The effect of residual gas scattering on Ga ion beam patterning of graphene

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1063/1.4936334

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
The effect of residual gas scattering on Ga ion beam patterning of graphene

Citation: Applied Physics Letters 107, 213101 (2015); doi: 10.1063/1.4936334
View online: http://dx.doi.org/10.1063/1.4936334
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/107/21?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Lateral damage in graphene carved by high energy focused gallium ion beams

Surface modification of multilayer graphene using Ga ion irradiation

Effects of Ga ion-beam irradiation on monolayer graphene

Investigation of the effect of low energy ion beam irradiation on mono-layer graphene
AIP Advances 3, 072120 (2013); 10.1063/1.4816715

Nanostructuring graphene on SiC by focused ion beam: Effect of the ion fluence
The effect of residual gas scattering on Ga ion beam patterning of graphene

Nick F. W. Thissen,1,a) R. H. J. Vervuurt,1 J. J. L. Mulders,2 J. W. Weber,1 W. M. M. Kessels,1 and A. A. Bol1,a)
1Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2FEI Electron Optics, Achterweg Noord 5, 5600 KA Eindhoven, The Netherlands

(Received 1 September 2015; accepted 11 November 2015; published online 23 November 2015)

The patterning of graphene by a 30 kV Ga+ focused ion beam (FIB) is studied by in-situ and ex-situ Raman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account.

© 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936334]

Graphene, a two-dimensional atomically flat material, has attracted much attention mostly because of its excellent electrical properties.1–5 Graphene can be mechanically exfoliated from graphite crystals (forming only few small flakes at random), or synthesized over very large areas by chemical vapor deposition (CVD).4,5 Although mechanical exfoliation still delivers the highest quality graphene,3 CVD is currently the most promising synthesis method for high-end electronic applications such as RF devices. To fabricate many individual devices out of large area graphene, it must first be patterned to isolate small device areas from the bulk of the graphene. Patterning is typically performed by electron beam lithography (EBL) followed by reactive ion or plasma etching,6–8 which requires the graphene to be coated by a resist film. The removal of these resist films after processing is challenging and a thin layer of residue is known to remain on the graphene, influencing the electrical properties of devices.8 Furthermore, uncontrolled under-etching and delamination of the graphene during lift-off is common.9

An alternative to lithography is direct-write ion beam patterning, in which a focused ion beam (FIB) defines the desired pattern by locally removing the graphene via milling or sputtering. Using a FIB, the graphene can be patterned directly and the use of resist coatings can be avoided. Ga+ ion beams are commonly used to pattern graphene;10–14 however, it has been found that these ion beams can damage the graphene up to tens of micrometers away from the intended target area.10,11,14 For example, Archanjo et al. briefly noted a small amount of lateral damage after patterning exfoliated graphene when using ion doses high enough to remove the graphene.10 Chen et al. measured a large reduction of the field-effect mobility after removing large areas of graphene by Ga+ FIB,11 but attributed this to damage during transfer of the graphene to the SiO2 substrate. However, it is possible that damage due to the large lateral range of the ions played a role as well. More recently, Liao et al. reported in detail on the large lateral range of the damage observed in graphene after Ga+ FIB exposure.14 The effect was attributed to ions in the tail of the intrinsically Gaussian beam shape of the FIB. However, the lateral range over which the damage was reported is much larger than the typical intrinsic beam shape of an FIB.15 Their observation that the lateral damage decreases using a higher beam current (which would actually increase the intrinsic beam size16–18), points towards the direction that other factors besides the intrinsic beam size also play an important role in damaging the graphene in areas away from the targeted area. It is clear that this large range of lateral damage is not well understood and sometimes overlooked in literature, even though it could be a limiting factor in the use of ion beams for patterning of devices.

In this work, we use in situ and ex situ Raman spectroscopy to reveal that the large lateral range of damage in graphene after Ga+ FIB patterning is mainly caused by scattering of the ions in the residual gas of the vacuum system. With this in mind, the processing conditions were optimized to reduce scattering and we found that patterning of graphene devices with Ga+ beams is a feasible alternative to the EBL patterning. Furthermore, the Raman D peak of graphene turned out to be an excellent probe for determining the Ga ion beam diameter and shape.

