Area-selective deposition of Ruthenium by combining atomic layer deposition and selective etching

Citation for published version (APA):

DOI:
10.1021/acs.chemmater.9b00193

Document status and date:
Published: 22/05/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching

Martijn F. J. Vos,†‡ Sonali N. Chopra,†‡ Marcel A. Verheijen,† John G. Ekerdt,§ Sumit Agarwal,§ Wilhelmius M. M. Kessels,∥ and Adriaan J. M. Mackus†‡†

†Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
‡McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
§Department of Chemical and Biological Engineering, Colorado School of Mines, 1613 Illinois Street, Golden, Colorado 80401, United States

Supporting Information

Current nanopatterning techniques used for integrated circuit fabrication typically rely on a combination of deposition, lithography, and etch steps. Due to alignment issues, nanopatterning is becoming very challenging as device dimensions approach sub-5 nm scales. In recent years, area-selective atomic layer deposition (ALD) has emerged as an alternative, bottom-up approach to nanomanufacturing. By limiting the deposition to specific areas, area-selective ALD enables self-aligned fabrication and can reduce the number of processing steps during device manufacturing, such as patterning and chemical mechanical polishing. Since ALD operates in a surface-reaction-controlled regime with sequential precursor and co-reactant exposures, separated by purge steps, area-selective ALD is also characterized by growth with precise thickness control and high conformality.

Currently, one of the main challenges for industrial application of area-selective ALD is obtaining a sufficiently high selectivity. The selectivity is generally limited to a few tens of ALD cycles due to eventual nucleation on the area where no deposition is desired (‘non-growth area’). Cleaning based on etching has previously been implemented in industrial selective epitaxy processes, which serves as inspiration here for exploring novel combinations of area-selective ALD and selective etching. For example, during the selective epitaxial growth of Si by chemical vapor deposition (CVD), an etchant gas, typically HCl, is added to the CVD gas mixture to remove unwanted nucleation on SiO2 or Si3N4 nongrowth areas. Due to the cyclewise nature of ALD, it is especially valuable to develop deposition processes that involve an intermittent correction or cleaning step to increase the growth selectivity.

Area-selective ALD of metal-on-metal is of interest for applications in metal interconnects in semiconductor devices. In particular, ALD of Ru is significant, since Ru (bulk resistivity of 7.1 μΩ cm) is considered either as a Cu diffusion barrier or as a replacement for Cu lines. Furthermore, Ru is used as an electrode in dynamic random access memory, a gate metal in transistors, and a seed layer for electroplating. Area-selective ALD of Ru on metal seed layers can simplify device processing for these applications. Several processes for area-selective ALD of Ru already exist and depend on inherent selectivity, area activation, or area deactivation. Here, we demonstrate a method for area-selective ALD of Ru on Pt or Ru (metal-on-metal) with SiO2 as the nongrowth area, which exploits the inherent selectivity between the two different substrate materials.

Our approach to achieve area-selective ALD with high selectivity is based on deposition and cleaning and consists of periodic selective etch steps integrated into an ALD process as illustrated in Figure 1. The resulting supercycle of ALD and etch steps offers a promising opportunity to improve the growth selectivity of ALD processes. An essential requirement for this approach is that there should be an initial difference in nucleation behavior on the different substrate areas or materials. After a certain number of cycles, nuclei start to form on the nongrowth area, and the addition of etch steps can lead to removal of these nuclei. Typically, some material is also removed on the growth area, where deposition is actually desired. However, as long as substantially more material is deposited than etched on the growth area per supercycle, this approach can provide a sufficiently high net growth rate, while improving the overall growth selectivity. By repeating such a process...
supercycle of ALD and etching as many times as required, the desired thickness can be obtained on the growth area.

