implement this we exploit another
useful property of libFIFO, which is that multiple ports may be connected to a sin-
gle FIFO channel. We instantiate each FIFO that contains a shared persistent token
only once, and map the port from each relevant source and destination actor in every
scenario to that FIFO.

This implementation does still not guarantee consistency. As scenarios may be
pipelined, it is possible that before a shared token is produced in the current sce-
nario, it is accessed by an actor from another VP that is already in a later scenario
iteration. This may cause a write-before-read or write-during-read, which are both
unde�ned. To avoid this situation we add a mapping constraint: all source actors of
the same FIFO must be mapped to the same VP in each scenario. The same goes for
the destination actors, which may be in a di�erent VP than the source actors. The RSO
scheduling within each VP ensures that actors connected to the same FIFO can never
execute simultaneously or overtake each other, avoiding the problem. This mapping
constraint partially prevents scenario pipelining at the position of the shared persis-
tent tokens. As scenario pipelining generally improves the throughput the mapping
constraint may cause a performance penalty, depending on the application and the
mapping.

In the example application with delayed scenario detection depicted in Figure 3.1a
there are two shared persistent tokens, tdet and t1. We visualised the implementation
in Figure 3.10, note that this is not a valid data�ow graph. Actors ls1, c and e are
connected to the same FIFO that holds shared persistent token tdet. Actors b and f
are both connected to the FIFO that holds t1.

In the video decoder application with immediate scenario detection depicted in
Figure 3.5 there is one shared persistent token t2. The implementation in Figure 3.9
shows how the FIFO containing t2 is connected to both actors df and dd. Note that
t1 is not shared because it only appears in the detector scenario, and t3 and t5 are

3

58 a scenario-aware dataflow programming model

Figure 3.10: The scenario execution model of Figure 3.6 annotated with the implementation
of shared persistent tokens. The additional mapping constraints force that actors
which access the same shared persistent tokens be mapped to the same VP. This
is not a valid data�ow graph.

neither because they occur only in one scenario. The implementation of shared per-
sistent tokens is identical for applications with delayed and with immediate scenario
detection.

In this section we showed how to transform a scenario sequencing model to a
scenario execution model for applications with delayed and immediate scenario de-
tection. The RSO scheduling is an essential building block of the FSM-SADF PM that
we present in this chapter, it allows executing any sequence of scenarios and helps to
solve the causality dilemma. Combined with the mapping constraint, the RSO sche-
duling guarantees the consistency of shared persistent tokens. The load-schedule ac-
tors are furthermore exploited for connecting the correct FIFO channels to the switch
and select actors before they �re. The scenario execution model is a restricted BDF
graph whose timing behaviour is identical to that of the scenario sequencing model.
Figures 3.9 and 3.10 show middleware implementation details that are not covered
by the original FSM-SADF timing analysis, these are the topic of the next section.

3.5 Extended Binding Aware Graph

Section 3.3 introduced the scenario sequencing model, Section 3.4 the scenario ex-
ecution model along with the implementation details. The implementation a�ects
the timing and is not modeled in the scenario graphs of an FSM-SADF application.
Therefore we re-visit the MoC in this section and extend the BAG so that the exact
timing impact of our solution is analysed.

3

3.5 extended binding aware graph 59

Figure 3.11: Graph with two actors a and b, connected by a FIFO with production rate p, con-
sumption rate q and persistent token ti.

Figure 3.12: CompSOC binding-aware model of the graph in Figure 3.11 with both actors
mapped to di�erent processors. Proc denotes processor, bpa,b and ba,b model the
source bu�er and the FIFO bu�er. The model is based on [92, 94], all additions are
indicated in red.

The design �ow depicted in Figure 2.2 on page 23 shows that multiple mappings
are generated from a set of storage distributions. In the analyseBAG algorithm the
throughput of a mapping is analysed after expanding each mapped scenario graph
of the scenario sequencing model to a BAG [134]. During the expansion the scenario
graphs are annotated with timed models of the middleware and hardware, e.g. the SO
schedule, Network-on-Chip (NoC) and memory controller[47, 49]. We will now dis-
cuss how the RSO schedule execution, switch and select actors and shared persistent
tokens that were described in Section 3.4 are modelled in the BAG.

One load-schedule actor is added to each VP when the BAG is created. The RSO
schedule of a VP is extended during execution of the load-schedule actor through a
call to the libDataflow library. The time required for this call is added to the WCET
of the load-schedule actor, modeling the extension of the RSO schedule during run-
time.

The switch and select actors copy the input tokens to the output channel. The
time required for these copy operations can be measured, but is not accounted for
in the WCET of any actor in the original FSM-SADF graph. Instead we add it to the
WCET of the switch and select actors which was set to zero in Section 3.4 during
creation of the BAG. Connecting the correct FIFO channel to the switch and select
actors is done inside the load-schedule actors, therefore the time required for that
call to libDataflow is also added to those actors.

Shared persistent tokens do not a�ect the timing behaviour in any way.
In the existing design �ow depicted in Figure 2.1 on page 22 SDF and CSDF appli-

cations can be mapped onto the CompSOC platform [2, 131]. The existing �ow uses

3

60 a scenario-aware dataflow programming model

an older platform model that is more conservative and less accurate model than the
HSDF platform model described in [92, 94]. We implemented the latter in the context
of this thesis, see the analyseBAG algorithm in Figure 2.2 on page 23.

The platform model described in [92, 94] is HSDF, meaning that all rates on all
channels are one. The scenario graphs of FSM-SADF applications are multi-rate how-
ever, which requires an update of the model. We will explain the update using the
simple example graph in Figure 3.11 and assume that actors a and b are mapped to
di�erent VPs. To construct the BAG the channel is replaced by a combined model of
the Direct Memory Access (DMA), NoC and CoMik �kernel as explained in [92, 94].
Our proposed extension of that model is shown in Figure 3.12, all changes are in-
dicated in red. We see that all the channels now have rates, and the location of a
possible persistent token ti is also indicated.

Encoding a SO schedule in the BAG of a HSDF graph is straightforward: an edge
is inserted from the �rst actor in the schedule to the second, from the second to
the third, and so on. Encoding a schedule in multi-rate graphs is more complicated
because actors can have a repetition vector entry larger than one, yet after the �rst
�ring the next actor may already be enabled. The encoding must ensure that only
the scheduled actor �res, a suitable technique for this is proposed in [20]. We imple-
mented this technique in the design �ow, it is part of the analyseBAG algorithm.

In this section we showed how the implementation details explained in Section 3.4
are modeled in the BAG. The BAG itself is constructed from the scenario sequencing
model introduced in Section 3.3. To select a suitable mapping each mapped sce-
nario sequencing model is extended into a BAG and analysed. The scenario graphs
are merged together automatically in the mergeScenarios algorithm, resulting in a
scenario execution model. This concludes the discussion of the scenario analysis,
sequencing model and execution model of the FSM-SADF PM, which concerned the
algorithms createDetectorScenario, analyseBAG, mergeScenarios, generateApplication
and the libDataflow library in Figure 2.2 on page 23.

3.6 Experimental evaluation

3.6.1 Delayed scenario detection

As mentioned in Subsection 3.3.4 the design �ow was automated only for applica-
tions with immediate scenario detection. To demonstrate that the concept for appli-
cations with delayed scenario detection also works we implemented one such appli-
cation manually, namely the scenario execution model in Figure 3.10. The scenario
initially stored in tdet is S1. Actor c sets detector token tdet to S2, while e sets detector
token tdet to S1. Inside each actor we print the actor identi�er. The output con�rms
that the actors are executed in the correct order, alternating between scenario S1 and
S2.

3

3.6 experimental evaluation 61

Figure 3.13: a) SUSAN sequential scenario graph, Sseq. b) SUSAN parallel scenario graph, Spar.
c) The FSM.

3.6.2 Immediate scenario detection

We show the PM and automated design �ow for applications with immediate sce-
nario detection using a real application, namely the SUSAN edge detection algo-
rithm [126]. It consists of two scenarios, Sseq is a sequential graph that represents
the original algorithm, see Figure 3.13a. Scenario Spar is a parallelised version, see
Figure 3.13b. The algorithm reads an image block by block, one of the scenarios is ex-
ecuted for each block. Scenarios are switched based on the image resolution, larger
images are decoded by Spar. The FSM is shown in Figure 3.13c. We use the design
�ow to map the application to a two-tile CompSOC platform.

If mapped to two or more VPs scenario Spar can achieve a higher throughput than
Sseq because the computationally intensive actors usan and dir (direction) can be
executed in parallel ([us1, dir1] and [us2, dir2]). To provide both these chains with a
block, split should have a consumption rate of two. This means the get (get image)
actor has to execute twice. To not violate the constraint concerning the identical
repetition vector entries of actors in the detector scenario, the production rate on
the channel from get to usan in Sseq must also be two. This implies each image must
contain an even number of blocks.

We instantiated a CompSOC platform with two tiles that contain one processor
each. Both tiles are clocked with a frequency of 100 MHz. Each processor features
instruction and data memories of 256 kB each as well as one DMA with two commu-
nication memories of 16kB each. The processors are connected to each other and to
an external Double Data Rate (DDR) memory via a NoC [43, 45, 47].

3

62 a scenario-aware dataflow programming model

Figure 3.14: Original test image (left) and the output of SUSAN computed on the CompSOC
platform. The outer band of the image is skipped.

3.6.3 Results

The design �ow depicted in Figure 2.2 on page 23 generated executable code for
the SUSAN application. The SDF3 tool takes the scenario graphs annotated with ex-
ecution times and memory requirements as an input, plus an architecture �le. The
throughput is the number of completed scenario iterations per clock cycle. The ana-
lysis gives a maximum throughput of 2.7 � 10�7 for SUSAN. We measured a through-
put of 3.1 � 10�7 when executing the application on the platform using the implemen-
tation described in Section 3.4. The fact that the actual throughput is a little higher
than the throughput given by the analysis is consistent with the fact that the model
is conservative. The graphic output of the SUSAN edge detection algorithm is shown
in Figure 3.14.

A load-schedule actor takes 365 cycles to execute including the wrapper, the switch
actor takes 1635 cycles. This brings the timing cost of our libDataflow modi�ca-
tions to 2000 cycles, which are accounted for in the BAG. We argue that the impact
of scenario sequencing on the applications timing is minimal, as the total WCET of
SUSAN is 3.3 million cycles. The size of the library is increased by 3 kB to 188 kB.

3.7 Related work

In this section we given an overview of other PMs for RT embedded systems. These
related approaches are divided over three subsections: non-data�ow PMs, data�ow
PMs that cannot respond dynamically to data, and data�ow PMs that can respond
dynamically to data.

3

3.7 related work 63

3.7.1 Non-data�ow PMs

The �rst group mainly consists of variants on PMs for the Time-Triggered Architecture
(TTA) [68, 69] The TTA is a composable platform on which tasks and communication
operations are statically scheduled according to a global clock, i.e. the clocks on all
tiles and processors are synchronised. It is possible to construct such heterogeneous
multi-processor systems [70], but providing a synchronised clock to all parts of the
system is a challenge for scalability.

Building upon the time-triggered concept is the Precision Timed Machine (PRET),
which proposes a micro-architecture, compiler and programming language that give
complete control over the timing behaviour [12, 32]. It can use Giotto as a platform-
independent time-triggered language, which supports modes that are similar to sce-
narios [54]. This high-level language is then converted to the PRET intermediate
language, which abstracts hardware details away but exposes the timing primitives.
Each action, e.g. starting a task, is triggered at a time that is pre-calculated at design-
time, so dynamic application sets (RQ.3b) cannot be implemented. Analysis and
certi�cation of such systems is relatively straightforward.

The disadvantage of TTA and PRET is that it is not work-conserving, i.e. a re-
source may be idle while there is work to do. It is therefore not possible to make an
application respond to events at run time (RQ.4), and the system always experiences
the worst-case execution which inherently leads to a waste of resources. Data�ow
PMs on the other hand are work-conserving because an actor may �re if its �ring
rules are satis�ed, independent of the wall clock time. This simpli�es responding to
events.

3.7.2 Non-dynamic data�ow PMs

The second group that we consider are data�ow PMs that do not allow dynamic re-
sponses to data. The HSDF, SDF and CSDF implementations on the CompSOC platform
that have been introduced in Chapter 2 are part of of this group [89, 92]. Another
data�ow PM is Cal Actor Language (CAL), which is a well-de�ned, general actor lan-
guage more versatile than the CompSOC PMs [33]. To implement a PM for a speci�c
data�ow MoC with CAL, the use of the language must be restricted to a subset that
matches the MoC. Firing-rule checking is essentially the same as in the CompSOC
MoCs, but CAL does not provide middleware to implement scheduling and actor �r-
ing on a platform.

We now summarise a number of design �ows that construct heterogeneous multi-
processors for RT embedded systems and provide a matching PM. The ForSyDe de-
sign �ow provides top-down, model-driven �ow for a platform that supports SDF
applications [110]. The �ow can generate applications for ForSyDe-generated plat-
forms as well as CompSOC platforms [6, 29]. Daedalus can generate multi-processor
platforms and automatically convert sequential code to KPN or Polyhedral Process
Network (PPN) applications, the latter being a special case of KPN [96, 130]. Both KPN

3

64 a scenario-aware dataflow programming model

and PPN are data�ow variants for which a PM is provided for Daedalus platforms.
MAMPS is a design �ow that supports multiple applications and multiple use-cases,
i.e. �xed constellations of actors that pre-de�ned at design-time [72]. It is based on
the SDF MoC and features a PM that implements channels as FIFO bu�ers, RR schedu-
ling, and shell functions in which actor code may be inserted. The de�ning property
in which all PMs in this second group di�er from the FSM-SADF PM presented in this
chapter is that they do not support applications that respond dynamically to data.
Hence all these methods do not pose a causality dilemma, but are also not suitable
to achieve requirement RQ.4.

3.7.3 Dynamic data�ow PMs

The third group that we consider are data�ow PMs that are able to respond dynam-
ically to data. An intermediate representation of the CAL language has been used to
generate executable C-code for FSM-SADF applications [122]. However, as this work
does not specify how to schedule the actors at the scenario boundaries it does not
solve the causality dilemma, and therefore we do not consider this a full PM imple-
mentation.

There is no causality dilemma when attempting to execute applications expressed
in the SADF MoC discussed in Subsection 2.3.1 [140]. Although no PM has been spec-
i�ed there is no obstacle for executing such applications, the performance analysis
for instance simulates such execution [139]. The SADF PM separates control explic-
itly from data. To implement the control part SADF speci�es detector actors that are
similar to the ones we introduce for our PM in Section 3.2. There are two key dif-
ferences between the SADF detectors and our FSM-SADF detectors. Firstly, the SADF
detectors are explicitly indicated in the initial scenario graphs and are also required
for analysis. FSM-SADF detectors on the other hand are not necessary for analysis
and must be indicated only if an application is to be executed. Secondly, SADF detec-
tors are dedicated for scenario detection and cannot process data, this is left to the
kernel actors [139]. These detectors receive data tokens, but may only produce con-
trol tokens. The FSM-SADF detectors on the other hand are data processing actors
that happen to decode the scenario during their execution. They also receive data
tokens, but may produce data and control tokens. As explained in Subsection 2.3.1,
FSM-SADF is a restricted version of SADF, which bene�ts the analysis because fewer
operational semantics must be implemented. We have therefore opted to implement
a PM for FSM-SADF. While we have been inspired by the SADF detector actors, the
FSM-SADF detectors are signi�cantly di�erent.

The only full PM that is comparable to the one presented in this chapter is Mode-
Controlled Data�ow (MCDF). In MCDF the programmer captures all scenarios (termed
modes) in one graph using a set of rules and special actors, namely a mode controller
and switch and select actors [83, 106]. The �rst di�erence is that MCDF currently
supports only applications with delayed scenario detection, no examples with im-
mediate scenario can be found in [83]. It may be possible to support applications

3

3.8 summary 65

with immediate scenario detection through a minor extension of the tools, but to
the best of our knowledge no such work currently exists.

MCDF uses the same graph for both temporal analysis and execution on the plat-
form, scenario transitions are implicitly encoded in the mode controller. Though
their expressiveness is similar, this reveals another signi�cant di�erence between
FSM-SADF and MCDF. FSM-SADF features separate models for timing analysis and
execution. The design of MCDF applications on the other hand contain only one
graph for analysis and execution, it both a MoC and PM. This prevents analysis us-
ing (max , +) algebra, the available analysis methods mentioned in [83] are therefore
less precise than those of FSM-SADF. To analyse MCDF graphs with (max , +) algebra,
the scenario transitions would have to be made explicit by taking them out of the
mode controller.

Our contribution is to enable execution of scenario graphs with minimal e�ort
for the programmer. The scenario sequencing and execution models described in
Sections 3.3 and 3.5 are generated automatically. During analysis our switch and
select actors behave as normal SDF actors, allowing full re-use of existing analysis
techniques. During execution these actors behave as their MCDF counterparts. The
execution graph is reminiscent of MCDF, but the mode controller is replaced by the
detector scenario [83]. In MCDF partial graph execution is achieved by selecting a
di�erent schedule for each scenario, dubbed Quasi Static-Order Scheduling (QSOS).
A variant on the MCDF PM using �xed-priority scheduling has also been presented
[77]. Unlike QSOS, our RSO schedule is extended immediately after detection of the
next scenario. MCDF has been shown to be su�ciently expressive to handle dynamic
behaviour of a Long-Term Evolution (LTE) receiver, which can also be handled by our
PM [106, 108].

A previous version of this chapter splits o� detector scenarios that consist of only
one actor in a similar way [146]. All actors �re, but execute the encapsulated func-
tions conditionally based on a scenario identi�er token. This causes a considerable
overhead in large graphs, which we avoid in this chapter. Also, it does not present
the BAG extension presented in Section 3.5.

3.8 Summary

There does not exist a PM for the FSM-SADF MoC. In this chapter we show that there
are two types of scenario detection: delayed, where the current scenario is detected
during the previous iteration, and immediate, where the current scenario is detected
during the current iteration. A causality dilemma is encountered when attempting
to execute an application with immediate scenario detection, because at run-time
it is not possible to know which scenario graph must be started at the start of a
scenario iteration.

In this chapter we presented a scenario sequencing model in which all elements
related to scenario detection are split o� in a separate detector scenario. The detector
scenario is always executed before the other scenarios, which solves the causality

3

66 a scenario-aware dataflow programming model

dilemma. The timing behaviour of the sequencing model is identical to that of the
original application, and it can be expanded into a Binding-Aware Graph (BAG) that
models the exact timing impact of our PM, middleware and platform.

We furthermore presented a scenario execution model which merges all scenarios
of the sequencing model into one graph that is suitable for execution. The detector
scenario is always executed �rst, and the Rolling Static-Order (RSO) scheduling en-
sures that the correct actor sequence is concatenated to the run-time schedule in
each VP by the load-schedule actors. The execution model is a restricted BDF graph
whose timing behaviour is identical to that of the sequencing model. For the im-
plementation we exploit the �exibility of the libFIFO library to implement switch
and select actors as well as shared persistent tokens. Furthermore we extended the
libDataflow library with system calls to extend the RSO schedule and correctly
connect the channels to switch and select actors before they �re.

We measured the timing impact of the implementation and added the timing cost
in the BAG to the appropriate actors. The PM was automated for applications with
immediate scenario detection so that the e�ort for the programmer is minimal, see
Figure 2.2 on page 23. We manually implemented an example application with de-
layed scenario detection and found that the scenario sequencing and RSO scheduling
function correctly. We used the automated �ow to map the SUSAN edge detection al-
gorithm with immediate scenario detection onto a two-tile CompSOC platform. This
application also functions correctly, and the real throughput proved to be slightly
higher than the bound given by the analysis. This shows the analysis model is both
conservative and precise, while the cost in terms of timing and memory footprint is
marginal.

In conclusion, we presented a PM that consists of a sequencing model, execution
model, implementation and extended BAG.

4

4 Trading Virtual Processor size against bu�er size

4.1 Introduction

To execute dynamically changing sets of applications (requirement RQ.3b), the plat-
forms created by the design �ow must feature a resource manager that can start and
stop applications as required. The sequence of start and stop events during run-time
is unknown at design-time. It is not possible to calculate and store all possible de-
ployments (inter-application mapping and schedule combinations) beforehand be-
cause their number grows exponentially with each start and stop. Instead the re-
source manager must use a run-time deployment heuristic. As a result the platform
utilisation is unpredictable and it cannot be guaranteed that the resource manager
can �nd su�cient free resources to start an application. To increase the success of
future deployment actions, the design �ow must balance the resource requirements
of each application. This summarizes sub-problem SP.4.

We selected an existing design �ow that can trade throughput against memory
footprint. It does so by generating several storage distributions, i.e. sets that contain
a �xed bu�er size of each channel, and determining the throughput for each of these
by constructing the BAG. This Design Space Exploration (DSE) performs the intra-
application mapping and scheduling, and comprises the algorithms labelled DS.M&S
in Figure 2.1 on page 22.

In this chapter we propose an extension to the DSE that allows to trade the total
size of all VPs against the total size of all bu�ers under a throughput constraint, solu-
tion CB.4. The VP size determines the utilisation of the physical processors. The new
DSE therefore allows to balance processor usage and memory footprint and o�ers
the designer possibility to increase the success of future inter-application deploy-
ment actions. This solves sub-problem SP.4. Figure 1.6 on page 14 gives an overview
of the terminology and di�erent layers of mapping and scheduling.

