
 Eindhoven University of Technology

MASTER

Response-based quadrature rules for non-intrusive uncertainty quantification

Malla, Hemaditya

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentthesis/responsebased-quadrature-rules-for-nonintrusive-uncertainty-quantification(88cdd517-a537-41cb-a62d-b20d0c208447).html

Department of Mathematics and Computer Science

Response-Based Quadrature Rules for
Non-Intrusive Uncertainty Quanti�cation

Hemaditya Malla

Supervisors
ir. L. M. M. van den Bos

dr.ir. B. Sanderse
prof.dr.ir. B. Koren

Reviewer
dr. R. M. Pires da Silva Castro

Master Thesis

30 August 2019
Eindhoven

Acknowledgments

I would like to extend my gratitude towards everyone who supported me in the course of my masters
thesis. I would like thank to Prof.Ir.Dr.Barry Koren for providing me with an opportunity to work at
Centrum Wiskunde & Informatica (CWI), Amsterdam. Special thanks dr.ir. Benjamin Sanderse and ir.
Laurent van den Bos for their daily guidance and patiently reading through my reports. Finally, I would
like to thank my parents for their constant support and bearing with my regular complaining.

III

Contents

1 Introduction 1

2 Mathematical preliminaries 3
2.1 Introduction to probability . 3
2.2 Monte Carlo method . 5
2.3 Spectral expansion methods . 8

3 Numerical integration 9
3.1 Quadrature rules . 9
3.2 Cubature rules . 18

4 Non-polynomial quadrature rules 21
4.1 Mathematical theory . 21
4.2 Integrand based quadrature . 25
4.3 Integrand based cubature . 35

5 Conclusions and future work 40
5.1 Conclusions . 40
5.2 Future work . 41

Appendix A Orthogonal polynomials 45

Appendix B Construction of piecewise linear approximants 47
B.1 Construction of fDpl . 47
B.2 Other approximants . 48

Appendix C Genz integrand family 49
C.1 Integrand 1: Oscillatory . 49
C.2 Integrand 2: Product peak . 49
C.3 Integrand 3: Corner peak . 49
C.4 Integrand 4: Gaussian . 50
C.5 Integrand 5: C0 function . 50
C.6 Integrand 6: Discontinuous function . 50

V

VI

Chapter 1

Introduction

In computational science, we develop computer models of various phenomena arising in science and
engineering using mathematical models and numerical methods. These computer models are then used to
make predictions as an alternative to physical experiments that are often expensive. The mathematical
models are sometimes ordinary di�erential equations (ODEs) or partial di�erential equations (PDEs),
which often have various inputs (coe�cients, initial and boundary conditions, etc.). Often, these inputs
are not accurately known (\uncertain") due to insu�cient data or inherent variability thus giving rise to
variability (uncertainty) in the outputs of the computer models. The area of ‘Uncertainty Quanti�cation’
(in short, UQ) is the study of modelling and quantifying such uncertainties in the outputs.

In UQ, we primarily deal with two types of (sometimes coupled) problems: forward propagation
and backward propagation (inverse problems). The forward propagation problems deal with studying
how uncertainty propagates from model inputs to computer model outputs (see Figure 1.1), whereas
the inverse problems deal with estimating input parameters from measurement data. The work in this
thesis is geared towards methods to solve forward propagation problems. The uncertain inputs are often
mathematically modelled using probabilistic methods. The forward propagation problem involves three
main steps as shown in Figure 1.1.

Figure 1.1: The forward propagation problem in UQ.

In the �rst step, we de�ne the mathematical model, i.e., the set of equations that we want to solve,
and domain of interest. In the second step, we specify the uncertain input parameters and mathematically
model them using a probabilistic description. Finally, in the third step we solve the mathematical model

1

using the inputs from step 2 and process the resulting outputs. In UQ literature, the output is sometimes
also called the ‘response’.

In order to analyze the uncertainty in the output/response, we compute various statistical quantities
such as mean and variance by integrating multivariate functions (also known as the integrand). Unfortu-
nately, these integrals cannot be evaluated in closed-form and are approximated numerically by a �nite
weighted summation of the integrand evaluations (output/response evaluations). Thus, the integral

If =
Z

�
f(�)d�; (1.1a)

where � � Rd (d = 1; 2; : : :) and � = (�1; : : : ; �d) 2 �, is approximated as

If �
NX

i=1

f(�i)wi; (1.1b)

where �i 2 � and wi 2 R+ for all i. The point set f�igNi=1 and the coe�cient set fwigNi=1 collectively
is known as a numerical integration rule. Approximation of integrals is a well researched topic in the
�eld of numerical mathematics and there exist several textbooks [19, 40, 12]. Much of the literature
is focused on constructing numerical integration rules that exactly integrate sets of polynomials of a
certain degree [21, 32, 24, 12, 38, 6]. This is due to the abundant availability of results in literature
about the approximation of functions using polynomials [55]. But these approaches are less e�cient when
the integrands are non-smooth, singular or highly oscillatory in the domain of integration. In this case,
e�ciency depends on the number of points �i (i = 1; : : :) of the numerical integration rule that are needed
to approximate our integral upto a reasonable accuracy. Such cases are dealt with procedures described
in [1] and [36]. In some cases, the integrand is transformed into a trigonometric function for the ease
involved in integrating trigonometric functions [39].

In the context of UQ, the research is mainly focused on constructing rules with as little points as
possible without much loss in accuracy. This is because obtaining the integrand evaluations at each of
the points (Step 3 in Figure 1.1) is really expensive (in terms of both time and resources). A popular
approach to approximate integrals in UQ is the Monte Carlo method [14]or by evaluating a constructed
approximation of the model (a surrogate) [20]. Additionally, in certain UQ problems, the output/response
is non-smooth and thus polynomial based numerical integration rules are not e�cient (see previous
paragraph). Furthermore, a majority of the work mentioned in the previous paragraph (with the exception
of [38, 6]) was focused towards general numerical integration and in certain cases are not applicable in UQ
settings. For instance, most of the work is based on the assumption that the integrand is already known
which is not the case in UQ. In [43], numerical integration rules that exactly integrate non-polynomial
sets of functions are constructed and shown to better approximate integrands that are highly oscillatory
and with end-point singularities.

As mentioned in the above paragraphs, most numerical integration rules available in literature are
not e�cient when approximating integrals with non-smooth integrands or not suitable for certain UQ
cases. The goal of this thesis is to develop numerical integration rules that are accurate for non-smooth
integrands and are applicable in almost all UQ cases. To this end, we take the following approach: �rst,
we construct numerical integration rules based on non-polynomial functions used in [43] and compare
their performance with polynomial-based rules. Next, we attempt to incorporate information of the model
into the numerical integration rule construction process and check if we obtain a more accurate rule. The
thesis is structured as follows:
In Chapter 2, we introduce some essential terminology and the probabilistic setup used to model the inputs.
We also introduce the Monte Carlo method and demonstrate how input uncertainties are propagated
using an example. Lastly, we motivate the necessity for accurate numerical integration methods in UQ by
introducing polynomial-based surrogate methods [61, 2]. In Chapter 3 we summarize the polynomial-based
numerical integration methods already used in literature. In Chapter 4 we introduce the concept of
numerical integration based on non-polynomial functions and develop an algorithm that generates a
numerical integration method that is based on the type of function to be integrated. Finally, in Chapter
5 we mention the conclusions of this thesis and discuss future avenues of research.

2

Chapter 2

Mathematical preliminaries

In this chapter we summarize the various mathematical concepts needed for subsequent parts of the
report. Section 2.1 introduces notation, terminology and structure in probability that are necessary for
modelling uncertain input parameters arising in UQ. Section 2.2 introduces the Monte Carlo method, one
of the earliest and the simplest method to be used in UQ, which is followed by Section 2.3 that introduces
stochastic expansion methods.

2.1 Introduction to probability

Let (
;F ;P) be a probability space. Here,
 is the set of all outcomes, F is a �-algebra, and P is a
probability measure [30]. A random variable X is a measurable function from
 to R. The cumulative
distribution function (CDF) of X, denoted by FX : R 7! [0; 1] is de�ned as

FX(x) := P
�
f� 2
 : X(�) � xg

�
: (2.1)

The CDF is right-continuous and increasing with the following properties:

lim
x!+1

FX(x) = 1; lim
x!�1

FX(x) = 0; (2.2a)

P (f� 2
 : a < X(�) � bg) = FX(b)� FX(a) � 0: (2.2b)

If FX(x) is absolutely continuous in its domain, then the probability density function (PDF) of X
can be de�ned as fX : R 7! [0;1):

FX(b)� FX(a) =
Z b

a
fX(x)dx; a � b: (2.3)

A PDF has the following properties: If FX is di�erentiable at x, then

FX(x) =
Z x

�1
fX(s)ds) fX(x) = F 0X(x); (2.4a)

Moreover, for all x,
fX(x) � 0; (2.4b)

and Z +1

�1
fX(s)ds = 1: (2.4c)

The expectation of X is de�ned as

E [X] =
Z

R
xfX(x)dx = �(X): (2.5a)

The random variable X can be further characterized by its moments, which are given as follows:

E [Xm] =
Z

R
xmfX(x)dx; m 2 N: (2.5b)

3

The variance of X (denoted by �(X)2) is de�ned as

�(X)2 =
Z

R
(x� �(X))2fX(x)dx = E

�
X2�� E [X]2 : (2.6)

If given a real-valued measureable function g : R 7! R, then the transformation Y = g(X) is also a
random variable on the probability space (
;F ;P), and its expectation is given by

E [Y] =
Z

g(x)fX(x)dx: (2.7)

Suppose we have two random variables X1 and X2, both of which map
 to R. For any � 2
, X1 and
X2 are independent if

P(X1(�) [X2(�)) = P(X1(�))P(X2(�)): (2.8)

In any probability space (
;F ;P), a random vector is a measurable function X that maps to Rd (for
d = 1; 2; : : :) instead of R. Furthermore, it is written as X = (X1; : : : ; Xd), where Xi is a random variable
for all i. The CDF of a random vector X is a joint CDF and is de�ned as

FX(x) = P

d\

i=1

f� 2
 : Xi(�) � xig

!

