Experiments with a large-scale reverse flow reactor

Citation for published version (APA):

DOI:
10.1016/S0009-2509(97)800094-8
10.1016/S0009-2509(97)00094-8

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Experiments with a large-scale reverse flow reactor

J. L. Nijdam and C. W. M. van der Geld*

Faculty of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 23 May 1995; in revised form 2 July 1996; accepted 12 February 1997)

Abstract—Experiments have been performed in a full-scale (1.6 m diameter and 2.85 m height) cylindrical reverse flow reactor filled with torus saddles and operated with low thermal losses yielding a homogeneous temperature in the center. For gas mass flow rates up to 2.2 kg/s, the convective heat transfer is found to be dominant and the resulting temperature profiles are discussed for a number of conditions. The experimental results are compared with predictions of one-dimensional models. The agreement found is generally good.

Keywords: reverse flow reactor; packed bed; non-catalytic combustion; convective heat transfer; gas purification; torus saddles.

1. INTRODUCTION

Packed beds of randomly dumped ceramic particles are applied in a large variety of industrial processes and, in a reverse flow reactor, the bed is an intermediary for heat or mass transfer between two gas streams. The reactor used in this study is applied as an end-of-pipe measure for the reduction of air pollution by industrial emissions of volatile organic compounds (VOC). These applications cover a wide range of discharge flow rates (5,000–100,000 m³/h) and VOC-concentrations (0–10 g/m³). The decontamination or deodorization of the gas streams occurs in the packed bed at a high temperature of typically 1000°C. The thermal behavior of the non-catalytic combustor can be compared with that of a reverse flow catalytic reactor as first introduced by Matros, see e.g. Matros and Noskov (1993). Catalytic reactors of the autothermal kind, see Nieken et al. (1994), have recently gained interest for their application in converter systems of the automotive branch (Kirchner and Eigenberger, 1996). Different models of the non-catalytic reverse flow reactor have been derived and evaluated by Nijdam and van der Geld (1997).

Typical temperature profiles in the packed bed are 'hat-shaped' with the maximum occurring half-way in the bed, see Fig. 1. In the heating zone the entering gas is heated by the bed. At a sufficiently high temperature (700°C for natural gas), the VOCs start to react to CO₂ and H₂O. In the mid-bed zone, reaction heat release and heat transfer are almost absent while in the gas cooling zone the heat taken up by the gas in the heating zone, and the reaction enthalpy, are partly returned to the bed in the gas cooling zone, resulting in decreasing gas temperatures. The cleansed gas mixture leaves the bed at an average temperature that is typically 40–70°C above the inlet temperature, dependent on the so-called adiabatic temperature drop. This is the temperature rise of the gas if all chemical reaction heat would be fully converted into sensible heat. Because the flow alters direction continuously, profiles are symmetrical. It is important to have minimal radial heat losses, especially in the high-temperature mid-bed zone (Eigenberger and Nieken, 1988). If the reactor casing is made of e.g. 1.5 mm steel (with its large heat diffusivity and heat capacity), and the bed diameter is small (± 15 cm), too large heat losses occur in the bed center and temperatures are not homogeneous there (van de Beld and Westerterp, 1996). Just with compensatory heating, problems occur because of the large heat capacity of the heating equipment (Eigenberger and Nieken, 1988). The importance of radial variations in catalytic combustion was demonstrated by, e.g. Daszkowski and Eigenberger (1992).

Consequently, the cylindrical reverse flow reactor used in this study was designed to overcome radial heat losses. It had a diameter of 220 cm, a height of 300 cm, was filled with ceramic torus with an open shape, that were relatively large (25 or 38 mm) and at the inside of the casing, 30 cm thick ceramic blocks insulated the bed particles from the surroundings. The thermal diffusivity of ceramic is two orders of magnitude less than that of steel. Note that the influence of the insulation layer on the thermal dynamics of the
Flow direction

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Mass fraction natural gas [kg/kg mixt.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>0.30</td>
</tr>
<tr>
<td>1000</td>
<td>0.25</td>
</tr>
<tr>
<td>900</td>
<td>0.20</td>
</tr>
<tr>
<td>800</td>
<td>0.15</td>
</tr>
<tr>
<td>700</td>
<td>0.10</td>
</tr>
<tr>
<td>600</td>
<td>0.05</td>
</tr>
<tr>
<td>500</td>
<td>0.00</td>
</tr>
<tr>
<td>400</td>
<td>0.00</td>
</tr>
<tr>
<td>300</td>
<td>0.00</td>
</tr>
<tr>
<td>200</td>
<td>0.00</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fig. 1. Temperature and mass fraction profiles computed for a reverse flow reactor of saddles and a superficial air velocity of 0.42 m/s. Temperatures are plotted after 45 s of flow from the left of a mixture of air and 2.47 g/kg natural gas.