Deployment is reviewed in Section 4.2, we introduce di�erent approaches and
motivate the choice for a hybrid method. The remainder of the chapter focuses on
the intra-application mapping. The WCRT is explained in detail in Section 4.3, the
DSE in Section 4.4. The trade-o� between processor usage and memory footprint that
is the central contribution of this chapter is presented in Section 4.5. We evaluate this
contribution experimentally in Section 4.6. Section 4.7 gives an overview of related
work, the chapter ends with a summary in Section 4.8.

67

4

68 trading virtual processor size against buffer size

4.2 Inter-application deployment

Deployment strategies fall in three categories: design-time, run-time and hybrid
[120]. We now give a short evaluation of each strategy and its suitability for dy-
namic sets of applications. Note that methods with one layer of mapping and sche-
duling do not have a deployment phase, the applications are directly mapped onto
the physical processors. Therefore the term mapping instead of deployment is used
in most citations in this subsection.

4.2.1 Design-time deployment

Design-time methods are a good �t for deployment �xed sets of RT applications
[73, 114]. While computation costs are high, such methods have a global system
view and arrive at deployment solutions that are generally superior to those of run-
time methods. Most importantly, thorough timing analysis can guarantee that RT
requirements are met. The exponential growth of deployments in dynamic sets how-
ever poses a problem, as the number of potential deployments quickly runs into the
thousands. Even if all of these could be calculated at design-time, storing them in
memory-constrained embedded systems is not feasible. There is a possibility to cir-
cumvent this, which is to store a certain number of optimal deployments instead of
all possible deployments. As the dynamic set changes over time however, the sys-
tem may end up in a deployment in which it is impossible to start an application
without switching to a deployment where existing applications must be migrated,
breaking the RT constraints. We conclude that design-time deployment methods are
not suitable for dynamic sets.

4.2.2 Run-time deployment

Run-time deployment methods on the other hand are able to respond dynamically
to each event [14, 60, 65, 82]. Such deployment algorithms consume processing time
on the target platform. The computation time and energy are therefore severely
limited, which makes use of heuristics inevitable. Given the same set of optimisation
objectives, such heuristics must therefore likely settle for a sub-optimal solution. It
is hard to prove that heuristics always produce a solution, even a sub-optimal one,
within the available time. If no solution is found, an arriving application may cause
a violation of the RT constraints of a running application. Therefore it is di�cult to
provide hard RT guarantees for run-time deployment methods.

4.2.3 Hybrid deployment and deployment

Hybrid methods attempt to combine the best of both by combining design-time ex-
ploration results with a simple resource manager at run-time [117–119]. The method
presented in this thesis is a hybrid that combines existing elements from [45, 137].

4

4.3 wcrt analysis for intra-application mapping 69

Figure 4.1: a) Data�ow application � consisting of �ve actors is mapped to two VPs. b) VP� ,1
and VP� ,2 are deployed on general purpose processor p1 and accelerator p2 with a
budget of 2 and 4 TDM slots respectively. The platform otherwise contains appli-
cations � , � and .

The crux of this approach is a separation of concerns. The timing analysis is per-
formed at design-time, after which clusters of data�ow actors are mapped to VPs,
see application � in Figure 4.1a. These VPs are containers that guarantee that the
real-time constraints of the application are met, irrelevant of which processors the
VPs are mapped on.

The run-time response to events is the responsibility of a resource manager which
deploys the VPs onto physical processors. A VP may be deployed on any physical pro-
cessor pi of the correct type with su�cient free capacity, using TDM arbitration. See
Figure 4.1b, the two VPs are deployed on a general-purpose processor and accelera-
tor respectively. VPs that belong to applications � , � and are already running and
are not a�ected in any way.

This two-layer design approach has the advantage that the compute intensive tim-
ing analysis and mapping are only performed at design-time. At run-time it must be
calculated whether su�cient resources are available, and how to �t the VPs into this
space. Therefore any application that has been analysed may be started at run-time,
even if it was not known at the time at which the system was started. Applications
can be started and stopped at any time independent of the current deployment, as
long as su�cient capacity is available. This enables online software updates.

4.3 WCRT analysis for intra-application mapping

The goal of the intra-application mapping is to �nd an allocation of actors to VPs that
satis�es the throughput constraint. The existing design �ow depicted in Figure 2.1 on
page 22 uses heuristics to explore a number of mappings in the mapToVRs algorithm
[137]. The throughput of each mapping is calculated in the analyseBAG algorithm.

To analyse the throughput of a mapping the Maximum Cycle Ratio (MCR) of the
Binding-Aware Graph (BAG) must be calculated [37]. As explained in Section 2.4 and
Section 3.5 the BAG consists of the application graph, annotated with models of the
hardware, mapping and scheduling. The WCRT is dependent on the interaction be-
tween all these models, and must be calculated when generating the BAG. In this

4

70 trading virtual processor size against buffer size

section we explain the WCRT calculation in detail because it is required to under-
stand the evaluation in Section 4.6.

4.3.1 Platform preliminaries

A number of platform properties are relevant for the WCRT analysis. Firstly, CompSOC
was designed according to the Globaly Asynchronous, Locally Synchronous (GALS) pa-
radigm [71]. This means that the processor, memories and other hardware blocks on
one tile are supplied with the same physical clock signal. Di�erent tiles however are
clocked by di�erent clock signals, and so are the interconnect and shared memories.
The VPs on each processor are arbitrated using TDM scheduling. Because we can-
not make any assumptions about the TDM wheel alignment between tiles, we must
account for the worst-case TDM misalignment during timing analysis. This means
that two actors that communicate but are mapped to di�erent tiles may encounter
the maximum possible waiting time twait , see Subsection 4.3.2.

The fault-tolerance concept in Chapter 5 requires re-deployment of VPs. The chan-
nels that store the state of an application are implemented with FIFO bu�ers, which
must be accessible from each tile to minimise the timing penalty for re-deployment.
To achieve this we store the FIFOs in a central, protected memory. The time to access
these shared memory locations is the same from each tile, and must be accounted
for in the BAG. The WCRT for accessing shared memory locations can be modeled
as presented in [92]. We implemented this model in the updated design �ow shown
Figure 2.2.

In the existing design �ow the size of the VPs is calculated inside the VPSizing
algorithm, see Figure 2.1. If the number of TDM slots that is required to meet the
throughput constraint is larger than the TDM wheel size, the mapping is marked as
invalid. Otherwise the mapping is valid, and the VP size is taken as a given. In this
thesis we take a new approach and use the size of the VPs as a performance metric.
This adds a new dimension to the DSE which allows us to control the processor
utilisation, with the end goal of increasing the success of future deployment actions.

4.3.2 WCRT analysis

Analysis of the WCRT is not claimed as a contribution of this thesis, instead we
present a method that builds upon related work [4, 75–78, 131]. Let us examine the
WCRT calculation of application � depicted in Figure 4.1a. We may deploy VP� ,1 to
any two consecutive TDM slots of a general purpose processor, and VP� ,2 to any four
consecutive slots on an accelerator. An example deployment is shown in Figure 4.1b.
Actors fr , s , t ,ug are mapped to VP� ,2, and actors r and t have incoming edges from
VP� ,1. Because in a GALS system the TDM wheels of the processors are not synchro-
nised, it is not possible to predict at which time an incoming token will enable actors
r or t . We must therefore account for the worst-case and capture it in the WCRT.

4

4.3 wcrt analysis for intra-application mapping 71

Figure 4.2: a) The TDM wheel of p2�ACC with � slots of length � cycles. VP� ,2 is allocated
four slots. b) The SO schedule that is executed inside VP� ,2 consists of two atomic
blocks [t ,u] and [r , s].

A detailed view of the TDM slot allocation is shown in Figure 4.2a. The TDM wheel
size � of processor p2 is six slots that each have a length of � cycles. Because of the
TDM wheel misalignment actor r and t may in the worst case be enabled right at the
end of VP� ,2, meaning that twait = (� �V P� ,2) � � cycles elapse before the actor �res
with an execution time of ET cycles. It may happen that ET > V P� ,2 � � in which
case we must also account for each additional wheel rotation until the actor �nishes.
The total WCRT of these actors thus depends on three addends, see Equation 4.1.

WCRT = twait + ET +
&

ET
V Pi ,j � �

� 1
'
� twait (4.1)

Note that the WCRT is linearly coupled to � via twait . This leads to the e�ect that the
throughput may be increased by increasing the VP size, thereby decreasing twait . In
e�ect no actual work is performed in these extra TDM slots, they are only necessary
to meet the throughput constraint by reducing the waiting time.

In the existing design �ow Equation 4.1 is applied to all actors regardless whether
they have incoming edges from other VPs. This is overly pessimistic as twait is only
relevant if the actor depends on tokens from other VPs. We implemented an im-
proved WCRT calculation that di�erentiates between such worst-case actors, r and t
in the example, and local actors such as s and u whose incoming tokens are produced
in the same VP. Only the WCRT of the worst-case actors is linearly coupled to � in
the improved model.

A SO schedule for VP� ,2 is depicted in Figure 4.2b. The start of the schedule is
indicated by the horizontal bars and the schedule is repeated inde�nitely. Note that
other schedules are possible, r may be scheduled anywhere before s . If a worst-case
actor in the SO schedule is followed by one or more local actors, we consider them
one atomic block of which only the worst-case actor has external dependencies. We
can safely assume that the local actors will �re after the worst-case actors in a non-
blocking manner. Worst-case actor t in the example is always followed by a �ring
of u, which is a local actor not dependent on data from other VPs. Similarly, r is
always followed by s which is also not dependent on other VPs. We see that there

4

72 trading virtual processor size against buffer size

Figure 4.3: a) The BAG created using the existing calculation method, the grey channels model
the bu�er sizes. b) The BAG constructed with the improved WCRT calculation pro-
posed in this section.

Actor q r s t u
ET 500 700 800 600 900

Table 4.1: The Execution Times (ETs) of the actors from Figures 4.1 and 4.3 in cycles.

are two atomic blocks [t ,u] and [r , s]. The execution times of two actors x and y in
each block may be added up, see Equation 4.2.

ETxy = ETx + ETy (4.2)

The Execution Time (ET) of the worst-case actor is assigned this value, the ETs of
the local actors are set to zero. The WCRT of the atomic block is now dependent on
the worst-case actor only. The condition for this optimisation is that the worst-case
actor does not appear in another atomic block with a di�erent composition.

Let us clarify the di�erence between the original and improved WCRT calculation
using the mapping in Figure 4.1b. The TDM wheel size is � 6 slots, the slot length � is
500 cycles and the ETs of the actors are given in Table 4.1. The BAG where the WCRT
o� each actor is calculated with the existing method is shown in Figure 4.3a, each
actor is annotated with its WCRT. Figure 4.3b shows the same BAG but the WCRT
of each actor is calculated with the updated method, i.e. Equation 4.2 is applied for
each atomic block.

We see that the new WCRT of actor r is 2500 and that of t is 2500, which is lower
than the sum of r + s (3500) and t + u (3500) when using the existing method. The
throughput is calculated as Thr = 1

MCR , the critical cycle that must be used to cal-
culate the MCR is in both cases the counter-clockwise cycle through all actors. The
MCR found with the existing method is MCRex = 9500

2 = 4750, that with the new
method is MCRnew = 7500

2 = 3750. The corresponding throughput numbers are
Threx = 1

4750 = 2.1 � 10�4 and Thrnew = 1
3750 = 2.6 � 10�4, an improvement of 24%.

These numbers are an example, other mapped applications might only pro�t very
little or not at all from the improved calculation. We argue that many mapped ap-
plications will bene�t from the new method, and that the throughput will never be
worse than when using the existing calculation method.

4

4.4 design space exploration 73

Using the WCRT analysis described in this section a VP may be deployed (i.e.
mapped and scheduled at run-time) on any processor that has su�cient available
slots. This is the result of our choice in selecting this particular combination of worst-
case timing analysis with an architecture and middleware that are composable and
predictable, together with the two-layer mapping and scheduling approach where
actors are mapped VPs which are in turn deployed on physical processors.

4.4 Design Space Exploration

The throughput of an application is dependent on the computation distribution (size
of each VP) and on the storage distribution. To capture these in two metrics, we
consider size of the computation distribution measured in TDM slots and the size of
the storage distribution measured in tokens. This gives a three-dimensional design
space spanned by the throughput, total VP size and total bu�er size. Note that there
can be multiple computation distributions with the same size, and multiple storage
distributions with the same size. In Chapter 5 we will see that the distribution of VP
sizes play a role in fault-tolerant mapping.

One way to explore the design space is to maximise throughput by enlarging both
the VPs and bu�ers. As we have seen in Chapter 1 however, real-time constraints
come in the form of a lower bound on the throughput. At the same time the memory
footprint and processor utilisation together with their associated energy usage must
be minimised. Therefore we propose to extend the DSE to keep the throughput above
but close to the boundary and attempt to minimize the total VP size and total bu�er
size, resulting in a trade-o� between these two dimensions.

Figure 4.4: A SDF graph with rate di�erences.

A visualisation of the three-dimensional design space of the data�ow graph in
Figure 4.4 is given in Figure 4.5a. The throughput constraint is shown by the red
lines, the blue plane shows the design space. The intersection of the red and the
blue plane indicates all Pareto-optimal points where the throughput is met. These are
indicated in red in the corresponding heat map of Figure 4.5b, which is a visualisation
of the throughput plane if we tilt Figure 4.5a so that the throughput axis is parallel
to our line of view.

The size of the design space grows exponentially with the number of channels,
the number of VPs to which an application must be mapped and the number of
scenarios. Consider for example the data�ow application shown in Figure 4.1a. If
all �ve channels may have a bu�er size between 1 and 4 tokens, there is a total of
45 possible combinations. Mapping the application to two VPs that have a size in

4

74 trading virtual processor size against buffer size

(a)

(b)

Figure 4.5: a) The three-dimensional design space spanned by the application throughput,
total bu�er size and total VP size in Euclidean space. The throughput constraint
is indicated in red. b) A heat map of the same design space, the points where the
throughput matches the throughput constraint are indicated in red.

between 1 and 60 TDM slots gives 602 combinations. Combining these means that
each bu�er combination must be tried with every VP combination, so we multiply
these numbers and arrive at a design space with 3.7 � 106 combinations.

If the application contains a second scenario with di�erent channels, each combi-
nation from scenario one may yield a di�erent throughput with each combination

4

4.5 trade-off: vp size against buffer size 75

Figure 4.6: Loop of three algorithms that implement the DSE extension. This �gure is a detail
from the extended design �ow depicted in Figure 2.2 on page 23.

from the scenario two. Therefore all combinations must be explored, adding another
multiplication factor that gives a design space with a size of 1.4 � 1013 combinations.
If exploring a combination would take only 1 millisecond, the exploration of this
search space would take 431 years. We conclude that even the design space of a sim-
ple graph is too large to explore exhaustively, and we must resort to heuristics even
at design-time.

Existing work on the DSE of data�ow [107, 108, 132, 135] and FSM-SADF appli-
cations [4] focuses on the trade-o� between total bu�er size and throughput. The
contribution of this chapter is the exploration of the trade-o� between the total VP
size required for the application (i.e. the computation capacity) and the total bu�er
size. Previous DSE approaches such as SDF3 revolve around an exploration of the
storage distributions, after which an attempt is made to minimize the VP sizes. We
argue that evaluating these dimensions one at a time fails to uncover the trade-o�
between bu�er size and VP size. Because the throughput plane in Figure 4.5a curves
in every direction, it cannot be guaranteed that we will arrive at the best possible
solution if one dimension is �xed before the other is explored. Instead we propose
to extend the DSE to explore both dimensions at the same time in the next section.

4.5 Trade-o�: VP size against bu�er size

In this section we extend the DSE with an exploration of the trade-o� between VP size
and bu�er size. The extension consists of a loop with three algorithms, see Figure 4.6.
The core of the extension is the exploreStorageDistributions algorithm, the pseudo
code of which is listed in Algorithm 3.

4

76 trading virtual processor size against buffer size

Algorithm 3 The proposed DSE that trades o� VP size against bu�er size.
1: function exploreStorageDistributions(mappings, thrConstraint)
2: for mapping in mappings do

3: VPs = selectLargestVPs(mapping)
4: channels = �ndInterVPChannels(VPs, mapping)
5: newMappings = generateChannelCombis(channels, mapping)
6: for nm in newMappings do

7: mappings.add(nm)
8: end for

9: end for

10: end function

One or more valid mappings are passed to the exploreStorageDistributions algo-
rithm by the foundValidMapping algorithm. Instead of accepting the storage distri-
butions of these input mappings as a given, we generate a number of new storage
distributions from each valid mapping in which the size of one or more channels is
enlarged. To avoid exploring the design space exhaustively, we propose the follow-
ing heuristic for selecting the candidate channels whose bu�er will be enlarged.

We cycle through the list of mappings in line 2 of Algorithm 3. In line 3 all VPs are
sorted based on their size, and we select the half of the VPs that has the largest size.
From these VPs we determine which channels receive tokens from other VPs in line
4, the intra-tile channels. Next, we enlarge all the selected inter-tile channels by the
step size and generate a mapping for each combination of these enlarged channels
in line 5. All these new mappings are added to the list of existing mappings in line
7.

We ignore intra-tile channels in line 4 because two actors on the same tile cannot
be pipelined anyway. It is possible to construct graphs in which intra-tile channels
are critical and constrain the throughput, but this is not common. Actors on di�er-
ent tiles however may be pipelined if the bu�er size is su�ciently large. The tokens
in such channels are furthermore transported through the NoC and may have a con-
siderable latency. Enlarging the bu�ers allows deeper pipelining as the producers
work in advance, hiding the latency.

Once the exploreStorageDistributions algorithm has �nished, the VP sizes of the
newly generated mappings are calculated in the VPSizing algorithm in Figure 4.6.
Determining the VP sizes includes calculating the throughput. Mappings for which
no valid VP sizes can be found do not meet the throughput constraint and are dis-
carded. The reducedTDMSize algorithm then checks if any of the new mappings has
a smaller total VP size than the previous minimum. If so, the loop is repeated. If not,
the loop is terminated and the algorithm and performs a Pareto minimisation of the
mappings in the list. This list forwarded to the mergeScenarios algorithm, in which
the designer can select a mapping manually. As there is no previous minimum in

4

4.6 experimental evaluation 77

the �rst iteration of the loop, exploreStorageDistributions is always executed at least
twice.

We will illustrate the DSE extension using the two–VP mapping shown in Fig-
ure 4.1b We assume that all channels initially have a bu�er size of 1 token, the ini-
tial storage distribution of channels [qr , rs ,qt , tu,us] is denoted as h1, 1, 1, 1, 1i. The
exploreStorageDistributions algorithm will derive several new storage distributions
from the given mapping. Firstly, VP� ,2 is selected in line 3 because it is the largest
VP. A list of the inter-tile channels in this VP is created in line 4, resulting in chan-
nels [qr ,qt]. In line 5 all combinations of storage distributions in which channels
[qr ,qt] are enlarged by the step size are generated, resulting in the distributions
h2, 1, 1, 1, 1i, h1, 1, 2, 1, 1i and h2, 1, 2, 1, 1i. New mappings with these storage distri-
butions are added to the existing mapping in line 7.

The VP sizes of the new mappings are calculated in the the VPSizing algorithm,
the throughput constraint is satis�ed for all mappings. The reducedTDMSize al-
gorithm determines that all mappings result in the same VPs distribution, namely
[V P� ,1,V P� ,2] = [2, 4] slots, so the minimum total VP size is 6 slots. It decides to do
a second iteration of the loop, in which the same channels are enlarged once, which
yields the same result. As the minimum VP size has not become smaller after the
second iteration, the loop is abandoned.

We see that the DSE starts from one or more initial mappings and selects the
inter-tile channels of the VPs with the largest size. It generates all combinations of
the selected inter-tile channels enlarged by the step size. If such a new distribution
leads to an increase in throughput, the size of the VPs can be reduced in VPSizing
algorithm. In other words, we “push down” the size of the VPs at the cost of storage
space. Looking at Figure 4.5a, this means we start in blue plane above the throughput
constraint and move to the maximum on the bu�er size-axis, to the minimum on the
VP size axis and towards the red plane on the throughput axis.

The DSE terminates when no improvement is found, and results in a list of valid
mappings. The mappings in this list are guaranteed to be above the throughput con-
straint, and represent Pareto-optimal points within the set of con�gurations that was
explored. As an heuristic is used, it is possible that the DSE missed optimal points
that would be in the list if they had been found.

4.6 Experimental evaluation

In this section we evaluate the DSE using the application shown in Figure 4.4. This
application has one scenario, three actors and �ve channels with di�erent rates.
The application is mapped to two VPs with a wheel size � of 60 slots each. To show
how the DSE works we perform a nearly-exhaustive exploration of the design space
and visualize the result in di�erent graphs. First we evaluate the trade-o� between
throughput and bu�er size by forcing the use of all TDM slots on both VPs, i.e. we
explore only the bu�er size dimension. This results in the graph plotted in Figure 4.7.

4

78 trading virtual processor size against buffer size

Figure 4.7: The throughput plotted against the total bu�er size when mapping the application
to two VPs with a size of � slots.

The heuristic �nds a minimal deadlock-free bu�er size of 18 tokens, and the maximal
throughput is achieved after �ve steps at a bu�er size of 24 tokens.