; x = (x1; : : : ; xd) 2 Rd; (2.9)

and has properties similar to that of its one-dimensional analogue. The PDF of X is a joint PDF (if it
exists) and is similarly given by

fX(x) =
@dFX(x)
@x1 : : : @xd

: (2.10)

Equivalently, X has the following properties:

FX(x) =
Z x1

�1
: : :
Z xd

�1
fX(y1; : : : ; yd)dy1 : : : dyd; (2.11a)

fX(y1; : : : ; yd) � 0; (2.11b)

for all y1; : : : ; yd 2 R, and
Z +1

�1
: : :
Z +1

�1
fX(y1; : : : ; yd)dy1 : : : dyd = 1: (2.11c)

If fX(x) is the joint PDF and FX(x) is the joint CDF of a random vector X = (X1; : : : ; Xd), then the
distribution or density of a subset of the coordinates of X, (for instance, the combinations (X1; X2) or
(X2; Xd�1; Xd)) exists and is called marginal density or marginal distribution. The joint CDF and PDF
for the random variable Xi (i = 1; : : : ; d) are

FXi(xi) = lim
xk!1;
k=1;:::;d;
k 6=i

FX(x1; : : : ; xi; : : : ; xd) and, (2.12a)

fXi(xi) =
Z +1

�1
: : :
Z +1

�1
fX(y1; : : : ; yd)dy1 : : : dyi�1dyi+1 : : : dyd: (2.12b)

This means that for a given coordinate i, the CDF and PDF are obtained by averaging FX and fX in all
the other coordinates. This procedure is known as marginalization [28].
If the coordinates of X are independent (see equation (2.8)), then the following relations hold:

FX(x1; : : : ; xd) =
dY

i=1

FXi(xi); and (2.13a)

fX(x1; : : : ; xd) =
dY

i=1

fXi(xi); (2.13b)

4

where FXi and fXi are the marginal CDF and PDF of Xi respectively. The expectation or mean of a
random vector X is a d-dimensional vector, and is given by

E [X] = �(X) = (E [X1] ; : : : ;E [Xd]): (2.14)

In most physical phenomena involving randomness, we observe that the randomness varies over space
coordinates and/or temporal coordinates. Such situations require the incorporation of the spatio-temporal
dependence into a random vector. This is done by introducing the concept of random processes [28]. In a
probability space (
;F ;P), a random process is a measurable function X : P �
 7! Rd. The arguments
to X are space/time (or both) p 2 P (a real-valued space) and an event � 2
. In addition, it can be
seen that X(p; �) is a random vector.

Modelling of a variety of natural phenomena involves a PDE/ODE with coe�cients, initial conditions
or boundary conditions that are modelled as random variables. Therefore such PDEs/ODEs, also known
as stochastic systems, can be thought of as a stochastic process. Suppose we have a PDE with u as the
dependent variable, containing both space (x; y; z) and time (t) derivatives. Furthermore, suppose that
either of the initial and boundary conditions of this PDE are uncertain and are modelled as random
variables (say �). Then the solution to the PDE depends on the spatial coordinates, temporal coordinates
and also the random variable � as u(x; y; z; t; �).

2.2 Monte Carlo method

The Monte Carlo (MC) approach is a numerical method where random numbers are generated and are
used to solve stochastic problems for which an analytical solution is not known. The scientists working
on the atom bomb at the Los Alamos laboratory came up with the early version of this method [16].
The �rst paper, published by Metropolis and Ulam, is the article \The Monte Carlo method" [45]. The
method will be illustrated using an example in the following paragraph.
For a given random variable X with a given PDF p(x), a new random variable Y = f(X) is de�ned,
where f : R 7! R. The goal is to evaluate the following integrals:

�(Y) = E [Y] = E [f(X)] =
Z

R
f(x)p(x)dx; (2.15a)

and
�(Y)2 = �(f(X))2 = E

�
f(X)2�� E [f(X)]2 =

Z

R
(f(x)� �Y)2p(x)dx: (2.15b)

The Monte Carlo method gives an estimate of the above integrals using n independent samples of X
(fX1; X2; : : : ; Xng) and approximating these integrals as follows:

�(Y) � �n(Y) =
1
n

nX

i=1

f(Xi); (2.16a)

�(Y)2 �
1
n

nX

i=1

(f (Xi)� �nY)2 : (2.16b)

Higher order moments can be estimated similarly using the set ff(X1); : : : ; f(Xn))g. The above method
gives a good estimate of �(Y) in the limit of n!1 (due to the Law of Large Numbers [54, Section
9.2]). This is demonstrated in the left plot of Figure 2.1 where the mean of Y = e�1+2X has been
estimated and convergence to the exact value of �(Y) can be observed as more samples of X � U(0; 1)
(standard uniform distribution) are taken.

2.2.1 Quantifying the convergence

According to the central limit theorem, �n(Y) is a random variable that converges in distribution to

N
�

E(f(X)); �(f(X))2=n
�

. From this, it can be seen that �n(Y) has a standard deviation that is

5

10 0 10 2 10 4 10 6

n (Number of samples)

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

M
ea

n
of

 Y

estimated mean
exact mean

10 0 10 2 10 4 10 6

n (Number of samples)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

A
bs

ol
ut

e
er

ro
r

Absolute error
line with slope -0.49647

Figure 2.1: (Left) Plot of the mean of Y = exp (�1 + 2X) versus number of samples. The red line is the exact
mean: �(Y) = 1

2

�
e1 � e�1�

. (Right) Plot of the error = j�n(Y) � �(Y)j (red). It can be seen that the error
converges approximately at a rate of 1

2 .

inversely proportional to
p
n. So, as the value of n is increased, we get closer to the exact value, i.e.,

�(Y). Furthermore, we the interval between which the exact value lies is as follows:

I = (�n(Y)�
2
p
n
�2(f(X)); �n(Y) +

2
p
n
�2(f(X))); (2.17)

where �(f(X))2 is estimated as in (2.16b) The convergence of the method is veri�ed by computing the
slope of the average of log(j�ny � �yj) as a function of n by �tting the data to a linear polynomial (a
straight line). The slope of the best �t line is approximately � 1

2 . This has been shown in the right plot
of Figure 2.1.
The Monte Carlo method can be easily extended to random vectors X and to any general system of
di�erential equations, in which case, we have to solve a system of di�erential equations for each random
sample. The following section considers an example where the MC method is applied to a stochastic
system.

2.2.2 Uncertainty propagation through an ODE

An example problem to show how uncertainty is modelled and investigated is discussed. A one-dimensional
stochastic steady-state heat conduction equation is considered. The parameters for the problem below
are obtained from Lecture 13 of [3].
The 1-D steady state heat conduction, where the coe�cient of conduction is a randomly varying parameter
is as follows: 8

<

:

d
dx

�
c(x;���)dT

dx

�
= 0; (x;���) 2 (0; 1)�
;

T (0) = 1; T (1) = 0;
(2.18)

where
 is the random space. The above di�erential equation describes how the temperature(T) is
distributed in a given domain. Here the domain can be thought of as a cylindrical metal rod with uniform
cross section and unit length. The coe�cient of conduction (also called di�usivity) is a material property
of the rod and tells us how well heat can be conducted along its length. The random di�usivity is a
random process which is represented using the Karhunen-Lo�eve expansion (K-L expansion) [42]. The
Karhunen-Lo�eve expansion is an in�nite linear combination of orthogonal functions that are determined
using the covariance function of the random process. Moreover, the coe�cients in the expansion are
independent random variables. In this case, the truncated K-L expansion of the random di�usivity is as
follows [29]:

log c(x;���) =
dX

i=1

�i

p
2��

i� 1
2

�
�

sin
��

i�
1
2

�
�x
�
; (2.19)

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

(x
,

)

Figure 2.2: Plot of the solution for various values of � = (�1; �2; : : : ; �d).

where � = (�1; : : : ; �d) and �i N (0; 1) are independent, standard normally distributed random variables.
For demonstration purposes, we take d = 10 and the quantity of interest (QoI) as the temperature at
x = 0:5. We solve the ODE numerically using a central di�erence discretization and dividing the domain
into 10 equally spaced sub-intervals. Figure 2.2 shows the temperature distribution over the domain [0; 1]
for a few values of �. The expectation/mean of T (�; x = 0:5) is given by

E [T (�; x = 0:5)] =
Z 1

�1
� � �
Z 1

�1
T (�; x = 0:5)

1
(2�)d=2

exp
�
�

1
2
k�k2

�
d�1 : : : d�d: (2.20)

A total of 104 samples are taken to compute the mean of the temperature at x = 0:5. It can be seen in
the left plot of Figure 2.3 that the mean converges to the exact mean (which is taken to be the mean of
108 samples).

In Figure 2.3 it can be seen that the temperature at x = 0:5 converges to 1
2 . The above example

illustrates that a large number of samples is needed in order to obtain an accurate estimate of the statistics.
This is not e�cient when the samples have to be obtained by solving a complex (multi-dimensional,
highly non-linear, etc.) PDE. There exist methods in literature that give better estimates for a �xed
number of samples, such as the Quasi-Monte Carlo method [46] and the Latin Hypercube Sampling [44].
Despite improved convergence rates, these methods still fall short on e�ciency as compared to spectral
expansion methods. The next section introduces these spectral expansion methods.

7

10 0 10 5

n

0.47

0.48

0.49

0.5

0.51

0.52

0.53

M
ea

n
T

(x
=

0.
5)

Monte Carlo mean
Exact mean

10 0 10 5

n

10 -5

10 -4

10 -3

10 -2

10 -1

A
bs

ol
ut

e
er

ro
r

Absolute error
line with slope-0.48181

Figure 2.3: (Left) Plot of the mean temperature T at x = 0:5 versus number of samples with the red line being
the exact mean. (Right) Plot of the error = j�n � �j (red). It can be seen that the error converges approximately
at a rate of 1

2 .