It is important that the following two requirements are met when combining ALD with etching to improve the selectivity of the deposition process: (i) growth-area selectivity, which refers to an initial difference in nucleation behavior (in terms of nucleation delay or growth per cycle) between the growth and nongrowth areas, and (ii) etch selectivity, where only the deposited material is etched, with almost no etching of the substrate material or other materials that are present. Several additional aspects are desirable and can lead to a more ideal area-selective ALD process. First, to retain the merits of ALD, the etching process is preferred to be self-limiting and isotropic. In the case of plasma etching, this means that the ion contribution should be insignificant. The conformal nature of ALD on 3D structures is especially preserved by combining ALD with isotropic atomic layer etching (ALE). Second, the etch step should have a negligible effect on the neighboring materials and underlying substrate, for instance, in terms of roughening or incorporation of impurities. Furthermore, possible impurities should be easily removed, or at least not inhibit growth on the growth area in the subsequent ALD cycles. Note that having inhibiting species on the non-growth area can actually be beneficial for the selectivity. Third, the ALD and etch processes should be compatible, meaning that they can be performed at similar conditions, such as temperature and pressure. Fourth, ideally the etch rate of the nuclei or islands on the non-growth area is higher than the etch rate of the material on the growth area, such that a high net growth rate on the growth area is obtained. In addition to considering these aspects, both the repetition frequency and the duration of the etch step should be optimized, in order to obtain the highest net growth rate.

Recently, Vallat et al. demonstrated a combination of ALD and selective etching to improve the overall selectivity of area-selective ALD. In an O2-plasma-enhanced ALD process for Ta2O5 that shows an inherent growth selectivity for a TiN surface over Si or SiO2, NF3 etching gas was added to the O2 plasma step during every ninth cycle. The addition of the NF3 allowed for the removal of Ta2O5 on Si and/or SiO2 nongrowth areas such that the area-selective deposition of Ta2O5 on TiN could be achieved.

All deposition and etching experiments were performed using a home-built ALD reactor with an inductively coupled plasma source operated at a radio frequency (RF) of 13.56 MHz. The reactor walls and manifold lines were heated to 100 and 105 °C, respectively. After using the reactor for deposition of a different material, the chamber was first conditioned with 500 cycles of Al2O3 ALD followed by 500 cycles of thermal RuO2 ALD (using a 60 s O2 gas dose at 1 mbar as coreactant step). This procedure yielded reproducible Ru film growth. All substrates were cleaned after being loaded into the reactor and prior to the deposition using a 60 s O2 plasma (100 W), followed by a 30 s reducing H2 gas treatment.

Small coupons of single-side polished Si wafers with thermally grown SiO2 of ~430–450 nm and ALD-grown Pt or Ru on SiO2/Si were used as SiO2, Pt, and Ru substrates. In addition, a thermally grown SiO2 of ~50 nm thick and lift-off. See the Supporting Information, Figure S1, for a more detailed description of the procedure. In situ spectroscopic ellipsometry (SE) was performed using a J.A. Woollam, Inc., M2000U ellipsometer to monitor the deposition and etching of Ru. SE measurements were taken after every 10 ALD cycles and after every etch cycle. Additional details on the SE modeling and other analysis techniques can be found in the Supporting Information.

Ethylbenzene cyclohexadiene Ru(0) (EBCHDru) (Hansol Chemical, Korea) was used as the Ru precursor and was heated to 90 °C. Ar was used as a carrier gas, resulting in a chamber pressure of ~18 mTorr during the precursor dose. Ru films were deposited at 150 °C using a thermal ABC-type ALD process consisting of an EBCHDru precursor pulse (step A), an O2 gas pulse (step B), and H2 gas pulse (step C), with durations of 15, 15, and 5 s, respectively. The additional H2 pulse in this ABC-type ALD process serves to reduce surface RuO2 formed during the O2 gas pulse, and enables growth of metallic Ru at temperatures < 200 °C. The low deposition temperature is essential for obtaining inherent growth selectivity of Ru on Pt or Ru versus SiO2. The growth per cycle (GPC) on Pt or Ru is higher than on SiO2 at low temperatures, whereas there is a negligible difference in GPC at temperatures ≥200 °C (see discussion about Figure 2 below). After the precursor step the line and chamber were purged with Ar for 4 s and pumped down for 5 s, while a pump step of 10 s was included after both the O2 pulse and the H2 pulse. A more detailed characterization of this ALD process will be published elsewhere.