Graphene samples were grown by chemical vapor deposition (CVD) on copper foil and transferred to 90 nm SiO2 on Si wafers using a standard polymethyl methacrylate (PMMA) transfer process.19 An FEI Helios 650 DualBeam system was used for Ga ion beam milling and in situ Raman measurements of the graphene sample. The DualBeam system combines an electron beam and Ga FIB allowing for simultaneous milling and imaging by SEM. In addition, a Raman laser (785 nm wavelength) is present in the same vacuum chamber,20 enabling Raman measurements of the graphene immediately after FIB exposure. The substrate stage can be tilted and moved back and forth a known distance between the FIB (52° tilt) and Raman laser, without losing focus in either position, to quickly switch between FIB exposure and Raman measurement of the same sample area.

https://doi.org/10.1063/1.4936334

© 2015 AIP Publishing LLC.
Raman line-scans were measured by an ex situ Raman laser (Renishaw inVia confocal Raman microscope, 514 nm wavelength). The ion beam acceleration voltage was typically chosen at the highest setting of 30 kV. Areas of interest on the graphene sample were not imaged before ion beam exposure to prevent beam damage in the graphene. The background pressure of the chamber is typically \(\sim 10^{-5} \) mbar under regular working conditions just after sample loading, but can be reduced to below \(10^{-6} \) mbar by increasing the pumping time.

Before investigating the lateral range of the Ga\(^+\) FIB, we first investigate the behaviour of the graphene while under ion bombardment. This allows us to determine the relevant ion dose range in which the graphene is removed from the substrate without significantly milling the substrate itself. An in situ Raman laser was used inside the same vacuum chamber as the FIB to investigate how the Raman spectrum of graphene changes as it is exposed to Ga ions. The use of the in situ Raman laser allows observation of the same graphene area for each measurement. This eliminates the influences of variations of the graphene quality from one area to the next and prevents the irradiated graphene from being oxidized or otherwise affected by the ambient before measurements. Figure 1(a) shows how the Raman spectrum of the graphene changes after consecutive exposures to Ga ions. The same 20 \(\times 20 \) \(\mu \text{m}^2 \) area was irradiated and moved between the Ga beam and the in situ Raman laser for each spectrum. A large D peak appears at a very low dose of only \(\sim 10^{12} \) ions/cm\(^2\), which indicates that the graphene is already getting damaged at a relatively low dose of ions (compared to the areal density of carbon atoms in graphene of 3.8 \(\times 10^{15} \) atoms/cm\(^2\)). Furthermore, it confirms that Raman spectroscopy is sensitive even to small amounts of defects, as has been shown for graphite,\(^{21}\) and Raman spectroscopy is therefore an ideal tool to investigate the influence of small amounts of scattered ions. After \(10^{13} \) ions/cm\(^2\) the D and G peaks start to broaden and merge together into a single broad feature, indicative of amorphous carbon. After approximately 3–6 \(\times 10^{15} \) ions/cm\(^2\) (not shown), both peaks are no longer discernible and the Raman signal of the bare SiO\(_2\) substrate appears, indicating that the graphene has been removed. Therefore, on average 1–2 carbon atoms are removed per incident Ga ion which is consistent with simulations.\(^{12}\) At this ion dose, it is possible that there are still some carbon species remaining below the detection limit of Raman.\(^{22}\) The electrical conductance through the milled area is however already negligible at a lower ion dose, as shown in the supplementary material.\(^{23}\)

The ratio between the D and G peak intensities (\(I_D/I_G \) ratio) is typically used as a measure of the defect density in graphene. Figure 1(b) shows the \(I_D/I_G \) ratio as a function of the ion dose (the peak intensity \(I \) is defined here as the maximum height of a Gaussian fit through the baseline-corrected peak). The ratio increases from almost 0 (pristine graphene) to \(\sim 3.5 \) for a dose of \(10^{13} \) ions/cm\(^2\) at which point the graphene is highly damaged. At even higher doses, the D and G peaks start broadening and merging causing \(I_D/I_G \) to decrease again. This behaviour follows the typical amorphization trajectory of graphene, where pristine graphene is first transformed into nanocrystalline graphene with defects (stage 1 disorder), and then further into amorphous carbon (stage 2 disorder). It is also commonly observed for exposures to Ar\(^+\) ions,\(^{24,25}\) He\(^+\) ions,\(^{26–28}\) or even electrons.\(^{29}\) However, the small mass of the He\(^+\) ions and electrons results in less efficient momentum transfer and lower sputtering yield, therefore the dose at which the transition from stage 1 to stage 2 occurs is consequently much higher. The mechanism of graphene removal by the FIB can therefore be summarized as (1) quick initial amorphization of the graphene by a low dose of ions (until about \(10^{13}–10^{14} \) ions/cm\(^2\)), followed by (2) milling of the remaining amorphous carbon during prolonged ion exposure (until \(6 \times 10^{15} \) ions/cm\(^2\)).