2.3 Spectral expansion methods

This section gives a summary of the stochastic expansion methods. The central idea is to represent the
random process by a series expansion using a set of basis functionals (since � is a random vector).

u(�) =
1X

i=0

ci i(�); (2.21)

where ci are scalars and i are orthogonal polynomials (Appendix A). Xiu and Karniadakis [61] made
use of the Askey-scheme of polynomials (a classi�cation scheme for orthogonal polynomials) to represent
various stochastic processes/�elds and called it generalized polynomial chaos (gPC). They demonstrated
optimal (exponential) convergence rates when using orthogonal polynomials corresponding to a weighting
function that is the distribution of the random process to be represented. For more details, the reader
is referred to [59]. Let � = (�1; : : : ; �d) be a random vector consisting of mutually independent random
variables �i. Let the PDF of �i be p(�i) and let Ii � R be its support. The joint PDF of � is given by

p(�) =
dY

i=1

p(�i); 8 � 2 �; (2.22)

where � := I1 � : : :� Id � RN , is the support of �. The scalar ci is then calculated as

ci =
1
k
hu(�); ii =

1
i

Z

�
 i(�)u(�)p(�) d�; (2.23)

where i is the normalization constant of the orthogonal polynomials. It can be seen that the above
integral is a d dimensional integral. The objective is to numerically approximate this integral as follows:

ci =
1
i
hu(�); ii �

1
i

NX

j=1

 i(�j)u(�j)wj ; (2.24)

where �j are evaluation points and wj are the weights of the numerical integration rule. The accuracy of
the approximation depends on the type of numerical integration method we use and is the focus of the
rest of the thesis.

8

Chapter 3

Numerical integration

The projection method described in Section 2.3 requires evaluating an integral to determine the coe�cients
of the gPC expansion. The approach of this thesis is to use a numerical integration method which involves
the approximation of the integral by a weighted summation of a �nite number of function evaluations.
A numerical integration method is usually represented by a set of nodes (coordinates) f�igNi=1 in the
domain of integration and a set of weights (scalars) fwigNi=1. A univariate numerical integration method is
commonly referred to as a quadrature rule and its multidimensional extension is referred to as a cubature
rule. In order to further explain the properties of numerical integration rules, we use the following problem
set-up.
Given a p(�) > 0 for all � 2 � and a function f : � 7! R, where � � Rd, the goal is to approximate the
integral

If =
Z

�
f(�)p(�)d�: (3.1)

Here, the function to be integrated is called the integrand. In addition, it is assumed that � = I1�I2 : : :�Id
and p(�) =

Qd
i=1 pi(�i), where pi : Ii 7! R+. In a gPC setting, p(�) is the joint PDF of �. The above

integral is the expectation of f . Given a cubature rule of N distinct nodes f�igNi=1 � � and weights
fwigNi=1 � R, the integral (3.1) is approximated as

If �
NX

i=1

f(�i)wi: (3.2)

Depending on the method of generation of the nodes, numerical integration rules are broadly classi�ed
into stochastic and deterministic methods [51]. The stochastic method involves, as the name suggests,
determining the nodes by random sampling. The simplest stochastic numerical integration method is the
Monte Carlo method (Section 2.2) with all weights equal. The deterministic method involves choosing
nodes and weights such that the rule is accurate for certain classes of functions.
Section 3.1 gives a short introduction to quadrature rules (univariate numerical integration). Various
properties and nomenclature that will be used further in the report are introduced in this section. Section
3.2 is an extension to multiple dimensions. A more detailed treatment of this topic can be found in [22,
Chapter 3] and [11, Chapter 5].

3.1 Quadrature rules

The one-dimensional analogue of (3.1) is

If =
Z

�
f(�)p(�)d�; (3.3)

with � � R. Throughout this section, � is taken to be [a; b] with �1 � a < b � 1. A quadrature
rule with N distinct nodes f�igNi=1, and weights fwigNi=1 approximates the above integral as in (3.2).
Furthermore, a quadrature rule operator QN is de�ned as follows:

If �
NX

i=1

f(�i)wi =: QNf: (3.4)

9

It can be seen that QN has 2N degrees of freedom: N nodes and N weights. Any quadrature rule is
constructed such that it exhibits certain properties. A property that plays a central role in this thesis is
the degree of a quadrature rule and is de�ned as follows:

De�nition 1 (Degree of a quadrature rule). A given N -point quadrature rule QN is said to be of degree
K 2 N if

QNm = Im 8 m 2 P(K);

and
9 m 2 P(K + 1) : QNm 6= Im:

Here, P(K) is the space of all univariate polynomials of degree less than or equal to K.

Remark: If the degree of QN is K = N � 1, then the quadrature rule is called interpolatory. In
such a case, the integral can be evaluated exactly by replacing f by its Lagrange interpolating polynomial
of degree (N � 1). The weights are then the integrals of the Lagrange basis polynomials evaluated at the
respective nodes:

If =
Z

�
f(�)p(�)d� =

Z

�
mN�1(f)p(�)d� =

NX

i=1

wif(�i); (3.5)

where

mN�1(f) =
NX

i=1

f(�i)li(�); li(�) =
NY

k=1;
k 6=i

� � �k
�i � �k

;

thus giving,

wi =
Z

�
li(�)p(�)d�: (3.6)

Alternatively, if we are given a sequence of nodes a � �1 < �2 < : : : < �n�1 < �N � b, then an
interpolatory quadrature rule can be constructed by solving the following system of equations:

2

6664

1 1 : : : 1
�1 �2 : : : �N
...

...
. . .

...
�N�1
1 �N�1

2 : : : �N�1
N

3

7775

2

6664

w1
w2
...
wN

3

7775
=

2

6664

I�0

I�1

...
I�N�1

3

7775
: (3.7)

The matrix on the left-hand side is known as the Vandermonde-matrix (denoted by V) whose determinant
is

det V =
Y

1�i<j�N

(�i � �j): (3.8)

Thus, the system (3.7) has a solution (guaranteeing the existence of a quadrature rule) if det V 6= 0, i.e.,
if the nodes are distinct.
The accuracy of a quadrature rule depends on the nodes and the smoothness of the integrand. The
following theorem gives an error estimate of a quadrature rule based on the regularity of the function [40,
4].

Theorem 1 (Error of a quadrature rule). Given an N -point quadrature rule QN of degree K 2 N. Then
for any function f 2 CK+1(�),

If �QNf =
f (K+1)(�)
(K + 1)!

�
I�K+1 �QN�K+1� ; (3.9)

for a certain � 2 �.

More results that relate the smoothness of the function, its interpolating polynomial and the degree
of the quadrature rule can be found in [11]. Quadrature rules that have positive weights lead to stable
evaluation of QNf . Such a quadrature rule is henceforth referred to as a positive quadrature rule.

10

3.1.1 Stability

Calculation of the approximate integralQNf involves evaluating f at each of the nodes f�igNi=1. Evaluation
of f(�i) incurs a rounding-o� error which can be incorporated as a small perturbation ei for i = 1; : : : ; N .
Let us de�ne the evaluated function as �f(�i) := f(�) + ei. Further, let � := maxi jeij. Then the error due
to the evaluation of the integral is derived as follows:

jQN �f �QNf j =

�����

NX

i=1

wi �f(�)�
NX

i=1

wif(�)

�����

=

�����

NX

i=1

wiei

�����

�
NX

i=1

jwieij

� �
NX

i=1

jwij

If QN is a positive quadrature rule, it holds that

jQN �f �QNf j � �
NX

i=1

wi: (3.10)

Since I�0 =
PN
i=1 wi = 1, we have

jQN �f �QNf j � �: (3.11)

Hence, a quadrature rule with positive weights is stable to numerical errors.

3.1.2 Convergence

Consider the error due to the quadrature rule:

jIf �QNf j =

�����

Z

�
f(�)p(�)d� �

NX

i=1

f(�i)wi

�����
: (3.12)

Since QN has degree (N � 1), the error can be rewritten as follows:

jIf �QNf j =

�����

Z

�
f(�)p(�)d� �

Z

�
fN�1
poly (�)p(�)d� +

NX

i=1

fN�1
poly (�i)wi �

NX

i=1

f(�i)wi

�����
; (3.13)

where fN�1
poly 2 P(N � 1) is a polynomial of degree N � 1 (3.5).

Using the triangle inequality, we obtain

jIf �QNf j �
����

Z

�
f(�)p(�)d� �

Z

�
fN�1
poly (�)p(�)d�

����+

�����

NX

i=1

fN�1
poly (�i)wi �

NX

i=1

f(�i)wi

�����

�
����

Z

�

�
f(�)� fN�1

poly (�)
�
p(�)d�

����+

�����

NX

i=1

�
fN�1
poly (�i)� f(�i)

�
wi

�����

�
f � fN�1

poly

1

Z

�
p(�)d� +

f � fN�1
poly

1

�����

NX

i=1

wi

�����

�
f � fN�1

poly

1

+
f � fN�1

poly

1

NX

i=1

jwij ;

11

where kfk1 = max�2� jf(�)j.
If QN is a positive quadrature rule, we �nally obtain

jIf �QNf j �
f � fN�1

poly

1

+
f � fN�1

poly

1

NX

i=1

wi: (3.14)

Since I�0 =
PN
i=1 wi = 1, the integration error is bounded as follows:

jIf �QNf j � 2
f � fN�1

poly

1
: (3.15)

If fN�1
poly is the best approximating polynomial, then we have

f � fN�1
poly

1

= inf
�2P(N�1)

kf � �k1 : (3.16)

The integration error is then
jIf �QNf j � 2 inf

�2P(N�1)
kf � �k1 ; (3.17)

and convergence follows if
f � fN�1

poly

1
! 0 for N !1. The above inequality is known as the Lebesgue

inequality. The rate of convergence of the quadrature rule depends on how well f can be approximated
with polynomials in the domain of integration [7, 55].

3.1.3 Nestedness

Given a strictly increasing sequence of natural numbers fNkg1k=1. A sequence of quadrature rules
fQNkg1k=1 is said to be nested if f�ikg

Nk
ik=1 � f�ilg

Nl
il=1 of QNl for all l � k, where f�ikg

Nk
ik=1 denotes the

nodes of QNk . Thus, the function evaluations used to compute QNkf can be reused when computing
QNlf . This is a useful property to have in situations where obtaining function evaluations is an expensive
and time-consuming process.

3.1.4 Overview of existing quadrature rules

A popular class of interpolatory quadrature rules are based on the Newton-Cotes formulae [12, 11] which
involve the use of equispaced nodes for a given bounded interval [a; b]. The midpoint rule, trapezoidal
rule, and Simpson’s rule are some of the popular quadrature rules belonging to this class [22, Chapter 3].
These rules are of restricted use as they are constructed for the case of p(�) � 1.

