
 Eindhoven University of Technology

BACHELOR

Constructing shortest covering walks of neighbour-swap graphs
generating linear extensions of posets by adjacent transpositions

Bellaard, Gijs

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Dec. 2024

https://research.tue.nl/en/studentTheses/5a146ac0-7b26-4007-be4b-7924524d9258

Constructing Shortest Covering Walks

of Neighbour-swap Graphs
Generating linear extensions

of posets by adjacent transpositions

Gijs Bellaard (1014090)
Supervisor: Dr. ir. Tom Verhoeff

July 24, 2019

Abstract

This paper considers graphs, where the vertices are linear extensions of
a partially ordered set and edges are adjacent transpositions on these ex-
tensions, aptly called neighbour-swap graphs. We give a way to partition
neighbour-swap graphs into smaller ones, ways of telling when a graph is
not a neighbour-swap graph, and share a new proof of the number of edges
in specific kinds of neighbour-swap graphs. Just like permutations, linear
extensions can be split by their parity into two categories: even or odd. The
difference between the number of even and odd linear extensions, also called
the surplus, turns out to be closely related to the existence of Hamiltonian
paths and other shortest covering walks within neighbour-swap graphs. New
ways of calculating this surplus are given together with some already known
results in doing so. Everything that we could find on constructing shortest
covering walks is also summarized and a “master” conjecture is stated which
encompasses every result so far. This master conjecture is more general than
what has been published so far.

1

Contents

1 Introduction 3
1.1 Overview . 4

2 Preliminaries 5

3 Properties of neighbour-swap graphs 9
3.1 Isomorphisms . 9
3.2 Partitioning . 10
3.3 Identification . 11
3.4 Edges . 14
3.5 Some more trivia . 15

4 Counting linear extensions and their surplus 16
4.1 Counting linear extensions . 16
4.2 Counting the surplus . 18

5 Constructing shortest covering walks 22
5.1 Hamiltonian . 22
5.2 Lehmer . 24
5.3 Master . 25

6 Conclusion 26

7 References 27

2

1 Introduction

Suppose we have the set {1, 2, 3, 4}. Consider a permutation of this set,
like 1234. Swapping two adjacent elements is called a neighbour-swap. Per-
forming a neighbour-swap yields again a permutation. For example, we can
swap the 1 and 2 to obtain 2134. An interesting question is if one can
perform these neighbour-swaps (not necessarily starting with 1234) in such
a way that every permutation is encountered exactly once. In this case
the problem is quite simple and is solved using the well-known Steinhaus-
Johnson-Trotter algorithm [1, 8, 9](Theorem 5.1). And, in fact, when the
set has more than two elements you can start anywhere, because then there
exists a cycle.

So to make things more interesting, let’s consider a more general set-
ting using multisets, like {1, 1, 2, 2}, instead of sets. We can still perform
neighbour-swaps but some are useless: swapping the two ones in a permu-
tation of the multiset leaves us with the same permutation. Is it now still
possible to visit every permutation exactly once? This multiset-version is
what Lehmer and Verhoeff write about in their respective articles [3, 10].

A convenient way to visualize the permutations and neighbour-swaps is
to present them as a graph. Permutations become vertices and neighbour-
swaps become edges. Such graphs are called, unsurprisingly, neighbour-swap
graphs. This also allows us to restate our problem as finding a Hamiltonian
path in the neighbour-swap graph. The neighbour-swap graph correspond-
ing to {1, 1, 2, 2} can be seen below.

1122 1212

1221

2112

2121 2211

Figure 1: Neighbour-swap graph of the multiset {1, 1, 2, 2}.

From this graph it can be seen that, sadly, no Hamiltonian path exists.
This means the multiset version is more interesting than the set version
because it is no longer the case that Hamiltonian paths always exist. We
can also loosen our requirement for a Hamiltonian path and just search for
a shortest covering walk. Lehmer also suggests this in [3] and writes about
“imperfect Hamiltonian paths” which Verhoeff calls Lehmer paths in [10].
What these Lehmer paths exactly are is explained in section 5.

There is an even more general way to create neighbour-swap graphs,
viz. by using partially ordered sets (posets). Take for example the poset
on {1, 2, 3, 4} with the order that 1 precedes 2 and 3 precedes 4. Now the
neighbour-swap graph of the linear extensions of this poset acts exactly like
{1, 1, 2, 2}.

3

1234 1324

1342

3124

3142 3412

Figure 2: Neighbour-swap graph where 1 precedes 2 and 3 precedes 4.

And for example combining the set {1, 2, 3, 4} with the order that 1 and
2 must both precede 3 and 4 gives us the following neighbour-swap graph,
which was impossible to acquire previously using just multisets or sets.

1234 2134

21431243

Figure 3: A neighbour-swap graph that can not be created using just sets
or multisets.

1.1 Overview

Section 2 starts with the preliminaries which consists of concepts, notation,
terminology and some visualization. It is suggested everyone should read it
no matter how knowledgeable in the subject. Section 3 dives into properties
of neighbour-swap graphs. This includes a new formula for the number of
edges in a neighbour-swap graph of a multiset. Section 4 is about counting
linear extensions and computing the surplus (which will be defined properly
in the preliminaries). Most notably two new ways of computing the surplus
are shared. Section 5 tackles the main question of finding shortest covering
walks of neighbour-swap graphs, which includes Hamiltonian paths. Section
6 concludes the paper.