Next, we decrease the total VP size with a step size of two (i.e. one TDM slot
in both VPs) and perform a throughput analysis in each step. The resulting three-
dimensional design space is shown in Figure 4.5a, the corresponding heat map can
be found in Figure 4.5b. Note that the �gure does not show each combination of
bu�er sizes and VP sizes, i.e. the full design space, but rather gives us an impression
of its shape. The data points from Figure 4.7 can be found in the two-dimensional
plane at the 120 TDM slots marker. Starting from 120 slots and going down, we see
that the throughput decreases steeply with the total VP size. Note that at every inter-
section of the plane there is a discrete data point. These points are interconnected
to visualise the plane, but in reality the plane is not continuous, i.e. there are no
other data points on the lines. This is more accurately shown by the heat map in
Figure 4.5b that visualises these data points as discrete blocks. On the VP axis we
note two points where the throughput suddenly drops signi�cantly as the number
of TDM slots decreases. The heat map in Figure 4.5b shows these drops even more
clearly at the 40 and 80 TDM markers.

The explanation for this can be found in the WCRT analysis that was discussed in
Section 4.5. If the number of TDM slots assigned to a VP is reduced, the WCRT of the
worst-case actors goes up as can be deduced from Equation 4.1, possibly a�ecting
the critical cycle(s) that determine the throughput. The current critical cycle(s) may
depend on one or more worst-case actors. The �rst addend of the equation grows
steadily as the VP size decreases, and is responsible for the gradual reduction in
throughput between e.g. 120 and 80 slots. The sudden drops in the graph are caused
by the ceiling function in the third addend, as the value of twait is added whenever

4

4.6 experimental evaluation 79

Figure 4.8: The trade-o� between total VP size and total bu�er size. Data points with the same
total bu�er size have di�erent markers, the actual sizes of both VPs are reported
next to each marker. The green line indicates all Pareto-optimal points.

ET
V Pi ,j �� � 1 passes the next largest integer value. For example, if the slot length � is
500 slots and the ET is 5000 cycles, the value of the addend will jump from twait at
5 TDM slots to 2 � twait at 4 TDM slots.

From the design space in the heat map of Figure 4.5b we conclude that between
0 and 40 TDM slots the in�uence of the bu�er size is negligible. Between 40 and 120
TDM slots however both dimensions change independently. We conclude that it is
indeed necessary to explore both dimensions at the same time.

The VP size can now be plotted against the total bu�er size if we pick a throughput
constraint of e.g. 1.0 � 10�5 iterations per time unit. The DSE will pick points above
but as close to this constraint as possible, see Figure 4.8. All points in this graph
meet the throughput constraint. Next to each data point the sizes of both VPs are
denoted. This graph unveils the trade-o� between the total VP size and total bu�er
size, and is the area of the design space that we are interested in. To put this in
perspective, both two-dimensional graphs from Figures 4.7 (purple) and 4.8 (green)
are positioned in the three-dimensional design space in Figure 4.9. It clearly shows
the di�erence between the existing DSE in which the throughput was maximised
at all costs (purple plane), and the new DSE in which the throughput constraint is
matched as closely as possible while trading VP size against bu�er size (green plane).

In Section 5.7 we select 7 applications for the experiments in Chapter 5. The trade-
o� between total VP size and total bu�er size for these 7 applications is depicted in
Figure 4.10, along with a copy of Figure 4.8 named synth-rates-sdf. In contrast to that
last graph all others show only one step, indicating that there are only two viable
options: one that minimises the VP size and one that minimises the bu�er size. This

4

80 trading virtual processor size against buffer size

Figure 4.9: The bu�er size-throughput trade-o� plane of the existing DSE (purple) and bu�er
size-VP size trade-o� plane of the DSE proposed in this chapter (green) positioned
in the three-dimensional design space, the throughput constraint is indicated in
red.

4

4.6 experimental evaluation 81

Figure 4.10: The trade-o� between total VP size and total bu�er size for all the applications
depicted in Figure 5.4 (upper six graphs and lower left), and the example graph
shown in Figure 4.4 (lower right, copy of Figure 4.8.)

4

82 trading virtual processor size against buffer size

is due to the fact that the synthetic applications are rather straightforward and have
no rate di�erences.

4.7 Related work

Existing data�ow mapping approaches usually o�er a trade-o� between the through-
put and another property such as energy or the size of the storage distribution. A
trade-o� between throughput and energy is presented in [67]. The trade-o� between
throughput and the size of the storage distribution has been explored for SDF in
[132], CSDF in [135], for MCDF in [109] and for FSM-SADF in [4]. Processor utilisa-
tion is not considered in these approaches, which means that the throughput for a
certain storage distribution is calculated assuming use of all available processor ca-
pacity. This might be a good strategy for memory-constrained embedded systems, as
the FIFO bu�ers that implement data�ow channels are usually located in the on-chip
memories. As we have seen in SP.4 however, the processor usage and memory foot-
print must be balanced to increase the probability of success of future deployment
actions. Trading processor utilisation against both throughput and storage distri-
bution size is the unique property that sets our contribution apart from the related
work.

The work in [83, 85] is similar because VPs are also computed at design-time and
deployed at run-time by a resource manager. While the goal is also to increase the
probability of successful deployment, this work focuses on NoC architectures and
does not take processor utilisation into account.

4.8 Summary

In this chapter we presented solution CB.4 that solves sub-problem SP.4 and paves
the way for meeting requirement RQ.3b, executing dynamically changing sets of ap-
plications. We zoomed in on VP deployment and motivated our choice for a hybrid
deployment strategy. The goal of this chapter is to allow the designer to increase
the success of future run-time deployment actions by balancing the resource re-
quirements of applications during the design-time intra-application mapping and
scheduling, the Design Space Exploration (DSE).

The existing DSE trades throughput against total bu�er size. The crux of our ap-
proach is to add another dimension to the DSE, namely the VP size. This allows to
trade the total VP size against the total bu�er size under a throughput constraint
in the DSE, resulting in a number of Pareto-optimal points. The choice between
these points allows to balance the run-time processor utilisation and memory re-
quirements. We show that the throughput changes independently with the VP size
and bu�er size. This means that the curve of interest, the intersection between the
Pareto-plane of VP size and bu�er size and the throughput constraint, cannot be
found by exploring these dimensions one by one. Instead we propose an extension
of the DSE algorithm that explores both dimensions at the same time. The exper-

4

4.8 summary 83

iments con�rm that this yields the curve of the VP size versus the bu�er size. A
system designer can exploit the trade-o� o�ered by the Pareto-optimal points to
increase the success of future run-time deployment actions.

4

5

5 Fault-tolerant deployment

5.1 Introduction

In Chapter 1 we argued that the continuous decrease of the feature size in VLSI
design leads to hot spots. These cause intermittent faults and processor shutdowns
in the short term, and speed up the silicon aging process which leads to permanent
faults in the long term [53, 102]. Requirement RQ.5 states that systems must be fault-
tolerant, yet it is costly to add circuitry for fault correction. Instead we propose in
this chapter a method for, and analysis of, fault-tolerant re-deployment of Virtual
Processors (VPs) to handle intermittent and permanent processor faults.

Fault recovery may not interfere with running applications. We choose to let the
resource manager perform re-deployment of the VPs located on the faulty processor
at run-time. However, it cannot be guaranteed that su�cient resources are available
to re-deploy the VPs from the faulty processor. This is captured in sub-problem SP.6,
which states that the design �ow must maximise the probability of success of future
run-time re-deployment actions. To do so we propose solution CB.6 in this chapter,
which consists of the contributions described in Section 5.2.

The contributions concern both the intra-application mapping phase as explained
in Section 5.3 as well as re-deployment by the resource manager, see Section 5.4. A
requirement for re-deployment is that actors that were �ring when the fault oc-
curred can be safely restarted, this is explained in Section 5.5. The concept for fault-
tolerance is presented in Section 5.6 and evaluated in Section 5.7. We discuss related
work in Section 5.8, the chapter ends with a summary in Section 5.9. An earlier
version of this chapter has been published in [148].

5.2 Recovering from processor faults

As explained in Chapter 2, actors are mapped to VPs at design-time and deployed
on physical processors at run-time. Deployment is the term that we use for inter-
application mapping and scheduling, see the middle layer of Figure 1.6 on page 14.
An example mapping of application � is shown in Figure 5.1a, the deployment in
Figure 5.1b. We consider heterogeneous multi-processor platforms with two types
of processors, Accelerators (ACCs) and General Purpose (GP) processors. The platform
instance in Figure 5.1b, d and f contains two processors of each type.

As described in Section 4.3 a VP may be deployed on any processor of the cor-
rect type at run-time because we selected a particular combination of architecture,
middleware, mapping, scheduling, deployment, and timing analysis. In particular,
accounting for the worst-case misalignment of the TDM wheels during timing ana-

85

5

86 fault-tolerant deployment

Figure 5.1: Application� with actors q�u is mapped to an increasing number of VPs in �gures
a), c) and e), which are deployed on processors p1 and p2 of di�erent types in
�gures b), d), and f). When p2 encounters a fault: b) VP� ,2 cannot be re-deployed
because of its size and type; d) VP� ,2 cannot be re-deployed because of its type,
but VP� ,3 can be re-deployed on p4; f) we switch to another mapping at run-time
in which VP� ,2 is split and resized for a GP, and then re-deployed on p1 and p3.
Note that re-deploying a VP on a processor of a di�erent type may change the ET
and WCRT of actors, and thus the size of the VP.

5

5.2 recovering from processor faults 87

lysis is a requirement for GALS systems. A bene�t of this conservative approach is
that applications are allowed to be started and stopped at any time independent of
the current deployment, as long as su�cient capacity is available. In addition any
application that has been analysed o�ine can be added to the platform at run-time,
e�ectively separating mapping from deployment. This allows online software up-
dates, which are becoming standard practice in many domains such as consumer
electronics, medical and automotive.

We use the fact that VPs may be deployed on any processor at no extra cost to
achieve fault-tolerance by re-deploying VPs when a processor encounters a fault.
Deployment is an instance of the bin-packing problem, and it is impossible to predict
what the distribution of VPs will be at a given time [85, 112]. When a fault occurs
the free capacity may be too fragmented to allow re-deployment, see Figure 5.1b.

Our �rst contribution in this chapter is to improve the fault-tolerance of any given
mapping through a design-time mapping strategy. By mapping each application to
more VPs of a smaller maximum size the probability of successful re-deployment is
increased, at the cost of an increase in total size. See the mapping in Figure 5.1c, and
consider the improvement of the deployment in Figure 5.1d over that in 5.1b. The
total size of application � has increased from 6 to 7 TDM slots, but VP� ,3 can now be
re-deployed on p4.

We see in Figure 5.1d that while VP� ,2 would �t on GP processor p3, it is targeted
for an ACC and still cannot be re-deployed. Our second contribution solves this by
calculating additional mappings in which VPs are split and resized at design-time,
and switching to such and alternative mapping at run-time. As shown in Figure 5.1e,
VP� ,2 is further split into VP� ,4 and VP� ,5 which are both targeted for a GP. The
deployment in Figure 5.1f shows that the total size increases to 8 slots because the
execution time of the actors is longer on a GP. Only when the fault occurs do we
switch to the new mapping, and VP� ,4 and VP� ,5 can be re-deployed on p3 and p1.
The other VPs are not a�ected by the split and can continue without interruption.
The bene�ts of this contribution are that the cost for splitting a VP are only paid
when the fault occurs, and that it is possible to re-deploy VPs on di�erent processor
types. This comes at the cost of storing multiple mappings at run-time, increasing
the memory requirements.

In Chapter 4 we presented a design-time method that allows to increase the suc-
cess of future run-time deployment actions. This chapter presents a design-time
method to maximise the probability of success of future run-time re-deployment
actions. The di�erence is that when a fault has occurred, the processor capacity
has been reduced and the probability for �nding su�cient available TDM slots on
the processors is lower than in regular deployment actions. Therefore both contri-
butions attempt to reduce the size of individual VPs, at the cost of a larger total
size. While the original Design Space Exploration (DSE) o�ered no control over the
total VP size of a mapping, the extension in Chapter 4 does. In this chapter we ex-
ploit the extension by selecting Pareto-optimal points with a minimal total VP size,
which maximises the probability of successful re-deployment by changing only the
VP sizes.

5

88 fault-tolerant deployment

Figure 5.2: a) VP� ,1 has a waiting time twait ,1 of 2 slots, captured by actor tw ,1. b) After split-
ting naively into VP� ,1 and VP� ,2 (dark blue and dark green) the waiting time is 4
slots for both VPs. The throughput constraint is not satis�ed, so additional slots
must be reserved (light blue and light green) to reduce the actor WCRT.

5.3 Mapping data�ow graphs

Our contributions can be applied to any RT MoC that can guarantee a minimum
throughput or maximum latency given the actor Worst-Case Execution Time (WCET)
and a method to compute the resulting Worst-Case Response Time (WCRT) of the ap-
plication. The WCRT can be computed only if the platform is predictable. To illustrate
this we use FSM-SADF, which can guarantee a minimum bound on the throughput
given the actor WCET by means of computing the resulting WCRT of the application
as explained in Section 4.3 [3]. The contributions of this chapter trade fault-tolerance
against the size of the applications, measured in TDM slots. To provide insight in this
cost trade-o� we now take a detailed look at the design-time, intra-application map-
ping.

Data�ow actors are mapped to VPs. The size of each VP is determined by calcu-
lating the WCRT of each path through the data�ow subgraph that is mapped to the
VP. Because we consider GALS systems, the TDM wheels of the physical processors
may be misaligned. As each VP may be deployed on a di�erent physical processor,
the WCRT must account for the worst-case TDM wheel misalignment between VPs.

Consider for example application � in Figure 5.2a. Actors x and y are mapped to
VP� ,1, which uses 4 TDM slots out of a total wheel size of 6. The waiting time twait ,1
is two slots, which is captured by the red actor tw ,1 that is inserted in front of the VP
during timing analysis. The WCRT for VP� ,1 thus consists of the sum of twait ,1 and
the actor execution times.

The essence of the �rst contribution is to increase the number of VPs an appli-
cation is mapped to. We split VP� ,1 into VP� ,1 and VP� ,2 as shown in Figure 5.2b. If
the slot allocation of the new VPs would solely be based on the execution time, both
receive two slots as indicated by the dark blue and dark green slots on p1 and p2 re-
spectively. The waiting time is now 4 slots for both VPs. This may lead to a violation
of the throughput requirement. To counter this, we can reduce the WCRT by reserv-
ing additional TDM slots, as indicated by the light blue and light green slots in the
�gure. Note that no actual work will be performed in those slots, they are necessary

5

5.4 resource manager 89

only because of the assumed worst-case TDM wheel misalignment. In other words,
the extra slots reduce the latency and increase the throughput. We see that the ap-
plication now requires 6 slots in total, and may still be executed on one physical
processor.

5.4 Resource manager

Deployment is an instance of the bin-packing problem, which is known to be NP-
hard [112]. Use of heuristics is inevitable to �nd a solution at run-time. It is intuitive
that the probability of success increases if the heuristic is provided with more but
smaller items to �ll the bins, if the sum of item sizes is the same. The latter is not
true, as we have seen in Section 5.3. Instead the sum of the items (VPs) size grows if
an application is mapped to more VPs. We can only expect a bene�t if the increase
in probability of success caused by the smaller VPs outweighs the decrease caused
by the growth in total size.

Deployment of VPs on physical processors at run-time must be performed by a
resource manager that is capable of dynamic loading [121]. In this chapter we will
assume that such a manager is all-knowing, i.e. that it considers all possible solutions
to the bin-packing problem if it must (re-)deploy an application. In reality it will only
have limited time to �nd a subset of the solutions using a heuristic. Both the selection
of such a heuristic and the practical implementation are outside of the scope of this
thesis. The results that we �nd are therefore an upper bound on the fault-tolerance
that a real resource manager will be able to achieve.

5.5 Fault model

In this thesis we focus on dealing with intermittent and permanent processor faults
through checkpointing and restart [31]. To re-deploy a running application in case
of a fault, its state must be consistent. Therefore we will now investigate the storage
of state in the data�ow MoC. Remember that actors are stateless, and communicate
by producing and consuming data tokens into and from the channels. All state is
therefore stored in the channels.

An actor �ring consists of three parts: consumption of the input tokens, execution,
and production of the output tokens. During �ring an actor may temporarily have
internal state that is not in the tokens. To ensure that state cannot be lost, we impose
the requirement that the input tokens of an actor may only be discarded after the
�ring is complete and the output tokens are updated. This ensures that an actor can
always be re-�red, which guarantees that any fault can be corrected.

The channels must be accessible and in a consistent condition after a fault. To sim-
plify our fault model we use the conservative assumption that the channels as well
as the instruction memory are stored in a central, protected memory and are fetched
each time when required by a processor. In reality this will have a major impact on
the performance, and there are schemes to avoid this and still guarantee consistent

5

90 fault-tolerant deployment

memory, e.g. error-correcting codes. Discussion of such schemes is outside of the
scope of this thesis.

Techniques exist for detection of faults on a processor, e.g. through acceptance
tests based on timing, coding, reasonability and structure, and may be implemented
in hardware, software or both [31, 51, 104]. Upon detection we assume that an ex-
ception handler halts all VPs deployed on that processor. Because all input tokens
of an actor that was �ring are still valid, it can be restarted on another processor as
long as the position in the schedule is known. The current position of the schedule
can be stored in a (self-) edge.

There are many types of data�ow, e.g. SDF, CSDF and SADF. While each has its
own speci�c rules and restrictions, our work is su�ciently general to be applied to
all these types.

5.6 Fault-tolerance concept

Heterogeneous multi-processor platforms feature multiple types of processors that
di�er in clock speed, architecture and instruction set. The contributions that we
present in this section are not limited by the number or variety of processor types
available on a platform. The minimum number of processor types necessary to ex-
plain our contributions is two. For the sake of brevity we will continue with such a
platform that only consists of General Purpose (GP) and Accelerator (ACC) processors
throughout this chapter.

We assume, without loss of generality, that all actors in a data�ow graph can be
executed on a GP. A subset actors can bene�t from execution on an ACC because
they have a shorter WCET on that type. All others cannot be executed on an ACC at
all.

5.6.1 Re-deployment

A fault on a processor a�ects all applications of which one or more VPs are deployed
on that processor. There are di�erent strategies to deal with such faults. Those ap-
plications may for example be dropped, switched to a safe mode, or the VPs may be
re-deployed on di�erent processors [65]. We argue that re-deployment is the pre-
ferred strategy because the functionality is maintained and the interruption of ser-
vice minimised. Whether su�cient free capacity is available for re-deployment can
be checked by a resource manager. If this is not the case, it may still choose another
strategy to deal with the fault. From the system perspective every increase of the
probability of successful re-deployment is signi�cant, because it reduces the risk of
having to drop applications.

Re-deployment of VPs as introduced in Section 5.2 is enabled by two principles.
Firstly, the MoC provides a method to compute the WCRT on a predictable platform
given the actor WCET and a platform model, from which the VP size can be cal-
culated. Secondly, the WCRT accounts for the worst-case TDM wheel misalignment

5

5.6 fault-tolerance concept 91

between VPs so that a VP may be deployed on any processor of the correct type (e.g.
general purpose) that has su�cient TDM slots available.

The �rst contribution of this chapter is to improve fault-tolerance on a platform
by increasing the probability on successful re-deployment. To do this we calculate
alternative mappings for each application in which it is mapped to more VPs than
in the baseline mapping that is explained next.

We consider two baseline mappings for each application. Firstly an application
may be mapped to general-purpose VPs only, in which case it will not pro�t from the
accelerators. We vary the amount of VPs and, considering all Pareto-optimal points
of each of the resulting mappings, select the mapping with the smallest overall size
in terms of TDM slots. This is the homogeneous baseline mapping. We will see in Sec-
tion 5.7 that this always results in a mapping to one VP, denoted with [gp].1 Secondly
an application may be mapped to at least one GP and one ACC processor. Again we
vary the amount of GPs and ACCs, consider all Pareto-optimal points, and �nd that
the [gp,acc] mapping (i.e. one GP and one ACC) always results in the smallest overall
size. We refer to this mapping as the heterogeneous baseline mapping.

5.6.2 Resize and split

Re-deployment of agp is straightforward, it may only be deployed on a GP processor
with su�cient free capacity. For an acc on the other hand there are two options.
It may be deployed on an ACC processor with su�cient free capacity, or we may
generate a second mapping in which the acc is resized (i.e. enlarged) to allow for a
GP processor mapping. This expands the solution space and increases the probability
of successful re-deployment when an ACC processor fails.

Consider for example a failure of the ACC processor to which the second VP of
mapping [gp,acc] is deployed. At design-time a second mapping [gp,gp] is generated
in which the �rst gp is forced to be identical, and the second VP accommodates the
acc actors from the �rst mapping. During run-time the resource manager can switch
to this second mapping if it cannot re-deploy the acc . The disadvantage is that the
second mapping must be stored during run-time, and that the resource manager
needs the capacity to switch between mappings.

The resizing strategy can potentially also be applied to a homogeneous mapping.
As explained in Section 5.3, some TDM slots may be reserved solely to reduce the
WCRT. Such slots may be removed from one VP and transferred to another without
violating the throughput constraint, i.e. the VPs act like communicating vessels. This
could be used to manipulate the location of available slots over the platform. As it
does not change the total size of an application however, we expect only a minor
bene�t and will not explore this strategy further.

Instead we propose as second contribution of this chapter to split and resize VPs
only when the ACC processor to which the acc is deployed encounters a fault at run-

1 We use the abbreviations GP and ACC to refer to physical processors of type general-purpose and accel-
erator, and gp and acc for VPs that may be deployed on these respective processor types.