The whole system is mainly determined by this thermal diffusivity and is therefore negligible, especially since the cycle time is low, 90 s, causing the temperature profiles in the bed to be almost stationary. Much longer cycle times have become customary to minimize the pollution due to the exhaust of remnants from the headers upon flow reversal. In the test rig of this study, a special feeding and exhausting procedure called 'puff-cleaning' is applied, as explained below. It solves this pollution problem and makes small cycle times possible. Because of these measures and the large width of the bed the experimental results (non-isothermal) are suitable for testing the one-dimensional models developed in an earlier study (Nijdam and van der Geld, 1997). Each flow reversal causes a volume of contaminated gas which has not passed the mid-bed zone, the so-called puff, to be exhausted. This puff is mainly due to the volume of gas which had not reached the mid-bed zone as it is blown out at a flow reversal.

Prevention of the exhaust of contaminated gas is accomplished by directing the puff in a duct (length 25 m, diameter 0.8 m), an air buffer, where it is temporarily stored. This is achieved by shutting off the flow to the stack prior to a reversal by opening a valve to the air buffer and closing a valve to the stack, in this sequence. The valves remain in their position for another two seconds in order to direct all gas remnants that did not reach the bed center into the air buffer. Then the valve to the stacks opens again and the other one closes and cleaned gas flows to the stack. The puff in the air buffer is gradually added to the contaminated flow in the duct to the packed bed, at the suction side of the process fan. A pressure difference of 0.5 kPa over the valve causes this addition.

As compared to the method discussed by Eigenberger (1992), the present puff-cleaning method has the advantage of low cost of investment. The former method requires three bed-halves to be installed, rather than the two in our method, and utilizes only two thirds of the available heat storage capacity at each instant of time.

The cleaning capacity of the puff-cleaning presented here amounts nearly 100% for natural gas (Nijdam, 1995). Components showing strong adsorption have a lower cleaning efficiency due to desorption.

Typical pressure drops across the entire generator (bed, ducts and valves) range in common practice from 2 to 4 kPa. Lower pressure drops could be realised by selecting a higher porosity for the bed. This would, however, decrease the volumetric surface area of the bed, reducing heat transfer efficiency. The shape of the bed particles and their size, determining the volumetric surface area, are chosen such that the total cost of energy (electricity for the process fan and natural gas for the preservation of bed temperatures) is minimum. Isothermal runs at ambient temperature

If long cycle times are used, the mid-bed temperatures are usually kept as low as possible to reduce thermal losses. If these thermal losses are low, only low concentrations of hydrocarbons (2 g/m³) suffice to keep the reactor going.
Experiments with a large-scale reverse flow reactor

burner system

packed bed

clean air

natural gas injection

50mm sockets for flow rate measurements

Fig. 2. Schematic of regenerator, process fan and air ducts.

have been performed for Reynolds numbers in the range from 800 onto 1900 and resulting pressure drops are compared with predictions using the correlations of Ergun and Kast (Brauer, 1971), and Mackowiak (1991).

2. EXPERIMENTAL

The test rig consists of a cylindrical reactor vessel, two especially designed two-way valves that alternately direct the air flow upwards or downwards through the bed, a process fan and control equipment (P.L.C. and frequency controller). Figure 2 presents a schematic of the test rig. During start-up of the regenerator, the bed is heated by a 70 kW burner, producing 1000°C flue gases that are distributed by perforated pipes in a horizontal plane halfway the packed bed. During the measurements, ambient air and organic compounds with a constitution to be described below are fed to the regenerator by means of a 45 kW process fan with its rotational speed controlled by a frequency controller. The air is transported to the regenerator through a straight pipe with diameter, D, of 0.6 m and length 6.3 m. Air flow rates are measured in this duct at a distance 7D downstream of the duct inlet, using a hot wire anemometer (Airflow Model TA5, accuracy ± 2%). Velocity measurements are performed at six radial positions in the duct (0.032D; 0.135D; 0.321D; 0.679D; 0.865D and 0.968D), on a crossed horizontal and vertical line through the duct center. The radial positions are chosen such that the mean velocity is obtained directly from the average of the 12 measurements (Perry et al., 1984). It takes some time for the gas to reach the bed front after a flow reversal. This 'dead' time is denoted with \(\tau_{\text{dead}} \).