The Clenshaw-Curtis quadrature rule [10] is an interpolatory quadrature rule in [�1; 1], with nodes
given by

�i = � cos
�
�(i� 1)
N � 1

�
; i = 1; : : : ; N: (3.18)

The expression of the weights is derived by writing the integrand as a linear combination of Chebyshev
polynomials. The weights are shown to be positive when p(�) � 1 [33]. When a di�erent p(�) is used,
the weights given by equation (3.6) tend to become negative and possible alternatives to this have been
discussed in [18]. Due to the nature of the Chebyshev polynomials, the linear interpolant can be re-cast
as Fourier cosine series which can be used for further accuracy analysis [12]. For a given N 2 N, a
Clenshaw-Curtis quadrature rule can be e�ciently constructed using the Fast Fourier Transform (FFT)
[24]. Moreover, the Clenshaw-Curtis quadrature points can be made nested by choosing the sequence
Nk = 2k + 1, where k is usually called the level of the quadrature rule (see Figure 3.1(a)).

Gaussian quadrature rules are constructed based on the weight function p(�) and always ensure
positive weights. A Gaussian quadrature rule with N nodes has the maximum possible degree of 2N � 1
[11, Chapter 5]. The nodes are given by the zeroes of the orthogonal polynomials corresponding to the
weight function (Appendix A) and the weights are computed by integrating the associated Lagrange
polynomials (3.6). When p(�) � 1=2 and the interval of integration is [�1; 1], the nodes are the zeros
of the Legendre polynomials and the quadrature rule is known as the Gauss-Legendre quadrature (see

12

Figure 3.1(b)). A popular algorithm to construct Gaussian quadrature rules for a given p and N is
the Golub-Welsch algorithm [27]. However, Gaussian quadrature rules lack the nestedness property.
A comparison of the Gauss-Legendre quadrature and the Clenshaw-Curtis quadrature for functions of
di�erent regularity has been given in [56].

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

N

(a) Clenshaw-Curtis

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

N

(b) Gauss-Legendre

Figure 3.1: The Clenshaw-Curtis (left) and Gauss-Legendre (right) quadrature rules for various numbers of
points. For the Clenshaw-Curtis quadrature, the red nodes are nested. We also see that the Gauss-Legendre
nodes are not nested.

3.1.5 Reduced quadrature rule

The previous Section 3.1.4 gave a summary of quadrature rules with desirable properties but none of those
rules are nested and have positive weights for generic p(�). The reduced quadrature rules overcome these
drawbacks, i.e., they have positive weights and are nested. The positivity and nestedness properties are
guaranteed by construction. The algorithm proposed in [5] takes an interpolatory, positive quadrature rule
QN as input and generates a positive quadrature rule QN�1 that is nested in QN and is also interpolatory.
The existence of QN�1 of degree N � 2 is guaranteed by Carath�eodory’s theorem. Below we state the
theorem and give its proof taken from [5] as it will make explanation of the algorithm easier.

Theorem 2 (Carath�eodory’s theorem). Let v1;v2; : : : ;vN+1 be N+1 vectors spanning an N -dimensional
space. Let v =

PN+1
i=1 �ivi with �i � 0. Then there exist �i � 0 such that v =

P
i2K �ivi and

K � f1; : : : ; N + 1g with jKj � N .

Proof. Since v1;v2; : : : ;vN+1 are vectors in an N -dimensional space, they are linearly dependent. So
there exist ci, not all equal to zero, such that

N+1X

i=1

civi = 0: (3.19)

In addition, it is given that

v =
N+1X

i=1

�ivi: (3.20)

13

Hence, for any scalar �, subtracting � times (3.19) from (3.20) gives

v =
N+1X

i=1

�ivi � �
N+1X

i=1

civi

=
N+1X

i=1

(�i � �ci)vi:

Without loss of generality, it can be assumed that at least one ci > 0. Then the following choice is
well-de�ned:

� = min
i=1;:::;N+1

�
�i
ci

: ci > 0
�

=:
�k0

ck0

: (3.21)

Choosing �i = �i � �ci, it is true that �k0 = 0 so with K = f1; : : : ; k0 � 1; k0 + 1; : : : ; N + 1g, we have
the following:

v =
X

i2K

�ivi: (3.22)

Now we apply the above theorem to a quadrature rule with N nodes to arrive at a nested quadrature
rule with N � 1 nodes. To this end, consider the system (3.7) corresponding to the positive quadrature
rule QN :

NX

j=1

�i�1
j wj = I�i�1; i = 1; : : : ; N: (3.23)

Excluding the last row of the above system results in a system with a Vandermonde-matrix (denoted by
V�1) of size (N � 1)�N whose N column vectors span an (N � 1)-dimensional space. The resulting
system is then

NX

j=1

�i�1
j wj = I�i�1; i = 1; : : : ; N � 1: (3.24)

We can see from (3.19) that the cjs are obtained by solving

NX

j=1

�i�1
j cj = 0; i = 1; : : : ; N � 1: (3.25)

The above system has a non-trivial solution (the null vector) since the number of variables (cjs) exceeds
the number of equations by one. Once the null vector c = [c1; : : : ; cN]> is computed, we subtract � times
(3.25) from (3.24) to obtain the following:

NX

j=1

�i�1
j (wj � �cj) = I�i�1; i = 1; : : : ; N � 1: (3.26)

We observe that in the above system, the scalar � is unknown and following the proof of Carath�eodory’s
theorem, it can be de�ned as follows:

� = min
i=1;:::;N

�
wi
ci

: ci > 0
�

=:
wk0

ck0

:

This de�nition results in wk0 = 0 and thus the node �k0 can be removed. This procedure has been
outlined in Algorithm 1. A nice property of this algorithm is that it can be applied to quadrature rules
irrespective of the distribution (p(�)) (see Figure 3.2).

14

Algorithm 1 Reduced quadrature rule

Input: A positive quadrature rule QN whose nodes and weights are f�igNi=1, fwigNi=1 and that is of
degree N � 1.

Output: A positive quadrature rule QN�1 whose nodes and weights are f�igNi=1
i 6=k

, fw�i gNi=1
i 6=k

. Moreover,

QN�1 is of degree N � 2.

1: Construct the Vandermonde-matrix V�1:

V�1 =

2

6664

1 1 : : : 1
�1 �2 : : : �N
...

...
. . .

...
�N�2
1 �N�2

2 : : : �N�2
N

3

7775

(N�1)�N

: (3.27)

2: Determine a null vector c of V�1. Let c = [c1; : : : ; cN]> 2 RN .
3: Determine � and k such that

� :=
wk
ck

= min
i=1;:::;N

�
wi
ci

: ci > 0
�
: (3.28)

4: Compute weights w�i = wi � �ck for i = 1; : : : ; N .
5: return f�igNi=1

i 6=k
and fw�i gNi=1

i 6=k
.

Non-uniqueness

The null vector c of the system (3.25) contains both negative and positive elements. This is due to the
fact that the �rst row of (3.25) corresponds to

PN
i=1 ci = 0. Thus, �c is also a null vector and can be

used to remove a di�erent node. When using �c in algorithm 1, the scalar � is de�ned as follows:

� = max
i=1;:::;N

�
wi
ci

: ci < 0
�

=:
wk0

ck0

: (3.29)

The choice in choosing the null vector indicates that the resulting reduced quadrature rule QN�1 is not
unique. This availability of choice will be used in Chapter 4 to selectively remove nodes.

3.1.6 Implicit quadrature rule

If the closed form of the distribution p(�) is known, then the previously described quadrature rules can be
applied to approximate If . However, in many cases the distribution is known only through a collection
of samples Y = fyigKi=1. As a result, the various statistical moments of f(�) can only be determined
using these samples, i.e

E
�
f j
�
�

1
K

KX

i=1

f(yi)j =: IKf j ; (3.30)

for j 2 N. For the rest of this section, we will focus on the approximation of the �rst moment, i.e. E [f],
but extension to higher moments is straightforward.

The conventional quadrature rules described in sections 3.1 and 3.1.5 approximate If , but the method
that we describe in this section generates a quadrature rule that approximates IKf .
A straightforward, but expensive approach to evaluate (3.30) is to determine f(yi) for all i = 1; : : : ;K.
Instead, an implicit quadrature rule [6], generated using Y can be used. An implicit quadrature rule Q(K)

N
has nodes f�igNi=1 � fyigKi=1 and weights fwigNi=1 � R+. The superscript K in the operator denotes the
size of the sample set that the quadrature rule covers, i.e. Q(K)

N f � IKf . Such a quadrature rule is said
to be of degree N � 1 if it exactly integrates a given basis set f�igNi=1, i.e.,

Q(K)
N �i :=

NX

j=1

�i(�j)wj = IK�i; for i = 1; : : : ; N: (3.31)

15

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

N

(a) reduced Gauss-Legendre (b) reduced Gauss-Hermite

Figure 3.2: The reduced Gauss-Legendre (left) and Gauss-Hermite (right) quadrature rules for various numbers
of points. We see that starting from N = 20 and going down, each quadrature rule is nested.