After the FIB patterning, a large Raman D peak was sometimes observed in the graphene even micrometers away from the patterned areas (see Figure 2(a)), indicating that some ions were unintentionally damaging the graphene far away from their intended target. The micrometer scale at which the graphene becomes damaged is remarkably large. Moreover, we found that it is independent of beam current and focusing conditions. This suggests that it is not caused by ions in the tail of the intrinsically Gaussian beam shape (as suggested by Liao et al.\(^{14}\)) or poor focusing of the beam.

![Figure 1](https://scitation.aip.org/termsconditions)
Furthermore, Liao et al. showed that reducing the exposure time (while keeping the ion dose the same by increasing the beam current) reduces the range of the damage. However, higher beam currents would normally lead to an increase in beam size, causing more lateral damage. This contradiction points to the possibility of another cause for the damage, such as scattering of the ions in the residual gas of the vacuum system. Residual gas consists typically of water, oxygen, and hydrocarbons, and its influence on Ga$^+$ ion beams has been reported previously, though mostly on Si or other substrates less sensitive than graphene. It is thought to remain dominant over other beam broadening effects until pressures drop below 10^{-7} mbar, which is rarely achieved in commercial FIB tools. Residual gas scattering could therefore explain inconsistencies in previously reported results if the system background pressure, and hence the degree of scattering, has varied during or in between experiments.

Under normal vacuum conditions (background pressure $<5 \times 10^{-5}$ mbar) the mean free path of the ions is on the order of 1 m and direct collisions with residual gas molecules is unlikely. However, the distance from ion source to sample is typically also large; on the order of 50 cm through the ion beam column (where the pressure is low), and a further 1–2 cm through the chamber itself. The ion beam column will typically see a pressure gradient from about 10^{-7} mbar at the source to about 10^{-6}–10^{-5} mbar in the chamber. Even when taking into account only scattering in the chamber itself and ignoring scattering in the lower pressure ion beam column, a scattering angle of only 0.015° already results in a lateral range of 5 μm on the sample. In addition, graphene is very sensitive to energetic ions and even a small dose of unintended ions is enough to cause damage, as was shown in Figure 1.

To investigate the influence of residual gas scattering, several identical thin lines (1 μm wide) were patterned by Ga$^+$ FIB at a dose of 10^{16} ions/cm2, using an acceleration voltage of 30 kV, and a beam current of 40 pA. The lines were patterned at irregular time intervals in the timespan of several hours while the system was being pumped down from initial working conditions ($\sim 5 \times 10^{-5}$ mbar) to a pressure of 2×10^{-6} mbar in order to investigate the effect of the residual gas pressure. Raman line-scans were measured perpendicular to the patterned lines to measure the I_D/I_G ratio as a function of the lateral distance to each line.

Figure 2(a) shows scans of four representative FIB patterns. Note that it is expected that the dose of scattered ions (and therefore the damage in the graphene) will be highest near the FIB pattern and decrease at further distances in the direction away from the FIB pattern. The I_D/I_G ratio initially increases from about 1 to ~ 3.5 in the first $2–4$ μm, and then decreases again exponentially away from the intended target over tens of micrometers. The shape of these graphs can be counter-intuitive, but can be explained by the two stages of disorder shown in Figure 1(b). The exponential decrease far away from the FIB pattern (at a low dose of scattered ions) is due to stage 1 disorder where the I_D/I_G ratio simply increases for increasing ion doses. However, the initial increase of the I_D/I_G ratio close to the FIB pattern is due to stage 2 disorder, where the I_D/I_G ratio actually decreases for higher ion doses (closer to the pattern) due to amorphization of the graphene. Using this knowledge, we can visualize this data in a more intuitive way by plotting the ion dose (instead of the I_D/I_G ratio) as a function of the lateral distance. To this effect, the I_D/I_G ratio in each measurement point can be correlated with the corresponding ion dose that the graphene received by using the relation in Figure 1(b). By fitting the data in Figure 1(b) with an analytical expression, any I_D/I_G ratio can be numerically inverted to find the corresponding ion dose. Note that because the expression is not one-to-one (for example, an I_D/I_G ratio of 2 can mean a low ion dose during stage 1 disorder, or a high ion dose during stage 2 disorder), careful inspection of each result is required to choose the ion dose that corresponds to the correct stage of disorder. More information about this procedure can be found in the supplementary material.