4

2 Preliminaries

In the introduction it is discussed that it is a fruitful idea to work with a
poset with a relation of the form “this element should precede this element”.
Obviously the relation is transitive: when element a precedes b, and b pre-
cedes c, a should also precede c. The relation is also irreflexive because an
element cannot precede itself. To conclude:

Definition 2.1. In our setting a poset P is defined as a finite set, also
called the ground plane, combined with a relation ≺ which is irreflexive and
transitive. When a ≺ b or b ≺ a we call a and b comparable. The cardinality
of the ground plane is |P | and when there can be no confusion it is denoted
with n.

We can visualize posets as directed graphs in which the vertices represent
the elements of the ground plane and the arrows the relation. To reduce
clutter we may only show the transitive reduction. These graphs are called
Hasse Diagrams. We can be assured a transitive reduction exists because
we are working with finite sets. Furthermore the reduction is unique due to
there being no cycles because of the irreflexivity.

Example 2.1. In the following figure, two posets with their Hasse diagram
can be seen. Conventionally the arrows always point downwards.

(a)
(b)

Figure 4: Hasse diagrams of two posets

Definition 2.2. A linear extensions is a total ordering of the poset. Let
L (P) denote the set of all linear extensions of a poset P . We remark that
linear extensions can also be considered as posets themselves. Since the
linear extensions are a subset of the permutations of the ground plane we
may also talk about even and odd linear extensions.

Now we can continue defining the neighbour-swap graphs.

Definition 2.3. A neighbour-swap is defined as a transposition of two ad-
jacent elements within a sequence. When two sequences s1, s2 differ by one
neighbour-swap we write s1 ∼ s2. A neighbour-swap graph G (P) of a poset
P is defined as the graph on L (P) with edges corresponding to neighbour-
swaps.

Searching for a Hamiltonian path in neighbour-swap graphs would be
ridiculous if they were not connected. Luckily they always are.

5

Definition 2.4. An inversion is two elements who differ in order between
two sequences.

Theorem 2.1. Every neighbour-swap graph is connected.

Proof. Suppose we have two different linear extensions l1 and l2. Between
these two there is a set of all inversions of which the cardinality is called
the inversion number. There always exists an inversion which involves two
adjacent elements in l1, because if it did not, the two linear extensions
would not differ. Neighbour-swapping these two elements in l1 decreases the
inversion number by exactly one. Repeating this process until the inversion
number reaches zero means we have reached l2 from l1 using only neighbour-
swaps.

Neighbour-swap graphs also have the following property:

Theorem 2.2. Every neighbour-swap graph is bipartite where the two parts
consist of the even and odd linear extensions.

Proof. As previously stated, the linear extensions of a poset are a subset
of the permutations of the ground plane and neighbour-swaps are, after
all, nothing more than transpositions. This directly implies neighbour-swap
graphs are bipartite because every edge is between an even and an odd
permutation.

Definition 2.5. Define the surplus D (G (P)), or D (P), as the absolute
difference between the cardinality of the two parts of the bipartition.

You might be wondering why this definition is useful. The following
theorem will make clear it is of great interest.

Theorem 2.3.

1. If G (P) has a Hamiltonian path then D (P) ≤ 1.

2. If G (P) has a Hamiltonian cycle then D (P) = 0.

Proof. Any path in G (P) alternates between the two parts of the bipartition.
Therefore the difference between the number of vertices visited in one part
and the other can not be greater than 1. The proof in case of a cycle goes
analogously.

Corollary 2.3.1. If D (P) > 1 then G (P) has no Hamiltonian path. If
D (P) > 0 then G (P) has no Hamiltonian cycle.

Neighbour-swap graphs made from posets generalize the graphs made
from multisets and sets. It only seems natural to introduce notation to
quickly create posets that reflect these cases.

6

Definition 2.6. For two disjoint posets P and Q we define P | Q to be
their parallel composition and PQ to be their series composition. Parallel
composition is done by taking the union of the ground planes and relations.
Series composition is done by taking the parallel composition together with
that everything of P should precede Q. We let in denote a chain of n
elements labeled with i. In some cases the labeling of the poset is of no
importance and in these cases we will write ◦. Because we often need to
construct chains with the same length as the number of elements of a poset
P , we let ◦P represent this chain. This allows us to avoid using the symbol
| needlessly.

This lets us write the set cases as posets of the form ◦ | ◦ | · · ·, and the
multiset cases as posets of the form ◦k1 | ◦k2 | · · ·. Furthermore, posets of the
form ◦k1 | ◦k2 are called binary.

Example 2.2. In the following figure the Hasse diagrams of the posets
corresponding with chains, set cases and multiset cases can be seen.

...

(a) A chain

· · ·
(b) Set cases ...

...

· · ·

(c) Multiset cases

Figure 5: Hasse diagrams of chains, set cases and a multiset cases.

Another kind of poset frequently used in literature [2, 5, 6] is called a
forest.

Definition 2.7. A forest is a poset such that for every element the subposet
of all succeeding elements is a chain. Maximal elements are called roots and
minimal elements leafs. A tree is a forest which has only one root (i.e. a
greatest element). In this way a forest is just the parallel composition of
trees.

Forests generalize the multiset and set cases and can also be created with
just parallel and series composition, more specifically using just · | · and ·◦,
where the dots represents some forest to be filled in.

Example 2.3. The following figure shows the Hasse diagram of a forest.
Notice that this forest is made out of two trees. It can be, cumbersomely,
written as (◦|(◦|◦)◦◦)◦|◦◦ where series composition has a higher precedence
than parallel composition.

7

Figure 6: Hasse diagram of a forest.

Forests do not include all posets that can be made using just parallel
and series composition. It is also true that not all posets can be made using
these compositions. So let us introduce another class of posets.