The vessel has a diameter of 2.2 m and a height of 3 m, see Fig. 3. It is insulated at the inside by blocks of ceramic material (40.6% Al_{2}O_{3}, 49.5% SiO_{2}). The thickness of the insulation is 0.3 m and hence the bed diameter is 1.6 m. During pouring, the saddles were frequently spread out and tamped in order to minimize future settling by weight, see appendix A. The bed possesses four layers, see Fig. 3. The higher void fraction of the 38 mm saddles allows for homogeneous distribution of the flue gases from the burner during start-up.

Usually it takes 200 cycles (5 h) of operation to attain stable temperatures due to the low (order 0.001) thermal capacity ratio of gas and bed, \(\epsilon \rho_{g} c_{g} / [(1 - \epsilon) \rho_{p} c_{p}] \). Measurements have been taken after weeks of continuous operation; new test conditions got 24 h to settle. During the measurements the temperature of the casing was constant. The same holds for the bed provided that measuring times were taken in phase with respect to the cycle variation.

Sixteen type K (NiCr-Ni) thermocouples (accuracy ± 2°C) have been inserted in the bed. Their position is indicated as MP # in the Fig. 3 (side view) and (4) (top view). The latter figure shows how each thermocouple is bent circumpherentially to prevent excessive forces due to thermal expansion of different materials and to minimize temperature gradients. Temperatures are measured with a digital thermometer with cold junction compensation (Eirelec model 5001) and a six-channel temperature recorder (Kipp & Zonen Model BD100, accuracy ± 1°C). The temperature of the air at the inlet is measured using the built-in thermocouple of the anemometer (accuracy ± 1°C). The

\[\text{The bottom layer is for reinforcement and larger holes in the bottom plate. Computations show its presence to have hardly any effect on temperature profiles.} \]
Fig. 3. Side view of thermocouple locations and composition of the packed bed. All dimensions in mm.

Fig. 4. Top view of thermocouple locations. All dimensions in mm.

Air humidity at the inlet is measured by a wet bulb indicator (Sato Keiryoki, Wittich & Visser, accuracy ± 5%). Any lifting out of the horizontal plane of a thermocouple results in a positioning error of the thermocouple tip. The positioning accuracy of the tip corresponds to a rotation of ± 4° out of the horizontal plane.

The temperature of the thermocouple stabilizes at a level which balances the heat fluxes to the probe from the gas (convection), the bed (conduction) and the ambient air (conduction). The major part of the surface is in contact with the flowing gas. The thermocouples therefore indicate a temperature inbetween that of the gas and that of the bed. At the moderate temperatures in the heating and cooling zones, radiation is negligible compared to heat transfer by forced convection (Fierzfeld, 1962). Van de Beld et al. (1994) with large cycle times (400–1600 s) measured differences between particle and gas temperatures of 20°C maximum. In the mid-bed zone the temperatures are typically 1000°C, causing radiation to be important. In this section, however, gas, bed and thermocouple temperatures are virtually the same and steady state and transient errors are negligible. Steady state measuring errors due to conduction are ca. 3°C (Nijdam, 1995). Transient temperature variation is
not responded to correctly by the thermocouple due to its thermal capacity, resulting in so-called transient errors. They are corrected, in a way described in appendix Appendix B.

In the duct between process fan and inlet valve, see Fig. 2, a small amount (2% typically) of natural gas is injected in the air flow through a multi-hole tube. The natural gas composition in % volume is (Gasunie, 1988): methane 81.30, nitrogen 14.35, ethanol 2.85 and others 1.5. The inlet mass fraction of natural gas, x_{i}^{in}, follows directly from the measured flow rates of natural gas and air. In addition, x_{C}^{in} is computed from the time-averaged difference of the specific enthalpy, H_{i} of the gas mixture at outlet of the bed and that of the air at the inlet by

$$x_{C}^{in} = \frac{1}{\Delta H_{O}} \left\{ H(T_{out}(t), x_{\text{H}_2O}^{out}, x_{\text{CO}_2}^{out}) - H(T_{in}^{n}, x_{\text{H}_2O}^{in}, x_{\text{CO}_2}^{in}) \right\} dt$$

(1)

where ΔH_{O} denotes the lower combustion value of natural gas, $3.8 \times 10^{-3} \text{ J/kg}$ (Gasunie, 1988); τ the flow cycle time (upwards and downwards), T_{in}^{n} the time-dependent temperature of the gas mixture at outlet of the test rig. T_{out}^{n} the constant inlet temperature, $x_{\text{H}_2O}^{in}$ and $x_{\text{CO}_2}^{in}$ the mass fractions of water vapor and carbon dioxide, respectively, at the outlet and $x_{\text{H}_2O}^{in}$ and $x_{\text{CO}_2}^{in}$ those at the inlet. The enthalpy correlation for dry air includes a contribution of 0.03 vol.% CO$_2$ in the air (Gasunie, 1988).