Figure 2(b) shows the resulting beam profiles (ion dose as a function of lateral distance r) for the same FIB patterns as shown in Figure 2(a) and shows the expected monotonic decrease of the ion dose at further distances from the target. When residual gas scattering is significant, the ion dose is expected to depend on the distance r as about $r^{-2.55}$ as modelled by Ishitani et al. The lines in the graph are numerical fits to the data with this expected r-dependence and show...
that the data follows this model well (see supplementary material for more details). This clearly demonstrates the effect of residual gas scattering and shows that the beam size increases for higher background pressures. The dose of scattered ions ranges from about 10^{14} ions/cm2 close to the pattern down to 10^{12} ions/cm2 after several microns, which is a factor 10^2–10^3 lower than the dose of 10^{16} ions/cm2 in the patterned area. The amount of scattering is therefore very low as expected, however it is still high enough to significantly damage the graphene, which demonstrates that Raman spectroscopy on the graphene substrates is an ideal tool to measure ion beam profiles.

As an additional demonstration, the exponentially decaying part of the I_{D}/I_{G} ratio in Figure 2(a) can be used to visualize the effect of the background pressure by plotting the $1/e$ mean distance (obtained from exponential fits) as a function of the background pressure, see the inset of Figure 2(a). The range of the damage decreases quickly as the system background pressure decreases, which confirms that scattering in the residual gas is indeed a major cause of the lateral damage.

To prevent damaging the graphene close to those regions that are patterned, the ion scattering must therefore be reduced as much as possible. This can be done by three strategies: (1) First of all, reducing the distance between the ion column and sample would reduce the lateral range of scattered ions. However, this is not practical in existing systems due to geometrical constraints (e.g., the tilting sample stage should not hit other system components in close proximity), but could be kept in mind in the design of new systems. (2) Second, the system background pressure should be as low as possible to reduce the amount of residual gas. This can be achieved by working at very low base pressures and using load-lock systems to prevent breaking vacuum. (3) Finally, the size of the patterned area should be reduced as much as possible. This can be achieved by patterning only small cuts to isolate sections of graphene instead of removing very large areas. For a small area, the total amount of ions needed to achieve a sufficient ion dose to remove the graphene is reduced, and therefore, the amount of ions that scatter will also be reduced.

By combining strategies (2) and (3) (e.g., working at low pressures and patterning only small areas), thin cuts of 100 nm width can be patterned in graphene with very minimal damage due to scattered ions. Figure 3 shows a Raman line-scan over a series of the FIB cuts of varying ion dose and a corresponding SEM image above the graph. The I_{D}/I_{G} ratio is high when the Raman laser is on top of a cut, but decays down to the base level (non-damaged graphene) within a distance of 2–3 μm, which is limited by the resolution of the Raman laser spot size. This result shows that the FIB patterning of graphene is feasible when residual gas scattering is taken into account.

We have demonstrated that residual gas scattering is the main cause of the large range of lateral damage typically seen in graphene after Ga$^+$ FIB patterning. Using in situ and ex situ Raman spectroscopy, we investigated how the diameter and shape of the FIB is influenced by the background pressure of the vacuum system. When the background pressure is lowered, the lateral range of the ions in the tail of the FIB becomes smaller and the ion dose in the area surrounding the target is reduced. The range of the lateral damage in the graphene was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. With these insights, we conclude that FIB patterning could be a feasible alternative to EBL when residual gas scattering is reduced.

The authors would like to thank Piet Trompenaars, Remco Geurts, and Pybe Faber (FEI Company) for assistance, helpful discussions, and access to their systems. This work was financially supported by NWO and the Technology Foundation STW through the VIDI program on “Novel bottom-up nanofabrication techniques for future carbon-nanoelectronics.”

1A. Geim and K. Novoselov, Nat. Mater. 6, 183 (2007).

23. See supplementary material at http://dx.doi.org/10.1063/1.4936334 for information on the electrical conductance through FIB-milled graphene, calculation of the ion dose from the I_D/I_G ratio and fitting details of the radial dependence.