Definition 2.8. A poset that can be made using just parallel and series
composition is called a series-parallel poset, but I will refer to it as a bush.

To recap: neighbour-swap graphs of posets contain those of bushes, who
contain those of forests, then multisets and then sets. Figure 7 visualizes this
hierarchy. In the next section we will explore some properties of neighbour-
swap graphs.

sets

multisets

forests

bushes

posets

Figure 7: Euler diagram visualizing the hierarchy of neighbours-swap graphs.

8

3 Properties of neighbour-swap graphs

Before we start searching for Hamiltonian paths and the like we will explore
some properties of neighbour-swap graphs. We start by looking at when two
posets create the “same” neighbour-swap graph and discuss a natural way to
partition neighbour-swap graphs into smaller neighbour-swap graphs. After
this we will draw some conclusions when a neighbour-swap graph contains
a certain “part”. The section concludes with some trivia.

3.1 Isomorphisms

Unsurprisingly when two posets are isomorphic, i.e. one is just a relabeling
of the other, then the neighbour-swap graphs are also isomorphic in the
same sense.

Theorem 3.1. G (P) ∼= G (Q) if P ∼= Q.

Proof. Trivial.

Any poset P has a dual P ∗ in which the ordering is reversed. A little
more surprising but still trivial is then the following.

Theorem 3.2. G (P) ∼= G (P ∗) for a poset P .

Proof. There is a natural bijection between L (P) and L (P ∗) by reversing
the linear extensions.

If there is an element s in the poset P which is comparable with every
other element it becomes unswappable and therefore uninteresting; it adds
nothing to the neighbour-swap graph.

Theorem 3.3. If P has an unswappable element s then G (P) ∼= G (P \ {s})

Proof. Notice that s is always within the same spot of every linear extension
thus removing and placing s on that location gives the bijection.

Example 3.1. In the following figure examples of theorems 3.2 and 3.3 can
be seen. Namely, 8a and 8b are each other’s dual and 8c is obtained when
the unswappable element 3 is removed from 8b.

321 312

(a) G (3 (1 | 2))

123 213

(b) G ((1 | 2) 3)

12 21

(c) G (1 | 2)

Figure 8: Different posets which all create the same neighbour-swap graph

9

3.2 Partitioning

Select from a poset some elements. Within a linear extension of the poset is
also an ordering of these select elements. This idea yields a natural partition
of the linear extensions of a poset into parts defined by the ordering of the
select few. This leads to the following definition and theorem.

Definition 3.1. For two poset P and Q, where Q is on a subset of the
ground plane of P , define P ↼ Q as their union. This definition allows us
to write down P constrained under more orderings.

Theorem 3.4. For any subposet Q ⊆ P we can partition L (P) into
{L (P ↼L) | L ∈ L (Q)}

Proof. Take an arbitrary linear extension of P . Within this linear exten-
sion the elements of Q have also been placed in an order which, obviously,
corresponds with a linear extension of Q.

We can also partition our neighbour-swap graphs into smaller neighbour-
swap graphs in the same way.

Theorem 3.5. For any subposet Q ⊆ P we can partition G (P) into sub-
graphs {G (P ↼L) | L ∈ L (Q)} which are connected to each other isomor-
phic to G (Q).

Proof. The theorem follows from the previous almost directly, the only thing
left to prove would be why the subgraphs are connected to each other isomor-
phic to G (Q). This is seen by considering a neighbour-swap and splitting it
into three different cases: both elements are in Q, one is in Q and the other
in P \Q, or both are in P \Q. Only the first case results in a swap which
jumps from subgraph to subgraph which naturally correspond with an edge
of G (Q).

Corollary 3.5.1. Every neighbour-swap graph is isomorphic to a subgraph
of a set case.

Example 3.2. In the following figure G (1 | 2 | 34) is partitioned with the
subposet 1 | 2 | 3. The boundaries indicate the partition.

10

1234

1324

1342

3124

3142

3412

3214

2314

2134

2341

3241

3421

Figure 9: G (1 | 2 | 34) partitioned with 1 | 2 | 3

3.3 Identification

Certain parts of a neighbour-swap graph reveal a lot of things about the
corresponding poset that makes it up. This in turn enforces certain parts
upon the neighbour-swap graph. This allows us to quickly identify when a
graph is not (isomorphic to) a neighbour-swap graph. Sadly, I have been
unable to find a way to quickly determine when a graph is (isomorphic to)
a neighbour-swap graph.

Theorem 3.6. If a neighbour-swap graph contains a vertex of degree 1 then
the graph is isomorphic to a subgraph of a binary case.

Proof. A vertex of degree 1 corresponds with a linear extension in which only
one neighbour-swap can be made. This means no neighbour-swap can be
performed on the elements left of the swap i.e. they are ordered. Similarly,
all the elements on the right of the swap are also ordered. We may conclude
that the poset can be divided into two chains on which maybe some more
orderings are placed.

The following conjecture seems to be true but I have found no satisfac-
tory proof so far.

Conjecture 3.1. Every neighbour-swap graph has at at most two vertices
of degree 1.

For example binary cases always have two vertices of degree 1. If we add
“1 precedes 4” to the poset displayed in figure 2 we would get a neighbour-
swap graph with one vertex of degree 1:

11

1234 1324

1342

3124

3142

Figure 10: Neighbour-swap graph with one vertex of degree 1.

Vertices of degree 2 do not seem to reveal anything about the graph, but
vertices of degree 3 do.