The heat losses to the ambient atmosphere have been measured with a heat flux sensor. It consists of a thermopile, a large number of thermocouples in series connection, embedded in a filling material. The diameter of the sensor is 25 mm and its thickness is 3 mm. The sensor has been put on the steel wall at the outside of the test rig and has an accuracy of ±5%.

3. RESULTS

In each test run, mixtures of ambient air and natural gas are fed to the reactor at a constant flow rate, \dot{m}_g. Table 1 summarizes the main process conditions of the test runs. Errors indicated are computed according to Kline and McClintock (1953). The Reynolds number ranges from 300 (run 1, mid-bed zone) to 1600 (run 7, bed surfaces). Here Re is based upon the interstitial gas velocity, $\dot{m}_g/\rho_g A_d$, and the mean pore diameter, $d_b = 6 \cdot V_p/\pi A_p (1 - \varepsilon) = \varepsilon d_{eq}/(1 - \varepsilon)$, with V_p and A_p denoting the volume and surface area of a torus saddle, respectively. The cycle time, τ, is selected constant and short (90 s) for reasons explained in Section 1, while the gas velocity is changed to investigate the effect of convective heat transfer.

3.1 Temperatures

Heat fluxes to the ambient air, Q_{amb}, have been measured on the outside of the insulation at different locations on the steel casing (see Table 2). The temperature drop due to losses, $\Delta T_{lost} = l_{bed} d_{bed} \pi \rho_{amb} c_p$, ranges from 5 to 9°C. Here l_{bed} is the height of the bed (3 m) and d_{bed} its outer diameter (2.2 m). The value of $\Delta T_{lost} = (T_{amb} - T_{in}) + \Delta T_{loss}$ varies from 93 to 127 in the test runs. These values easily follow from the data in Tables 1 and 2.

Typical temperature histories measured at MP2 (in the heating/cooling zone) for run 7 are presented in Fig. 5. This temperature increases and decreases approximately linearly in time, and this tendency is independent of the flow rate. Temperatures measured in the mid-bed zone are constant in time. The dotted line in Fig. 5 possesses the correct mean and maximum and minimum temperatures as found in the way described in Appendix B. The corrected temperature is more close to the gas temperature after 45 s of constant gas flow. Upon alternating the flow direction the temperature registered by the thermocouple is initially more close to the bed temperature. Then it rapidly comes close to the gas temperature. The ratio of the characteristic relaxation time of the thermocouple, t_{rel}, to the cycle time is too large in the example of Fig. 5 for the thermocouple to fully adapt the gas temperature. The thermal inertia of the 6 mm outer diameter thermocouples makes t_{rel} large, see Appendix B, causing the differences in measured and predicted temperatures in Fig. 5.

The difference between the maximum and minimum temperatures at a certain point in the bed equals twice the amplitude, A_T, defined in Fig. 5. The values for A_T have to be corrected for transient errors as explained in Appendix B. The amplitudes are maximum at the top and at the bottom of the bed (MP1, 2, 3, 9, and 10), as expected. The average temperatures, T_{avg}, and the amplitudes A_T of all test runs and all measuring points have been tabulated (Nijdam, 1995) and are available on request. The temperature profile histories of all tests can be reconstructed from these data.

Temperatures in the heating/cooling zone decrease with increasing mass flow rate. The gradient dT/dz has the same tendency. This dependence on the mass flow rate is easily explained with the aid of correlations for Nu from the literature, see e.g. Matros (1985, 1989).

The gradients dT/dz are found to be constant in each of the heating, mid-bed and cooling zones. The observed gradients being homogeneous implies that $d^2T/dz^2 = 0$. Axial diffusion apparently is negligible with respect to convective heat transfer and the latter therefore dominates.
Table 1. Main process parameters of each test run.

