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Abstract: Low-resolution thermal cameras have already been used in the detection of respiratory flow.
However, microbolometer technology has a high production cost compared to thermopile arrays.
In this work, the feasibility of using a thermopile array to detect respiratory flow has been investigated
in multiple settings. To prove the concept, we tested the detector on six healthy subjects. Our method
automatically selects the region-of-interest by discriminating between sensor elements that output
noise and flow-induced signals. The thermopile array yielded an average root mean squared error
of 1.59 breaths per minute. Parameters such as distance, breathing rate, orientation, and oral or nasal
breathing resulted in being fundamental in the detection of respiratory flow. The paper provides the
proof-of-concept that low-cost thermopile-arrays can be used to monitor respiratory flow in a lab
setting and without the need for facial landmark detection. Further development could provide a
more attractive alternative for the earlier bolometer-based proposals.

Keywords: remote; health; camera; distance; unobtrusive; thermal; respiration; thermopile

1. Introduction

Continuous respiratory monitoring can be used to predict potentially serious clinical events
like cardiopulmonary arrest [1,2], and it is particularly relevant for the detection of specific clinical
conditions such as apnea of prematurity, Sleep Disordered Breathing (SDB), or Sudden Infant Death
Syndrome (SIDS) [3]. Respiratory activity can be monitored with a variety of techniques including
flow sensors, chest wall motion sensors, and indirect extraction of the respiration signal [2]. However,
in some applications, flow sensors are necessary. In particular, obstructive apnea is a type of apnea
characterized by the presence of chest wall motion, but absence of flow [4].

Various sensors can be used to detect respiration flow such as pneumotachographs, oro-nasal
thermistors, or nasal pressure transducers. These, however, need to be positioned close to the nostrils, fixed
on the upper lip, or integrated in a mask and result in being particularly uncomfortable for patients [4].

Many remote sensing technologies have been used to monitor respiration, e.g., RGB and
near-infrared cameras or radars. Their detection is, however, based on respiration motion, not flow.
An unobtrusive way to monitor respiration flow is based on thermal imaging, also called InfraRed
Thermography (IRT) [5,6]. Most of the work on IRT uses the nostrils and/or the mouth area as the
Region Of Interest (ROI) to evaluate the thermal induced respiratory variations. The ROI can be
determined manually or automatically by using anatomical characteristics, e.g., medial canthus region,
combined with tracking algorithms [7–9].

In real applications, e.g., sleep monitoring, multiple cameras would be necessary to monitor the
patient continuously and cover all possible orientations. This would undoubtedly raise the cost of the
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solution, making it even more important to find an inexpensive sensor solution to detect respiration
(and the absence of it).

Cho et al. [10], for example, used FLIR ONE to detect respiration flow in outdoor and
indoor settings. The work focused on the robustness to environmental thermal dynamics. Whereas,
Scebba et al. [11] proposed a sensor fusion of FLIR Lepton and RGB cameras. Both works were
based on facial landmark detection and used relatively small microbolometer-based thermal cameras.
Microbolometers are the most common sensors for uncooled infrared imaging: the infrared radiation
absorbed changes the resistance of the material.

Thermopile arrays, instead, consist of multiple thermopile sensors. These sensors are constituted
by thermocouples in series, which are based on the Seebeck effect, i.e., they generate a voltage
proportional to the infrared radiation absorbed [12]. They have been widely used for non-contact
thermometers [13], fall detection [14], human detection [15–17], and fever screening [18]. Thermal
cameras based on microbolometers started having smaller dimensions and cost, as FLIR ONE or FLIR
Lepton. However, the main difference between thermopiles and microbolometers lies in the production
cost; microbolometer-based infrared imagers require several costly processes (e.g., know-how of
micromachining, vacuum packaging, and materials’ preparation) that significantly raise the price [19].

It would therefore be of interest to understand if a thermopile array could be used as a respiratory
flow detector, yielding a further reduction in cost. Moreover, the detection of facial landmarks is not
straightforward in real environments [20], especially when the resolution would be further reduced.
Recent work from Pereira et al. [20] proved the usability of a thermal camera to detect the respiration
signal without the use of anatomical features, both on healthy adults and infants in the Neonatal
Intensive Care Unit (NICU). The method uses a black-box approach, wherein the resolution is reduced
by averaging multiple pixels. Moreover, an empirical Signal Quality Index (SQI) is used to analyze
the spectrum of each cell, and the ROI containing respiratory information is chosen based on the
SQI value. In the data used, both face and torso are included in the field of view, as specified in a
previous work where the same dataset was used [21]. The respiration signal detected is a combination
of motion-related breathing (due to shoulder motion) and thermal changes due to respiration flow.
The proposed approach eliminates the need of ROI selection based on facial features. However, an
unconstrained combination of motion and flow-related information is not desirable and should not be
trusted in environments where apneas and, in particular, obstructive apneas are common.