Theorem 3.7. If a neighbour-swap graph contains a vertex, highlighted in
orange, of degree 3:

then the graph has at least:

Proof. A vertex of degree 3 corresponds with a linear extension in which
three neighbour-swaps can be made. In the worst case these neighbour-
swaps all “interfere” which each other, i.e. their locations are all right next
to each other. This means the linear extension is of the form ...abcd... where
a&b, b&c and c&d may be swapped. Aside from the obvious three linear
extensions bacd, acbd, abdc we can be certain another exists, namely: badc.
This fourth linear extension is coloured blue in the figure.

The same can be done for a vertex of degree 4.

Theorem 3.8. If a neighbour-swap graph contains a vertex, highlighted in
orange, of degree 4:

then the graph has at least:

12

In general a vertex of degree d reveals as many vertices as the number of
ways one can choose two or more adjacent pairs, all disjoint, from a sequence
of length n = d + 1. Let Rn be this amount.

Theorem 3.9.
Rn = Fn+1 − n, for n > 0

where Fn is the Fibonacci sequence starting with F0 = 0, F1 = 1.

Proof. Suppose we have a sequence of length n. We split the problem into
two cases whether or not the first pair from the left includes the first element
of the sequence. When the first pair does not include the first element there
are Rn−1 ways of still choosing the pairs. If the first pair does include the
first element then we must count the number of ways we can still chose one
or more adjacent pairs, all disjoint, from a sequence of length n − 2. This
boils down to Rn−2 + n− 3. Combining everything we end up with:

Rn = Rn−1 + Rn−2 + n− 3, where R1 = R2 = 0

Adding n to both sides together with some small rearranging we can get:

Rn + n = (Rn−1 + n− 1) + (Rn−2 + n− 2)

By defining Sn = Rn + n we reveal the Fibonacci nature of the sequence:

Sn = Sn−1 + Sn−2, where S1 = 1, S2 = 2

Therefore:
Rn = Sn − n = Fn+1 − n

Rn is the sequence https://oeis.org/A001924.

Theorem 3.10. If a neighbour-swap graph contains the following part:

i.e. a “tail”, then the graph is trivial i.e. it is a path.

Proof. We have a vertex of degree 1 so per Theorem 3.6 the corresponding
poset consists of two chains with maybe some more orderings. Let us say
that the vertex corresponds with the linear extension . . . a2a1b1b2 . . . where
a and b are the labels of the two chains. Then the vertex with degree 2
corresponds with . . . a2b1a1b2 . . . and because its degree is 2 it must either
be that a2 ≺ b1 or a1 ≺ b2. Without loss of generality let us assume that
a2 ≺ b1. The corresponding poset then takes the form of:

13

https://oeis.org/A001924

. . . a3 a2

a1

b1 b2 . . .

of which the neighbour-swap graph is trivial. Any subgraph of a trivial
graph (which is still a neighbour-swap graph) is still trivial thus our original
graph is also trivial.

3.4 Edges

Ruskey in [5] writes about counting the number of edges in neighbour-swap
graphs. He deduces a recurrence relation and solves it in the case of multi-
sets. He does not give a proof on how he solved the recurrence and did not
notice his expression could be simplified. We give the simplified expression
and a proof which does not require solving a recurrence relation.

Definition 3.2. A multinomial coefficient is defined as:(
n

k1, k2, · · ·

)
=

n!

k1!k2! · · ·

Sometimes we will defy convention by not necessarily letting
∑

ki = n.

Theorem 3.11. The number of edges in G (M), where M = ◦k1 | ◦k2 | · · ·
is a multiset case, equals:

n2 − n2

2

(
n− 1

k1, k2, · · ·

)
where n = k1 + k2 + · · · , n2 = k21 + k22 + · · ·.

Proof. Let us consider the permutations that begin with an element of the
chain corresponding with k1 and one from k2. Trivially there are

2

(
(k1 − 1) + (k2 − 1) + k3 + · · ·

(k1 − 1), (k2 − 1), k3, · · ·

)
such permutations, which we can rewrite to

2k1k2

(
n− 2

k1, k2, · · ·

)
.

Because the calculation goes similarly for any choice of two different elements
we can deduce that the number of permutations in which there exists a
neighbour-swap in the first two elements is equal to∑

i 6=j

2kikj

(n− 2

k1, k2, · · ·

)

14

Now by expanding n2 = (k1 + k2 + · · ·)2 we see that it is equivalent to

n2 +
∑
i 6=j

2kikj

which we can use to rewrite our previous equation again to

(
n2 − n2

)(n− 2

k1, k2, . . .

)
These permutations correspond with all the edges in the graph which swap
the first two elements so there are

n2 − n2

2

(
n− 2

k1, k2, . . .

)
such edges. Our next observation is that counting all the edges which cor-
respond with a swap of the first two elements is equivalent to counting the
edges which correspond to a neighbour-swap in any choice of two adjacent el-
ements. Therefore the total number of edges is simply our previous equation
multiplied by n− 1 :

n2 − n2

2

(
n− 1

k1, k2, . . .

)
The observant reader notices that the proof only works when we are talking
about a family of chains consisting of at least two chains. But it turns out
our final formula still holds when there is only 1 chain; it properly evaluates
to 0.

3.5 Some more trivia

Theorem 3.12. G
((
◦Q | P

)
Q
)

is the more connected version of G (Q | P).