<table>
<thead>
<tr>
<th>Run #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_g) (kg/s) ((\pm 0.05))</td>
<td>1.069</td>
<td>1.103</td>
<td>1.337</td>
<td>1.454</td>
<td>1.667</td>
<td>2.033</td>
<td>2.204</td>
</tr>
<tr>
<td>(T_{in}) (°C) ((\pm 1))</td>
<td>11.5</td>
<td>18.7</td>
<td>15.3</td>
<td>11.8</td>
<td>19.9</td>
<td>18.0</td>
<td>20.6</td>
</tr>
<tr>
<td>(x_{H_2O}) (g H(_2)O/kg mixture) ((\pm 0.2))</td>
<td>4.5</td>
<td>4.6</td>
<td>6.8</td>
<td>5.0</td>
<td>9.8</td>
<td>4.5</td>
<td>7.4</td>
</tr>
<tr>
<td>(x_{NG}) (g natural gas/kg mixture) ((\pm 0.08))</td>
<td>2.506</td>
<td>2.387</td>
<td>2.469</td>
<td>2.717</td>
<td>2.597</td>
<td>2.876</td>
<td>3.175</td>
</tr>
<tr>
<td>(\tau) (s)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(\tau_{dead}) (s) ((\pm 0.1))</td>
<td>1.6</td>
<td>1.6</td>
<td>1.3</td>
<td>1.2</td>
<td>1.0</td>
<td>0.85</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Note: \(x_{H_2O}\) is the inlet gas humidity. The mass fraction of natural gas is denoted by \(x_{NG}\). \(\tau_{dead}\) is the ‘dead’ time after a flow reversal (see Section 3).

Table 2. Measurements of heat flux \(Q_{amb}\) at the steel casing of the test rig

<table>
<thead>
<tr>
<th>(T_{bed}) (°C)</th>
<th>Temperature ambient air [°C]</th>
<th>(Q_{amb}) (W/m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>310 ± 2</td>
<td>20 ± 2</td>
<td>295 ± 15</td>
</tr>
<tr>
<td>732 ± 2</td>
<td>22 ± 2</td>
<td>460 ± 23</td>
</tr>
<tr>
<td>950 ± 2</td>
<td>21 ± 2</td>
<td>557 ± 28</td>
</tr>
</tbody>
</table>

Temperatures in the mid-bed zone, \(T_{MB}\), are found to increase a little with increasing mass flow rate, see Fig. 6 and 7. Van de Beld et al. (1994) found the same tendency.

The radial temperature gradients in the mid-bed zone, where temperatures are highest, are negligible, see Fig. 7, thus the net heat flow from the bed to the surroundings is small. The heat losses to the ambient air are low, 500 W/m\(^2\) (3.5 kW in total) typically, see Table 2, and those by axial conduction in the metal casing are estimated to be ca. 130 W only. Only at the borders of the mid-bed zone, the temperatures in the thermal insulation fluctuate due to the continuous shifting up and down of the bed temperature profile.

However, given the low cycle time, 90 s, and the thick thermal insulation with a low thermal diffusivity the heat capacity of the insulation has a negligible effect on the bed temperature profiles and the heat losses.

3.2. Pressure drop

With the temperature profiles known, the variations of the gas mass density and viscosity can be computed. This is done by segmenting the bed into small slices with height \(\Delta z\). In each slice the pressure drop is computed in three different ways as described in Nijdam (1995), see also Brauer (1971) and Mackowiak (1991). The total pressure drops, \(\Delta P\), follow from a subsequent summation, and are compared
Fig. 6. Comparison of measured and predicted temperatures at the outlet and in the mid-bed zone.

MP8, MP12, MP14 in mid bed zone

Fig. 7. Temperature profiles in radial direction in the mid bed-zone.

with experiments in Fig. 8. The Reynolds number ranges from 300 (mid-bed zone, run 1) onto 1600 (bed surface, run 6).

Additionally, isothermal runs have been performed in which the entire bed is at a temperature of 15 ± 1°C. Ambient air at the same temperature is transported to the bed at seven different flow rates. Experimental and computed pressure drops are presented in Fig. 9. The Re-number ranges from 800 onto 1900.

The isothermal pressure drops predicted by the correlations of Ergun, Kast and Mackowiak differ by less than 15% from the experiments. This is acceptable, because of the expected prediction accuracy of
Fig. 8. Comparison of measured and predicted pressure drops for the heated bed; see Table 1 for operating conditions.

Fig. 9. Comparison of measured and predicted pressure drops for isothermal conditions.

c. 20% due to the uncertainty in the void fraction. Only for the lowest flow rate, Mackowiak’s correlation overpredicts the experimental value by 40%.