5

92 fault-tolerant deployment

time. Consider again the mapping [gp,acc], for which we generate a second mapping
[gp,gp,gp] to which we switch when a fault occurs on the ACC. The �rst gp is again
identical, but acc VP is now spread over the two gp VPs. A split can also be applied
to a homogeneous mapping.

The advantage is that the additional cost for splitting a VP is only paid when the
fault actually occurs, which lowers the cost and platform utilisation in normal oper-
ation. This comes again at the price of storing the additional mapping and extending
the resource manager with the capacity to switch between mappings. Switching be-
tween mappings is more complicated in comparison to the resize strategy, as each
VP has an internal schedule that must be split in two in a consistent manner. This
split operation may be costly depending on the size and type of the schedule, and
will cause additional switching overhead at run-time.

5.7 Experimental evaluation

5.7.1 Preliminary

We use eight di�erent applications for our experiments. Two of these are real-world
streaming algorithms, namely a JPEG decoder and an one-scenario version of the
SUSAN edge detection algorithm introduced in Chapter 3. Their data�ow graphs are
depicted in Figure 5.3.

Figure 5.3: Two data�ow graphs of a) the JPEG decoder, and b) the SUSAN edge detection
algorithm. Actors Thin and Put can bene�t from an accelerator.

We furthermore use seven synthetic applications to explore the e�ect of typical
graph structures, see Figure 5.4. Applications seq and sota model sequential appli-
cations where the result of a previous computation is required to continue with the
next. The opposite is modeled in par, almost all computations are parallelised. Com-
binations of the two former types of applications are modeled in seqpar and parseq.
An application where graph �rst diverges, i.e. the result of one computation is re-
quired by multiple others, and then converges, i.e. the results of two computations
are required by one other, is modeled in diamond. An application with di�erent rates
and two scenarios is modeled in two-scen.

The worst-case execution times of the JPEG and SUSAN actors are measured on
an instance of the CompSOC platform. Each actor in the synthetic applications has

5

5.7 experimental evaluation 93

Figure 5.4: Six data�ow applications with di�erent topologies: a) sequential (seq), b) sequen-
tial one-to-all (sota), c) parallel (par), d) sequential-parallel (seqpar), e) parallel-
sequential (parseq), f) diamond, e) two scenarios (two-scen). Actors that bene�t
from an accelerator are indicated in grey.

an execution time of 10k cycles on a GP. Actors that can bene�t from running on
an accelerator are indicated in grey in the �gures, their execution time is 1k cycles
on an ACC, representing a speedup of 10x. All other actors cannot be mapped to an
ACC at all.

We employ two di�erent platforms to evaluate our contributions. A homogeneous
platform with four GP processors will be used to investigate re-deployment of VPs
to processors of the same type. A heterogeneous platform with two GPs and one
ACC processor is applied for re-deployment of VPs to processors of a di�erent type.
Both platforms have a TDM wheel size of 60 slots on all processors, which allows for
easy comparison. On many platforms the wheel size and slot length of GP and ACC
processors will di�er. It is important to note that the cost expressed in TDM slots
cannot be compared between processors if this is the case.

Subsection 5.7.2 describes how we generate di�erent mappings for both platforms.
In Subsection 5.7.3 we create sets of applications for each mapping, and generate all
possible deployments. In each deployment we simulate a failure of each processor
and calculate the average probability of �nding a valid re-deployment. The resize
and split strategies are evaluated similarly in Subsection 5.7.4

The platform utilisation is obtained by dividing the number of used TDM slots
used in a certain deployment by the total number of TDM slots available on the
platform. We explore the trade-o�s for di�erent utilisations in 5.7.5.

5

94 fault-tolerant deployment

5.7.2 Mapping

In the context of this chapter we modi�ed the mapToVRs algorithm in the exist-
ing design �ow, see Figure 2.2 in Chapter 2. This algorithm generates a number of
Pareto-optimised actor-to-VP mappings for each application. We modi�ed the map-
ping algorithm to always select the Pareto-optimal point that features the lowest
total number of TDM slots, ignoring memory usage and bandwidth that dominate
other Pareto points. This isolates the VP size from other mapping parameters and
maximises the probability of successful re-deployment.

We create four mappings per application for the homogeneous platform by vary-
ing the number of VPs to which an application is mapped between one and four, i.e.
[gp], �, [gp,gp,gp,gp]. The setpoint for the throughput is determined by mapping
each application to a single VP with a size of exactly 40 TDM slots, the homogeneous
baseline mapping. The two, three and four VP mappings are generated with the same
throughput setting. The goal is to deploy four applications to four processors, so 160
out of 240 TDM slots or two-thirds of the platform will be used if the baseline map-
ping is selected for all four applications. We consider this a reasonable utilisation
for a fault-tolerant platform.

[gp] [gp,gp] [gp,gp,gp] [gp,gp,gp,gp]

JPEG [40] [33, 10] [52, 10, 53] [1, 9, 53, 52]

SUSAN [40] [30, 10] [29, 10, 2] [1, 3, 1, 36]

seq [40] [35, 5] [30, 5, 5] [25, 5, 5, 5]

sota [40] [37, 40] [38, 40, 40] [25, 5, 5, 31]

par [40] [10, 30] [5, 25, 10] [5, 20, 10, 5]

seqpar [40] [36, 5] [33, 5, 5] [29, 5, 5, 5]

parseq [40] [22, 20] [14, 27, 4] [10, 27, 4, 4]

diamond [40] [20, 20] [16, 4, 20] [4, 4, 8, 27]

two-scen [40] [20, 20] [7, 20, 20] [�]

Table 5.1: Mappings for the homogeneous platform for all eight applications. The number of
VPs varies from 1–4. An empty set indicates that no mapping can be found.

Table 5.1 shows the mapping of all applications to 1–4 VPs. The numbers in each
cell give the size of the VPs, the total cost of a mapping is their sum. We observe that
the total cost increases as the number of VPs increases. The reason for the increase
is that the WCRT increases for each additional VP, as explained in Section 5.3. In
case the cost does not increase (e.g. SUSAN between 1 VP and 2 VPs), the number
of required cycles increases but is absorbed by the unused part of the TDM slots

5

5.7 experimental evaluation 95

already allocated. Note that no mapping can be found for two-scen using 4 VPs, as
it contains only three actors.

The results of the JPEG and sota applications in Table 5.1 stand out. When either
is mapped to 2 (sota only), 3 or 4 VPs the total number of required TDM slots is
larger than the TDM wheel size. In case of the JPEG this is caused by the fact that the
execution time is concentrated in the IQZZ and IDCT actors. For the sota application
it is caused by the fact that every actor receives data from the �rst actor, therefore the
algorithm cannot �nd a mapping of actors that reduces the WCRT. As they cannot
be deployed on one processor when mapped to 3 or 4 VPs, we conclude that our
concept does not work for these types of applications. We exclude these two from
the re-deployment experiments and continue with the remaining seven applications
in Table 5.1.

[gp,gp] [gp, gp,gp] [gp,gp, gp] [gp,gp,gp,gp]

SUSAN [30, 10] [�] [29, 10, 2] [�]

seq [35, 5] [�] [5, 5, 30] [�]

par [10, 30] [�] [5, 30, 5] [�]

seqpar [36, 5] [�] [5, 5, 33] [�]

parseq [22, 20] [�] [�] [�]

diamond [20, 20] [�] [�] [�]

two-scen [20, 20] [�] [10, 20, 13] [�]

Table 5.2: The split strategy applied to the [gp,gp] mapping. The new VPs are indicated in
bold. An empty set indicates that no mapping can be found.

Additional mappings must be generated to evaluate the split strategy proposed in
Subsection 5.6.2. A fault may a�ect any combination of VPs of one application, so
we generate a mapping for each possible permutation of faults. Each faulty VP must
be split, while the others keep their size. In the [gp] mapping there is only one VP to
be split, resulting in the [gp,gp] mapping in the third column of Table 5.1. Applied
to the [gp,gp] mapping for the homogeneous platform, we obtain the result shown
in Table 5.2. The new VPs are indicated in bold type. We see that no mappings can
be found if a fault is encountered in either the second VP or in both VPs at the same
time. This is because the drastic increase of the WCRT in these two cases violates the
throughput constraint.

We will deploy three applications to the heterogeneous platform using three dif-
ferent mappings, the 2 VP mappings can be found in Table 5.3 and the three VP
mappings in Table 5.4. The setpoint for the throughput is chosen so that the sum
of both VPs in the [gp,acc] heterogeneous baseline mapping is 26 slots. Table 5.3 in-
cludes the results of the resize and split strategies, VPs that are resized or added are
indicated in bold. It is not possible to �nd a solution for all applications when using

5

96 fault-tolerant deployment

[gp,acc] [gp, gp] [gp, gp,gp]

SUSAN [25, 1] [25, 6] [25, 2, 5]

seq [23, 3] [23, 23] [23, 18, 7]

par [22, 4] [22, 21] [22, 12, 12]

seqpar [24, 2] [24, 12] [24, 8, 4]

parseq [24, 2] [24, 15] [24, 7, 7]

diamond [23, 3] [23, 22] [23, 10, 15]

two-scen [22, 4] [22, 24] [22, 20, 10]

Table 5.3: 2-VP mappings for the heterogeneous platform with resize and split strategies. VPs
that are resized or added are indicated in bold.

[gp,acc ,acc] [gp, gp,gp] [gp,gp,acc] [gp,gp, gp]

SUSAN [25, 1, 1] [25, 2, 5] [4, 22, 1] [4, 22, 6]

seq [23, 2, 1] [23, 18, 7] [7, 18, 3] [7, 18, 23]

par [22, 2, 1] [22, 20, 7] [17, 7, 4] [17, 7, 21]

seqpar [24, 1, 1] [24, 8, 4] [10, 16, 2] [10, 16, 12]

parseq [24, 1, 1] [24, 10, 4] [10, 14, 2] [10, 14, 15]

diamond [23, 1, 2] [23, 10, 15] [19, 5, 3] [19, 5, 22]

two-scen [22, 2, 1] [22, 20, 10] [10, 22, 2] [10, 22, 20]

Table 5.4: 3-VP mappings for the heterogeneous platform with the resize strategy. VPs that are
resized or added are indicated in bold.

the split strategy for mappings [gp,acc ,acc] and [gp,gp,acc] in Table 5.4, as the VPs
are too small to further split up. As expected, the required number of slots increases
steeply when resizing an acc for a GP processor because the actor execution times
increase tenfold. We note that splitting the VP comes at a cost of one or two slots,
but the maximum size of the two new VPs is always smaller than that achieved with
the resize strategy.

5.7.3 Re-deployment

The probability on successful re-deployment is analysed using Algorithm 4. The
mapping results for homogeneous and heterogeneous platforms from Subsection 5.7.2
are stored in Comma-Separated Values (CSV) �les, and so is the architecture descrip-
tion. These are the input to the algorithm and are parsed into a data structure, see

5

5.7 experimental evaluation 97

line 2 and 3. The desired size of the application sets is also indicated in the map-
pings �le, all permutations of that size are created in line 4. In line 5 all possible
deployments for each set are generated. We consider unique deployments only, i.e.
permutations achieved by swapping processors are excluded. A failure of each pro-
cessor in each deployment is simulated in line 6. In this function we calculate the
average probability of �nding a valid re-deployment for each VP mapping. This re-
sults in a list of probabilities, which is returned as the end result. Algorithm 4 is
boiled down to its bare essence, the pseudo-code of the di�erent functions that are
called are listed in Appendix B.

Algorithm 4 Analysis of the probability on successful re-deployment.
1: function analyse_re-deployments(mappings.csv, architecture.csv)
2: processors = parse_architecture(architecture.csv)
3: mappings, vp_archs = parse_mappings(mappings.csv)
4: appSets = create_application_sets(mappings)
5: deployments = generate_deployments(processors, vp_archs, mappings,

appSets)
6: return generate_re-deployments(processors, vp_archs, deployments,

mappings)
7: end function

The same algorithm is used for both the homogeneous and heterogeneous case,
we will now focus on the former. For each of the four mappings on the homoge-
neous platform all permutations of four out of seven applications are created, which
amounts to thirty-�ve unique sets of four applications. The total number of deploy-
ments returned by the generate_deployments function for a 2 VP mapping onto 4
processors is in the order of 102, for a 3 VP mapping it is 105 and for a 4 VP mapping
107.

The results of re-deployment on homogeneous platforms are summarised in the
upper row of black boxes in Figure 5.5. On the arrows percentages represent the
probability of successful re-deployment averaged over the processors, sets and de-
ployments. Inside the boxes the average cost of the re-deployment is denoted, which
is in this case equal to the initial mapping. The baseline [gp] mapping has a cost of 40
slots. There is exactly one possible deployment, namely one VP per processor, which
leaves 20 free slots per processor. The probability that a VP can be re-deployed when
a processor fails is then 0%.

Next, the probability of successful re-deployment of the [gp,gp] mapping is 74.1%
at an average cost increase of 1.7 slots or 0.71% of the overall capacity. The [gp,gp,gp]
mapping results in a probability on successful re-deployment of 60.6% at a cost of
9.1 slots. This is lower than for the [gp,gp] mapping, which can be attributed to the
fact that the utilisation of the platform is higher even before the fault occurs, which
reduces the solution space.

5

98 fault-tolerant deployment

Figure 5.5: Re-deployment results for the homogeneous platform. Arrows indicate the prob-
ability of successful re-deployment, the boxes contain the number of VPs and cost
of the solution. Black boxes and arrows indicate the default strategy, yellow the
split strategy.

The results con�rm the validity of our �rst contribution, i.e. the fault-tolerance
increases when an application is mapped to more VPs. The success of the approach
will however depend on each unique combination of TDM wheel size, number of
applications and processors, throughput constraints, initial VP sizes, and data�ow
graph topologies. The possible gains from this strategy should therefore be analysed
for each system independently.

5.7.4 Resize and split

We repeat the re-deployment experiment on the homogeneous platform for the split
strategy. As shown in Table 5.2 it is not possible to split every VP, those VPs are re-
deployed without any changes. The results are shown in the lower row of yellow
boxes in Figure 5.5. Note that after re-deployment the platform contains applications
mapped to di�erent numbers of VPs, indicated by the grey font in the �gure. When
the split strategy is applied to the baseline mapping the probability on successful re-
deployment is 28.6%, for the [gp,gp] and [gp,gp,gp] mappings the probabilities are
80.4% and 64.8% respectively. We see that the split strategy o�ers an improvement
over the default strategy in all three cases. The cost increases marginally in the 1 and
2 VP case, and not at all for the 3 VP case because all VPs can be split without addi-
tional cost. We conclude that the split strategy further increases the fault-tolerance
on the homogeneous platform.

Algorithm 4 is also applied to calculate the probability of successful deployment
for all three mappings of the heterogeneous platform. For each of these mappings
we create thirty-�ve unique sets of four applications in line 3, which are all per-
mutations of three out of seven applications. In line 5 we simulate a failure of the
ACC processor only to zoom in on re-deployment between processors of di�erent
types. The initial deployments are depicted in the upper row of black boxes in Fig-
ure 5.6. An acc cannot be re-deployed without either resizing or splitting it. The

5

5.7 experimental evaluation 99

Figure 5.6: Re-deployment on the heterogeneous platform. Arrows indicate the probability of
successful re-deployment, the boxes contain the VP size and cost in slots. Black
boxes indicates the initial deployments, yellow the split strategy and blue, green
and purple the resize strategy for the di�erent mappings.

resizing strategy for the [gp,acc] mapping is depicted in the blue box (second from
left) in the second row. We see that the probability on successful re-deployment is
21%, while the total size increases with 44.6 slots, or 24.8% of the total platform ca-
pacity. The split strategy for the same deployment is shown in the leftmost yellow
box, and yields a 25.7% probability of success at a cost of 46 slots. Again we see that
the fault-tolerance increases at the VP size, con�rming the second contribution. The
higher costs are caused by the conversion of acc VPs to gp.

The probability on successful re-deployment of the [gp,acc ,acc] mappings with
the resize strategy is 22.9%, which is a minor improvement over the [gp,acc] mapping
but still not as good as the split strategy. The resource usage for the [gp,acc ,acc]
mapping however is signi�cantly lower than for both [gp,acc] solutions. This is
because the actors are distributed over 3 VPs from the beginning, providing a better
spread of actors than the [gp,acc] split strategy. The [gp,gp,acc] mapping does not
perform well compared to the others because the utilisation of the GP processors is
higher from the beginning, leaving less available capacity for re-deployment.

5.7.5 Trade-o�s

The experiments on both the homogeneous and heterogeneous platforms showed
a trade-o� between fault-tolerance and TDM slots for a �xed platform utilisation
at the time of the fault. Because in reality the utilisation is unpredictable, we vary
the utilisation on the heterogeneous platform on the x-axis of Figure 5.7. The graph
furthermore shows the solution cost for a selected number of data points. The data
from Figure 5.6 is indicated in the graph by the red box.

If the utilisation is 54 slots or lower, all strategies result in successful re-deployment
because there is always su�cient free capacity to re-deploy each VP. Likewise, if the
utilisation is 90 or higher, no re-deployment can be found for any of the strategies
because there is insu�cient free capacity. These lower and higher thresholds will
exist on every combination of platform and application set, but their value cannot
be predicted.

5

100 fault-tolerant deployment

Figure 5.7: The probability of re-deployment for a varying initial platform utilisation and dif-
ferent strategies. The cost of the solution in TDM slots is printed in color for se-
lected data points.

In between these thresholds each strategy has a curve that trades o� fault-tolerance
with cost. We see that the [gp,acc] resize strategy provides better fault-tolerance at
the edges of this curve, while [gp,acc] split performs well in the middle. The results
of the latter are however somewhat unpredictable because it often happens that a
VP cannot be split. Hence the anomaly at an initial platform utilisation of 72 slots,
where the strategy performs better than at 66 slots.

The [gp,acc ,acc] strategy consistently outperforms the others in terms of the so-
lution cost and always has a (shared) second place in fault-tolerance. This may well
make it the strategy of choice in this particular setup, unless the fault-tolerance must
be maximised at all cost. In that case the [gp,acc] split strategy provides the highest
probability of successful re-deployment, averaged over all utilisations.

5.8 Related work

An overview of concepts and terminology for fault-tolerant systems can be found in
[7, 31]. Surveys of fault-tolerance targeted speci�cally for multi-processors can be
found in [88, 97]. In this section we discuss existing work related to re-deployment
and to resource managers.

5.8.1 Re-deployment

Deployment strategies fall in three categories: design-time, run-time and hybrid
[120]. The hybrid that we use combines elements proposed in [45, 137] and allows

5

5.8 related work 101

any deployment of VPs at run-time at the cost of rigorous timing analysis at design-
time.

An alternative method is to calculate and analyse a �xed number of VP deploy-
ments at design-time [73, 114]. In [21, 73] tasks from faulty processors are re-deployed
(migrated) with the goal of minimising migration cost and the degradation of appli-
cation throughput at the same time. In the former work all possible fault-mappings
are generated at design-time. This allows more precise timing analysis, but the num-
ber of deployments grows exponentially with the number of VPs, processors and
re-deployment events. These deployments must also be stored during run-time, and
unlike our solution no new applications can be accepted at run-time.

Spare processors are reserved to cope with faults in [15, 114]. While this method
is safe and easy to verify, it is not a�ordable in low-cost, high-performance systems,
for which our method is targeted. Furthermore it can only deal with as many faulty
processors as there are spare processors, while our method allows to keep on han-
dling faults.

Re-deployment strategies focused on performance and the reduction of the com-
munication energy are presented in [15, 28]. The former formulates the problem as
a integer linear programming problem to generate all deployments for their KPN ap-
plications at design-time, and proposes an online heuristic for use at run-time. The
latter proposes a spare processor placement technique and assesses its impact on
the fault-tolerant properties, and consider the e�ect of system fragmentation but do
not try to remedy this by splitting up applications as we do in this chapter.

Kahn Process Network (KPN) as used in [28, 114] is a data�ow MoC that cannot
be statically analysed. Therefore there is no method to compute the WCRT, and our
method for fault-tolerance cannot be applied for such applications but can still be of
use if occasional deadline misses are acceptable.

There exist several works that attempt to avoid faults due to aging and thermal
e�ects. An interesting concept is presented in [124], where computations are mi-
grated away from hot spots preventively based on a temperature model. The lifetime
of multi-processors is extended by accounting for aging in the mapping algorithm in
[10, 24], and for the aging of NoC links in particular in [22]. Similarly, the lifetime is
improved by accounting for inter- and intra-application thermal variations in [25]
and by accounting for the voltage and frequency in [23]. A method for runtime
re-deployment that uses the intermittent fault rate as an indicator of wear-out to
improve the lifetime of multi-processors is presented in [105]. The advantage over
our method is that a fault may be prevented completely, yet this cannot be guar-
anteed. Therefore fault-tolerance is still required, and the works mentioned in this
paragraph are complementary rather than a replacement for our method.

Another combination of design-time mapping and run-time deployment with sup-
port for scenarios is proposed in [100]. This work di�erentiates between intra- and
inter-application scenarios. The latter describe combinations of applications that
may run at the same time, meaning that applications do not have the �exibility to
start and stop at any time. This is compensated for by a run-time mapping mapping
algorithm that attempts to improve system performance by performing mapping

5

102 fault-tolerant deployment

customisations This work uses KPN data�ow and targets homogeneous platforms,
but does not specify the type of scheduling.

5.8.2 Resource manager

Resource managers that suit our requirements have been described in existing work,
therefore we do not implement a resource manager in the context of this thesis. A
comparison of di�erent resource manager algorithms is given in [125]. Heuristics
that minimise the communication overhead are given in [115, 116].