In this paper, we present an unobtrusive respiration monitoring technique that uses a thermopile
array and an ROI detection method that does not require facial landmarks’ visibility. To our knowledge,
this is the first work that aims to use thermopile arrays to detect respiratory flow. In this study, we
assess the accuracy of the breathing signal detection in the optimal stationary condition on healthy
adults in a laboratory environment as a proof-of-concept.

The technique has been tested on multiple healthy subjects. Moreover, to prove the feasibility of
detecting respiration with a thermopile array for typical respiration conditions, oral/nasal breathing
and different Respiration Rates (RRs) have been analyzed. Furthermore, several other factors like
distance from the sensor and orientation have been considered to mimic real-world applications.

The rest of the paper is organized as follows, Section 2 introduces the background and the main
challenges and contains the processing steps and the experimental setup. The results and discussion
will be presented respectively in Section 3 and Section 4. Finally, Section 5 provides the conclusions.

2. Materials and Methods

2.1. Background and Challenges

Modern thermal cameras have a sensitivity in the order of 10�2 K [22]. However, a typical
thermopile array can only provide a sensitivity in the order of 10�1 K. Considering that the thermal
variations in both adults and neonates have been reported to be higher than tenths of a Kelvin [23],
such a sensitivity should be theoretically sufficient for the detection of flow.
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The detection of respiration flow through thermal sensing is not only dependent on the amplitude
of the thermal variation. Sensor characteristics also contribute to determining the ability to detect
such changes.

The partial area effect [24] is a known dependency that describes the relationship between the
real amplitude (temperature in this case), field of view, number of pixels, distance, size of the target,
and the amplitude (temperature) detected by a sensor. It follows that the target size, i.e., the surface
involved in thermal heat exchange, is an important parameter in the detection of flow. For example,
differences are expected if the measurements are taken in frontal view, i.e., subject facing the device,
or side view, with the head on a pillow. In the second case, the pillow material will also take part in
the heat exchange process, increasing the area involved. This phenomenon was already observed by
Abbas et al. [9]. The partial area effect is particularly important in sensors with a broad field of view
and a low number of pixels and limits the distance of usage.

Another challenge can be found in the RR, higher RR will result in lower temperature variation
due to the heat capacity. Moreover, oral and nasal respiration show differences in temperature and
humidity content depending on the environment. In particular, oral exhaled air results in having a
higher temperature compared to the nasal one with an ambient temperature of 20 �C [25].

A single thermal sensing element equipped with proper optics would be enough for detecting
the respiration flow. However, aiming such a sensor in the correct direction would result in being
particularly complicated. Taking into account all the above considerations, a Panasonic Grid-EYE was
selected to prove the feasibility of detecting respiration flow. The sensor has a sensitivity of 0.16 K and
a resolution of 8�8 pixels with an angle of view of 60�, and it is particularly low cost compared to
other sensors on the market.

2.2. Method

The main steps of the processing chain are summarized in Figure 1. In the first step, the videos
were collected and pre-processed. Then, a pixel containing the respiration needed to be selected,
and RR could be extracted in the frequency domain. The processing chain was implemented in
MATLAB (MATLAB 2018b, The MathWorks Inc., Natick, MA, USA), and the data processing was
performed offline.

Thermal Video
Recording 

1

Pixel Selection Pixel Position 
Update

3

Respiration Signal 
Extraction

4

Respiratory Rate 
Estimation

52

Figure 1. Block diagram summarizing the processing chain from images’ acquisition to respiration
rate extraction.

2.2.1. Thermal Video Collection

The collected data suffered from an irregular sampling. Hence, in a first processing step, the
data were interpolated to produce a dataset that was uniformly sampled in the temporal dimension
with a sampling frequency of 10 Hz. Afterwards, the spatial mean was removed to suppress thermal
variations of the environment. The videos were then processed with a sliding window approach with
a window size of 30 s. The first RR estimate would therefore be available after 30 s and then updated.
This time lag was considered acceptable, since in clinical practice, manual estimation of RR is typically
performed by nurses by counting chest movements over a period of time that goes from 15–60 s [26].
Moreover, such a window was also chosen taking into consideration the trade-off between frequency
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resolution and temporal resolution, typical of spectrogram methods. Using a time window of 30 s
allowed obtaining a relatively good frequency resolution equal to 2 Breaths Per Minute (BPM).