The same accuracy of 15% is obtained for the heated bed with the correlations of Ergun and Kast. Mackowiak’s correlation, however, overpredicts the pressure drop over the heated bed by more than 50%, particularly for the lowest flow rates of runs 1 and 2, see Fig. 8. For these conditions, a typical Reynolds number in the mid-bed zone is 300, while the measurements used by Mackowiak (1991) ranged from 600 to 10,000, probably causing the discrepancy found.

3.3. Shift velocities

Temperature fluctuations in the bed are the result of temperature gradients in flow direction, $\partial T/\partial z$, and the gradual shifting of the temperature profiles due to convection. This shifting happens at velocity v_s that is defined as the speed at which a temperature disturbance propagates downstream. An expression for v_s is easily derived for regions of the packed bed where no heat sources occur, see e.g. Levec and Carbonell (1985):

$$v_s = \dot{m}_g \cdot c_p / [(1 - \phi) \cdot \rho_f \cdot c_p \cdot A_f] .$$ (2)
Experiments with a large-scale reverse flow reactor

Table 3. Measured axial temperature gradients, \(\frac{dT}{dz} \)

<table>
<thead>
<tr>
<th>Run no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured (°C/m)</td>
<td>1059 ± 170</td>
<td>968 ± 155</td>
<td>902 ± 145</td>
<td>980 ± 157</td>
<td>925 ± 148</td>
</tr>
</tbody>
</table>

Values of the ratio of \(c_g \) and \(c_p \) range from 1.2 at inlet of the bed to 0.8 in the mid-bed zone. The shift velocity is therefore roughly constant in the bed. Predictions with eq. (2) and \(\varepsilon = 0.68 \) (see Appendix A) are gathered in Fig. 10.

Shift velocities are derived from measured temperatures in the following way. Almost by definition,

\[
v_s = -\frac{dT_p}{dz} \frac{dT_p}{dz} \tag{3}
\]

Since \(\frac{dT_p}{dz} \) and \(\frac{dT_p}{dz} \) are about the same, values for \(\frac{dT_p}{dz} \) in the denominator of eq. (3) are obtained from measured gradients. Time-averaged axial temperature gradients \(\frac{dT_p}{dz} \), in heating and cooling zones, have the same absolute value and are constant during flow in one direction. Measured temperature gradients are derived from the temperature difference of MP1 and MP3, divided by the distance 0.56 m between these two measuring points. In Table 3 measured gradients are presented.

An expression for the derivative \(\frac{dT_p}{dt} \), is found by taking the time derivative of the governing equation for the bed temperature (Nijdam, 1988):

\[
\frac{dT_p}{dt} = \frac{dT_p}{dz} + \frac{d}{dt} \left(\frac{m_g \cdot c_p \cdot d T_p}{h \cdot A \cdot d z} \right) \tag{4}
\]

Since \(h \) is approximately constant (variation is less than 8%), \(c_p \) is the only variable in the RHS of eq. (4).

Substitution of \(\frac{dc_p}{dt} \) by \(\frac{dc_p}{dT} \cdot \frac{dT_p}{dz} \) results in

\[
\frac{dT_p}{dt} = \frac{dT_p}{dt} \left(1 + \frac{m_g}{h \cdot A \cdot A_f} \frac{dc_p}{dT} \frac{dT_p}{dz} \right) \tag{5}
\]

For the measuring conditions of all test runs, the second term between the brackets is of order 0.01. The time rates of change of \(T_p \) and \(T_g \) are, therefore, approximately the same. Measured values of \(\frac{dT_p}{dt} \) are computed from temperature histories like those of Fig. 5.

The experimental results with eq. (3) are compared with predictions in Fig. 10. In view of the measurement accuracies, see Section 2, and the approximations involved in eq. (2), the agreement is reasonably good.

3.4. Temperature predictions

Temperature distributions of gas and torus saddles are computed for each of the seven runs specified in Table 1 using a semi-analytical model. This one-dimensional model is applicable for reasons discussed in Section 3. Instantaneous values registered by the thermocouples are a weighed average of the gas and bed temperatures, see Section 2, which would make a comparison with instantaneous predictions cumbersome. Results for run 1 are presented in Fig. 11 and, except for the two thermocouples in the bottom part of the reactor a fair agreement is found between

Fig. 10. Comparison of measured and predicted shift velocities; see Table 1 for operating conditions.
measured and computed temperatures. Similar results are obtained for the other measuring conditions of run 2–7. Some comparison results are gathered in Fig. 6. For all test runs the agreement between measurement and prediction is fairly good.