It is known that exposing Ru to O3 or to an O2 plasma leads to formation of volatile RuO4. Therefore, an O2 plasma was used to etch the unwanted Ru nucleation occurring on SiO2. This radical-assisted etching process does not etch SiO2 under the conditions used in these experiments. The process enables etching with high etch selectivity, which is one of the main requirements for the ALD-etch supercycle approach. Exposing Ru to an O2 plasma, however, leads to surface oxidation, and therefore an etch cycle including a H2 gas exposure was used. The O2 plasma etching was performed using a RF power of 100 W for 20 or 30 s, while the subsequent H2 gas dose was 15 s. The H2 dose was found to be sufficiently long to reduce the film to metallic Ru (see Figure S2). The O2 and H2 pressures were set to 0.02 and 0.2 mbar, respectively, for both the ALD and the etch cycles. The etching of Ru was quasi self-limiting, with the etch rate slowing down after 10 s of O2 plasma exposure. For instance, the thickness decrease was approximately 0.9 nm for 30 s O2 plasma, as compared to 1.1 nm for 60 s O2 plasma. The quasi self-limiting etch behavior is believed to be caused by the formation of a surface oxide, which is more slowly etched than a metallic Ru film.

The etch process will be investigated more extensively in future work.

First, the ALD of Ru was characterized on Pt and SiO2 without using etch cycles. All depositions were done at 150 °C, since the difference in GPC on Pt compared to SiO2 was maximum at this temperature. As shown in the inset of Figure 2a, after 400 ALD cycles there is approximately 9 nm of Ru growth on the Pt, compared to 4 nm on SiO2. This difference in growth behavior is explained by the catalytic activity of Pt. We have previously reported that the dissociative chemisorption of O2 and catalytic combustion of the precursor ligands enable the area-selective ALD of Pt and Fe2O3 on Pt
thickness as a function of ALD cycles for growth on SiO$_2$ and Pt with
subsequently lead to the combustion of the precursor
seeds layers.37,38 For the case of Ru ALD, Pt, as well as Ru, also
facilitate the dissociation of O$_2$ and the formed O can subsequently lead to the combustion of the precursor ligands.39 Since a similar pathway does not occur on the
inert SiO$_2$ surface, this provides the growth selectivity of Ru on noble metals at low deposition temperatures.

To improve the selectivity of the ALD process, an etch cycle was integrated into the ALD process as illustrated in Figure 1. A supercycle recipe was performed in which one etch cycle was included after every 100 ALD cycles, using O$_2$ plasma and H$_2$ gas exposure times of 30 and 15 s, respectively. As can be seen in
Figure 2a, a recipe consisting of 4 supercycles resulted in a negligible amount of Ru on SiO$_2$, while the Ru thickness on the Pt substrate was approximately 4.3 nm, as determined from SE. Approximately 1 nm of Ru is removed after each etch cycle, both on the SiO$_2$ and the Pt. However, since the GPC of Ru on Pt is higher than on SiO$_2$, the supercycle recipe results in net
film deposition. A slightly enhanced growth is observed on both Pt and SiO$_2$ for the first 10 ALD cycles after each etch cycle, which is attributed to a more reactive surface due to the O$_2$ plasma exposure and subsequent H$_2$ gas dose (e.g., higher density of reactive sites). In addition, the growth rate on SiO$_2$ was found to be slightly higher during the first 100 ALD cycles as compared to each subsequent set of 100 ALD cycles, suggesting that the initial substrate has more sites on which Ru ALD can nucleate than the surface obtained after etching. The area-selective ALD of Ru on a Ru-coated substrate was also achieved using this ALD-etch supercycle, indicating that the approach is also feasible using a Ru seed layer pattern, and possibly also for other catalytic materials. The Ru deposition on SiO$_2$ was further investigated using SEM. Due to the differences in density, surface topography, and conductivity, Ru islands appear bright in the SEM images, whereas dark regions represent SiO$_2$. When comparing the SEM images in
Figure 2b,c, it is seen that the etch cycle using 30 s O$_2$ plasma after
every 100 ALD cycles was sufficient to remove nearly all the Ru islands formed on SiO$_2$, which corroborates the results of Figure 2a.

Analysis of the nuclei visible with SEM yields a surface coverage θ on the nongrowth area of 0.0013, which corresponds to a selectivity factor S of 0.997 for a Ru thickness of 4.3 nm on the Pt growth area.41 Furthermore, XPS measurements in the region corresponding to C 1s/Ru 3d (294 eV–276 eV, see Figure S3) only revealed a small C 1s singlet peak, whereas no Ru 3d doublet peak was detected. The XPS detection limit for Ru on top of SiO$_2$ was estimated to be below 0.01 monolayer, or 1.7×10^{13} atoms/cm2. Interestingly, the data demonstrates that the sensitivity for Ru nuclei detection is higher for SEM than for XPS.