For each window, the pixel’s signals were filtered using a Butterworth bandpass filter going from
10–40 BPM, since the normal respiratory rate in healthy adults lies in this range [27].

2.2.2. Pixel Selection and Pixel Update

The pixel containing the respiratory information should be identified. An approach was proposed
in [20] where an empirical metric, SQI, was evaluated based on four features of the spectrum. The SQI
is dependent, however, on empirically-chosen thresholds.

The method to identify the pixel with the strongest respiratory signal proposed in this work also
operates in the Fourier domain. For each pixel, the time-domain samples were Hanning-windowed,
then transformed through a 1D FFT, and the value of the highest peak in the normalized magnitude
spectrum was used as a strength indicator. Consequently, an 8�8 array of strength indicators was
obtained, and the maximum element in this array was used to identify the pixel containing the
respiratory signal.

Formally: let xi(nTs) be the filtered, Hanning-windowed time-domain signal for the jth window
where the spatial mean has been removed; i is an index running through all 8�8 pixels in the array, i.e.,
from 1–64, and the index n = 0 + (j� 1), 1 + (j� 1), ..., N + (j� 1) depends on the current window
j; the number of samples per window was N = 300, and the sampling time was Ts = 0.1 s. Yi( fk)
is the spectrum of the ith pre-processed time-domain signal xi(nTs) and j Yi( fk) j its magnitude,
with fk = k

NTs
Hz and k = 0, 1, ..., N

2 � 1. We define the height of the normalized spectrum’s peak as:

mi =

max
fmin� fk� fmax

(j Yi( fk) j)s
fmax

å
fk= fmin

j Yi( fk) j2
, (1)

where fmin = 0.167 Hz and fmax = 0.667 Hz, i.e., boundaries of the respiration band.
We assumed the respiration signal to be pseudo-periodic; thus, the spectrum would contain a

peak. Noise, on the other hand, would show a relatively flat spectrum, as illustrated in Figure 2. In our
algorithm, we interpreted a higher peak in the normalized spectrum as an increased likelihood that
the pixel would contain the respiratory signal, and we only used a single pixel in the array, identified
with index iR defined as:

iR = arg max
i

(M), (2)

where M is defined as:
M = [m1 m2 ... m64]. (3)
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Figure 2. The upper plots show the time domain signal and spectrum of a pixel where no respiratory
information is present. The plots on the second row show the time domain and spectrum of another
pixel that contains a respiration signal; whereas, the upper figure shows a thermal image where a
subject is in a profile view at 20 cm from the sensor, the lower one showing the distribution of the
normalized spectrum’s peak calculated per each pixel, i.e., M resulting from Equation (3). The pixels
containing the signals plotted are indicated. BPM, Breaths Per Minute.

The pixel needed to be selected for each window j. For the first w windows, the position was
chosen by selecting the pixel with the highest peak in the normalized spectrum. The successive
positions were, instead, dependent on the preceding w positions, limiting the search space of the
following pixels. This procedure was intended to prevent rapid pixel-switching, which could
deteriorate the computed spectra, whereas the scenario (substantially static subject) did not require
rapid adaptation. A mask was created based on the w preceding positions that allowed the following
ones to move only to an adjacent position. The value w was fixed empirically to 10.

2.2.3. Respiration Signal Extraction and RR Estimation

Once the pixel is selected, the respiration signal is obtained for each window as:

R(nTs) = xiRj
(nTs), (4)

where iRj indicates the pixel selected with the proposed method in the jth window.
To estimate the RR, the Spectral Density (SD) needs to be calculated. SD can be estimated as the

squared magnitude of the Fourier spectrum, known as the periodogram method:

PPER( fk) = Yi( fk) �Yi( fk)� =j Yi( fk) j2 . (5)

Several other methods have been developed to estimate a more precise SD; Autoregressive (AR)
models have already been used to extract respiration from PPG and have shown good potential [28].
AR models are parametric methods for signal modeling and SD estimation. The model assumes that a
signal can be modeled based on the weighted sum of p precedent values. In the spectral domain, in
particular, the SD can be estimated as the frequency response of a digital filter:

PAR( fq) =
s2Ts����1 +

p
å

b=1
abexp(�j2p fqbTs)

����2
, (6)

where s2 is the variance of the noise, ab are the weights of the AR model, and p is the model order.
The weights need to be estimated and the order indicated. Moreover, it should be noted that this
parametric model allows the estimation of PAR in an arbitrary number of points between 0 and 1

2Ts
;

therefore, in general, fq can be different from the previously-defined fk.
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AR models are not directly affected by the Discrete Fourier Transform (DFT) limitations because
they estimate the frequency response directly without implicit windowing and without spectral
resolution restrictions. Therefore, AR models have been used especially when spectra need to be
estimated on short windows. This parametric method is suited for narrowband signals with medium
or high SNRs [29].

Several methods are available for autoregressive modeling; detailed information can be found
in [30]. In this study, Burg’s method was chosen for its stability and accuracy on short data recordings.
The model order p is not known a priori, and since there is no optimal method yet, many methods
have been proposed in the years to correctly estimate it [31].

Chaichulee et al. [32] recently proposed to determine the order by choosing the p that minimizes
the error obtained by comparing the peak of AR’s SD and the Fourier spectrum.

In this study, Chaichulee’s method has been used; the optimal model order was selected for each
window, and fq was chosen to be equal to fk. In Dataset B, the RRs have been estimated with both the
AR model and periodogram, to compare the performances. The range of order was empirically chosen
and went from 15–30 with a step of 1; whereas, in Dataset A, the periodogram method was used.

The RR was estimated as the frequency corresponding to the maximum magnitude. Once the RR
were estimated, a moving median filter was applied averaging 10 estimations together and allowing us
to obtain a new estimation of RR every second. Moreover, the time domain signal was reconstructed
by gluing together the segments, as explained in [33].

2.3. Experimental Setup

Thermal images were collected using a Grid–EYE thermopile array AM8854 from Panasonic.
The sensor has 64 thermopile elements arranged in an 8� 8 grid, and it is sensitive in the Long Wave
Infrared (LWIR) range. The field of view covered by the Grid–EYE is 60�, and it has a frame rate of
10 Hz. The sensor was connected to an Arduino UNO through the I2C bus, and the acquisition was
performed through MATLAB.

The data collection was performed in a room with an ambient temperature of around 20 �C.
It should be specified that respiratory activity causes also motion of the head and shoulders. This
kind of motion is visible also in thermal images. Therefore, measurements to prove feasibility in flow
detection have been taken with a subject lying down and shoulders out of the field of view. Moreover,
measurements in seated positions have also been collected to prove the detection of respiration based
on motion. Figure 3 shows the experimental setups. An impedance pneumography signal was used as
the ground truth for respiration monitoring. Since the measurements were acquired in a stationary
condition, the impedance pneumography signal can be considered reliable. The signal has been
acquired using three ECG electrodes, as is common in clinical practice, and a patient monitor (Philips
MP50) with a sampling frequency of 62.5 Hz.
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(a) (b)

Figure 3. Experimental setup: (a) subject lying down on a bed; (b) subject in a seated position.

2.4. Datasets

The signals were collected in different orientations, at different distances, and with different
breathing patterns. The subjects were asked to lay down as still as possible on a bed or sit on a chair
and to breathe spontaneously or according to an audio stimulus. Two different datasets were collected:
the first one to prove the detection of respiration with such a sensor in different settings, and the
second one to prove the feasibility in the detection of respiration flow and to assess the performances
of the proposed algorithm. Each signal had a duration of 2 min, resulting, after interpolation, in a
matrix of 8� 8� 1200. The study was approved by the Internal Committee Biomedical Experiments
of Philips Research with ID: ICBE-2-26849, and informed consent has been obtained for each subject.

2.4.1. Dataset A: Constant Guided Breathing in Different Settings

The signals were collected on a single subject, since the purpose of the analysis performed was
not to highlight inter-subject variability. For each condition, 3 signals were collected. Unless specified
otherwise, the signals were collected during nasal respiration and with the subject lying down.

� Distance: signals were collected in side view with different distances, i.e., from 10–50 cm, and with
constant RR of 20 BPM.

� Respiration rate: different RRs were used as the breathing pattern, i.e., from 10–30 BPM; signals
were collected in side view with a constant distance of 20 cm.

