Deep Learning to estimate building energy demands in the smart grid context

Citation for published version (APA):

Document status and date:
Published: 17/03/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Deep Learning to estimate building energy demands in the smart grid context

Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, Wil Kling
Department of Electrical Engineering

Problem and Motivation

- Occupancy information can improve building energy management systems
- Large meteorological variations yield intense power fluctuations
- Quantification of uncertainty introduced with the advent of new renewable energy sources

Energy prediction

Prediction method: Conditional Restricted Boltzmann Machine

![Diagram of Neural Networks: ANN, CRBM, HMM](image)

Total energy function

\[E(v, h, u, W) = -v^T W^v h - v^T b^v - u^T W^u v - u^T W^u h - h^T b^h \]

Learning for CRBM using Contrastive Divergence

\[C_{D_{KL}(p(x)||p_\lambda(x))} = D_{KL}(p_\lambda(x)||p(x)) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Lighting consumption</th>
<th>Total energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>2.24</td>
<td>0.93</td>
</tr>
<tr>
<td>ANN(ARI)</td>
<td>1.22</td>
<td>0.98</td>
</tr>
<tr>
<td>HMM</td>
<td>1.11</td>
<td>0.96</td>
</tr>
<tr>
<td>CRBM</td>
<td>1.11</td>
<td>0.96</td>
</tr>
</tbody>
</table>

People Detection and Localization

Approach: Inexpensive user tracking using Boltzmann Machine

Classification method: Extended Factored Conditional Restricted Boltzmann Machine

![Diagram of Classification Flowchart](image)

Localization - 16 classes (8 moving, 8 sitting positions)

<table>
<thead>
<tr>
<th>Method</th>
<th>SVM</th>
<th>NB</th>
<th>AB</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>53.40%</td>
<td>54.46%</td>
<td>50.78%</td>
<td>57.78%</td>
</tr>
<tr>
<td>ANN(ARI)</td>
<td>55.46%</td>
<td>54.66%</td>
<td>58.76%</td>
<td>57.78%</td>
</tr>
<tr>
<td>HMM</td>
<td>55.46%</td>
<td>54.46%</td>
<td>54.46%</td>
<td>54.46%</td>
</tr>
<tr>
<td>CRBM</td>
<td>55.46%</td>
<td>54.46%</td>
<td>54.46%</td>
<td>54.46%</td>
</tr>
</tbody>
</table>

Localization - 17 classes (Empty room, 8 moving, 8 sitting positions)

<table>
<thead>
<tr>
<th>Method</th>
<th>SVM</th>
<th>NB</th>
<th>AB</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>49.77%</td>
<td>41.29%</td>
<td>24.70%</td>
<td>52.26%</td>
</tr>
<tr>
<td>ANN(ARI)</td>
<td>39.90%</td>
<td>18.57%</td>
<td>20.43%</td>
<td>42.39%</td>
</tr>
<tr>
<td>HMM</td>
<td>53.24%</td>
<td>22.29%</td>
<td>31.10%</td>
<td>58.92%</td>
</tr>
<tr>
<td>CRBM</td>
<td>59.42%</td>
<td>84.40%</td>
<td>76.40%</td>
<td>87.60%</td>
</tr>
</tbody>
</table>

Total energy function

\[E_n(a_n|p_{\lambda}(x)) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}^v y_{ij} + b_{ij}^v + \alpha (\text{data}_i - \text{rec}_i) + \beta (\text{data}_i - \text{rec}_i) \]

Experiment & Results

- Artificial data