After demonstrating the principle of the supercycle approach on blanket substrates, deposition was done onto a SiO$_2$ substrate with patterned Pt lines. A supercycle recipe of 800 ALD cycles was performed with an etch cycle after every 100 ALD cycles using an O$_2$ plasma time of 20 s. An etch time of 20 s was used, since this was found to be sufficiently long to obtain selectivity. The SEM image in Figure 3a shows a clean

![Figure 2](image1.png)

Figure 2. (a) Inset: Thickness as a function of ALD cycles for deposition on SiO$_2$ and Pt without etch cycles. Main figure: Ru film thickness as a function of ALD cycles for growth on SiO$_2$ and Pt with an intermittent etch cycle after every 100 ALD cycles. (b, c) Top-view SEM images after 400 ALD cycles on SiO$_2$, (b) without etch cycles, or (c) with an etch cycle after every 100 ALD cycles.

![Figure 3](image2.png)

Figure 3. (a) SEM image and (b) corresponding EDX line scan of a patterned substrate with alternating lines of Pt (bright) and SiO$_2$ (dark) after 800 ALD cycles. The etch cycle was performed after every 100 Ru ALD cycles, using an O$_2$ plasma duration of 20 s. Note that the small white spots present on the Pt lines in (a) originate from resist residue remaining after development and before Pt evaporation. The Ru and Pt signals in (b) were rescaled for clarity.

![SiO$_2$ surface in between the Pt lines, further demonstrating the selectivity of the approach. In addition, Ru was only detected by EDX on top of the Pt lines (see Figure 3b). Furthermore, the cross-sectional TEM image and EDX mapping in Figure 4a,b (of the sample as used for Figure 3) reveal that the Ru film on the evaporated Pt (∼50 nm) is approximately 8 nm thick and conformally coats the Pt. The EDX mapping in Figure 4c, collected at the edge of one of the Pt lines, demonstrates that the Ru only covers the Pt and not the SiO$_2$ substrate, corroborating that a high selectivity is achieved.

The obtained material properties were investigated to further assess the potential of the ALD-etch supercycle approach. XPS measurements revealed a Ru film of high purity, and only a small O 1s peak was detected...
protruding from the surface are more easily etched by the O2 plasma etching leads to smoothing of the Ru film. This manifests as an effective increase in the surface area available for growth. The inclusion of the etch cycles thus has the benefit of smoothing the Ru film, in addition to enhancing the selectivity. In summary, it was demonstrated that area-selective ALD with high selectivity can be obtained by combining ALD with selective etching. Specifically, a Ru ALD process was combined with etch cycles of O2 plasma and H2 gas to remove unwanted growth on SiO2. Approximately 8 nm of Ru was deposited on Pt patterns, while both EDX and SEM confirmed that the neighboring SiO2 was clean. In addition, it was found that inclusion of the etch cycles leads to smoothing of the Ru film, as evidenced by a lower surface roughness than for ALD only. This study provides valuable insight into how area-selective ALD can be combined with selective etching to deposit materials on a surface with high selectivity, while maintaining the ALD merits of high conformality and precise thickness control. Finally, the general requirements and guidelines for ALD-etch supercycles discussed in this work can help to extend the approach to other material systems.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b00193.

Information on the process flow for the Pt pattern fabrication, additional experimental details, O 1s and Ru 3d XPS spectra collected on Pt and SiO2, and Ru film thickness versus ALD cycles on Pt, with and without etch cycles (PDF)

AUTHOR INFORMATION

Corresponding Author
*(A.J.M.M.) E-mail: a.j.mackus@tue.nl.

ORCID

Martijn F. J. Vos: 0000-0002-7380-5032
John G. Ekerdt: 0000-0002-1788-5330
Wilhelmus M. M. Kessels: 0000-0002-7630-8226
Adriaan J. M. Mackus: 0000-0001-6944-9867

Author Contributions

M.F.J.V. and S.N.C. performed the experiments and M.A.V. the TEM analysis. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank C.A.A. van Helvoirt, J.J.A. Zeebregts, C.O. van Bommel, and J.J.L.M. Meulendijks for their technical assistance. R. Mahlouji, B. Barcones Campo, and D.A. Kane are acknowledged for preparation of the Pt lines and a NASCENT Whaley fellowship. Solliance and the Dutch province of Noord-Brabant are acknowledged for funding the TEM facility.

REFERENCES

Chemistry of Materials

3881

DOI: 10.1021/acs.chemmater.9b00193