Due to the shifting of the temperature profiles, temperatures in heating and cooling zone vary in time as shown in Fig. 5. This figure has been discussed in Section 3.1. Computed and measured amplitude distributions for run 1 are compared in Fig. 12. The measured amplitudes are approximately 40% less than the predicted gas amplitudes. This shows that the thermocouples register temperatures somewhat more close to the gas temperature at the end of a cycle as has been discussed in Section 3.1. The shape of the amplitude profiles for run 2 through run 7 is similar, with an approximately linear dependence of temperature amplitudes on the mass flow rate. This dependence is obvious from the constant cycle time and from expression (2) for the shift velocity.

The plateau temperature in principle depends on the ignition temperature of the component to be burnt, which depends on E, the Arrhenius term or frequency factor and the gas residence time. Note that reactions only occur in the part of the reactor upstream of the mid-bed zone. Despite of this, T_{MB} alters
Experiments with a large-scale reverse flow reactor

2739

by 15–20% if \(E \) is varied by \(\pm 10\% \) while keeping the other parameters of the theoretical model constant.

4. CONCLUSIONS

Experiments are presented with a reverse flow reactor of torus saddles. The measured time-dependent temperature profiles in pseudo-stationary operation are fully characterized by the temperature of the mid-bed zone, \(T_{MB} \), the gradients in the heating and cooling zone, \(\partial T/\partial z \), the cycle time, \(\tau \), and the amplitudes of temperature in the heating and cooling zone, \(A_T \).

The cycle time has been fixed at 90 s. The values of \(T_{MB} \), \(\partial T/\partial z \), and \(A_T \) have been tabulated and are available on request.

The observation that temperatures are constant throughout the entire mid-bed zone shows that radial heat losses are negligible. This was expected because of the design of the bed: its width, its thick internal insulation with low thermal diffusivity, combined with the small cycle time applied yielding low heat fluxes at the outside. For gas mass flow rates up to 2.2 kg/s, convective heat transfer is found to be dominant and axial diffusion to be negligibly small.

Pressure drops have been measured in the heated reactor (Reynolds numbers \(Re \) varying from 300 to 1600) and at uniform ambient temperature (Reynolds numbers 800–1900). Predictions by the correlations of Ergun and Kast (Brauer, 1971) deviate less than 15%, but low-Reynolds number predictions by the correlation of Mackowiak (1991) can deviate by as much as 50%.

The measured shift velocities show that eq. (2) predicts the shift velocity reasonably well.

A one-dimensional, semi-analytical MAT model (Nijdam, 1995; Nijdam and Van der Geld, 1997) has been used for simulations of the reverse flow reactor with torus saddles. The agreement of measurements and predictions is generally good.

Acknowledgements

The authors are grateful to Reox B. V. and Novem for financing this study.

APPENDIX A. PACKING CHARACTERISTICS

In this appendix, the bed materials used in the test rig are specified.

The mass density of the ceramic packing material, \(\rho_p \), is according to the supplier* 2400 kg/m³. The heat capacity, \(c_p \), and conductivity, \(\lambda_p \), of the packing material have experimentally been determined by Carlowitz*

\[
c_p = \exp(6.59 + 5.31 \times 10^{-4} T) \quad (T \text{ in K}) \quad (A1)
\]

\[
\lambda_p = 0.8993 + 5.2113 \times 10^{-4} T - 1.119 \times 10^{-7} T^2 \quad (T \text{ in K}). \quad (A2)
\]

Some of the particle properties have experimentally been determined in our laboratory. A cylindrical vessel of 0.280 m diameter and 0.295 m height has been filled completely with 25 mm saddles and the number of saddles in the cylinder was counted. Subsequently water was added. The amount of water that could be poured into the cylinder until it runs over has been measured (accuracy \(\pm 0.1 \% \)). The experiment was carried out twice: for a relatively open bed structure created by filling the cylinder gently and for a relatively dense bed that was tamped frequently during the filling. The number of saddles in the cylinder was 1350 ± 20 and 1500 ± 20 and volume water was 13.1 ± 0.1 l and 12.4 ± 0.1 l, respectively. In addition, the mass of 100 dry saddles has been measured: 0.92 ± 0.01 kg. Subsequent results for \(\rho_{bed} \), \(\varepsilon \) and the number of particles per unit bed volume, \(N \), are presented in Table A1. The void fractions measured in this way are in fair agreement with values given by the supplier.