Proof. By taking a linear extension of
(
◦Q | P

)
Q and “filling in” the ele-

ments of Q into the “slots” of ◦Q gives us a linear extension of Q | P . An
example will clarify this procedure. Lets take P = 13 and Q = 23:

◦ ◦ 1 ◦ 11222→ 221211

This procedure is easily inverted and gives us a bijection between the lin-
ear extensions of both posets. Now a neighbour-swap in G (Q | P) will always
correspond with a neighbour-swap in G

((
◦Q | P

)
Q
)

but the reverse is not
true. For example, a neighbour-swap on two elements of Q of which their
corresponding “slots” are not adjacent makes it an impossible neighbour-
swap in G (Q | P).

15

4 Counting linear extensions and their surplus

Knowing the surplus of a poset is, as previously seen, of great interest be-
cause it can tell us directly when a Hamiltonian path/cycle is impossible in
the neighbour-swap graph. Counting the number of linear extensions seems
to be closely related as we will see. In this section Verhoeff’s and Ruskey’s
proof for the surplus of the multiset cases is given along with Ruskey’s more
general proof for the surplus of forests.

4.1 Counting linear extensions

Take a linear extension of P |Q. Intuitively, “woven” within it lays a linear
extension of Q. Because the two posets are parallel any linear extensions of
Q could have been woven through it in exactly the same way. This leads to
the following theorem.

Theorem 4.1. |L (P |Q)| =
∣∣L (

P | ◦Q
)∣∣ · |L (Q)|

Proof. Using Theorem 3.4 we can partition L (P |Q) into {L (P | L) | L ∈
L (Q)} which are all isomorphic to L

(
P | ◦Q

)
.

Maybe even more intuitive and simple, a similar thing holds for series
composition. A linear extension of PQ is simply a linear extension of P
after which we glue one of Q. This leads to the following theorem.

Theorem 4.2. |L (PQ)| = |L (P)| · |L (Q)|

Proof. Using Theorem 3.4 we can partition L (PQ) into {L (PL) | L ∈
L (Q)} which are all isomorphic to L (P) per Theorem 3.3.

Trivially the following is true:

Theorem 4.3. The number of linear extensions of a binary case is:∣∣∣L (
◦k1 | ◦k2

)∣∣∣ =

(
n

k1

)
Example 4.1. To illustrate the use of the previous three theorems let us
quickly count the number of linear extension of the poset ◦ (◦ | ◦ | ◦)

(
◦ | ◦3

)
.∣∣L (

◦ (◦ | ◦ | ◦)
(
◦ | ◦3

))∣∣ = |L (◦)| · |L (◦ | ◦ | ◦)| ·
∣∣L (

◦ | ◦3
)∣∣

= 1 ·
∣∣L (

◦ | ◦2
)∣∣ · |L (◦ | ◦)| · 4

= 1 · 3 · 2 · 4
= 24

Using just the previous three theorems the following can be proven:

16

Theorem 4.4. The number of linear extensions of a forest F is:

|L (F)| = n!

d1d2 · · ·

where di is the number of preceding elements, including itself, of the i’th
element.

Proof. We will proceed by induction on the number of elements of the forest.
For the forest ◦ the formula holds and will be the base case. Let the induction
hypothesis be that the formula holds for all forest with fewer elements.
Because F is a forest it is either the parallel composition of two forests, or
the series composition of a forest and ◦.

First, suppose F = F1 | F2. Using Theorem 4.1 twice:

|L (F)| = |L (F1)| · |L (F2)| ·
∣∣L (

◦F1 | ◦F2
)∣∣

Using the induction hypothesis and Theorem 4.3:

|L (F)| = |F1|! |F2|!
d1d2 · · ·

(|F1|+ |F2|)!
|F1|! |F2|!

Which properly reduces to:

|L (F)| = n!

d1d2 · · ·

Now suppose F = F1◦. We will refer to this added element ◦ as the n’th
element. Using Theorem 4.2 and the induction hypothesis:

|L (F)| = |L (F1)| · |L (◦)| = |L (F1)| =
(n− 1)!

d1d2 · · · dn−1

But dn = n so:

|L (F)| = n!

d1d2 · · ·

This formula is also stated in [5, Equation 5] but Ruskey gives no proof.
Because forests generalize multisets and sets the theorem has two corollaries:

Corollary 4.4.1. The number of linear extensions of a multiset case is:∣∣∣L (
◦k1 | ◦k2 | · · ·

)∣∣∣ =

(
n

k1, k2, · · ·

)
Corollary 4.4.2. The number of linear extensions of a set case is:

|L (◦ | ◦ | · · ·)| = n!

17

4.2 Counting the surplus

Surprisingly, the same counting rules for the linear extensions hold for the
surplus.

Theorem 4.5. D (P |Q) = D
(
P | ◦Q

)
·D (Q)

Proof. Using Theorem 3.5 we can partition G (P |Q) into {G (P | L) | L ∈
L (Q)} which are all isomorphic to G

(
P | ◦Q

)
. Take one of these parts; let

us say G (P | L1). It is either that the even linear extensions in it outweigh
the odd or vice versa. Suppose the even outweigh the odd in this case.
Now take another part G (P | L2) for which L2 ∼ L1. Now take any linear
extension K of P . The vertex KL1 in G (P | L1) and KL2 in G (P | L2)
have an edge between them; thus it must be that in G (P | L2) the parity
of every extension is opposite to that in G (P | L1). Therefor, in G (P | L2)
the odd outweigh the even. We can deduce from this that the parts of the
partition do this “swapping of parity” corresponding to G (Q). Therefor,
the surplus of the isomorphic parts G

(
P | ◦Q

)
mostly cancel each other out,

except when G (Q) has surplus. Thus the surplus of the complete graph
G (P |Q) is equal to D

(
P | ◦Q

)
·D (Q).