In this section, we take �i � �i�1, i.e. the set of polynomials. In order to construct Q(K)
N , we assume

that a large set of samples fykg is available or can be quickly computed [13] and N is given. An iterative
approach is taken: starting with a positive quadrature rule we iteratively add samples from Y and
eliminate a node through the reduction procedure described in Section 3.1.5.
The nodes and weights of the starting positive quadrature rule Q(N)

N are taken as follows:

XN := f�1; : : : ; �Ng = fy1; : : : ; yNg; (3.32a)

i.e., the �rst N samples of Y , and

WN := fw1; : : : ; wNg =
�

1
N
; : : : ;

1
N

�
: (3.32b)

We see that the resulting quadrature rule Q(N)
N is a Monte Carlo approximation as it covers a sample set

of size N and thus the following holds:

Q(N)
N �i =

NX

j=1

�i(�j)wj =
NX

j=1

�i(yj)
1
N

= IN�i; for i = 1; : : : ; N: (3.33)

In the next step, yN+1 is appended to XN as follows:

XN+1 = XN [fyN+1g ; (3.34)

and WN is rescaled and resized as follows:

WN+1 =
�

N
N + 1

�
WN [

�
1

N + 1

�
: (3.35)

This results in a quadrature rule Q(N+1)
N+1 with the following property:

Q(N+1)
N+1 �i =

N+1X

j=1

�i(�j)wj =
N+1X

j=1

�i(yj)
1

N + 1
= IN+1�i; for i = 1; : : : ; N: (3.36)

16

We see that the quadrature rule now integrates over a set of size N + 1. Now, we remove a node with
the aim of obtaining a quadrature rule Q(N+1)

N . Observe that the system of equations (3.36) is of size
N � (N + 1). Following the reduction procedure described in Section 3.1.5, we �rst compute a null vector
c = [c1; : : : ; cN+1]> of the following system of equations:

N+1X

j=1

�i(yj)cj = 0; for i = 1; : : : ; N: (3.37)

Subtracting � times (3.37) from (3.36) we obtain

N+1X

j=1

�i(yj)(wj � �cj) = IN+1�i; for i = 1; : : : ; N: (3.38)

Again, de�ning

� = min
j=1;:::;N+1

�
wj
cj

: cj > 0
�

=:
wk0

ck0

(3.39)

results in one of wk0 = 0 and thus the node yk0 can be removed. Now, we are left with a quadrature rule
Q(N+1)
N with nodes XN and weights WN (after removal of the zero weight). This procedure of adding a

sample and removing a node for an iteration k results in a quadrature rule Q(N+k)
N . Hence, we iterate

over the set fyN+1; : : : ; yKg to obtain Q(K)
N . It can be seen that this quadrature rule has just N nodes

but integrates over a set of size K, and is of degree N � 1. The outline of the procedure is given in
Algorithm 2. Since the algorithm takes an initial sample set of arbitrary distribution (possibly unknown)
as an input, it can be applied to a wide variety of known distributions to generate a quadrature rule (see
3.3). In �gure 3.3, the quadrature rules have no speci�c pattern and are not nested as the degree N is
increased. A modi�cation of Algorithm 2 is given in [6], that generates nested implicit quadrature rules.

Algorithm 2 Implict quadrature rule

Input: Sample set YK := fyigKi=1.
Output: Quadrature rule XN = fx1; : : : ; xNg, WN = fw1; : : : ; wNg of degree N � 1.

1: Initialize XN = fy1; : : : ; yNg and WN = f 1
N ; : : : ;

1
N g.

2: for i = N; : : : ;K � 1 do
3: Add node: XN+1 XN [fyi+1g.
4: Add weights: WN+1 i

i+1WN [f 1
i+1g.

5: Use Algorithm 1 on XN+1 and WN+1 to eliminate a node and obtain X�N and W �N that is a
quadrature rule of the same degree.

6: Update sets XN X�N , WN W �N .
7: end for
8: return XN , WN .

Error analysis

The stability and convergence properties of Q(K)
N are the same as that of QN [6].

There is an error associated with approximating If by IKf called the sampling error. The sampling
error describes whether the number of samples fyigKi=1 can approximate I to a reasonable accuracy. The
error of the quadrature rule Q(K)

N is given by
���If �Q(K)

N f
��� �

��If � IKf
��+
���IKf �Q(K)

N f
��� : (3.40)

It can be seen that the error is bounded by the sum of two individual error components. The �rst
component being the sampling error which is negligible if a large number of samples fyigKi=1 are taken to
compute IKf . The second component is the quadrature error and is dependent on the regularity of the
functions in the set f�igNi=1 (polynomials in this case) as described in Section 3.1.2.

17

(a) U[0; 1] (b) N (0; 1)

Figure 3.3: Implicit quadrature rules of various degrees generated using uniformly distributed samples (left)
and standard normally distributed samples (right). An initial set of 5000 samples was taken to generate the
quadrature rules of various degrees.

3.2 Cubature rules

In this section, we consider the multidimensional integral (3.1). A cubature rule in d dimensions consists
of a set of nodes f�igNi=1 and a set of weights fwigNi=1, and approximates (3.1) as follows:

If �
NX

i=1

f(�i)wi =: QNf; (3.41)

where QN is the cubature rule operator. Before we proceed further, some de�nitions and notations are
introduced.

De�nition 2 (Degree of a monomial). The degree of a d-variate monomial is the sum of the exponents
of its variables.

Thus, a monomial
dY

k=1

�ikk ; (3.42)

where �ikk is the monomial of degree ik in the kth dimension, is of degree
Pd
i=1 ik. From the above

de�nition we notice that it is possible to have multiple monomials of a certain degree by taking di�erent
combinations of [i1; : : : ; id]. For instance, fx2; xy; y2g are the set of 2-variate monomials of degree 2.
Next, we de�ne the space of d-variate polynomials of degree up to N � 1.

De�nition 3 (d-variate polynomial). A d-variate polynomial of degree N is de�ned as a linear combination
d-variate monomials of degree up to N.

From the above de�nition, the space of d-variate polynomials of degree up to N is the linear span of
the set of monomials of degree up to N . This set is denoted by P(N; d).

De�nition 4 (Degree of a cubature rule). A cubature rule QN with N nodes is of degree N � 1 if it
exactly integrates d-variate polynomials of degree up to N � 1.

18

Now, two common cubature rules are summarized. Let us take a sequence of positive quadrature
rules

�
QiN
	d
i=1, each of degree (N � 1). A straightforward procedure to approximate (3.1) is to use the

elements in this sequence for each dimension as follows:

If � QNdf = (Q1
N
 : : :
Q

d
N)f =

NX

k1=1

: : :
NX

kd=1

f(�k1 ; : : : ; �kd)
dY

j=1

w(j)
kj ; (3.43)

where QiN is a quadrature rule of order N � 1 in the ith dimension with fw(i)
j g

N
j=1 as its integration

weights and
 is the tensor product operator [35]. In literature, such a type of cubature rule is called
tensor product cubature. The nodal set of the cubature rule is constructed by taking the d-fold Cartesian
product of the d quadrature nodal sets. Since each dimension has a quadrature rule of degree N � 1, the
tensor product cubature rule is of degree (N � 1), i.e.,

QNdm(�) =
Z

m(�)p(�)d� =

NX

j1=1

: : :
NX

jd=1

m(�j1 ; : : : ; �jd)wjk ; (3.44)

where m(�) 2 P((N � 1); d), the space of multivariate polynomials of degree up to (N � 1).
We see that the total number of cubature nodes is Nd, which grows exponentially in d. Such a growth
makes the evaluation of the integrands impractical, even for moderate values of N or d. This is called the
curse of dimensionality. A popular alternative to tensor product cubature is the sparse grid cubature,
which involves using less nodes while preserving the same level of accuracy. A popular procedure to
construct sparse grids is the algorithm introduced by Smolyak [52]. The algorithm of Smolyak involves a
construction where combinations of quadrature rules of orders lower than (N � 1) are taken and combined
to get a cubature rule that exactly integrates multivariate polynomials whose total order is less than or
equal to (N � d) (instead of (N � 1)). This algorithm gives a subset of the points from the full tensor
cubature rule and therefore has less points. Since its introduction, the algorithm has been successfully
used various times [35, 47, 26, 58]. The method is e�ective only when the number of dimensions is higher
than 5, i.e., d � 5.

3.2.1 Smolyak algorithm

The formula for the Smolyak algorithm in d dimensions is given by [58]:

If � QM =
X

N�d+1�kik1�N

(�1)N�kik1 :
�

d� 1
N � kik1

�
:
�
Q1
i1
 : : :
Q

d
id

�
f; (3.45)

where i is the multi-index notation used in de�nition 1. There exists no explicit formula for the number
of cubature nodes M in terms of N and d. The above cubature rule integrates d-variate polynomials
of degree up to N � d. An additional improvement to the algorithm is to use nested quadrature rules,
thus allowing the reuse of quadrature points that have been generated for lower orders. This results in a
smaller number of nodes. A popular choice of such nested quadrature rules is the Clenshaw-Curtis rule
(Section 3.1.4). In order to use the nested property of the Clenshaw-Curtis rule, the following quadrature
rule is adopted:

(Qkik)f =
2k� 1+1X

j=1

f(�j)wj ; k = 1; : : : ; d: (3.46)

The modi�cation being the usage of ik = 2k�1 + 1 nodes instead of ik nodes in the kth dimension. This
gives us, for d� 1, the approximate number of cubature nodes

M �
2kdk

k!
: (3.47)

In addition, the resulting cubature rule is of degree at least N � d. In literature, the ‘level’ of the sparse
grid is taken to be q = N � d. The superiority of the nested cubature rule using the Smolyak algorithm
over a conventional tensor product cubature rule is shown in Figure 3.4. The implementation of the
algorithm, when using Clenshaw-Curtis nodes, is veri�ed as follows:

19

Figure 3.4: Two-dimensional (d = 2) grids generated using Clenshaw-Curtis rule. Grid using Smolyak algorithm
(left) with q=5 and a total of 145 points. Tensor grid with a total of 1089 points (right).

1. The numbers of nodes generated for various levels and dimensions tabulated in Table 3.1 have been
veri�ed with the data given in [60] and [47].

2. The weights of the cubature formulae sum to 1 .

3. The cubature rules exactly integrate multivariate polynomials of degree up to q.

Table 3.1: Number of nodes.

q Q2+q Q5+q Q10+q
1 5 11 21
2 13 61 221
3 29 241 1581
4 65 801 8801
5 145 2433 41265
6 321 6993 171425
7 705 19313 -
8 1537 51713 -

Any of the nested quadrature rules in Section 3.1 can be used in the Smolyak algorithm. The only
disadvantage of using the Smolyak algorithm is that it gives negative weights and this might make the
cubature rule unstable (Section 3.1.1). The error due to approximating an integral using a cubature rule
using the Smolyak algorithm is [47]

jIf �QNf j � CN�r(log(N))(r+2)(d�1)+1; (3.48)

where N is the total number of nodes in the cubature rule and r is the regularity of the function f . Thus
it can be seen that, unlike the tensor product cubature, the cubature rules due to the Smolyak algorithm
do not heavily depend on the dimension. The reduced and implicit quadrature rules (Sections 3.1.5, 3.1.6)
can be extended to higher dimensions by using the multivariate Vandermonde-matrix that is constructed
in a straightforward manner using multivariate monomials (2). Such a matrix is often singular despite
being constructed using distinct nodes, thus resulting in the possibility to remove multiple nodes. The
algorithms to remove multiple nodes are based on traversing a hyperplane [6, 5] in the null space of the
multivariate Vandermonde-matrix and are not dealt with in this report.