� Orientation and oral/nasal respiration: the signals with constant RR of 20 BPM and distance of 20 cm
were collected in side and frontal orientations during both nasal and oral breathing.

� Shoulder motion: the signals were collected in a seated position, with a constant RR of 20 BPM and
a variable distance, i.e., 50 and 100 cm.

Overall, Dataset A consisted of 39 videos.

2.4.2. Dataset B: Guided Breathing with Different Patterns

Since this study is a proof-of-concept, we chose to use 5 subjects similar to the number of subjects
used in [10] for their proof-of-concept study. Signals were collected with guided and spontaneous
breathing. For each subject, two signals at constant RR of 10 and 30 BPM were collected, a signal with
a linearly-variable RR, and a signal with an RR with two sudden change from 10–30 BPM. Moreover,
signals during spontaneous respiration were collected. All the signals were collected in side view
during nasal respiration at a distance of 20 cm. Overall, Dataset B consisted of 25 videos.
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2.5. Evaluation

The signal to Noise Ratio (SNR), Root Mean Squared Error (RMSE), and Relative Error (RE) have
been used to evaluate the accuracy of the thermopile in detecting the respiration signal.

SNR was evaluated according to:

SNR = 10 log10

0BBB@
1.67
å

fk=0.12
(U( fk) P( fk))

1.67
å

fk=0.12
((1�U( fk)) P( fk))

1CCCA , (7)

where P( fk) is the signal’s spectral density estimated with the periodogram or AR method and U( fk)
is a binary template window centered on the signal peak and first harmonic with a predefined width
equal to 2 frequency bins. The first harmonic was included as the respiration signal is not a perfect
sinusoid. The SNR was evaluated on each window, and the average of all the windows was used.

RMSE has been evaluated using the impedance pneumography as the reference:

RMSE =

vuuut L
å

j=1

�
R̃R(j)� RRref(j)

�2

L
, (8)

where R̃R is the respiration rate estimated, RRref is the one detected by the impedance pneumography,
and L is the number of windows evaluated. RE has also been estimated to allow a better comparison.

Moreover, signals collected in Dataset A have also been compared by assessing the number of
pixels involved in the respiration signal. This was performed by evaluating the absolute value of the
correlation coefficient between the detected respiration signal and the signals contained in other pixels.
If the correlation was higher than 0.7, then the pixel was considered to contain respiration signal as
well and was added to the pixel count.

The temperature variation detected by the thermopile due to respiration was also considered;
this was obtained by using the range of the signal, i.e., the maximum amplitude minus the minimum
amplitude. Both amplitude and the number of pixels have been estimated on each window and then
averaged for the entire measurement.

3. Results

3.1. Dataset A

An overview of the analysis performed on Dataset A is shown in Figure 4; multiple distances,
RRs, and frontal or side nasal/oral breathing have been compared. The dots and squares represent
the means on the three signals collected for each setting, whereas the error bars show the standard
deviations. Signals at distances of 20 and 30 cm, and 40 and 50 cm were grouped together, as a
variation of 10 cm was not considered enough to show the effect of increasing distances. Therefore,
in the distance case, the average and standard deviation were evaluated on six signals per setting.
Moreover, Figure 5 shows the pixels containing the respiration signal in the case of a measurement
taken at 50 cm in side view with the subject lying down and 50 cm in the frontal seated position, as
well as the results obtained when the respiration was detected through shoulder motion.
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Figure 4. Overview of the differences in amplitude, SNR, number of pixels, and RMSE in Dataset A:
(a,b) results for signals acquired at different distances; (c,d) comparison of different Respiration Rates
(RRs); (e,f) different orientations and oral and nasal respiration; M and N indicate respectively mouth
and nose breathing.
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Figure 5. Respiration detection through shoulder motion: (a,b) the first figure shows a thermal image,
and the second one shows the spectrum peak magnitude distribution of a subject seated and lying
respectively at 50 cm of distance; (c,d) overview of the differences in amplitude, SNR, number of pixels,
and RMSE when data were collected from a seated subject at 50 and 100 cm.