Theorem 4.6. D (PQ) = D (P) ·D (Q)

Proof. Analogously to the previous theorem but now we use Theorem 3.5
to partition G (PQ) into {G (PL) | L ∈ L (Q)} which are all isomorphic to
G (P).

Example 4.2. To illustrate Theorem 4.5 we give an example using the
poset R = 1 | 2 | 34 of which the surplus can be manually checked to be 0.
In figure 11a we see that, indeed, D (R) = D

(
◦2 | 34

)
·D (1 | 2) = 2 · 0 = 0.

In figure 11b another way to apply the theorem is seen and again D (R) =
D
(
1 | ◦3

)
·D (2 | 34) = 0 · 1 = 0.

18

1234

1324

1342

3124

3142

3412

3214

2314

2134

2341

3241

3421

(a) Partitioned with 1 | 2

1234

1324

1342

3124

3142

3412

32142134

2314

2341

3241

3421

(b) Partitioned with 2 | 34

Figure 11: Two ways of applying Theorem 4.5 to 1 | 2 | 34.

Using the parallel rule and some knowledge of trivial neighbour-swap
graphs we can prove the following:

Theorem 4.7. D (◦n | ◦m) = 0 for odd n,m.

Proof. For clarity we will abuse notation for a second and omit the chain
and parallel notation.

D (1, n− 1, 1,m− 1) = D (n,m) ·D (1, n− 1) ·D (1,m− 1)

= D (1, 1) ·D (2, n− 1,m− 1) = 0

Which follows from applying Theorem 4.5 on the l.h.s. in two different ways
and the last step holds because D (1, 1) is trivially zero. The trick lays
in knowing that D (1, k) = 1 when k is even therefore D (n,m) must be
zero.

In [10, Theorem 4] Verhoeff proves the following theorem, which was first
proven in [2, Theorem 1], in a “new” way. It relies on an involution on the
set of linear extensions for which two things hold:

1. Elements, which are not mapped to themselves, map to a element of
different parity.

2. All fixed points must be of the same parity.

Computing the surplus is then reduced to finding the fixed points of the
involution. The first proof is a short version of Verhoeff’s proof and the
second proof we came up with together during a meeting.

19

Theorem 4.8. The surplus of a multiset case is:

D
(
◦k1 | ◦k2 | · · ·

)
=

{(
n÷2

k1÷2,k2÷2,···
)

if at most one k is odd

0 if at least two k are odd

where ÷ denotes division without remainder.

Proof. Start by splitting a permutation into parts of adjacent pairs called
lio (abbreviation for “left index odd”) pairs:

e1e2e3e4 · · · → e1e2 e3e4 · · ·

Which might have a trailing single element. A stutter permutation is a per-
mutation of which all lio pairs consist of two equal elements. Because we are
actually working with posets with “equal” we mean “from the same chain”.
Now, every permutation that does not stutter can be paired with another of
the opposite parity by performing a neighbour-swap on the leftmost lio pair
that makes it not stutter. It is also the case that all stutter permutations
share the same parity. To see this realise that changing the position of a lio
pair takes an even number of neighbour-swaps.

This means we have acquired our involution and we need only count the
number of stutter permutations to count the surplus. We notice immediately
that when two or more k’s are odd there exist no stutter permutations and
therefor the answer is 0. When at most one k is odd there do exist stutter
permutations. To determine their number, coalesce each lio pair into a
single element, and drop a possibly trailing single element (which always
is the same symbol). We see this is equivalent to

∣∣L (
◦k1÷2 | ◦k2÷2 | · · ·

)∣∣
which we already know how to calculate.

Proof. An alternative proof would be to split a permutation into mirror pairs
instead of lio pairs, i.e. the i’th element from the left is paired with the i’th
element from the right. If all mirror pairs consist of two equal elements we,
obviously, have a palindrome. Now, as before, a non-palindromic permu-
tations can be paired with another of the opposite parity by swapping the
innermost mirror pair that makes it not palindromic. And it is again true
that all palindromic permutations are of the same parity, because changing
the position of a mirror pair takes an even number of neighbour-swaps. We
have again acquired our involution and we need only count the number of
palindromes to obtain the surplus.

Verhoeff’s proof however is not novel; Ruskey proved it in exactly the
same way in [4, Theorem 1]. Ruskey generalizes the result even further for
forests in [5, Lemma 3]. Before we can state this theorem we need some
more machinery.

20

Definition 4.1. A pairing in a forest F is a(n) (almost) perfect matching of
its transitive reduced Hasse diagram, leaving at most one root unmatched.
Such a pairing, if it exists, is unique and can be obtained by constructing
it from the leaves towards the root. A collapsed forest F̄ is obtained by
contracting the elements which are paired and deleting the unmatched root
if necessary.

Example 4.3. A forest, its pairing and the collapsed forest can be seen in
the following figure. The pairing is marked in orange and the unmatched
root in blue.

(a) Forest (b) Paired

(c) Collapsed

Figure 12

The theorem, which I find extremely elegant, is as follows:

Theorem 4.9. The surplus of a forest F is:

D (F) =

{∣∣L (
F̄
)∣∣ if F has a pairing

0 otherwise

Proof. We again split a linear extension into lio pairs. This time a stutter
extension is a linear extension where no neighbour-swap can be performed
within the lio pairs. We pair every linear extension that does not stutter
with another of the different parity by performing a neighbour-swap on the
leftmost lio pair that makes it not stutter. Because the poset is a forest
all stutter extensions consist of the same lio pairs but in different orders.
This corresponds with the uniqueness of the pairing of the forest. Thus all
stutter extensions have the same parity and we have found our involution.
We need only count the number of stutter extensions which is the same as
counting the linear extensions of the collapsed forest.