20

Chapter 4

Non-polynomial quadrature rules

In the previous chapter we saw that traditional numerical integration methods are constructed so as to be
able to exactly integrate polynomials upto a given degree. The theme of this chapter is an investigation
into constructing numerical integration rules based on non-polynomial functions and to develop a new
algorithm to generate such rules. Section 4.1 introduces some mathematical results on the existence
of Gaussian-type quadrature rules based on non-polynomial basis sets. Further, this section compares
non-polynomial and polynomial quadrature rules. Sections 4.2 and 4.3 introduce algorithms that generate
numerical integration rules using information about the integrand.

4.1 Mathematical theory

In [37], the concept of a generalized Gaussian quadrature rule is introduced that replaces polynomials
with a wide class of functions (usually non-polynomial function sets). The quadrature rules in [37] possess
all the properties of a conventional quadrature rule: positivity of weights and convergence, introduced in
the previous chapter. A summary of the results in [37] has been given in [31, Chapter 6]. In this thesis,
we make use of only a subset of this theory which is summarized below.

De�nition 5 (Generalized Vandermonde-matrix). Given a set of continuous real-valued functions
�N = f�0; �1; : : : ; �Ng de�ned on the interval [a; b] and any set of points a � �1 < �2 < : : : < �m � b,
the generalized Vandermonde-matrix V is de�ned as

V =

2

64

�0(�1) �0(�2) : : : �0(�m)
...

...
. . .

...
�N (�1) �N (�2) : : : �N (�m)

3

75

(N+1)�m

: (4.1)

De�nition 6 (Chebyshev system). Given a set of continuous real-valued functions �N = f�0; �1; : : : ; �Ng
de�ned on the interval [a; b]. Then �N is called a Chebyshev system if and only if the determinant of the
generalized Vandermonde-matrix of �N

det(V) = det

0

B@

�0(�1) �0(�2) : : : �0(�N+1)
...

...
. . .

...
�N (�1) �N (�2) : : : �N (�N+1)

1

CA ; (4.2)

is nonzero for any set of points a � �1 < �2 < : : : < �N+1 � b.

The following sets of functions are examples of Chebyshev systems:

Example 1. Given any interval [a; b] 2 R, the set of monomials given by f1; �; �2; : : : ; �mg, where m 2 N,
is a Chebyshev system.

Example 2. Given any interval [a; b] 2 R and a set of n+ 1 distinct real numbers fa0; a1; : : : ; ang. The
set fea0�; ea1�; : : : ; ean�g is a Chebyshev system in [a; b].

21

Example 3. Given the interval [0; 1], the set f1; �; � log(�); �2; �2 log(�); : : :g is a Chebyshev system.

More examples can be found in [37]. Furthermore, we see that the determinant of the polynomial set
has an expression given by (3.8), but obtaining similar expressions for other Chebyshev systems (often
non-polynomial) is non-trivial.

De�nition 7 (Generalized Gaussian Quadrature). Let f�1; : : : ; �2Ng be a set of integrable functions
from [a; b] to R. An N -point quadrature rule is said to be Gaussian with respect to this set if and only if
it integrates exactly all the functions of this set.

Remark: The traditional N -point Gaussian quadrature rules described in section 3.1.4 exactly integrate
the set of polynomials of degree upto 2N � 1 and thus are valid examples of De�nition 7. The following
theorem, proved in [37], gives the existence of a positive quadrature rule for Chebyshev systems.

Theorem 3 (Karlin-Studden). Suppose that the set of functions �N = f�1; : : : ; �2Ng constitute a
Chebyshev system on the interval [a; b]. Then there exists a unique N-point quadrature rule that is
Gaussian with respect to the set �N . Furthermore, all the weights of the resulting quadrature rule are
positive.

A naive approach to construct a quadrature rule of degree n is to take a Chebyshev system, a
set of distinct points and the exact integral of each of the functions from the Chebyshev system and
invert the resulting generalized Vandermonde-matrix. This procedure does not, however, guarantee the
positivity of the weights. The numerical construction of Gaussian quadrature rules for multiple classes of
non-polynomial function sets has been given in [43] and [8]. A possible advantage of such quadrature
rules, as mentioned earlier, is that they can be constructed using non-polynomial function sets that have
properties similar to the integrand under consideration.

4.1.1 Numerical examples

In this section we consider a few sets of non-polynomial basis functions and construct quadrature rules
that can exactly integrate the functions in these sets. the To this end, we use a slightly modi�ed implicit
quadrature rule described in Section 3.1.6. The modi�cation is the usage of these non-polynomial sets of
functions instead of monomials to construct the Vandermonde-matrix. Thus, the Vandermonde-matrix
will be replaced by the generalized Vandermonde-matrix in Algorithm 2. The resulting algorithm is given
as Algorithm 3, where we supply a set of functions f�igNi=1 along with the sample set Y and degree N .

We consider the following systems of functions and use them to generate positive quadrature rules in
the domain [0; 1]:

ˆ �1 = f1; log(�); � log(�); �; �2 log(�); : : :g.

ˆ �2 = f1; sin(�); � sin(�); �; �2 sin(�); : : :g.

ˆ �3 = f1; �; �2; : : :g (monomials for comparison).

ˆ �4 = f1; log(�); � log(�); �2 log(�); : : :g.

ˆ �5 = f1; sin(�); � sin(�); �2 sin(�); : : :g.

The function sets �1 and �2, taken from [43], are Chebyshev systems, while the function sets �4 and �5
are non-Chebyshev systems. Furthermore, we can see that the sets �4 and �5 are the same as �1 and �2,
but with the monomials removed. We chose these systems as they are commonly used in literature to
generate quadrature rules. In addition, �1 and �2 are the the only non-polynomial Chebyshev systems
that do not require additional input parameters. For example, we need to supply a set of distinct real
numbers faig for the Chebyshev system described in Example 2.

In order to assess the accuracy of the generated quadrature rules, the Genz integration test functions
are chosen (see Appendix C). Quadrature rules generated using the basis sets �1, �2, �3, �4, and �5 are
compared for increasing N . For all the numerical experiments, a uniformly distributed sample set of size
K = 250 has been used, and for increasing values of N the absolute integration error (the quadrature
error in (3.40)) is computed. In addition, the o�set u and shape parameter a of the Genz functions
(Appendix C) are chosen randomly from uniform distribution in [0; 1]. Since the generated quadrature
rules change every time a new sample set Y is taken, each numerical experiment is repeated 50 times,

22

Algorithm 3 Non-polynomial implict quadrature rule

Input: Sample set YK := fyigKi=1 and a basis f�igNi=0 such that �0(�) = 1 for all �.
Output: Quadrature rule XN = f�1; : : : ; �Ng, WN = fw1; : : : ; wNg.

1: Initialize XN = fy1; : : : ; yNg and WN = f 1
N ; : : : ;

1
N g.

2: for i = N; : : : ;K � 1 do
3: Add node: XN+1 XN [fyi+1g.
4: Add weights: WN+1 i

i+1WN [f 1
i+1g.

5: Construct the generalized Vandermonde-matrix V, using XN+1:

V =

2

6664

1 1 : : : 1
�1(�1) �1(�2) : : : �1(�N+1)

...
...

. . .
...

�N�1(�1) �N�1(�2) : : : �N�1(�N+1)

3

7775

N�(N+1)

: (4.3)

6: Determine a non-trivial c such that Vc = 0.
7: Determine � and k such that

� :=
wk
ck

= min
i=1;:::;N+1

�
wi
ci

: ci > 0
�
: (4.4)

8: Remove nodes: XN fxkjxk 2 XN+1 and wk > �ckg.
9: Remove weights: WN fwk � �ckjwk 2WN+1 and wk > �ckg.

10: end for
11: return XN , WN .

each time with a di�erent set of values of a and u, and sample set Y . The �nal integration error is the
average of these 50 errors.

The results are shown in Figure 4.1. It is known that the convergence properties of quadrature
rules generated using monomials (�3) depend on the regularity of the integrand. The �rst four Genz
functions are in�nitely di�erentiable and therefore we observe exponential convergence for quadrature rules
generated using �3. We also see that the quadrature rules generated using �1 and �2 show exponential
convergence for the �rst four Genz functions. However, we do not observe such convergence for quadrature
rules generated using �4 and �5. This is possibly due to the inclusion of polynomials in the sets �1 and �2.
The functions f5 and f6 are C0 continuous and discontinuous respectively and thus, we observe algebraic
convergence when using �3. In these cases, we see that quadrature rules generated using the other sets
also converge algebraically. This suggests that the Chebyshev systems �1 and �2 have approximation
properties similar to that of the monomial basis set, while the sets �4 and �5 have a �xed convergence
rate. Furthermore, we do not observe any relation between the type of the integrand (apart from the
smoothness/regularity) and the type of the basis functions used.

23

(a) f 1(�) (b) f 2(�)

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.1: Convergence of the absolute integration error for each of the Genz test functions using the implicit
quadrature rule with three di�erent types of Chebyshev systems.

24

4.2 Integrand based quadrature

The results of the previous section suggest that Algorithm 3 constructs a positive, convergent quadrature
rule independent of the basis under consideration. The advantage is that if the basis set is a Chebyshev
system, then we obtain quadrature rules that are dependent on the smoothness/regularity of the integrand.
We observe that the performance of the resulting quadrature rules is comparable to the performance of
polynomial-based quadrature rules. We are interested in �nding a basis set that, when used in Algorithm
3, gives a quadrature rule that integrates a given integrand better than the conventional monomial basis
set. A simple idea is to use the integrand as one of the basis functions that is being used in Algorithm 3.
The central idea involves using monomials as the main basis set along with the integrand as one of the
basis functions. We use the monomial basis due to its simplicity, convergence properties (over all of
R) and we have seen that there is no advantage in using a non-polynomial Chebyshev system. If the
basis set f1; �; : : : ; �N�2; f(�)g and a sample set Y = fy1; : : : ; yKg are used in Algorithm 3, then we get a
quadrature rule consisting of nodes XN � Y , and weights WN (denoted by operator Q(K)

N) such that

Q(K)
N �i�1 = IK�i�1 =

1
K

KX

j=1

yi�1
j ; i = 1; : : : ; N � 1; (4.5a)

and

Q(K)
N f = IKf =

1
K

KX

j=1

f(yj): (4.5b)

However, this is not a practical approach as it involves evaluating f(�) at all points in Y .