3.2. Dataset B

Table 1 contains the average of the results obtained for each subject for the four different
respiration patterns used, with both the periodogram and AR model. The last row shows the
overall average results, in bold we indicate the best results for RMSE, RE, and SNR. Figure 6,
instead, shows the time domain signals, the spectra evaluated through FFT on each window, and
the RRs estimated in comparison with the reference for the five cases. It should be specified that
in the case of guided breathing with a sudden change, an additional filter was applied. As can be
expected from the results obtained in Dataset A, breathing at 30 BPM will have a lower amplitude
compared to the 10-BPM one. This effect caused a delay in the detection of the frequency change.
Therefore, a ramp filter has been applied to each window of the sudden change signals to amplify high
frequencies in the breathing range. Correlation plots and Bland–Altman analysis for all the subjects
and breathing scenarios are displayed in Figure 7. The mean bias was 0.23 BPM with the 95% limits of
agreement being �5.05–5.51 BPM. Moreover, the results also showed a strong correlation between the
impedance pneumography estimated RR and the one estimated with the thermopile array, yielding an
r = 0.95 (p < 0.0001).

Table 1. Average of five subjects of the results obtained on Dataset B.

Breathing Pattern
Periodogram AR

RMSE (BPM) RE (%) SNR (dB) RMSE (BPM) RE (%) SNR (dB)

10 BPM 0.00 0.00 8.71 0.00 0.00 13.59
30 BPM 0.00 0.00 5.15 0.00 0.00 8.15
Chirp 1.41 1.19 4.09 1.41 1.21 5.87

Sudden Change 5.57 7.79 2.19 6.57 9.61 7.90
Spontaneous 0.98 1.59 4.27 0.99 1.72 5.81

Average 1.59 2.11 4.88 1.79 2.51 8.26
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(a)

(b)

(c)

(d)

(e)

Figure 6. Results obtained for Dataset B with different patterns; on the left the time domain signal,
in the middle the Fourier spectrum per each window, and on the right the RR extracted with both
the periodogram and AR and the impedance pneumography one. (a,b) Collected during constant
breathing pattern at 10 and 30 BPM, respectively; (c) chirp pattern; (d) pattern with two sudden changes;
(e) spontaneous breathing. The time axis in the FFT and in the extracted RR figures ends at 90 s even
though the original signal has a duration of 120 s. This is due to the sliding window approach using a
window size of 30 s.
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Figure 7. Bland–Altman plot and correlation plot for all the subjects and settings in Dataset B. Reference
indicates the RR estimated with the impedance pneumography, whereas estimate indicates the one
estimated using the thermopile array. In the Bland–Altman plot, the blue horizontal line represents
the mean bias, whereas the two horizontal black lines indicate the average plus or minus 1.96 �
Standard Deviation. The black line in the correlation plot indicates the linear relationship y = x.

4. Discussion

4.1. Dataset A

� Distance: Comparison of the performance between different distances proved that the thermopile
would lose accuracy at larger distances. In particular, amplitude, SNR, and the number of pixels
would decrease with larger distances, and the RMSE would increase. Amplitude decreased from
an average of 0.98 �C to 0.83 �C. The SNR reduced from 5.66 dB to 2.97 dB, whereas RMSE went
from 0 BPM to 0.18 BPM with a standard deviation of 0.45 BPM. The number of pixels did not
result in a big change on average, but it can be noticed that the standard deviation for the 20–30
cm case was much higher compared to the 40–50 cm case. This behavior was mainly due to the
partial area effect. As already expected, the low resolution combined with the broad field of view
limited the distance at which the sensor could be used.

� Increasing RR: Breathing with higher RR resulted also in a reduction of the amplitude from
1.30 �C to 0.82 �C, and the SNR drastically reduced from 9.34 to 0.71 dB, while the number of
pixels from 1.60 to 1.00. The RMSE remained constant. These variations can be considered to be
caused by the reduced flow during higher RR. The flow applied to the surroundings would be
imposed for less time, due to the higher frequencies, reducing the heat exchanged.

� Orientation and oral/nasal respiration: In this dataset, both orientation and nasal/oral respiration
were compared. Frontal measurements were expected to produce a reduced variation in
temperature due to the small surface for heat exchanges available. Frontal nasal respiration
resulted in performing particularly worse compared to the other settings. That is because the
heat would be exchanged mostly with the nasal area around the nostrils. Frontal oral respiration
performed better compared to the nasal case, but the RMSE was still much higher compared
to the side cases. The improved performance in the frontal oral breathing could be due to the
increased surface for heat exchanges, i.e., nose and lower lip, and to the higher temperature of
oral expired air. Side oral respiration resulted in causing a bigger temperature variation and
higher SNRs. This behavior was expected since in the side case, the pillow’s textile material
would be involved in heat exchanges as well, increasing the surface. This setting involved many
more pixels, i.e., on average 2.76 compared to side nasal breathing, which resulted in 1.21 pixels
on average; whereas, the variation in amplitude and SNR was not as big. The differences can
be explained by considering the differences in expired air temperature as already indicated in
Section 2.1 and differences in the flow direction.