21

5 Constructing shortest covering walks

As seen in Theorem 2.3 knowing the surplus of a neighbour-swap graph can
quickly tell us when a Hamiltonian path (cycle) is impossible. Shockingly
the converse of Theorem 2.3.1 seems to be true i.e. a surplus less than or
equal to 1 implies the existence of a Hamiltonian path. We start this section
with some theorems related to constructing Hamiltonian paths and continue
with shortest covering walks. We end this section with a discussion on the
“master conjecture”.

5.1 Hamiltonian

The Steinhaus-Johnson-Trotter algorithm can be generalized to posets. Ruskey
also states this in [5, Lemma 2].

Theorem 5.1. If G (P) has a Hamiltonian path then so does G (P | ◦).

Corollary 5.1.1. G (◦ | ◦ | · · ·), i.e. a set case, has a Hamiltonian path.

Which seems to be a specific case (k = 1) of the following new theorem
which is visualized in figure 13a.

Theorem 5.2. If G (P) and G
(
◦P | ◦k

)
have Hamiltonian paths then so

does G
(
P | ◦k

)
.

Proof. We partition G
(
P | ◦k

)
into {G

(
L1 | ◦k

)
,G
(
L2 | ◦k

)
, . . . }, where

{L1, L2, . . . } is a Hamiltonian path of P , which are all isomorphic to G
(
◦P | ◦k

)
which have, by assumption, Hamiltonian paths. The Hamiltonian paths in
these subgraphs must have their ends at Lj◦k and ◦kLj because these ver-
tices have degree 1. By connecting these endpoints the right way we create
a Hamiltonian path through G

(
P | ◦k

)
.

Analogously to how a Hamiltonian path can be found in the Cartesian
product of two Hamiltonian graphs, we can prove the following new theorem:

Theorem 5.3. If both G (P) and G (Q) have Hamiltonian paths then so
does G (PQ).

Proof. We partition G (PQ) into {G (L1Q) ,G (L2Q) , . . . }, where {L1, L2, . . . }
is a Hamiltonian path of P . All these subgraphs are isomorphic to G (Q)
which has a Hamiltonian path and we let K1 and Km denote the ends of
this path. As can be seen in 13b the task of finding a Hamiltonian path in
G (PQ) is then easily done.

22

L1◦k

◦kL1

L2◦k

◦kL2

· · ·

· · ·

(a) Illustration of Theorem 5.2.

L1K1

L1Km

L2K1

L2Km

· · ·

· · ·

(b) Illustration of Theorem 5.3.

Figure 13: Illustration of Theorems 5.2 and 5.3. The Hamiltonian paths are
given in orange.

Using our counting rules for the surplus and the previous theorems we
can prove the following new result.

Theorem 5.4. For a bush B if D (B) = 1 then G (B) has a Hamiltonian
path.

Proof. We will proceed by induction on the number of elements of the bush.
G (◦) trivially has a Hamiltonian path and will be the base case. Let the
induction hypothesis be that the statement is true for all bushes with fewer
elements. Because B is a bush it is either the parallel or series composition
of two bushes.

First, suppose B = P | Q for some bushes P and Q. Without loss of
generality we may assume |Q| ≤ |P |. Then using Theorems 4.5 and 4.8:

D (P |Q) = 1⇔ D (P) ·D (Q) ·D
(
◦P | ◦Q

)
= 1

⇔ D (P) = 1 ∧D (Q) = 1 ∧D
(
◦P | ◦Q

)
= 1

⇒ (|Q| = 1 ∧ |P | = even)

So, actually, B = P | ◦ and D (P) = 1. Also |P | < |B| so using the induction
hypothesis G (P) has a Hamiltonian path. Applying Theorem 5.1 gives us
a Hamiltonian path in B.

Now suppose B = PQ for some bushes P and Q. Using Theorem 4.6:

D (PQ) = 1⇔ D (P) ·D (Q) = 1

⇔ D (P) = 1 ∧D (Q) = 1

Again |P |, |Q| < |B| so using the induction hypothesis G (P) and G (Q) have
Hamiltonian paths. Applying Theorem 5.3 gives us a Hamiltonian path in
B.

Stachowiak proves in [7, Main Theorem] that:

Theorem 5.5. If G (P) has a Hamiltonian path and D (P) = 0 then so
does G (P |Q) for every poset Q.

23

Actually, Stachowiak states his theorem a little differently but is equiv-
alent to this form. Assuming the neighbour-swap graph of two odd chains
has a Hamiltonian path Stochawiak is able to easily prove the following:

Theorem 5.6. Let M be a multiset case. If D (M) ≤ 1 then G (M) has a
Hamiltonian path.

Proof. From Theorem 4.8 it can be deduced that D (M) = 1 only happens
when G (M) is trivial i.e. it is a path. When D (M) = 0 there must exist
at least two chains of odd length, which can then be used as the basis for
Theorem 5.5 to show G (M) has a Hamiltonian path. These two chains can
be used as the basis because the surplus of two odd chains is indeed 0.

This theorem was conjectured by Ko and Ruskey in [2,4] but only proven
for transpositions (not neighbour-swaps!) in [5, Theorem 1]. Stachowiak’s
work is a big step towards proving a conjecture by Ruskey [5, Question 1]:

Conjecture 5.1. If D (P) = 0 then G (P) has a Hamiltonian path for every
poset P .

Lehmer in [3] asks the question if, for any given multiset case M , one can
always make G (M |N) Hamiltonian with some N . This is also answered
by Stochawiak who starts [7, Lemma 4&6] by proving the following:

Theorem 5.7. G (P | ◦ | ◦) has a Hamiltonian path for every poset P .