4.2.1 Approximate-integrand/response-based quadrature rule

The previous section suggests that it is possible to generate a quadrature rule by supplying the integrand
as one of the basis functions. However, in a UQ setting, a closed form expression of the output/response1

(integrand) is not available, and instead it is only possible to evaluations of the output at a �nite set of
points. So, the idea is to construct an approximant of the integrand using these evaluations and use it as
one of the basis functions. The approximation used in this work is the piecewise linear approximation of
the integrand. It is possible to construct other (even better) approximations of the integrand, but we
chose a piecewise linear approximation due to reasons that are explained further in this section.

If f(�) is the integrand, then the piecewise linear approximant constructed using its evaluations at D
points shall be henceforth denoted by fDpl (�).
Again, we assume a large set of samples Y := fyigKi=1 is available. The goal is to construct a quadrature
rule Q(K)

M such that

Q(K)
M �i�1 = IK�i�1 =

1
K

KX

j=1

yi�1
j ; i = 1; : : : ; N � 1; (4.6a)

and

Q(K)
M fDpl = IKfDpl =

1
K

KX

j=1

fDpl (yj); (4.6b)

with M as small as possible. The proposed algorithm will ensure that N �M � (N +D). Thus the goal
is to construct a positive quadrature rule that exactly integrates polynomials of degree upto N � 2 and
fDpl (�), where N (� K) and D are given. The motivation for generating a quadrature rule with M nodes
is as follows: we initially obtain evaluations of f(�) at D nodes to construct fDpl (�). Incorporating these
D nodes in the quadrature rule ensures that we make use of the function evaluations already available.
The initial step is to choose the set of points which will be used to construct the piecewise linear interpolant.
To this end, we take the �rst D samples from the sample set Y :

FD := fy1; : : : ; yDg; (4.7)
1In this chapter, we use the term ‘integrand’ instead of ‘response’ as the author feels that it �ts better into the numerical

integration terminology.

25

and the remaining samples are de�ned as

L := Y n FD; with jLj = K �D: (4.8)

Remark: It is possible to choose samples in FD so as to construct an approximant that better approximates
the integrand than a piecewise linear interpolant. This aspect will be explored in future works.

Let fDpl (�) be the piecewise linear interpolant constructed using integrand evaluations over the set FD.
A detailed procedure for constructing this piecewise linear interpolant is given in Appendix B. Next, we
give f1; �; : : : ; �N�2; fDpl (�)g and L as the function set and the sample set respectively, as inputs to the
Algorithm 3, to obtain a quadrature rule XN = f�1; : : : ; �Ng;WN = fw1; : : : ; wNg such that

Q(jLj)
N �i�1 = I jLj�i�1 =

1
jLj

KX

j=D+1

yi�1
j ; i = 1; : : : ; (N � 1) (4.9a)

and

Q(jLj)
N fDpl = I jLjfDpl =

1
jLj

KX

j=D+1

fDpl (yj); (4.9b)

where Q(jLj)
N is the corresponding quadrature rule operator. We see that the above quadrature rule

integrates over the set L, so we extend it in such a way that it covers Y = L [FD. The approach that
we take is similar to the node addition and removal procedure used so far. We iteratively append the
samples from FD to XN and perform the reduction procedure to remove a node. We do not perform the
reduction procedure if the node to be removed belongs to FD, thus resulting in a quadrature rule with
nodes � N . An iteration k (1 � k � D) is as follows: suppose we have a quadrature rule with nodes
XM = f�1; : : : ; �Mg and weights WM = fw1; : : : ; wMg (N � M � N + k) with the associated operator
Q(jLj+k�1)
M . We append yk 2 FD to XM to obtain

XM+1 = XM [fykg; (4.10)

and WM is re-scaled and an additional weight is appended to obtain

WM+1 =
jLj+ k � 1
jLj+ k

WM [f
1

jLj+ k
g: (4.11)

This results in a quadrature rule Q(jLj+k)
M+1 with a property

Q(jLj+k)
M+1 �i�1 =

M+1X

j=1

�i�1
j wj

(jLj+ k � 1)
jLj+ k

+
yi�1
k

jLj+ k
=
jLj+ k � 1
jLj+ k

I jLj+k�1�i�1 +
yi�1
k

jLj+ k
= I jLj+k�i�1;

(4.12a)
with i = 1; : : : ; N � 1; wj 2WM , and

Q(jLj+k)
M+1 fDpl =

M+1X

j=1

fDpl (�j)wj
(jLj+ k � 1)
jLj+ k

+
fDpl (yk)
jLj+ k

=
jLj+ k � 1
jLj+ k

I jLj+k�1fDpl +
fDpl (yk)
jLj+ k

= I jLj+kfDpl :

(4.12b)
The next step is to delete a node from Q(jLj+k)

M+1 (if possible). To this end, we construct the generalized
Vandermonde-matrix corresponding to Q(jLj+k)

M+1 as follows:

V =

2

666664

1 1 : : : 1
�1 �2 : : : �M+1
...

...
. . .

...
�N�2
1 �N�2

2 : : : �N�2
M+1

fDpl (�1) fDpl (�2) : : : fDpl (�M+1)

3

777775

N�(M+1)

: (4.13)

Since the above matrix is of size N � (M + 1), at least one non-trivial null vector c 2 RM+1 exists.
Following the non-uniqueness of this null vector (Section 3.1.5), we can choose between deleting two
nodes from the set XM+1. The indices of these nodes are determined as follows:

�1 = min
i=1;:::;M+1

�
wi
ci

: ci > 0
�

=:
wk1

ck1

; (4.14)

26

�2 = max
i=1;:::;M+1

�
wi
ci

: ci < 0
�

=:
wk2

ck2

: (4.15)

As mentioned earlier, we would like that the nodes added from the set FD are not deleted from the �nal
quadrature rule. In order to ensure this, we look at four possible cases of node deletion:

ˆ Case 1: The node �k1 2 FD and �k2 =2 FD, thus �k2 is deleted.

ˆ Case 2: The node �k1 =2 FD and �k2 2 FD, thus �k1 is deleted.

ˆ Case 3: The nodes �k1 ; �k2 =2 FD, thus either of the nodes can be deleted. Without loss of generality,
�k1 is chosen.

ˆ Case 4: The nodes �k1 ; �k2 2 FD, thus neither of the nodes can be deleted. As a result we do not
perform the reduction procedure and move on to the next iteration with an extra node.

This case checking is outlined in Algorithm 5.
After iterating over all the elements in FD, we get a quadrature rule Q(K)

M (N �M � N +D). Thus in
an ideal case, each node in FD replaces a node from XN �nally resulting in a quadrature rule QKN . On the
other hand, it could be possible that nodes from FD are added and no node is deleted (a situation of Case
4 above), thus giving a quadrature rule QKN+D. The steps of this method are outlined in Algorithm 4. In
practice, FD must have at least two elements (i.e. D � 2) as we need at least two integrand evaluations
to construct the piecewise linear interpolant. Furthermore, our algorithm generates quadrature rules of
Approximate-integrand

Algorithm 4 Approximate-integrand quadrature rule

Input: A positive integer N , a sample set Y = fyigKi=1, the set FD = fy1; : : : ; yDg � Y , and fDpl (�)
constructed using FD.

Output: Quadrature rule with nodes XM = f�1; : : : ; �Mg, WM = fw1; : : : ; wMg (N � M � N + D)
that exactly integrates functions of the set f1; �; : : : ; �N�2; fDpl (�)g.

1: Generate a quadrature rule XN ;WN using f1; : : : ; �N�2; fDpl (�)g, L := Y n FD as inputs to Algorithm
3 such that (4.9) holds.

2: k 1, M N (thus XM � XN , WM �WN).
3: while k � D do
4: Append node from FD: XM+1 XM [yk.
5: Re-scale weights: WM+1 jLj+k�1

jLj+k WM [
n

1
jLj+k

o
.

6: Construct the generalized Vandermonde-matrix V:

V =

2

666664

1 1 : : : 1
�1 �2 : : : �M+1
...

...
. . .

...
�N�2
1 �N�2

2 : : : �N�2
M+1

fDpl (�1) fDpl (�2) : : : fDpl (�M+1)

3

777775

N�(M+1)

: (4.16)

7: Determine a non-trivial c such that Vc = 0.
8: �1 minm1(vm1=cm1 jcm1 > 0); with vm1 2WM+1.
9: �2 maxm2(vm2=cm2 jcm2 < 0); with vm2 2WM+1.

10: Determine the index of the node to be eliminated using Algorithm 5: i = 1 or i = 2 or i = 0.
11: if i = 1 or i = 2 then
12: XM XM+1 n f�mig.
13: WM fwk � �ickj wk 2WM+1 and wk > �ickg.
14: else
15: M M + 1 . No deletion.
16: end if
17: k k + 1.
18: end while
19: return XM , WM .

27

Algorithm 5 Check if two elements from a given set X also belong to another given set Y .
Input: Two sets X;Y , and indices of the two elements of X: m1;m2.
Output: An integer from the set f0; 1; 2g.

if Xm1 2 Y AND Xm2 =2 Y then
return 1.

else if Xm1 =2 Y AND Xm2 2 Y then
return 2.

else if Xm1 =2 Y AND Xm2 =2 Y then
return 1.

else
return 0.

end if

Error analysis

The convergence of the quadrature rule is demonstrated using the Lebesgue inequality and can be observed
from the following inequality (3.17):

���IKf �Q(K)
M f

��� � 2 inf
q2�
kf � qk1 ; (4.17)

where q is the best approximation of f in the span of the set � := f1; �; �2; : : : ; �N�2; fDpl (�)g. Since

inf
q12�

kf � q1k1 � inf
q22P(N�2)

kf � q2k1 ; (4.18)

with q1 being the best approximation in � and q2 the best approximation in P(N � 2), we can write
���IKf �Q(K)

M f
��� � 2 inf

q12�
kf � q1k1 � 2 inf

q22P(N�2)
kf � q2k1 ; (4.19)

thus demonstrating that the error of our quadrature rule is better at least by a constant.