A resource manager with support for run-time deployment of dynamic sets is
described in [84]. They show that a modi�ed �rst-�t vector bin-packing is a good
solution to the NP-complete problem as it can allocate 95% of the resources. The
described approach assumes composability and two-layer mapping and scheduling
using VPs. The resource manager described in this work would be a suitable solution
for the platform that we use in this thesis.

A resource manager that combines a greedy heuristic with actor clustering is pre-
sented in [85]. Clustering increases the probability of successful deployment because
it reduces the required bandwidth, except when processors are almost full. This is
in line with our �ndings. Fault-tolerance however is not considered. Design-time
mapping for mixed-criticality and run-time deployment is proposed in [65]. Low
criticality tasks can be dropped to guarantee the WCRT of highly critical tasks in
case of faults, but not re-deployed.

5.9 Summary

In this chapter we presented solution CB.6 that solves sub-problem SP.6 and en-
hances the fault-tolerance of systems, thus helping to meet requirement RQ.5 The
design �ow introduced in the previous chapters can analyse data�ow applications
and map them to a set of VPs at design-time. At run-time a VP can be deployed by
the resource manager on any physical processor of the target type that has su�-
cient available TDM slots. This gives the �exibility to add new applications during
run-time, but makes it impossible to predict what the deployment will be at any
given time. When a processor fails, the available slots on other processors may be
too fragmented to re-deploy the VPs from the faulty processor.

In the �rst contribution of this chapter we show that the probability of successful
re-deployment increases if applications are mapped to more VPs of a smaller size, at
the cost of additional TDM slots. This maximises the probability of successful future
re-deployment. To exploit his feature for fault-tolerance each application must be
started with such a multi-VP mapping, meaning that extra slots are also used when
no fault has occurred. This is overcome with the second contribution, which is to
split a VP only when a fault occurs. Because of the lower overall resource usage this
further increases the probability for successful re-deployment at the cost of storing
multiple mappings at run-time and the time required for splitting the schedule. In

5

5.9 summary 103

both contributions we exploit the DSE extension from Chapter 4 and select those
mappings that have the lowest cost in TDM slots.

We evaluate the proposed strategies experimentally and show that mapping an
application to more VPs indeed increases the probability of successful re-deployment,
both for processors of the same type and processors of di�erent types using resiz-
ing. This works up to a certain limit, after which the probability decreases because
of the increased total cost. Furthermore we �nd that splitting VPs only when a fault
occurs increases the probability more than splitting VPs beforehand. This is due to
the smaller total VP size when no fault occurred, leaving more slots available.

When running the experiments for sample deployments with di�erent utilisa-
tions, a lower threshold is revealed below which a re-deployment can be found with
all strategies, as well a higher threshold above which no re-deployment can be found
with any strategy. In between the thresholds we provide insight in the trade-o� be-
tween maximising fault-tolerance and minimising cost that is o�ered by the di�er-
ent strategies. The numbers reported in this chapter cannot be generalised for other
platforms and applications. In low-cost, high-performance systems however we ar-
gue any increase of the fault-tolerance that is achieved without spare processors is
an improvement of signi�cance.

5

6

6 Conclusions and future work

In Chapter 1 of this thesis we introduced two use-cases for Real-Time (RT) embedded
systems, namely a point-to-point video surveillance system and an adaptive cruise
control system. It is possible to design static versions of such systems using con-
temporary design �ows. However, advances in functionality and technology lead to
new, dynamic requirements that cause new challenges in the design �ow. We re-visit
the three dynamic requirements from Chapter 1 in Sections 6.1–6.3. Possible direc-
tions for future work that build upon the contributions of this thesis are presented
in Section 6.4

6.1 Dynamic response to input data

Applications are increasingly dynamic because they must respond to input data.
Capturing such dynamic behaviour in a static Model-of-Computation (MoC) leads to
overly negative analysis results and over-reservation of resources. Instead we select
the Finite-State Machine Scenario-Aware Data�ow (FSM-SADF) MoC that captures dif-
ferent behaviours in separate scenarios and can provide a bound on the minimum
throughput of an application. The analysis with available tools that use (max , +) al-
gebra is precise and elegant, but a causality dilemma is encountered when attempt-
ing to implement this MoC in a Programming Model (PM).

In Chapter 3 we proposed a PM for FSM-SADF that allows dynamic responses to
input data because the scenario scheduling is performed at run-time. The application
designer must create the FSM, scenario graphs and actor functions. We recognise two
types of applications. Firstly, in applications with delayed scenario detection the
current scenario is detected in the previous iteration and stored in a detector token.
Secondly, in applications with immediate scenario detection the current scenario
is detected during the current iteration in a detector actor. A causality dilemma is
encountered when attempting to implement the PM for the latter.

We describe how the scenario graphs of both application types can be transformed
to a scenario sequencing model in which the detector token or actor is split o� in a
detector scenario, which is always executed before the other scenarios. The timing
behaviour of the sequencing model is identical to that of the original application, and
can be expanded into a Binding-Aware Graph (BAG) that models the exact timing of
our PM, middleware and hardware.

The sequencing model can also be merged into a scenario execution model, re-
sulting in one graph that contains all scenarios and is suitable for execution. The
detector scenario is always executed �rst, it contains a load-schedule actor that ex-
tends the Rolling Static-Order (RSO) schedule with the correct actor sequence of the

105

6

106 conclusions and future work

next scenario. The sequencing model and execution model together solve the causal-
ity dilemma.

We modi�ed the existing design �ow to automatically generate the sequencing
model and execution model for applications with immediate scenario detection. We
also provide the middleware that implements the PM on the CompSOC platform. The
exact timing behaviour of the implementation was analysed and added to the BAG
models. The resulting FSM-SADF PM consists of a method, design �ow, middleware
and analysis model that can design applications which can dynamically respond to
input data.

6.2 Dynamic response to the user and environment

The set of active applications is dynamic because the system must respond to the
user and changes in the environment. To deal with events at run-time it must be
possible to start or stop an application at any moment in time. In this thesis we select
a combination of architecture, middleware, deployment, mapping, scheduling, and
timing analysis that allows to deploy the Virtual Processors (VPs) of an application to
any processor of the correct type, provided that su�cient capacity is available.

The computation intensive timing analysis is performed at design-time for map-
ping actors to VPs. If the TDM budget of each VP is granted at run-time, an appli-
cation is guaranteed to meet its RT constraints. This separates design-time analysis
from run-time deployment and limits the size of the solution space of the resource
manager. Deployment is thus reduced to a three-dimensional bin-packing problem
where the applications (items) must �t on the available processors, memories and
interconnect (bins). In this work we assume that the interconnect is fully connected
and has su�cient bandwidth to support all possible deployments, which removes
the interconnect from the equation.

Resource managers that can deploy VPs at run-time have been proposed in exist-
ing work. It is not feasible to calculate and store all possible deployments at design-
time, so the resource manager must use a heuristic. The platform utilisation at the
moment at which an application must be deployed cannot be predicted. In Chap-
ter 4 we extend the Design Space Exploration (DSE) algorithm to trade the total VP
size against the total FIFO bu�er size while meeting the throughput constraint. The
VP size translates to run-time processor utilisation, and the bu�er size to memory
footprint. We show that the throughput changes independently with the VP size and
bu�er size, therefore we propose an algorithm that explores both dimensions at the
same time. The extended DSE allows the designer to balance the processor and mem-
ory requirements by selecting one from multiple Pareto-optimal points, allowing to
increase the success of future deployment actions in dynamic sets. Systems that run
a dynamic set of applications can dynamically respond to the user and environment.

6

6.3 dynamic response to processor faults 107

6.3 Dynamic response to processor faults

Because of processor faults, there is dynamism in the set of available processors.
The decreasing feature size of VLSI designs increases the power density and leads to
hot spots in the processors. These cause intermittent faults on the short term and
permanent faults on the long term. We propose to employ a resource manager to
re-deploy all VPs from a faulty processor to unused capacity on other processors.
This is similar to the regular deployment problem, except that processor capacity is
more scarce after a fault.

Reserving spare processors to handle faults only allows to handle as many faults
as there are spares, and is too expensive for the type of systems we consider. Us-
ing re-deployment however, it is not possible to guarantee that su�cient resources
are available which means that applications can fail. In Chapter 5 we maximise the
probability of successful re-deployment by mapping applications to more VPs of a
smaller size at design-time, which comes at the cost of a larger total VP size even
if no fault has occurred. The bin-packing heuristic has a higher probability to �t
more smaller items into the bins (processors), but the higher total cost may o�set
this bene�t. As a second contribution we propose to split and resize VPs at run-time,
and possibly target them for a di�erent processor type. Though these must be stored
at run-time, the advantage is that the total VP size increases only when a fault oc-
curs. Both contributions exploit the Pareto-optimal points that result from our DSE
extension in Chapter 4, we selected the mappings with the lowest cost in terms of
TDM slots.

Experiments con�rm that both strategies succeed in increasing the probability of
successful re-deployments. The contributions maximise the probability of success-
fully responding to dynamic processor faults given the VPs that must be re-deployed
and the available processor capacity.

6.4 Future work

In this section we present three possible directions for future work. Firstly, the DSE
may be extended to trade-o� power against throughput, VP size and memory foot-
print to prevent temporary faults due to hot spots. We have seen that the ever-
decreasing feature size of VLSI designs leads to an increased power density. With use
of Dynamic Voltage and Frequency Scaling (DVFS) the voltage and frequency of pro-
cessors may be manipulated to change the power density during run-time [23, 92].

We will explain this concept by assuming that each processor has two power
settings, low and high, though in reality there will be more. At the low setting the
average power is su�ciently low to prevent overheating of processors, but the WCET
of actors is high. At the high setting the WCET of actors is lowered but this setting can
only be sustained for a certain maximum time thigh before the processor overheats
and faults start to occur. After scaling back to the low setting it takes a certain time

6

108 conclusions and future work

tcool for the processor to cool down and reach its regular operating temperature
again.

If the DSE is supplied with a di�erent WCET for each power setting, it may be
extended to generate a schedule with DVFS settings that is executed in sync with
the actor SO schedule. In the DVFS schedule it must be assured that a processor
cannot be at the high setting for longer than thigh , and that a minimum time tcool
elapses after switching from low to high before switching to high again. This will
probably prevent most faults due to hot spots, but it cannot be guaranteed that no
faults occur at all.

Secondly, the resource manager may perform trade-o�s at run-time. In this thesis
we have assumed use of a straightforward resource manager that attempts to deploy
a starting application using only one mapping, and has no alternative course of ac-
tion if insu�cient resources are available. Instead the resource manager may select
one of several mappings that were calculated during the DSE and trade throughput,
processor utilisation and memory footprint depending on the available resources.
Even if many deployments are possible, it may attempt to increase the success on
future deployment actions by minimising the use of scarce resources.

Thirdly, we may increase performance by storing the instructions and FIFO bu�ers
in the local memory of a processor. In this thesis we assume that each FIFO is stored
in a protected central memory, and is in a valid state after a processor fault. The time
required for accessing a remote FIFO is modeled in the BAG and is identical for each
processor. Instead the FIFO bu�ers may be located in the local memory of the proces-
sor to which the VP that contains the destination actor of the channel is deployed,
reducing the time required for reading the FIFO. In the case of an intra-tile channel,
the source actor is mapped to that same VP and the time required for writing the
FIFO is also reduced. These reduced access times will result in a higher throughput,
which in turn may be translated to smaller VPs as explained in Chapter 4.

After a fault the VPs are re-deployed and require access to the same FIFO bu�ers,
that are now located in the local memory of the faulty processor. There are two
options to deal with this. The �rst option is to keep the bu�ers in that same mem-
ory, and choose a new mapping that accounts for the access times that have now
increased. While this does not require migration of data it leads to larger VPs that
increase the processor utilisation. On top of that, a mapping for each possible com-
bination of bu�er locations must be stored during run-time. The second option is
to migrate the bu�ers to the local memory of the processor on which the VP is re-
deployed. This does not require di�erent mappings, but rare events such as the time
required for migration cannot be modeled in the current timing analysis, so data
migration may lead to a deadline violation. Further research is necessary to decide
which of these two options is the most viable.

Appendices

109

A Use-case requirements

This appendix lists the relevant passages of the sources that back up the require-
ments of the use-cases introduced in Section 1.4, using the same numbering. The
passages are either cited verbatim, or a screenshot is provided. The choice of cor-
porate sources and the claims made in these (e.g. “The Best ...”) do not re�ect the
preferences or opinions of the author in any way.

UC-1.1 L. Snidaro et al. Fusing Multiple Video Sensors for Surveillance [127]:
“Real-time detection, tracking, recognition, and activity understanding of
moving objects from multiple sensors represent fundamental issues to be
solved in order to develop surveillance systems that are able to autonomously
monitor wide and complex environments.”
“In the experiments we employed cameras able to acquire between 25 and 30
frames per second. In order to synchronize the input frames to the process-
ing �ow we used a centralized capture routine that was polling the sensors
25 times per second to retrieve new frames.”
Cisco Systems, Inc. Video Quality of Service (QOS) Tutorial [17]:
“Transport network SLAs for video quality

Recommended network SLA for video[4] is as follows:

� Latency � 150 � 300 ms
� Jitter � 10 � 50 ms
� Loss � 0.5%

Incidentally the recommended network SLA for transporting audio are:
� Latency � 150 � 300 ms
� Jitter � 20 � 50 ms
� Loss � 1%”

111

112 use-case re�irements

UC-1.2 Intel Corporation. Temperature Grades and Associated Temperature Ranges
[61]:

UC-1.3 J. R. Delaney. The Best Medical Alert Systems of 2018 [27]:

use-case re�irements 113

UC-1.4 Amazon.com, Inc. Best Sellers in Remote Home Monitoring Systems [5]:

A. Colon and W. Greenwald. The Best Home Security Cameras of 2018 [18]:

114 use-case re�irements

UC-1.5 Cisco Systems, Inc. Stream Manager Video Surveillance Solutions Reference
Network Design [16]:
“By using multicast protocols, the hosts that want to receive tra�c from
a multicast group can join and leave the group dynamically. Hosts can be
members of more than one group and must explicitly join a group before
receiving the desired content.”
“Dynamic streams can be created in a number of ways. For example, an
operator with a CCTV monitor and keyboard that are attached to a de-
coder can cause dynamic streams by frequently switching the monitor to
various cameras across the network, some of which could be located over
low-bandwidth WAN connections.”
“The most challenging scenario for which to engineer is the Cisco Stream
Manager Client Viewing Module installed on a laptop computer that can
rove anywhere in a WAN environment with a wide-open multicast policy.
This device could call up to 10 concurrent streams to any location in the
network using a standard screen layout.”

UC-1.6 Wikipedia, Video compression picture types [152] “In the �eld of video com-
pression a video frame is compressed using di�erent algorithms with di�er-
ent advantages and disadvantages, centered mainly around amount of data
compression. These di�erent algorithms for video frames are called picture
types or frame types.”

UC-1.7 A. Doblander et al. Improving fault-tolerance in intelligent video surveillance
by monitoring, diagnosis and dynamic recon�guration [30]:
“In this paper, we present an approach for improving fault-tolerance and
service availability in intelligent video surveillance (IVS) systems. A typ-
ical IVS system consists of various intelligent video sensors that combine
image sensing with video analysis and network streaming. System monitor-
ing and fault diagnosis followed by appropriate dynamic system recon�g-
uration mitigate e�ects of faults and therefore enhance the system’s fault-
tolerance.”“A key requirement for dynamically reacting to faults and failures
is to detect abnormal behavior and isolate a�ected system components.”

UC-2.1 R.A.P.M. van den Bleek. Design of a Hybrid Adaptive Cruise Control Stop-&-
Go System [103]:
“This controller can now be applied o�-line enabling fast-sampling MPC for
the adaptive cruise control Stop-&-Go application. For this application, the
sample frequency is 1000 Hz.”

UC-2.2 Intel Corporation. Temperature Grades and Associated Temperature Ranges
[61]: See UC-1.2.

use-case re�irements 115

UC-2.3 B. Motruk et al. Power Monitoring for Mixed-Criticality on a Many-Core Plat-
form [87]:
“Mixed-critical applications on a many-core platform have to be su�ciently
independent to be certi�ed separately. This does not only include indepen-
dence in terms of time and space, but also in terms of power consumption as
the available energy for a many-core system has to be shared by all running
applications. Increased power consumption of one application may reduce
the available energy for other applications or the reliability and lifetime of
the complete chip.”
“A chip’s overall power budget is de�ned at design time based on packaging
and cooling, battery capacity (if applicable), and environmental conditions.
Meeting this budget is especially important for battery-powered devices as
increased power consumption of one application would reduce the avail-
able energy for all other running applications. Moreover, high local power
consumption could lead to hotspots in�uencing neighboring components,
or may reduce the entire chip’s lifetime and reliability.”

UC-2.4 D. Mohr et al. The road to 2020 and beyond: What’s driving the global auto-
motive industry? [81]:
“Key challenge 1: Complexity and cost pressure. There will be more plat-
form sharing and more modular systems. At the same time, regulatory pres-
sures will tighten, and prices in established markets are likely to be �at.”

UC-2.5 B. Akesson et al. Composability and predictability for independent application
development, veri�cation, and execution [1]:
“To reduce cost, platform resources, such as processors, hardware accelera-
tors, interconnect, and memories, are shared between applications. [...] The
second problem is that veri�cation of a use-case cannot begin until all ap-
plications it comprises are available. Timely completion of the veri�cation
process hence depends on the availability of all applications, which may be
developed by di�erent teams inside the company, or by independent soft-
ware vendors. The last problem is that use-case veri�cation becomes a cir-
cular process that must be repeated if an application is added, removed, or
modi�ed.”

UC-2.6 N. Louw. TECH: We test three adaptive cruise control systems [79]:
“Continental manufactures not only tyres, but is one of the main Adap-
tive Cruise Control (ACC) system suppliers, with more than 30 million of
its radar sensors sold to automotive OEMs. We recently chatted to Norbert
Hammerschmidt, Continental’s head of programme management for radar,
about the technology. According to him, because it is una�ected by adverse
weather conditions (including thick fog), the radar sensor is the most com-
mon component used in vehicles �tted with ACC.”

116 use-case re�irements

UC-2.7 G. Georgakos et al. Reliability Challenges for Electric Vehicles: From Devices
to Architecture and Systems Software [40]:
“To make matters worse, the electronics in a car are exposed to harsh con-
ditions, extreme temperature variations, and often, strong electromagnetic
�elds, which further aggravates the reliability problem. Further, the elec-
tronics in subsystems like battery monitoring and management in electric
vehicles are always “on” for the entire lifetime of the car, which is in the
range of 10-15 years and sometimes even more. This makes issues like ag-
ing an important concern.”
“In automotive, IC manufacturers need to guarantee speci�ed functional-
ity for 2-5 years operating time depending on application and temperature
range and up to 15 years in standby mode, and desire them for even longer
time to avoid reputational risks. At the same time, their ICs are sometimes
used in very harsh conditions (e.g. temperatures up to 150°C and for spe-
cial purposes also up to 175°C at reduced life times), and almost continuous
(e.g. taxis being used in multiple shifts; battery management electronics in
electrical vehicles) which ampli�es the aging.”

B Algorithms for fault-tolerant deployment

Algorithm 4 Analysis of the probability on successful re-deployment.
This is an exact copy of Algorithm 4 on page 97, repeated here for convenience.

1: function analyse_re-deployments(mappings.csv, architecture.csv)
2: processors = parse_architecture(architecture.csv)
3: mappings, vp_archs = parse_mappings(mappings.csv)
4: appSets = create_application_sets(mappings)
5: deployments = generate_deployments(processors, vp_archs, mappings,

appSets)
6: return generate_re-deployments(processors, vp_archs, deployments,

mappings)
7: end function

Algorithm 5 Generate a list of all possible deployments for each type of VP archi-
tecture. This function is called in Algorithm 4.

1: function generate_deployments(processors, vp_archs, mappings, appSet)
2: deployments = [][]
3: for vp_arch in vp_archs do

4: deployments.append(vp_arch)
5: for app_set in app_sets do

6: vp_list = []
7: for app in app_set do

8: vp_list.append(app.vps)
9: end for

10: deployment = [processors.length][]
11: deploy_vps(processors, deployments[vp_arch], vp_list, deployment)
12: end for

13: end for

14: return deployments
15: end function

117

118 algorithms for fault-tolerant deployment

Algorithm 6 Calculate the probability of successful re-deployment for each proces-
sor failure, for each type of VP architecture. This function is called in Algorithm 4.

1: function generate_re-deployments(processors, vp_archs, deployments,
mappings)

2: probabilities = [vp_archs.length]
3: for vp_arch in vp_archs do

4: success = 0
5: for deployment in deployments[vp_arch] do

6: for faulty_proc in processors do

7: replacement_vps = get_replacement_vps(deployment[faulty_proc],
mappings)

8: delete deployment[faulty_proc]
9: re-deployments = []

10: deploy_vps(processors - faulty_proc, re-deployments,
replacement_vps, deployment)

11: if not re-deployments.empty then

12: success += 1
13: end if

14: end for

15: end for

16: probabilities[vp_arch] = success / (deployments[vp_arch].length *
processors.length)

17: end for

18: return probabilities
19: end function

algorithms for fault-tolerant deployment 119

Algorithm 7 Recursive function to generate all deployment permutations, avoiding
equivalents. This function is called in Algorithms 5 and 6.