Which, of course, also follows from Stachowiak’s main result (although
circularly).

5.2 Lehmer

Searching only for Hamiltonian paths is quite restrictive; we miss out on a
large number of neighbour-swap graphs. So let us broaden our view and
instead search for shortest covering walks. Lehmer does the same in [3] and
conjectures the following:

Conjecture 5.2. G (M) has a Lehmer path with D (M)−1 single spurs for
every multiset case M .

Remark 5.2.1. When the surplus is ≤ 1 we mean there are no spurs in the
Lehmer path i.e. a Hamiltonian path.

A Lehmer path, as Verhoeff calls them in [10], is like a Hamiltonian
path but is allowed to be imperfect. The imperfections take the form of
so-called spurs. Ruskey conjectures a similar thing in [5, Question 8] but
calls a Lehmer cycle a cyclic comb.

24

Definition 5.1. An unvisited vertex u at distance 1 can be visited by side-
stepping from a vertex v on the path to u and then immediately back again
to v. That is, the same swap is done twice in a row. In the resulting path,
v occurs twice, with only u in-between. Lehmer calls such a sidestep to an
unvisited vertex at distance 1 a spur. A Lehmer path (cycle) in a graph is a
path (cycle), possibly with single spurs, that visits the spur bases twice and
all other vertices once.

Notice that Lehmer’s conjecture is a more general version of Theorem
5.6 because when the surplus is ≤ 1 a Lehmer path reduces to a Hamiltonian
path. Verhoeff managed to prove Lehmer’s conjecture for the binary case
in [10]. He does so by placing the tips of the spurs at the stutter permuta-
tions. Verhoeff mentioned to me during one of our meetings that Lehmer’s
conjecture is inductively a lot nicer because you always have something to
work with. This is in contrast with the “Hamiltonian conjectures” which,
during your inductive proof, might leave you with a neighbour-swap graph
which has no Hamiltonian path.

In [3] Lehmer gives an heuristic algorithm for generating Lehmer paths
in multiset cases which, for the few cases he applied it to, always gave paths
that comply to his conjecture.

5.3 Master

All these conjectures and theorems can be generalized into the following new
“master” conjecture:

Conjecture 5.3. G (P) has a Lehmer path with D (P)− 1 single spurs for
every poset P .

This generalizes Lehmer’s conjecture 5.2 by restating it for posets instead
of multisets, and it generalizes Conjecture 5.1 by Ruskey (in the case where
D (P) > 0).

25

6 Conclusion

There is still a lot left to do. The master conjecture seems to be true but I
have no idea how to tackle it for posets in general. Posets that are made using
parallel and series compositions seem to be the only ones that “play nicely”
and therefor this whole paper circles around these compositions. This is
also why I think that if someone is able to prove the master conjecture
it probably will not involve these compositions; they are just not general
enough. If I were to continue my research in this subject I would focus on
finding what makes a graph a neighbour-swap graph. This would allow one
to abstract away from the posets and focus purely on what really matters.
Furthermore, Lehmer’s heuristic algorithm for generating Lehmer paths in
multiset cases can be generalized to posets which, if it still works, might
give insights into solving the master conjecture.

The main contribution of this paper is that it summarizes what is known
about neighbour-swap graphs, and shortest covering walks of them, so far.
Some new results are shared (Theorems 3.6, 3.7, 3.9, 3.11, 4.5, 4.6, 4.7,
5.2, 5.3, 5.4, and Conjecture 5.3) but the “big” theorems (4.8, 4.9, 5.5)
are mostly the work of others. I hope that this paper clarifies the subject
by making the important insights more explicit and formulating them in a
uniform matter.

26

7 References

[1] S.M. Johnson. Generation of permutations by adjacent transposition.
Mathematics of Computation, 17(83):282–285, 1963.

[2] C.W. Ko and F. Ruskey. Solution of some multi-dimensional lattice
path parity difference recurrence relations. Discrete Mathematics,
71(1):47–56, 1988.

[3] D.H. Lehmer. Permutation by adjacent interchanges. The American
Mathematical Monthly, 72(sup2):36–46, 1965.

[4] F. Ruskey. Solution of some lattice path parity difference recurrence
relations using involutions. Congressus Numerantium, 59:257–266,
1987.

[5] F. Ruskey. Generating linear extensions of posets by transpositions.
Journal of Combinatorial Theory, Series B, 54(1):77–101, 1992.

[6] G Stachowiak. Finding parity difference by involutions. Discrete
Mathematics, 163(1):139–151, 1997.

[7] G. Stachowiak. Hamilton Paths in Graphs of Linear Extensions for
Unions of Posets. SIAM Journal on Discrete Mathematics,
5(2):199–206, 2005.

[8] H. Steinhaus. One Hundred Problems in Elementary Mathematics.
Dover Books on Mathematics Series. Dover Publications, 1979.

[9] H.F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434–435,
August 1962.

[10] T. Verhoeff. The spurs of D.H. Lehmer: Hamiltonian paths in
neighbor-swap graphs of permutations. Designs, Codes, and
Cryptography, 81(1):295–310, 2017.

27

	Introduction
	Overview

	Preliminaries
	Properties of neighbour-swap graphs
	Isomorphisms
	Partitioning
	Identification
	Edges
	Some more trivia

	Counting linear extensions and their surplus
	Counting linear extensions
	Counting the surplus

	Constructing shortest covering walks
	Hamiltonian
	Lehmer
	Master

	Conclusion
	References