The volumetric surface area, \(\sigma_{bed} \), follows from the surface area of one saddle, \(a_s \), as \(a_{bed} = N \cdot a_s \). The surface \(a_s \) of a saddle with average dimensions has been computed using the AutoCad AME-module. Characteristic dimensions of the saddle are defined in Fig. A1. The characteristic lengths \(H \), \(W \) and \(S \), see Fig. A1, are 36.1 ± 0.6 mm, 20.4 ± 0.5 mm and 3.4 ± 0.2 mm, respectively. The value computed for \(a_s \) is 2468 ± 60 mm², leading to the volumetric surface areas given in Table A1.

APPENDIX B. CORRECTION OF TEMPERATURE MEASUREMENTS FOR TRANSIENT ERRORS

In transient situations, thermocouples lag behind any change in gas temperature due to their thermal capacity resulting in the so-called transient errors. In this appendix, a correction method for transient errors is presented. Transient errors, \(E_T \), in heating and cooling zones are estimated from (Herzfeld, 1962)

\[
E_T = T - T_n = \frac{d T_n}{d \tau} \quad (B1)
\]

with \(T_n \) the so-called characteristic time, defined by

\[
t_n = \rho_v c_v d_v/h \quad (B2)
\]

Here \(\rho_v \) is the mass density of the thermocouple, \(c_v \) its heat capacity, \(d_v \) its diameter and \(h \) the convective heat transfer coefficient. The value of \(t_n \) for the probes with a 6 mm outside diameter tubing has experimentally been determined in quiescent air, resulting in a value of \(t_n = 230 \) s. Values for \(t_n \) for the measurements in the packed bed are derived from \(t_n^0 \) by

\[
t_n = t_n^0 \frac{h_{exp}}{h} \quad (B3)
\]

with the convective heat transfer coefficient for the calibration experiment with natural convection, \(h_{exp} \), being 13 W/(m² K).

Temperature histories as that of Fig. 5 show that \(T_n \) changes linearly with time between two flow reversals. The timedependent of \(T_n \) in the RHS of (B1) is therefore approximated by

\[
\frac{d T_n}{d \tau} = 2 \cdot \frac{A_T}{T} \quad (B4)
\]

with \(A_T \) the measured amplitude and \(\tau \) the cycle time of the regenerator (90 s). The amplitude of the actual gas temperatures in the bed, \(A_{T,act} \), is derived by substitution of (B3) and (B4) in (B1). Subsequent values derived for \(A_{T,act}/A_T \)

*Vereinigte Füllkörper Fabriken GmbH (VFF), Ransbach-Baumbach, Germany.

#Prof. Dr. Ing. O. Carlowitz, Fachhochschule Braunschweig/Wolfenbüttel, Saldaßler Straße 46-48, 38302 Wolfenbüttel, Germany.
Table A1. Measured values of the mass density, ρ_{bed}, number of particles per unit volume, N, and of the void fraction, ε, for the 25 mm saddles

<table>
<thead>
<tr>
<th>Bed-type</th>
<th>ρ_{bed} (kg/m3)</th>
<th>N (m$^{-3}$)</th>
<th>ε</th>
<th>d_{bed} (m$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>681 ± 12</td>
<td>$74.10^3 \pm 10^3$</td>
<td>0.72 ± 0.01</td>
<td>183 ± 5</td>
</tr>
<tr>
<td>Dense</td>
<td>764 ± 13</td>
<td>$83.10^3 \pm 10^3$</td>
<td>0.68 ± 0.01</td>
<td>205 ± 6</td>
</tr>
</tbody>
</table>

Fig. A1. Schematic of a saddle and characteristic dimensions.

range from 1.7 to 2.3. Hence, due to the thermal capacity of the thermocouple probe measured temperature amplitudes are about 50% smaller than the actual gas temperature amplitudes in the packed bed.

Greek letters
- ΔH_0 Enthalpy of combustion, J/kg
- ΔP Pressure drop, Pa
- ΔT_{ad} Adiabatic temperature drop, see Section 3, K
- ε Void fraction: volume of gas per unit volume of packed bed
- λ heat conductivity coefficient, W/(m K)
- ν kinematic viscosity, m2/s
- ρ mass density, kg/m3
- τ cycle period (upwards + downwards), s

Subscripts
- ad adiabatic
- amb to the ambient gas
- avg average
- g gas phase
- HC natural gas
- H_2O water vapor
- loss lost
- MB mid-bed zone (plateau)
- p particles

Superscripts
- out at the outlet (gas)
- in at the inlet (gas)

REFERENCES
Experiments with a large-scale reverse flow reactor