1: function deploy_vps(processors, deployments, vp_list, deployment)
2: if not vp_list.empty then

3: current_type = vp_list[0].procType
4: total_procs = total_procs_of_type(processors, current_type)
5: free_procs = free_procs_of_type(processors, current_type)
6: used_procs = total_procs - free_procs
7: for proc in used_procs + 1 do

8: if su�cient_space_on_proc(proc, vp_list[0]) then

9: new_deployment = deployment.copy()
10: new_vp_list = vp_list.copy
11: new_deployment[proc].append(new_vp_list[0])
12: delete new_vp_list[0]
13: deploy_vps(deployments, new_vp_list, new_deployment)
14: end if

15: end for

16: else

17: deployments.append(deployment)
18: end if

19: end function

Bibliography

[1] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens. Com-
posability and predictability for independent application development, veri�-
cation, and execution. Multi-processor System-on-Chip - Hardware Design and
Tool Integration, Circuits and Systems, pages chapter 2, pages 25–56, November
2010. (Cited on pages 3 and 115.)

[2] B. Akesson, S. Stuijk, A. Molnos, M. Koedam, R. Stefan, A. Nelson, A. B. Nejad,
and K. Goossens. Virtual Platform for Mixed-Time Criticality Applications:
the CoMPSoC Architecture and SDF3 Design Flow. In QVVP, 2012. (Cited on
pages 18, 20, 21, and 59.)

[3] H. Alizadeh Ara, M. Geilen, T. Basten, A. Behrouzian, M. Hendriks, and
D. Goswami. Tight temporal bounds for data�ow applications mapped onto
shared resources. In 2016 11th IEEE Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–8, May 2016. doi: 10.1109/SIES.2016.7509444. (Cited on
pages 9, 25, and 88.)

[4] H. Alizadeh Ara, M. Geilen, A. Behrouzian, and T. Basten. Throughput-
bu�ering trade-o� analysis for scenario-aware data�ow models. In Proceed-
ings of the 26th International Conference on Real-Time Networks and Systems,
RTNS ’18, pages 265–275, New York, NY, USA, 2018. ACM. ISBN 978-1-
4503-6463-8. doi: 10.1145/3273905.3273921. URL h�p://doi.acm.org/10.1145/
3273905.3273921. (Cited on pages 70, 75, and 82.)

[5] Amazon.com, Inc. Best sellers in remote home mon-
itoring systems, 2018. URL h�ps://www.amazon.com/
Best-Sellers-Electronics-Remote-Home-Monitoring-Systems/zgbs/
electronics/7161093011. (Cited on pages 1 and 113.)

[6] S.-H. Attarzadeh-Niaki, E. Altinel, M. Koedam, A. Molnos, I. Sander, and
K. Goossens. A Composable and Predictable MPSoC Design Flow for Multi-
ple Real-Time Applications, pages 157–174. Springer International Publishing,
Cham, 2017. ISBN 978-3-319-47307-9. doi: 10.1007/978-3-319-47307-9_6. URL
h�ps://doi.org/10.1007/978-3-319-47307-9_6. (Cited on page 63.)

[7] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts of depend-
ability. Rapport LAAS 01145, LAAS, Apr 2000. (Cited on pages 5 and 100.)

[8] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling Real-Time Mixed-Criticality Jobs. Com-

121

http://doi.acm.org/10.1145/3273905.3273921
http://doi.acm.org/10.1145/3273905.3273921
https://www.amazon.com/Best-Sellers-Electronics-Remote-Home-Monitoring-Systems/zgbs/electronics/7161093011
https://www.amazon.com/Best-Sellers-Electronics-Remote-Home-Monitoring-Systems/zgbs/electronics/7161093011
https://www.amazon.com/Best-Sellers-Electronics-Remote-Home-Monitoring-Systems/zgbs/electronics/7161093011
https://doi.org/10.1007/978-3-319-47307-9_6

122 bibliography

puters, IEEE Transactions on, 61(8):1140 –1152, aug. 2012. ISSN 0018-9340. doi:
10.1109/TC.2011.142. (Cited on page 9.)

[9] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K. Arzen,
V. Romero, and C. Scordino. Resource management on multicore systems:
The ACTORS approach. Micro, IEEE, 31(3):72–81, May 2011. ISSN 0272-1732.
doi: 10.1109/MM.2011.1. (Cited on page 14.)

[10] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veeravalli. Run-
time mapping for reliable many-cores based on energy/performance trade-
o�s. In 2013 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFTS), pages 58–64, Oct 2013. doi: 10.1109/
DFT.2013.6653583. (Cited on page 101.)

[11] C. Breshears. The Art of Concurrency: A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly Media, Inc., 1st edition, 2009. ISBN 0596521537.
(Cited on page 7.)

[12] D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A. Shrivastava, S. A. Edwards,
and E. A. Lee. Precision timed infrastructure: Design challenges. In In the Pro-
ceedings of the Electronic System Level Synthesis Conference (ESLsyn), Austin,
Texas, USA, May 2013. URL h�p://chess.eecs.berkeley.edu/pubs/993.html.
(Cited on page 63.)

[13] J. T. Buck. Scheduling Dynamic Data�ow Graphs With Bounded Memory Using
The Token Flow Model. PhD thesis, University of California at Berkeley, 1993.
(Cited on page 52.)

[14] E. Carvalho, N. Calazans, and F. Moraes. Heuristics for Dynamic Task Map-
ping in NoC-based Heterogeneous MPSoCs. pages 34 –40, May 2007. doi:
10.1109/RSP.2007.26. (Cited on page 68.)

[15] C. L. Chou and R. Marculescu. FARM: Fault-aware resource management
in NoC-based multiprocessor platforms. In 2011 Design, Automation Test in
Europe, pages 1–6, March 2011. doi: 10.1109/DATE.2011.5763113. (Cited on
page 101.)

[16] Cisco Systems, Inc. Stream manager video surveillance solu-
tions reference network design. Technical report, 2007. URL
h�ps://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Video/
Stream_Manager_Video_Surveillance_SRND.pdf. (Cited on pages 1
and 114.)

[17] Cisco Systems, Inc. Video quality of service (QOS) tutorial, 2017. URL
h�ps://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/
qos-video/212134-Video-�ality-of-Service-QOS-Tutorial.html. (Cited
on pages 1 and 111.)

http://chess.eecs.berkeley.edu/pubs/993.html
https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Video/Stream_Manager_Video_Surveillance_SRND.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Video/Stream_Manager_Video_Surveillance_SRND.pdf
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html

bibliography 123

[18] A. Colon and W. Greenwald. The best home security cameras of 2018, Septem-
ber 2018. URL h�ps://www.pcmag.com/article2/0,2817,2475954,00.asp. (Cited
on pages 1 and 113.)

[19] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. M. Burguière, J. Reineke,
B. Triquet, and R. Wilhelm. Predictability considerations in the design of
multi-core embedded systems. In Proceedings of ERTSS 2010, 2010. (Cited on
page 7.)

[20] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Mod-
eling static-order schedules in synchronous data�ow graphs. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2012, pages 775–780,
March 2012. doi: 10.1109/DATE.2012.6176588. (Cited on pages 30 and 60.)

[21] A. Das and A. Kumar. Fault-aware task re-mapping for throughput con-
strained multimedia applications on NoC-based MPSoCs. In 2012 23rd IEEE
International Symposium on Rapid System Prototyping (RSP), pages 149–155,
Oct 2012. doi: 10.1109/RSP.2012.6380704. (Cited on page 101.)

[22] A. Das, A. Kumar, and B. Veeravalli. Reliability-driven task mapping for life-
time extension of Networks-on-Chip based multiprocessor systems. In 2013
Design, Automation Test in Europe Conference Exhibition (DATE), pages 689–
694, March 2013. doi: 10.7873/DATE.2013.149. (Cited on page 101.)

[23] A. Das, A. Kumar, and B. Veeravalli. Temperature aware energy-reliability
trade-o�s for mapping of throughput-constrained applications on multime-
dia mpsocs. In 2014 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pages 1–6, March 2014. doi: 10.7873/DATE.2014.115. (Cited on
pages 101 and 107.)

[24] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele. Combined DVFS
and mapping exploration for lifetime and soft-error susceptibility improve-
ment in MPSoCs. In 2014 Design, Automation Test in Europe Conference Exhi-
bition (DATE), pages 1–6, March 2014. doi: 10.7873/DATE.2014.074. (Cited on
page 101.)

[25] A. Das, R. A. Sha�k, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B. Veer-
avalli. Reinforcement learning-based inter- and intra-application thermal
optimization for lifetime improvement of multicore systems. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2014.
doi: 10.1145/2593069.2593199. (Cited on page 101.)

[26] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle al-
gorithms for system-performance analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(10):889–899, Oct 1998. ISSN
0278-0070. doi: 10.1109/43.728912. (Cited on page 25.)

https://www.pcmag.com/article2/0,2817,2475954,00.asp

124 bibliography

[27] J. R. Delaney. The best medical alert systems of 2018, September 2018. URL
h�ps://www.pcmag.com/article/356981/the-best-medical-alert-systems.
(Cited on pages 1 and 112.)

[28] O. Derin, D. Kabakci, and L. Fiorin. Online task remapping strategies for
fault-tolerant Network-on-Chip multiprocessors. In Proceedings of the Fifth
ACM/IEEE International Symposium, pages 129–136, May 2011. doi: 10.1145/
1999946.1999967. (Cited on page 101.)

[29] P. I. Diallo, S. Attarzadeh-Niaki, F. Robino, I. Sander, J. Champeau, and
J. Oberg. A formal, model-driven design �ow for system simulation and multi-
core implementation. In 10th IEEE International Symposium on Industrial Em-
bedded Systems (SIES), pages 1–10, June 2015. doi: 10.1109/SIES.2015.7185067.
(Cited on page 63.)

[30] A. Doblander, A. Maier, B. Rinner, and H. Schwabach. Improving fault-
tolerance in intelligent video surveillance by monitoring, diagnosis and dy-
namic recon�guration. In Third International Workshop on Intelligent Solutions
in Embedded Systems, 2005., pages 194–201, May 2005. doi: 10.1109/WISES.
2005.1438728. (Cited on pages 2 and 114.)

[31] E. Dubrova. Fault Tolerant Design. Springer, 2013. (Cited on pages 5, 10, 89,
90, and 100.)

[32] S. Edwards and E. Lee. The case for the precision timed (PRET) machine. In
Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 264–265,
June 2007. (Cited on page 63.)

[33] J. Eker and J. W. Janneck. CAL language report: Speci�cation of the CAL actor
language. Technical report, University of California at Berkeley, 2003. (Cited
on page 63.)

[34] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis.
PhD thesis, Uppsala University, 2002. (Cited on page 7.)

[35] M. Fernández. Models of Computation. Springer, 2009. (Cited on page 6.)

[36] M. Geilen. Synchronous data�ow scenarios. ACM Trans. Embed. Comput.
Syst., 10(2):16:1–16:31, Jan. 2011. ISSN 1539-9087. doi: 10.1145/1880050.
1880052. URL h�p://doi.acm.org/10.1145/1880050.1880052. (Cited on pages 25
and 48.)

[37] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous
data�ow scenarios. In Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS
’10, pages 125–134, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-905-
3. doi: 10.1145/1878961.1878985. URL h�p://doi.acm.org/10.1145/1878961.
1878985. (Cited on pages 25, 26, and 69.)

https://www.pcmag.com/article/356981/the-best-medical-alert-systems
http://doi.acm.org/10.1145/1880050.1880052
http://doi.acm.org/10.1145/1878961.1878985
http://doi.acm.org/10.1145/1878961.1878985

bibliography 125

[38] M. Geilen, S. Stuijk, and T. Basten. Predictable dynamic embedded data proc-
essing. In Embedded Computer Systems (SAMOS), 2012 International Confer-
ence on, pages 320–327, July 2012. doi: 10.1109/SAMOS.2012.6404194. (Cited
on page 21.)

[39] M. Geilen, M. Skelin, R. van Kampenhout, H. Alizadeh Ara, T. Basten, S. Stuijk,
and K. Goossens. System Scenario-based Design Principles and Applications,
chapter Scenarios in Data�ow Modelling and Analysis. Springer, 2019. ISBN
978-3-030-20342-9.

[40] G. Georgakos, U. Schlichtmann, R. Schneider, and S. Chakraborty. Reliability
challenges for electric vehicles: From devices to architecture and systems soft-
ware. In Proceedings of the 50th Annual Design Automation Conference, DAC
’13, pages 98:1–98:9, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2071-
9. doi: 10.1145/2463209.2488855. URL h�p://doi.acm.org/10.1145/2463209.
2488855. (Cited on pages 4 and 116.)

[41] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. J. G. Bekooij. Throughput analysis of
synchronous data �ow graphs. In Sixth International Conference on Applica-
tion of Concurrency to System Design (ACSD’06), pages 25–36, June 2006. doi:
10.1109/ACSD.2006.33. (Cited on page 25.)

[42] S. V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Automatic scenario
detection for improved WCET estimation. In Proceedings of the 42Nd Annual
Design Automation Conference, DAC ’05, pages 101–104, New York, NY, USA,
2005. ACM. ISBN 1-59593-058-2. doi: 10.1145/1065579.1065610. URL h�p:
//doi.acm.org/10.1145/1065579.1065610. (Cited on page 26.)

[43] M. D. Gomony. Scalable and bandwidth-e�cient memory subsystem design
for real-time systems. PhD thesis, Eindhoven University of Technology, 2015.
(Cited on page 61.)

[44] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, and S. Sinha.
Virtual Execution Platforms for Mixed-time-criticality Systems: The Comp-
SOC Architecture and Design Flow. SIGBED Rev., 10(3):23–34, Oct. 2013. ISSN
1551-3688. doi: 10.1145/2544350.2544353. URL h�p://doi.acm.org/10.1145/
2544350.2544353. (Cited on pages 21 and 33.)

[45] K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li, G. Brea-
ban, R. van Kampenhout, R. Tavakoli Najafabadi, J. Valencia, H. Ahmadi Balef,
B. Akesson, S. Stuijk, M. Geilen, D. Goswami, and M. Nabi Najafabadi. Hand-
book of hardware/software codesign, chapter NoC-based multiprocessor archi-
tecture for mixed-time-criticality applications, pages 491– 530. Springer, 11
2017. ISBN 978-94-017-7266-2. (Cited on pages 6, 7, 11, 12, 18, 21, 30, 32, 33,
61, 68, and 100.)

http://doi.acm.org/10.1145/2463209.2488855
http://doi.acm.org/10.1145/2463209.2488855
http://doi.acm.org/10.1145/1065579.1065610
http://doi.acm.org/10.1145/1065579.1065610
http://doi.acm.org/10.1145/2544350.2544353
http://doi.acm.org/10.1145/2544350.2544353

126 bibliography

[46] S. Goossens, B. Akesson, M. Koedam, A. B. Nejad, A. Nelson, and K. Goossens.
The CompSOC design �ow for virtual execution platforms. In Proceedings of
the 10th FPGAworld Conference, FPGAworld ’13, pages 7:1–7:6, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2496-0. doi: 10.1145/2513683.2513690. URL
h�p://doi.acm.org/10.1145/2513683.2513690. (Cited on page 21.)

[47] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens. Memory Con-
trollers for Mixed-Time-Criticality Systems. Springer, 2016. (Cited on pages 59
and 61.)

[48] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template
for composable and predictable multi-processor system on chips. ACM Trans.
Des. Autom. Electron. Syst., 14(1):2:1–2:24, Jan. 2009. ISSN 1084-4309. doi:
10.1145/1455229.1455231. URL h�p://doi.acm.org/10.1145/1455229.1455231.
(Cited on pages 21 and 33.)

[49] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling
application-level performance guarantees in network-based systems on chip
by applying data�ow analysis. IET Computers Digital Techniques, 3(5):398–
412, Sep. 2009. ISSN 1751-8601. doi: 10.1049/iet-cdt.2008.0093. (Cited on
page 59.)

[50] A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic, A. Nelson, J. Am-
brose, and K. Goossens. Design and implementation of an operating sys-
tem for composable processor sharing. Microprocessors and Microsystems,
35(2):246 – 260, 2011. ISSN 0141-9331. doi: http://dx.doi.org/10.1016/j.
micpro.2010.08.008. URL h�p://www.sciencedirect.com/science/article/pii/
S0141933110000608. Special issue on Network-on-Chip Architectures and De-
sign Methodologies. (Cited on pages 32 and 33.)

[51] S. K. S. Hari, M. L. Li, P. Ramachandran, B. Choi, and S. V. Adve. mSWAT:
Low-cost hardware fault detection and diagnosis for multicore systems. In
2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 122–132, Dec 2009. (Cited on page 90.)

[52] G. Heiser. The role of virtualization in embedded systems. In IIES ’08: Pro-
ceedings of the 1st workshop on Isolation and integration in embedded systems,
pages 11–16, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-126-2. doi:
http://doi.acm.org/10.1145/1435458.1435461. (Cited on page 32.)

[53] J. Henkel, S. Pagani, H. Khdr, F. Kriebel, S. Rehman, and M. Sha�que. Towards
performance and reliability-e�cient computing in the dark silicon era. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–6,
March 2016. (Cited on pages 5 and 85.)

[54] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: a time-triggered language
for embedded programming. Proceedings of the IEEE, 91(1):84–99, Jan 2003.
ISSN 0018-9219. doi: 10.1109/JPROC.2002.805825. (Cited on pages 7 and 63.)

http://doi.acm.org/10.1145/2513683.2513690
http://doi.acm.org/10.1145/1455229.1455231
http://www.sciencedirect.com/science/article/pii/S0141933110000608
http://www.sciencedirect.com/science/article/pii/S0141933110000608

bibliography 127

[55] T. A. Henzinger and J. Sifakis. M 2006: Formal Methods, chapter The Embed-
ded Systems Design Challenge, pages 1–15. Springer Berlin Heidelberg, 2006.
(Cited on page 7.)

[56] R. Hilbrich and J. R. van Kampenhout. Dynamic recon�guration in NoC-
based MPSoCs in the avionics domain. In IWMSE ’10: Proceedings of the 3rd
International Workshop on Multicore Software Engineering, pages 56–57, New
York, NY, USA, 2010. ACM.

[57] R. Hilbrich and J. R. van Kampenhout. Partitioning and Task Transfer on
NoC-based Many-Core Processors in the Avionics Domain. In 4. Workshop:
Entwicklung zuverlässiger Software-Systeme (Stuttgart, Deutschland) and Jour-
nal �Softwaretechniktrends�, 2011.

[58] R. Hilbrich, J. R. van Kampenhout, M. Daun, D. T. Weyer, and D. Sojer. Model-
Based Engineering of Embedded Systems: The SPES 2020 Methodology, chapter
Modeling Quality Aspects: Real-Time, pages 119–128. Springer, 2012. ISBN
978-3-642-34614-9.

[59] R. Hilbrich, J. R. van Kampenhout, and H.-J. Goltz. Modellbasierte gener-
ierung statischer schedules fuer sicherheitskritische, eingebettete systeme mit
multicore-prozessoren und harten echtzeitanforderungen. In Herausforderun-
gen durch Echtzeitbetrieb, Informatik aktuell, pages 29–38. Springer, 2012.

[60] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M. Smit. Run-time spa-
tial mapping of streaming applications to a heterogeneous multi-processor
system-on-chip (MPSoC). In DATE ’08: Proceedings of the conference on Design,
automation and test in Europe, pages 212–217, New York, NY, USA, 2008. ACM.
ISBN 978-3-9810801-3-1. doi: http://doi.acm.org/10.1145/1403375.1403427.
(Cited on page 68.)

[61] Intel Corporation. Temperature grades and associated temperature
ranges, 2018. URL h�ps://www.intel.com/content/www/us/en/products/
programmable/temperature.html. (Cited on pages 1, 3, 112, and 114.)

[62] R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal. An auto-
mated �ow to map throughput constrained applications to a MPSoC. In
P. Lucas, L. Thiele, B. Triquet, T. Ungerer, and R. Wilhelm, editors, Bringing
Theory to Practice: Predictability and Performance in Embedded Systems, vol-
ume 18 of OpenAccess Series in Informatics (OASIcs), pages 47–58, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-939897-28-6. doi: http://dx.doi.org/10.4230/OASIcs.PPES.2011.47. URL
h�p://drops.dagstuhl.de/opus/volltexte/2011/3081. (Cited on page 21.)

[63] G. Kahn. The semantics of a simple language for parallel programming. In-
formation processing, 74:471–475, 1974. (Cited on page 18.)

https://www.intel.com/content/www/us/en/products/programmable/temperature.html
https://www.intel.com/content/www/us/en/products/programmable/temperature.html
http://drops.dagstuhl.de/opus/volltexte/2011/3081

128 bibliography

[64] U. Kanade. Performance of work conserving schedulers and scheduling of
some synchronous data�ow graphs. In Proceedings. Tenth International Con-
ference on Parallel and Distributed Systems, 2004. ICPADS 2004., pages 521–529,
July 2004. doi: 10.1109/ICPADS.2004.1316134. (Cited on page 25.)

[65] S.-h. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha, and L. Thiele. Static map-
ping of mixed-critical applications for fault-tolerant MPSoCs. In Proceed-
ings of the 51st Annual Design Automation Conference, DAC ’14, pages 31:1–
31:6, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2730-5. doi: 10.1145/
2593069.2593221. URL h�p://doi.acm.org/10.1145/2593069.2593221. (Cited on
pages 68, 90, and 102.)

[66] J.-P. Katoen and H. Wu. Probabilistic model checking for uncertain scenario-
aware data �ow. ACM Trans. Des. Autom. Electron. Syst., 22(1):15:1–15:27, Sept.
2016. ISSN 1084-4309. doi: 10.1145/2914788. URL h�p://doi.acm.org/10.1145/
2914788. (Cited on page 25.)