� Shoulder motion: Measurements were collected in a seated position at 50 and 100 cm when the
shoulders were included in the field of view. Figure 5a,b shows the two different situations: in the
first case, the signal resulting in the maximum peak magnitude was coming from the shoulder
area, whereas in the second case (side view with the subject laying down), the signal was coming
from the nose area. This was due to the fact that the temperature variation due to respiratory
shoulder motion had a higher amplitude compared to the variation due to the heat exchanged
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because of respiratory flow in the frontal view at the same distance. Shoulder and head motion
due to respiration can be suppressed by performing the measurement with the subject lying down.
Moreover, due to the partial area effect of the sensor, the error in the detection of respiration
through motion increased drastically already at 100 cm.

4.2. Dataset B

Constant breathing rates of 10 and 30 BPM both performed extremely well, resulting in an RMSE
of 0 BPM for both the periodogram and AR model; a difference in the SNR can be noted between the
two RRs since the respiration at 30 BPM resulted in a lower SNR compared to the other one. This was
already expected considering the results obtained in Dataset A. Chirp had a median error of 1.41 BPM
for the periodogram and 1.41 BPM for the AR model, whereas the pattern with sudden change resulted
in the highest RMSE, 5.57 BPM and 6.57 BPM, respectively. This was expected since in the sudden
change case when indecision between the two peaks was present (similar height of the peaks in FFT),
an error of 20 BPM could be obtained. Moreover, the sudden change was the only case in which the
AR performed particularly worse compared to the periodogram. This can be explained considering
that the SNR in this case was significantly lower compared to the other four cases, and AR is known to
perform well in cases of high or medium SNRs. In the spontaneous breathing case, the RMSE resulted
in being around 0.98 for both SD estimators. Moreover, both correlation and Bland–Altman plots in
Figure 7 show a bias in the estimated RR at 10 and 30 BPM. This bias was due to a delay in the detection
of the transition between 10 and 30 BPM in the signals acquired with the sudden change pattern.

The periodogram yielded an average RMSE of 1.56 BPM compared to 1.79 BPM of the AR model;
the RE was 2.11% and 2.51%, respectively; and the SNR resulted in being on average 4.88 dB and
8.26 dB, respectively. The difference in error was on average only 0.23 BPM, which we considered
insignificant; whereas, the SNR was always higher in the AR model case. The similarity in the results
is justifiable considering that Chaichulee’s method binds AR and Fourier spectrum evaluated through
FFT to have the same RR estimation, therefore limiting AR models to the same limitations of DFT.
Autoregressive modeling can improve the results obtained in short windows, but a new method for
order selection should be investigated.

In this article, respiration detection using a thermopile array was proven to be feasible in a
controlled environment and settings. It should be noted that this work is a proof-of-concept; future
research should focus on proving the usability of such a sensor with a higher number of subjects
and in clinical practice. Some limitations can be identified in the current approach, such as a lack
of motion robustness and the pseudo-periodicity assumption for the respiration signal. Strategies
to compensate motion are required. Considering that RGB cameras can currently monitor multiple
vital signs and would be probably included in clinical practice in the future, a combination of RGB
videos and thermopile array images could be used to track the identified pixel. A similar approach
has been proposed in [11]; however, their solution relied on facial landmark detection; whereas,
the pseudo-periodicity assumption would not hold in cases of apneas or other respiratory patterns.
Strategies to overcome this challenge are definitely required before moving to clinical practice.

5. Conclusions

A thermopile array has been tested to prove the feasibility of respiratory flow detection. The results
showed that respiration motion dominates the measurement for a seated subject. This indicates that
a lying subject is crucial to measure respiratory flow successfully, rather than head and shoulder
motion due to respiration. Moreover, the sensor has been proven to allow respiratory flow detection
over a range of parameter settings, and with variable respiration rates. The pixel selection method
successfully detected the pixel containing the respiration flow thermal signature.

The overall conclusion is that a thermopile array can be used for unobtrusive continuous
respiration monitoring, and further development can provide interesting low-cost alternatives to
the earlier microbolometer-based proposals.
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