[67] P. N. Khanh, A. K. Singh, A. Kumar, and K. M. M. Aung. Incorporating energy
and throughput awareness in design space exploration and run-time map-
ping for heterogeneous MPSoCs. In 2013 Euromicro Conference on Digital Sys-
tem Design, pages 513–521, Sep. 2013. doi: 10.1109/DSD.2013.61. (Cited on
page 82.)

[68] H. Kopetz. Real-Time Systems. Springer US, 2011. (Cited on pages 6, 25,
and 63.)

[69] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of
the IEEE, 91(1):112–126, Jan 2003. ISSN 0018-9219. doi: 10.1109/JPROC.2002.
805821. (Cited on page 63.)

[70] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits. Com-
posability in the time-triggered System-on-Chip architecture. In SOC Confer-
ence, 2008 IEEE International, pages 87–90, Sept 2008. doi: 10.1109/SOCC.2008.
4641485. (Cited on page 63.)

[71] M. Krstic, E. Grass, F. K. Gürkaynak, and P. Vivet. Globally asynchronous,
locally synchronous circuits: Overview and outlook. IEEE Design Test of Com-
puters, 24(5):430–441, Sept 2007. ISSN 0740-7475. doi: 10.1109/MDT.2007.164.
(Cited on pages 29 and 70.)

[72] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal. Multiprocessor
systems synthesis for multiple use-cases of multiple applications on FPGA.
ACM Trans. Des. Autom. Electron. Syst., 13(3):40:1–40:27, July 2008. ISSN 1084-
4309. doi: 10.1145/1367045.1367049. URL h�p://doi.acm.org/10.1145/1367045.
1367049. (Cited on page 64.)

http://doi.acm.org/10.1145/2593069.2593221
http://doi.acm.org/10.1145/2914788
http://doi.acm.org/10.1145/2914788
http://doi.acm.org/10.1145/1367045.1367049
http://doi.acm.org/10.1145/1367045.1367049

bibliography 129

[73] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and S. Ha. A task remapping
technique for reliable multi-core embedded systems. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, CODES/ISSS ’10, pages 307–316, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-905-3. doi: 10.1145/1878961.1879014. URL
h�p://doi.acm.org/10.1145/1878961.1879014. (Cited on pages 68 and 101.)

[74] E. Lee and D. Messerschmitt. Static scheduling of synchronous data �ow pro-
grams for digital signal processing. Computers, IEEE Transactions on, C-36(1):
24–35, Jan 1987. ISSN 0018-9340. doi: 10.1109/TC.1987.5009446. (Cited on
pages 6 and 24.)

[75] A. Lele, O. Moreira, and P. J. Cuijpers. A new data �ow analysis model for
TDM. In Proceedings of the Tenth ACM International Conference on Embedded
Software, EMSOFT ’12, pages 237–246, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1425-1. doi: 10.1145/2380356.2380399. URL h�p://doi.acm.org/10.
1145/2380356.2380399. (Cited on pages 25 and 70.)

[76] A. Lele, O. Moreira, K. Butala, P. J. L. Cuijpers, and K. v. Berkel. Cyclo-static
data �ow model for TDM. In 2014 14th International Conference on Application
of Concurrency to System Design, pages 82–91, June 2014. doi: 10.1109/ACSD.
2014.17. (Cited on page 25.)

[77] A. Lele, O. Moreira, and K. van Berkel. FP-scheduling for mode-controlled
data�ow: A case study. In 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1257–1260, March 2015. doi: 10.7873/DATE.2015.
0938. (Cited on page 65.)

[78] A. Lele, O. Moreira, P. J. Cuijpers, and K. van Berkel. Response modeling
runtime schedulers for timing analysis of self-timed data�ow graphs. Journal
of Systems Architecture, 65:15 – 29, 2016. ISSN 1383-7621. doi: https://doi.
org/10.1016/j.sysarc.2016.02.003. URL h�p://www.sciencedirect.com/science/
article/pii/S1383762116000242. (Cited on page 70.)

[79] N. Louw. TECH: We test three adaptive cruise control sys-
tems, May 2018. URL h�p://www.carmag.co.za/technical/
tech-we-test-three-adaptive-cruise-control-systems/. (Cited on pages 4
and 115.)

[80] A. Merkel and F. Bellosa. Balancing power consumption in multiprocessor
systems. In EuroSys ’06: Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, pages 403–414, New York, NY, USA,
2006. ACM. ISBN 1-59593-322-0. doi: http://doi.acm.org/10.1145/1217935.
1217974. (Cited on page 5.)

[81] D. Mohr, N. Mueller, A. Krieg, P. Gao, H.-W. Kaas, A. Krieger, and R. Hensley.
The road to 2020 and beyond: What’s driving the global automotive industry?
Technical report, 2013. (Cited on pages 3 and 115.)

http://doi.acm.org/10.1145/1878961.1879014
http://doi.acm.org/10.1145/2380356.2380399
http://doi.acm.org/10.1145/2380356.2380399
http://www.sciencedirect.com/science/article/pii/S1383762116000242
http://www.sciencedirect.com/science/article/pii/S1383762116000242
http://www.carmag.co.za/technical/tech-we-test-three-adaptive-cruise-control-systems/
http://www.carmag.co.za/technical/tech-we-test-three-adaptive-cruise-control-systems/

130 bibliography

[82] O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time ap-
plications. EURASIP Journal on Advances in Signal Processing, 2007(1), 2007.
ISSN 1687-6180. doi: 10.1155/2007/83710. URL h�p://asp.eurasipjournals.
com/content/2007/1/083710. (Cited on pages 14 and 68.)

[83] O. Moreira and H. Corporaal. Scheduling Real-Time Streaming Applications
onto an Embedded Multiprocessor. Springer, 2014. (Cited on pages 9, 25, 39, 64,
65, and 82.)

[84] O. Moreira, J. D. Mol, M. Bekooij, and J. van Meerbergen. Multiprocessor
resource allocation for hard-real-time streaming with a dynamic job-mix. In
11th IEEE Real Time and Embedded Technology and Applications Symposium,
pages 332–341, March 2005. doi: 10.1109/RTAS.2005.33. (Cited on page 102.)

[85] O. Moreira, J. J.-D. Mol, and M. Bekooij. Online resource management in a
multiprocessor with a Network-on-Chip. In SAC ’07: Proceedings of the 2007
ACM symposium on Applied computing, pages 1557–1564, New York, NY, USA,
2007. ACM. ISBN 1-59593-480-4. doi: http://doi.acm.org/10.1145/1244002.
1244335. (Cited on pages 14, 82, 87, and 102.)

[86] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent
hard-real-time jobs on a heterogeneous multiprocessor. In Proceedings of the
7th ACM & IEEE international conference on Embedded software, EMSOFT ’07,
pages 57–66, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-825-1. doi:
10.1145/1289927.1289941. URL h�p://doi.acm.org/10.1145/1289927.1289941.
(Cited on pages 18 and 20.)

[87] B. Motruk, J. Diemer, R. Buchty, and M. Berekovic. Power monitoring for
mixed-criticality on a many-core platform. In H. Kubátová, C. Hochberger,
M. Daněk, and B. Sick, editors, Architecture of Computing Systems ARCS, pages
13–24, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-
36424-2. (Cited on pages 3 and 115.)

[88] H. Mushtaq, Z. Al-Ars, and K. Bertels. Survey of fault tolerance techniques for
shared memory multicore/multiprocessor systems. In IDT 2011, 2011. (Cited
on pages 5 and 100.)

[89] A. B. Nejad. Composable Virtual Platforms for Mixed-Criticality Embedded Sys-
tems. PhD thesis, Delft University of Technology, 2014. (Cited on pages 18,
31, 33, and 63.)

[90] A. B. Nejad, A. Molnos, and K. Goossens. A uni�ed execution model for
data-driven applications on a composable MPSoC. In Proceedings of the 2011
14th Euromicro Conference on Digital System Design, DSD ’11, pages 818–822,
Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4494-6.
doi: 10.1109/DSD.2011.110. URL h�p://dx.doi.org/10.1109/DSD.2011.110.

http://asp.eurasipjournals.com/content/2007/1/083710
http://asp.eurasipjournals.com/content/2007/1/083710
http://doi.acm.org/10.1145/1289927.1289941
http://dx.doi.org/10.1109/DSD.2011.110

bibliography 131

[91] A. B. Nejad, A. Molnos, and K. Goossens. A uni�ed execution model for mul-
tiple computation models of streaming applications on a composable MPSoC.
In Elsevier Journal of Systems Architecture, 2013. (Cited on pages 31 and 33.)

[92] A. Nelson. Composable and Predictable Power Management. PhD thesis, Delft
University of Technology, 2014. (Cited on pages 16, 30, 32, 33, 59, 60, 63, 70,
and 107.)

[93] A. Nelson, A. B. Nejad, A. Molnos, M. Koedam, and K. Goossens. CoMik:
A Predictable and Cycle-Accurately Composable Real-Time Microkernel. In
Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014. (Cited on pages 16, 30, and 32.)

[94] A. Nelson, K. Goossens, and B. Akesson. Data�ow formalisation of real-
time streaming applications on a composable and predictable multi-processor
SOC. J. Syst. Archit., 61(9):435–448, Oct. 2015. ISSN 1383-7621. doi: 10.1016/j.
sysarc.2015.04.001. URL h�p://dx.doi.org/10.1016/j.sysarc.2015.04.001. (Cited
on pages 30, 31, 59, and 60.)

[95] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá, K. Goossens,
R. Peset Llopis, and P. Lippens. C-HEAP: A heterogeneous multi-processor
architecture template and scalable and �exible protocol for the design of em-
bedded signal processing systems. Design Automation for Embedded Systems,
7(3):233–270, Oct 2002. ISSN 1572-8080. doi: 10.1023/A:1019782306621. URL
h�ps://doi.org/10.1023/A:1019782306621. (Cited on page 33.)

[96] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-
sulescu, and E. Deprettere. Daedalus: Toward composable multimedia MP-
SoC design. In 2008 45th ACM/IEEE Design Automation Conference, pages
574–579, June 2008. doi: 10.1145/1391469.1391615. (Cited on page 63.)

[97] L. Osinski, T. Langer, and J. Mottok. A survey of fault tolerance approaches on
di�erent architecture levels. In ARCS 2017; 30th International Conference on
Architecture of Computing Systems, pages 1–9, April 2017. (Cited on page 100.)

[98] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to ex-
ploring embedded system architectures at multiple abstraction levels. IEEE
Transactions on Computers, 55(2):99–112, Feb 2006. ISSN 0018-9340. doi:
10.1109/TC.2006.16. (Cited on page 19.)

[99] R. Pop and S. Kumar. A Survey of Techniques for Mapping and Scheduling
Applications to Network on Chip Systems. Technical Report ISSN 1404 –
0018, Embedded Systems Group, Department of Electronics and Computer
Engineering, Jönköping University, 2004. (Cited on page 7.)

[100] W. Quan and A. D. Pimentel. A scenario-based run-time task mapping algo-
rithm for MPSoCs. In DAC. ACM, 2013. ISBN 978-1-4503-2071-9. (Cited on
page 101.)

http://dx.doi.org/10.1016/j.sysarc.2015.04.001
https://doi.org/10.1023/A:1019782306621

132 bibliography

[101] W. Quan and A. D. Pimentel. A hybrid task mapping algorithm for hetero-
geneous MPSoCs. ACM Trans. Embed. Comput. Syst., 14(1):14:1–14:25, Jan.
2015. ISSN 1539-9087. doi: 10.1145/2680542. URL h�p://doi.acm.org/10.1145/
2680542. (Cited on pages 18 and 19.)

[102] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch, and
H. Tenhunen. Reliability-aware runtime power management for many-core
systems in the dark silicon era. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 25(2):427–440, Feb 2017. ISSN 1063-8210. doi:
10.1109/TVLSI.2016.2591798. (Cited on pages 5 and 85.)

[103] R.A.P.M. van den Bleek. Design of a hybrid adaptive cruise control Stop-&-Go
system. Master’s thesis, Eindhoven University of Technology, 2007. (Cited on
pages 3 and 114.)

[104] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and D. I.
August. Design and evaluation of hybrid fault-detection systems. In 32nd
International Symposium on Computer Architecture (ISCA’05), pages 148–159,
June 2005. doi: 10.1109/ISCA.2005.21. (Cited on page 90.)

[105] S. S. Sahoo, A. Kumar, and B. Veeravalli. Design and evaluation of reliability-
oriented task re-mapping in MPSoCs using time-series analysis of intermit-
tent faults. In 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 798–803, March 2016. (Cited on page 101.)

[106] H. Salunkhe, O. Moreira, and K. van Berkel. Mode-controlled data�ow based
modeling and analysis of a 4G-LTE receiver. In 2014 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1–4, March 2014. doi: 10.7873/
DATE.2014.225. (Cited on pages 64 and 65.)

[107] H. Salunkhe, O. Moreira, and K. van Berkel. Bu�er allocation for real-time
streaming on a multi-processor without back-pressure. In 2014 IEEE 12th
Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia), pages
20–29, Oct 2014. doi: 10.1109/ESTIMedia.2014.6962342. (Cited on page 75.)

[108] H. Salunkhe, O. Moreira, and K. van Berkel. Modeling & analysis of an LTE-
advanced receiver using mode-controlled data�ow. Microprocess. Microsyst.,
47(PA):216–230, Nov. 2016. ISSN 0141-9331. doi: 10.1016/j.micpro.2016.09.013.
URL h�ps://doi.org/10.1016/j.micpro.2016.09.013. (Cited on pages 65 and 75.)

[109] H. L. Salunkhe. Modeling and Bu�er Analysis of Real-time Streaming Radio Ap-
plications Scheduled on Heterogeneous Multiprocessors. PhD thesis, Eindhoven
University of Technology, 2017. (Cited on page 82.)

[110] I. Sander. System Modeling and Design Re�nement in ForSyDe. PhD thesis,
KTH Royal Institute of Technology, 2003. (Cited on page 63.)

http://doi.acm.org/10.1145/2680542
http://doi.acm.org/10.1145/2680542
https://doi.org/10.1016/j.micpro.2016.09.013

bibliography 133

[111] I. Sander, A. Jantsch, and S.-H. Attarzadeh-Niaki. ForSyDe: System De-
sign Using a Functional Language and Models of Computation, pages 99–140.
Springer Netherlands, Dordrecht, 2017. ISBN 978-94-017-7267-9. doi: 10.
1007/978-94-017-7267-9_5. URL h�ps://doi.org/10.1007/978-94-017-7267-9_
5. (Cited on page 6.)

[112] G. Scheithauer. Introduction to Cutting and Packing Optimization. Springer,
2017. (Cited on pages 14, 87, and 89.)

[113] L. Schor. Programming Framework for Reliable and E�cient Embedded Many-
Core Systems. PhD thesis, ETH Zurich, 2014. (Cited on page 18.)

[114] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele. Scenario-
based design �ow for mapping streaming applications onto on-chip many-
core systems. In Proceedings of the 2012 International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems, CASES ’12, pages
71–80, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1424-4. doi:
10.1145/2380403.2380422. URL h�p://doi.acm.org/10.1145/2380403.2380422.
(Cited on pages 18, 68, and 101.)

[115] A. K. Singh, W. Jigang, A. Kumar, and T. Srikanthan. Run-time mapping
of multiple communicating tasks on MPSoC platforms. Procedia Computer
Science, 1(1):1019 – 1026, 2010. ISSN 1877-0509. doi: https://doi.org/10.
1016/j.procs.2010.04.113. URL h�p://www.sciencedirect.com/science/article/
pii/S1877050910001146. ICCS 2010. (Cited on page 102.)

[116] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang. Communication-aware
heuristics for run-time task mapping on NoC-based MPSoC platforms. Jour-
nal of Systems Architecture, 56(7):242 – 255, 2010. ISSN 1383-7621. doi:
https://doi.org/10.1016/j.sysarc.2010.04.007. URL h�p://www.sciencedirect.
com/science/article/pii/S1383762110000330. Special Issue on HW/SW Co-
Design: Systems and Networks on Chip. (Cited on page 102.)

[117] A. K. Singh, A. Kumar, and T. Srikanthan. A hybrid strategy for mapping
multiple throughput-constrained applications on MPSoCs. In 2011 Proceedings
of the 14th International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), pages 175–184, Oct 2011. doi: 10.1145/2038698.
2038726. (Cited on page 68.)

[118] A. K. Singh, A. Kumar, and T. Srikanthan. A hybrid strategy for mapping
multiple throughput-constrained applications on MPSoCs. In Proceedings
of the 14th International Conference on Compilers, Architectures and Synthe-
sis for Embedded Systems, CASES ’11, pages 175–184, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0713-0. doi: 10.1145/2038698.2038726. URL
h�p://doi.acm.org/10.1145/2038698.2038726.

https://doi.org/10.1007/978-94-017-7267-9_5
https://doi.org/10.1007/978-94-017-7267-9_5
http://doi.acm.org/10.1145/2380403.2380422
http://www.sciencedirect.com/science/article/pii/S1877050910001146
http://www.sciencedirect.com/science/article/pii/S1877050910001146
http://www.sciencedirect.com/science/article/pii/S1383762110000330
http://www.sciencedirect.com/science/article/pii/S1383762110000330
http://doi.acm.org/10.1145/2038698.2038726

134 bibliography

[119] A. K. Singh, A. Kumar, and T. Srikanthan. Accelerating throughput-aware
runtime mapping for heterogeneous MPSoCs. ACM Trans. Des. Autom. Elec-
tron. Syst., 18(1):9:1–9:29, Jan. 2013. ISSN 1084-4309. doi: 10.1145/2390191.
2390200. URL h�p://doi.acm.org/10.1145/2390191.2390200. (Cited on page 68.)

[120] A. K. Singh, M. Sha�que, A. Kumar, and J. Henkel. Mapping on multi/many-
core systems: Survey of current and emerging trends. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–10, May 2013.
doi: 10.1145/2463209.2488734. (Cited on pages 7, 68, and 100.)

[121] S. Sinha, M. Koedam, R. Van Wijk, A. Nelson, A. Nejad, M. Geilen, and
K. Goossens. Composable and predictable dynamic loading for time-critical
partitioned systems. In Digital System Design (DSD), 2014 17th Euromicro Con-
ference on, pages 285–292, Aug 2014. doi: 10.1109/DSD.2014.40. (Cited on
pages 24, 32, and 89.)

[122] F. Siyoum. Worst-case Temporal Analysis of Dynamic Streaming Applications.
PhD thesis, Eindhoven University of Technology, 2014. (Cited on page 64.)

[123] F. Siyoum, M. Geilen, O. Moreira, and H. Corporaal. Worst-case throughput
analysis of real-time dynamic streaming applications. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, CODES+ISSS ’12, pages 463–472, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1426-8. doi: 10.1145/2380445.2380517. URL
h�p://doi.acm.org/10.1145/2380445.2380517. (Cited on pages 25 and 45.)

[124] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementa-
tion. ACM Trans. Archit. Code Optim., 1(1):94–125, Mar. 2004. ISSN 1544-3566.
doi: 10.1145/980152.980157. URL h�p://doi.acm.org/10.1145/980152.980157.
(Cited on pages 5 and 101.)

[125] L. T. Smit, G. J. Smit, J. L. Hurink, H. Broersma, D. Paulusma, and P. T.
Wolkotte. Run-time assignment of tasks to multiple heterogeneous proces-
sors. In 5TH PROGRESS Symposium on Embedded Systems, pages 185–192.
STW Technology Foundation, 2004. URL h�p://doc.utwente.nl/49442/. (Cited
on pages 14 and 102.)

[126] S. M. Smith and J. M. Brady. SUSAN—a new approach to low level image
processing. International Journal of Computer Vision, 23(1):45–78, 1997. ISSN
1573-1405. doi: 10.1023/A:1007963824710. URL h�p://dx.doi.org/10.1023/A:
1007963824710. (Cited on page 61.)

[127] L. Snidaro, I. Visentini, and G. L. Foresti. Fusing multiple video sensors for
surveillance. ACM Trans. Multimedia Comput. Commun. Appl., 8(1):7:1–7:18,
Feb. 2012. ISSN 1551-6857. doi: 10.1145/2071396.2071403. URL h�p://doi.acm.
org/10.1145/2071396.2071403. (Cited on pages 1 and 111.)

http://doi.acm.org/10.1145/2390191.2390200
http://doi.acm.org/10.1145/2380445.2380517
http://doi.acm.org/10.1145/980152.980157
http://doc.utwente.nl/49442/
http://dx.doi.org/10.1023/A:1007963824710
http://dx.doi.org/10.1023/A:1007963824710
http://doi.acm.org/10.1145/2071396.2071403
http://doi.acm.org/10.1145/2071396.2071403

bibliography 135

[128] R. Stefan. Resource allocation in time-division-multiplexed Networks-onChip.
PhD thesis, Delft University of Technology, 2012. (Cited on page 7.)

[129] R. Stefan, A. B. Nejad, and K. Goossens. Online allocation for contention-free-
routing NoCs. In Proceedings of the 2012 Interconnection Network Architecture:
On-Chip, Multi-Chip Workshop, INA-OCMC ’12, pages 13–16, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1010-9. doi: 10.1145/2107763.2107767. URL
h�p://doi.acm.org/10.1145/2107763.2107767. (Cited on page 7.)

[130] T. Stefanov, A. Pimentel, and H. Nikolov. Daedalus: System-Level De-
sign Methodology for Streaming Multiprocessor Embedded Systems on Chips.
Springer International Publishing, 2017. (Cited on page 63.)

[131] S. Stuijk. Predictable Mapping of Streaming Applications on Multiprocessors.
PhD thesis, Eindhoven University of Technology, 2007. (Cited on pages 11,
18, 21, 28, 59, and 70.)

[132] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-o�s in bu�er require-
ments and throughput constraints for synchronous data�ow graphs. In Pro-
ceedings of the 43rd Annual Design Automation Conference, DAC ’06, pages
899–904, New York, NY, USA, 2006. ACM. ISBN 1-59593-381-6. doi: 10.1145/
1146909.1147138. URL h�p://doi.acm.org/10.1145/1146909.1147138. (Cited on
pages 16, 25, 75, and 82.)

[133] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In Application of Con-
currency to System Design, 6th International Conference, ACSD 2006, Proceed-
ings, pages 276–278. IEEE Computer Society Press, Los Alamitos, CA, USA,
June 2006. doi: 10.1109/ACSD.2006.23. URL h�p://www.es.ele.tue.nl/sdf3.
(Cited on page 21.)

[134] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor re-
source allocation for throughput-constrained synchronous data�ow graphs.
In Proceedings of the 44th Annual Design Automation Conference, DAC ’07,
pages 777–782, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-627-1. doi:
10.1145/1278480.1278674. URL h�p://doi.acm.org/10.1145/1278480.1278674.
(Cited on pages 21 and 59.)

[135] S. Stuijk, M. Geilen, and T. Basten. Throughput-bu�ering trade-o� exploration
for cyclo-static and synchronous data�ow graphs. IEEE Transactions on Com-
puters, 57(10):1331–1345, Oct 2008. ISSN 0018-9340. doi: 10.1109/TC.2008.58.
(Cited on pages 16, 75, and 82.)

[136] S. Stuijk, A. Ghamarian, B. Theelen, M. Geilen, and T. Basten. FSM-based
SADF. Technical report, Eindhoven University of Technology, 2008. (Cited
on pages 9 and 25.)

http://doi.acm.org/10.1145/2107763.2107767
http://doi.acm.org/10.1145/1146909.1147138
http://www.es.ele.tue.nl/sdf3
http://doi.acm.org/10.1145/1278480.1278674

136 bibliography

[137] S. Stuijk, M. Geilen, and T. Basten. A predictable multiprocessor design �ow
for streaming applications with dynamic behaviour. In 2010 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, pages
548–555, Sept 2010. doi: 10.1109/DSD.2010.31. (Cited on pages 21, 39, 68, 69,
and 100.)

[138] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware data�ow: Mod-
eling, analysis and implementation of dynamic applications. In Embedded
Computer Systems (SAMOS), 2011 International Conference on, pages 404–411,
July 2011. doi: 10.1109/SAMOS.2011.6045491. (Cited on pages 9, 26, and 52.)

[139] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk. A
scenario-aware data �ow model for combined long-run average and worst-
case performance analysis. In MEMOCODE, pages 185–194, July 2006. doi:
10.1109/MEMCOD.2006.1695924. (Cited on pages 9, 25, and 64.)

[140] B. Theelen, M. Geilen, S. Stuijk, S. Gheorghita, T. Basten, J. Voeten, and
A. Ghamarian. Scenario-aware data�ow. Technical report, Eindhoven Univer-
sity of Technology, Department of Electrical Engineering, Electronic Systems
group, 2008. (Cited on pages 39 and 64.)

[141] B. Theelen, J.-P. Katoen, and H. Wu. Model checking of scenario-aware data-
�ow with cadp. In DAC Europe, DATE ’12, pages 653–658, San Jose, CA,
USA, 2012. EDA Consortium. ISBN 978-3-9810801-8-6. URL h�p://dl.acm.
org/citation.cfm?id=2492708.2492873.

[142] B. D. Theelen. A performance analysis tool for scenario-aware streaming
applications. In Fourth International Conference on the Quantitative Evaluation
of Systems (QEST 2007), pages 269–270, Sep. 2007. doi: 10.1109/QEST.2007.7.
(Cited on page 25.)

[143] S. Trujillo, A. Crespo, A. Alonso, and J. Pérez. MultiPARTES: Multi-core par-
titioning and virtualization for easing the certi�cation of mixed-criticality
systems. Microprocessors and Microsystems, 38(8, Part B):921 – 932, 2014.
ISSN 0141-9331. doi: http://dx.doi.org/10.1016/j.micpro.2014.09.004. URL
h�p://www.sciencedirect.com/science/article/pii/S0141933114001380. (Cited
on page 32.)

[144] J. R. van Kampenhout. Deterministic task transfer in Network-on-Chip based
multi-core processors. Master’s thesis, Delft University of Technology, 2011.

[145] J. R. van Kampenhout and R. Hilbrich. Model-Based Deployment of Mission-
Critical Spacecraft Applications on Multicore Processors. In Reliable Software
Technologies, Ada-Europe 2013, volume 7896 of Lecture Notes in Computer Sci-
ence, pages 35–50. Springer Berlin Heidelberg, 2013.

http://dl.acm.org/citation.cfm?id=2492708.2492873
http://dl.acm.org/citation.cfm?id=2492708.2492873
http://www.sciencedirect.com/science/article/pii/S0141933114001380

bibliography 137

[146] R. van Kampenhout, S. Stuijk, and K. Goossens. A scenario-aware data�ow
programming model. In Digital System Design (DSD), 2015 Euromicro Confer-
ence on, pages 25–32, Aug 2015. (Cited on pages 24, 37, and 65.)

[147] R. van Kampenhout, S. Stuijk, and K. Goossens. Programming and analysing
scenario-aware data�ow on a multi-processor platform. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2017, pages 876–881, March
2017. (Cited on pages 15 and 37.)

[148] R. van Kampenhout, S. Stuijk, and K. Goossens. Fault-tolerant deployment of
data�ow applications using virtual processors. In Digital System Design (DSD),
2018 Euromicro Conference on, pages 77–84, Aug 2018. (Cited on pages 17
and 85.)

[149] P. van Stralen and A. Pimentel. Scenario-based design space exploration of
MPSoCs. In 2010 IEEE International Conference on Computer Design, pages
305–312, Oct 2010. doi: 10.1109/ICCD.2010.5647727. (Cited on pages 18
and 19.)

[150] A. Weichslgartner, S. Wildermann, D. Gangadharan, M. Glaß, and J. Teich. A
design-time/run-time application mapping methodology for predictable ex-
ecution time in MPSoCs. Technical report, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2017. (Cited on pages 18 and 19.)

[151] Wikipedia. Uni�ed Modeling Language, November 2018. URL h�ps://en.
wikipedia.org/wiki/Unified_Modeling_Language. (Cited on page 21.)

[152] Wikipedia. Video compression picture types, October 2018. URL h�ps:
//en.wikipedia.org/wiki/Video_compression_picture_types. (Cited on pages 1
and 114.)

[153] S. Wildermann, F. Reimann, D. Ziener, and J. Teich. Symbolic design space
exploration for multi-mode recon�gurable systems. In 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pages 129–138, Oct 2011. doi: 10.1145/
2039370.2039393. (Cited on pages 18 and 19.)

[154] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem - overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst., 7(3):36:1–36:53, May 2008. ISSN 1539-9087. doi: 10.1145/1347375.
1347389. URL h�p://doi.acm.org/10.1145/1347375.1347389. (Cited on page 7.)

[155] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.
Memory Hierarchies, Pipelines, and Buses for Future Architectures in Time-
Critical Embedded Systems. IEEE Transactions on Computer-Aided Design of

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Video_compression_picture_types
https://en.wikipedia.org/wiki/Video_compression_picture_types
http://doi.acm.org/10.1145/1347375.1347389

138 bibliography

Integrated Circuits and Systems, 28(7):966 –978, july 2009. ISSN 0278-0070. doi:
10.1109/TCAD.2009.2013287. (Cited on page 34.)

[156] J. Windsor and K. Hjortnaes. Time and Space Partitioning in Spacecraft Avion-
ics. In Space Mission Challenges for Information Technology, 2009. SMC-IT
2009. Third IEEE International Conference on, pages 13 –20, july 2009. doi:
10.1109/SMC-IT.2009.11. (Cited on page 32.)

List of Acronyms

ACC Accelerator . 85
ASIC Application Speci�c Integrated Circuit . 24
BAG Binding-Aware Graph . 24
BDF Boolean Data�ow . 52
CAL Cal Actor Language . 63
CompSOC Composable System-on-Chip . 11
CSDF Cyclo-static Data�ow . 24
CSV Comma-Separated Values . 96
DDR Double Data Rate . 61
DSE Design Space Exploration . 16
DMA Direct Memory Access . 60
DRAM Dynamic Random-Access Memory . 30
DVFS Dynamic Voltage and Frequency Scaling 107
ET Execution Time . 72
FIFO First-in First-out . 31
FPGA Field Programmable Gate Array . 24
FPS Frames Per Second . 1
FSM Finite-State Machine . 24
FSM-SADF Finite-State Machine Scenario-Aware Data�ow 9
GALS Globaly Asynchronous, Locally Synchronous 29
GP General Purpose . 85
HSDF Homogeneous Synchronous Data�ow . 20
JPEG Joint Photographic Experts Group
KPN Kahn Process Network . 18
LTE Long-Term Evolution . 65
MCR Maximum Cycle Ratio . 25
MoC Model-of-Computation . 5
MoE Model-of-Execution . 31
MCDF Mode-Controlled Data�ow . 9
MPEG Moving Picture Expert Group
NoC Network-on-Chip . 59
OS Operating System . 6
PM Programming Model . 6

139

140 list of acronyms

PRET Precision Timed Machine . 63
PPN Polyhedral Process Network . 63
RT Real-Time . 2
RR Round-Robin . 33
RSO Rolling Static-Order . 52
SADF Scenario-Aware Data�ow . 9
SDF Synchronous Data�ow . 6
SRAM Static Random-Access Memory . 30
SO Static-Order . 11
SUSAN Smallest Univalue Segment Assimilating Nucleus 39
TDM Time-Division Multiplexing . 12
TT Time-Triggered . 25
TTA Time-Triggered Architecture . 63
UML Uni�ed Modeling Language . 21
VLSI Very Large Scale Integration . 5
VP Virtual Processor . 11
VR Virtual Resource . 11
WCET Worst-Case Execution Time . 7
WCRT Worst-Case Response Time . 7
WLAN Wireless Local Area Network
QoS Quality-of-Service . 26
QSOS Quasi Static-Order Scheduling . 65

Index

actor, 9, 24, 26
actor, detector, 39, 64
actor, select, 45, 54
actor, switch, 45, 54
algebra, (max , +), 25, 65
analysis, (max , +), 25
analysis, state-space, 25
analysis, throughput, 25
ASIC, 24

bin-packing, 14, 17, 87, 89
bit�le, 24
budget, 11
bu�er, FIFO, 31, 33, 70
bundle, 6, 11

CAL, 63
causality dilemma, 10, 41
channel, 26, 89
channel, synchronisation, 44
CoMik, 24, 32
composable, 12, 32, 33
CompSOC, 11, 12, 16, 21, 28, 31, 33, 70

data�ow, 9, 24, 26, 63
data�ow, cyclo-static, 24
data�ow, �nite-state machine scenario-

aware, 9, 24, 25
data�ow, homogeneous synchronous,

24, 25
data�ow, mode-controlled, 9, 25, 64
data�ow, scenario-aware, 9, 25, 64
data�ow, synchronous, 6, 7, 24, 31
deadline, 2
deployment, 7, 12, 13, 30, 32, 68, 85
design �ow, 5
detection, scenario, 37
DSE, 16, 67, 73

dynamic set, 4, 8, 13

embedded systems, 1
events, 8, 63, 67
execution model, scenario, 42, 49
execution time, worst-case, 7, 9, 34, 88

fault-tolerance, 5, 11, 85, 87, 90
�re, 16, 26, 89
�ring rules, 31
FPGA, 24
FSM, 6, 24, 26, 39

GALS, 29, 70, 87, 88
Giotto, 7, 63
graph, binding-aware, 30, 58
graph, pre�x, 41
graph, scenario, 24

hot spots, 5

iteration, 24, 26

Kahn process network, 18, 31

latency, 7, 76
libData�ow, 24, 31, 33, 52, 56
libFifo, 24, 33

mapping, 6, 28
Markov chains, 25
MCR, 25, 69
middleware, 7, 24, 32
MoC, 6, 24
MoC, time-triggered, 6, 25

OpenMP, 7

Pareto-optimal, 16, 19, 31, 73, 77
partition, 32

141

142 index

pipelining, scenario, 42
platform, hardware, 7, 24, 33
predictable, 13, 33, 88
PRET, 63
processor, 5, 7, 11, 28, 67
processor, spare, 18, 101
processor, virtual, 11, 13
programming model, 7, 31
PThreads, 7

rate, 26
rate, consumption, 27
rate, production, 27
re-deployment, 15, 17, 32
real-time, 2
repetition vector, 27
requestor, 32, 34
requirements, 4, 21
resize, 87
resource manager, 7, 12, 14, 89
resource, stateless, 16
resource, virtual, 11, 15, 30
response time, worst-case, 7, 13, 34,

69, 70, 88
Round-Robin, 33

scenario, 9, 26
scenario detection, delayed, 37
scenario detection, immediate, 39
scenario, detector, 15, 42
schedule, rolling static-order, 52, 59
schedule, static-order, 11, 15, 30
scheduling, 7, 28
SDF3, 11, 16, 18, 21, 75
self-edge, 27
sequencing model, scenario, 42, 43
split, 87
storage distribution, 29, 67

task, 6
TDM, 12, 30, 32, 70
throughput, 7, 29, 30, 73, 88
tile, 28
token, 26, 89

token, detector, 39
token, persistent, 26
token, scenario, 54
token, shared persistent, 42, 57
transition, scenario, 25, 41, 65
TTA, 63
Turing machines, 6

UML, 21

VLSI, 5, 85

waiting time, 7, 70
work-conserving, 25, 63

Acknowledgements

First and foremost I would like to express my gratitude to my promotor Prof. Kees
Goossens and co-promotor Dr. Sander Stuijk for their excellent supervision and
guidance during my Ph.D. research. Besides an extraordinary knowledge in their
respective academic �elds, they both combine an informal, practical approach to
management with a great enthusiasm for solving scienti�c and technical problems.
My steady stream of notes taken during our weekly meetings testi�es to the many
ideas that were generated during these years, and also reveal how these have been
re�ned and developed upon to arrive at tangible results. I would never have imag-
ined that we could talk for so long about arrows and circles! Especially when my
motivation waned Sander and Kees helped me getting back on track and to focus on
the important bits. Sander, thanks for the practical help and quick problem-solving
that saved me many of hours pioneering on my own. Kees, thank you for creating
the warm and collegial atmosphere.

Furthermore, I would like to thank the doctorate committee for reading my the-
sis, providing constructive feedback, and agreeing to oppose me at the defence. A
hearty thanks goes to Marja for creating a great ambiance in the Electronic Sys-
tems (es) group, for her help with administrative issues, and for our pleasurable
chats about life. Another warm thanks goes to Margot, Rian and Feyza for their sup-
port. I also thank all current and former CompSOC colleagues for their collaboration
and input during our meetings and discussions, as well as the fun we had during
lunch, co�ee breaks and bar visits: Alessandro, Andrew, Gabriela, Sven, Hadi the
second, Hamide, Juan, Manil, Martijn, Mojtaba, Rasool, Shayan, Shubendu, Yonghui
and Zhan. Thanks to all other es colleagues for the co�ee-machine chats and general
good atmosphere: Amir, Andreia, Bram, Edwin, Firew, Francesco, Gert-Jan, Hadi the
�rst, Kamlesh, João, Joost, Luc, Mark, Maurice, Mladen, Paul, Roel, Sajid, Sayandip,
Shreya, Umar, Victor and everyone I forgot to mention. A special thanks goes to
Martijn Koedam for his invaluable help with tools, debugging and the 5LIB0 course,
and to Dr. Marc Geilen for his ad-hoc advice and editing work on the scenarios book
chapter.

Thanks to my parents for their belief and support in every step of my career. More
family thanks to Cornelie, Sjors, Lotje, Ruben and Benjamin for the good times and
giving me a hard time each sjoel-competition. Many thanks to the brullers: Beejee,
Edu, Leo, Mart’n, Slaze and Zomer. I could not have done it without you guys. A big
shoutout also to the Berlin party gang: Anneli, Dora, Job, Joon, Klabbie, Rebekka,
Sjoerd and Skippy. Another big thanks to my dutch party friends: Bram, Greetje,
Irene, Lemke, Leonie, Lotte, Mijke, Natalja, Niek, and many others.

A special thanks to Lieu for recent medical support, recipes and hospitality. Finally
an extra special thanks to Leo and Toon for their persisting moral support.

143

About the Author

Reinier van Kampenhout was born on the 5th of May 1983 in Beilen, Drenthe. He
attended mavo secondary school and then completed an education in telematics
at polytechnical college (mbo) in 2003. Subsequently he pursued his bachelor’s de-
gree in Electronic Product Design and Engineering at the Hanze University of Ap-
plied Sciences in Groningen, which he obtained in 2006. After that he completed a
bridging program and obtained his master’s degree in Computer Engineering from
Delft University of Technology in 2011 with a focus on embedded systems. Next,
he worked for four years as a project scientist at the Fraunhofer fokus institute in
Berlin. In 2014, he started the pursue of his Ph.D. degree in the Electronic Systems
group at Eindhoven University of Technology, culminating in this dissertation. His
research interests include real-time embedded systems, programming models, multi-
processors, data�ow and fault-tolerance.

145

List of Publications Related to this Thesis

R. van Kampenhout, S. Stuijk, and K. Goossens. A scenario-aware data�ow
programming model. In Digital System Design (DSD), 2015 Euromicro Conference
on, pages 25–32, Aug 2015

R. van Kampenhout, S. Stuijk, and K. Goossens. Programming and analysing
scenario-aware data�ow on a multi-processor platform. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2017, pages 876–881, March 2017

K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li, G. Bre-
aban, R. van Kampenhout, R. Tavakoli Najafabadi, J. Valencia, H. Ahmadi
Balef, B. Akesson, S. Stuijk, M. Geilen, D. Goswami, and M. Nabi Najafabadi.
Handbook of hardware/software codesign, chapter NoC-based multiprocessor
architecture for mixed-time-criticality applications, pages 491– 530. Springer,
11 2017. ISBN 978-94-017-7266-2

R. van Kampenhout, S. Stuijk, and K. Goossens. Fault-tolerant deployment of
data�ow applications using virtual processors. In Digital System Design (DSD),
2018 Euromicro Conference on, pages 77–84, Aug 2018

M. Geilen, M. Skelin, R. van Kampenhout, H. Alizadeh Ara, T. Basten, S. Stuijk,
and K. Goossens. System Scenario-based Design Principles and Applications,
chapter Scenarios in Data�ow Modelling and Analysis. Springer, 2019. ISBN
978-3-030-20342-9

List of Publications Unrelated to this Thesis

R. Hilbrich and J. R. van Kampenhout. Dynamic recon�guration in NoC-based
MPSoCs in the avionics domain. In IWMSE ’10: Proceedings of the 3rd Interna-
tional Workshop on Multicore Software Engineering, pages 56–57, New York, NY,
USA, 2010. ACM

147

148 list of publications

R. Hilbrich and J. R. van Kampenhout. Partitioning and Task Transfer on NoC-
based Many-Core Processors in the Avionics Domain. In 4. Workshop: Entwick-
lung zuverlässiger Software-Systeme (Stuttgart, Deutschland) and Journal �Soft-
waretechniktrends�, 2011

J. R. van Kampenhout. Deterministic task transfer in Network-on-Chip based
multi-core processors. Master’s thesis, Delft University of Technology, 2011

R. Hilbrich, J. R. van Kampenhout, and H.-J. Goltz. Modellbasierte gener-
ierung statischer schedules fuer sicherheitskritische, eingebettete systeme mit
multicore-prozessoren und harten echtzeitanforderungen. In Herausforderun-
gen durch Echtzeitbetrieb, Informatik aktuell, pages 29–38. Springer, 2012

R. Hilbrich, J. R. van Kampenhout, M. Daun, D. T. Weyer, and D. Sojer. Model-
Based Engineering of Embedded Systems: The SPES 2020 Methodology, chapter
Modeling Quality Aspects: Real-Time, pages 119–128. Springer, 2012. ISBN 978-
3-642-34614-9

J. R. van Kampenhout and R. Hilbrich. Model-Based Deployment of Mission-
Critical Spacecraft Applications on Multicore Processors. In Reliable Software
Technologies, Ada-Europe 2013, volume 7896 of Lecture Notes in Computer Science,
pages 35–50. Springer Berlin Heidelberg, 2013

	1 Introduction to real-time embedded system design
	1.1 Common requirements for real-time embedded systems
	1.1.1 Use-case: point-to-point video surveillance
	1.1.2 Use-case: adaptive cruise control
	1.1.3 Common requirements
	1.1.4 Fault-tolerance

	1.2 Real-time embedded system design
	1.2.1 The design steps in detail
	1.2.2 Propagation of real-time requirements through the design flow

	1.3 Problem statement
	1.4 Contribution
	1.5 Related work to overall thesis goals
	1.6 Thesis outline

	2 Background and terminology
	2.1 Introduction
	2.2 Design flow

	3 A scenario-aware dataflow programming model
	3.1 Introduction

	4 Trading Virtual Processor size against buffer size