Numerical experiments

Similar to the previous section, we consider the Genz integration test functions (Appendix C) to assess
the accuracy of the generated quadrature rules. In addition, we compare them with quadrature rules
generated using traditional implicit quadrature rules (i.e., by using a monomial basis set). For all the
numerical experiments, a uniformly distributed sample set of size K = 103 is used. In addition, the o�set
u and shape parameters a for each of the Genz functions are chosen randomly from uniform distribution
in [0; 1]. Since the generated quadrature rule changes every time a new sample set Y is taken, each
numerical experiment is repeated 50 times, each time with a di�erent set of values of a and u, and sample
set Y . The �nal integration error is the average of these 50 errors.
For the purpose of demonstration, the number of �xed nodes D is 12, resulting in quadrature rules
that are of degree N � 2 and integrate f12

pl (�) exactly. The results of the experiment are shown in
Figure 4.2. The accuracy of the quadrature rule depends on the regularity of the integrand and the
interpolation error and this is reected in the results. The �rst four Genz functions, since they are
analytic, show exponential convergence. The C0-function (f5(�)) and discontinuous function (f6(�)) have
algebraic convergence. But it can be seen that the error is lower by a constant factor when using the
approximate-integrand quadrature rule. Using monomials as basis functions ensured that the resulting
quadrature rule is convergent while the inclusion of the piecewise linear interpolant lowered the error by
a constant.

28

(a) f 1(�) (b) f 2(�)

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.2: Convergence of the absolute integration error for each of the Genz test functions using the implicit
quadrature rule, approximate-integrand quadrature rule, and Monte Carlo sampling using the standard uniform
distribution.

29

4.2.2 One dimensional particle motion

In this section we use the approximate-integrand quadrature rule to a problem in UQ. In particular, we
consider an initial value problem with uncertain initial conditions, whose response is non-smooth. To this
end, the di�erential equation of one-dimensional motion of a particle under the inuence of a potential
�eld and friction [41], given by

d2x
dt2

+ f
dx
dt

= �
dh
dx
; (4.20)

where f > 0 is the coe�cient of friction, and h(x) is the potential �eld. The two initial conditions
are: x(t = 0) = x0 and dx=dt(t = 0) = 0. The values of f and h(x), taken from [41], are 2 and
(35=8)x4�(15=4)x2 respectively. Taking f = 2 ensures that the steady state is reached in a relatively short
time, and h(x) = (35=8)x4 � (15=4)x2 ensures that the system has three �xed points (x = 0;�

p
15=35).

The points x = �
p

15=35 are stable �xed points and x = 0 is an unstable �xed point
Let us suppose that the initial position x0 is uncertain. Then the stochastic version of the above

system is formulated in a probabilistic setting. To this end, we consider a random variable � that is
uniformly distributed over the interval [�1; 1] such that the PDF of � is p(�) � 1=2. We take X(t; �)
(instead of x(t)) to be the solution. The initial conditions are now re-written as

X(t = 0; �) = X0 + �X�;
dX
dt

����
t=0

= 0; (4.21)

where X0 = (x1 + x2)=2 and �X = jx1� x2j=2 for a given interval [x1; x2] � R. From this we see that the
initial position of the particle is a random variable that is uniformly distributed in the interval [x1; x2].
Thus, the stochastic system is written as

(
d2X
dt2 + 2dX

dt = � 35
2 X

3 + 15
2 X; (t; �) 2 [0;1)� [�1; 1];

X(t = 0; �) = X0 + �X�; dX
dt

��
t=0 = 0;

(4.22)

Suppose we take [x1; x2] � [�0:15; 0:25] (correspondingly X0 = 0:05; �X = 0:2), then due to our choice of
h(X) and f , the steady state (X(t!1; �)) response is piecewise constant as follows:

(
X(t! 2; �) = �

p
15=35; � < �0:25;

X(t! 2; �) =
p

15=35; � > �0:25:
(4.23)

This response is similar to the sixth Genz test integrand and thus we choose to look at the response at
t = 2, i.e. X(t = 2; �) for a given �. The response in this case is then not entirely discontinuous. Thus,
the quantity of interest (QoI) is X(t = 2; �) for the uniformly distributed input �. We chose this setting
by trial and error so that the QoI will be relatively non-smooth.

From a dynamical systems point of view, if the initial condition varies in the interval [�0:15; 0:25],
hence the �nal position of the particle will be somewhere between �

p
15=35 depending on the initial

position.
To compare the performances of various quadrature rules, we compute the mean, given by,

�(X) �
NX

i=1

X(t = 2; �i)wi; (4.24)

and the standard deviation, given by,

�(X) �

vuut
NX

i=1

(X(t = 2; �i)� �(X))2 wi; (4.25)

for increasing N .
We use Monte Carlo, Gauss-Legendre and compare their performance with the approximate-integrand
quadrature rule introduced in the previous section. For demonstration purposes, we take the �xed nodes
D = 10 and use a total of 5 � 104 samples. The exact mean �(X) and the exact standard deviation
�(X) are determined using a Monte Carlo approach over 105 samples. The response evaluations and
the quadrature rule nodes are obtained by numerically solving 4.22 using initial value problem solver of

30

Chebfun [57, 15]. Figure 4.3 shows the absolute value of the integration error. We see that the quadrature
rule generated by our algorithm performs slightly better than the other two methods. At approximately
N = 60, the error of the approximate-integrand quadrature rule goes up. This could be possibly due to
the random nature of the quadrature rule generation process. We expect this deviation to disappear if we
average over repeated evaluation of the integrals using di�erent samples.

(a) Convergence of mean (�). (b) Convergence of standard deviation (�).

Figure 4.3: Convergence of the mean (�) and the standard deviation (�) of X(t = 2; �).

4.2.3 Nested approximate integrand based quadrature

The previous section described an algorithm to generate a positive quadrature rule of a given degree
that exactly integrates an approximant of the integrand. In this section, we extend this algorithm that
generates a sequence of nested quadrature rules.

The problem setting is as follows. Let Y be the sample set with K samples. Let us suppose S, the
\nestedness" level, N , the starting degree, and D, the initial number of �xed nodes are given. The goal
is to construct a sequence of positive, nested quadrature rules fQ(K)

Ml
gSl=1 such that XM1 � : : : � XMS

(where the subscript Mi indicates the number of nodes of Q(K)
Ml

). Furthermore, Q(K)
Ml

satis�es

Q(K)
Ml

�i�1 = IK�i�1; i = 1; : : : ; N + (l � 1)� 2; (4.26a)

and
Q(K)
Ml

fMl� 1
pl = IKfMl� 1

pl ; (4.26b)

where fMl� 1
pl is the piecewise linear approximant of f(�) constructed using the set XMl� 1 . Again, we

assume the set of samples Y = fyigKi=1 can be generated easily or are already available. Similar to
previous section, we consider a set of samples FD as follows:

FD = fy1; : : : ; yDg � Y; (4.27)

which is used as the initial set of nodes, i.e. XM0 = FD.
Now, we apply Algorithm 4 iteratively as follows: for iteration l (1 � l � S), the set XMl� 1 is used to
construct fMl� 1

pl (�). Then we use Nl := N + (l � 1), Y , Ml�1 � Y , and fMl� 1
pl as inputs to Algorithm

4 to obtain a quadrature rule Q(K)
Ml

. This quadrature rule has nodes XMl � XMl� 1 and satis�es (4.26).
The number of nodes at this level is bounded as follows:

Ml�1 �Ml � Nl +Ml�1 = N + (l � 1) +Ml�1: (4.28)

31

Thus for each level, the bounds on the nodes are

Level 1 : N �M1 � N +D;
Level 2 : maxfM1; N + 1g �M2 � N + 1 +M1;

...
Level S : maxfMS�1; N + S � 1g �MS � N + (S � 1) +MS�1:

We see that the bounds on each level depend on the number of nodes in the previous level. The lower
bound is given by Nl and an upper bound can be derived by the following analysis: assume that the
quadrature rule at every level has the maximum possible number of nodes, i.e., Ml = N + (l� 1) +Ml�1.
This gives M1 = N +D, M2 = N + 1 + (N +D), . . . , MS = N + (S� 1) + (S� 1)N +D+ (S� 2). Thus,
at each level l, the number of nodes is bounded as follows:

Nl = N + (l � 1) �Ml � (N + 2)l +D � 3: (4.29)

Algorithm 6 gives an outline of the above described procedure. The nested implicit quadrature rule
algorithm presented in [6] is designed to remove multiple nodes whereas the current algorithm is able to
delete only a single node. The process of deleting multiple nodes can be incorporated into the current
algorithm and is a topic for further work.

Algorithm 6 Nested approximate integrand-based quadrature rule

Input: A positive integer N , level S, a sample set Y := fy1; : : : ; yKg, and fDpl (�) constructed using
FD = fy1; : : : ; yDg � Y .

Output: A sequence of nested, positive quadrature rules XM1 � � � � � XMS such that XMl� 1 � XMl

and XMl exactly integrates the function set f1; �; : : : ; �N+(l�1)�2; fMl� 1
pl (�)g.

1: XM0 FD.
2: l 1.
3: while l � S do
4: Generate XMl ;WMl using f1; �; : : : ; �N+(l�1)�2; fMl� 1

pl (�)g, Nl, and Y as inputs to Algorithm 4.
5: Construct fMl

pl (�) using XMl .
6: l l + 1.
7: end while
8: return fXM1 ; : : : ; XMSg, fWM1 ; : : : ;WMSg.

Figure 4.4 gives sequences of quadrature rules generated for each of the 6 Genz functions. We used the
following parameters: N = 5; D = 2;K = 105; S = 5, for the purpose of demonstration. It can be seen
that the quadrature nodes of a lower level are incorporated into the quadrature nodes at a higher level.

(a) f 1(�) (b) f 2(�)

32

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.4: Examples of nested quadrature rules for each of the Genz test functions.

Numerical experiments

Again, the generated sequence of nested quadrature rules are used to integrate the Genz test functions
(Appendix C) and a comparison is made with the traditional implicit quadrature rule (i.e., by using
a monomial basis set) of the same degree. For all the numerical experiments, a uniformly distributed
sample set of size K = 500 is used. In addition, the o�set u and shape parameters a of the Genz functions
are chosen randomly from uniform distribution in [0; 1]. Since the generated quadrature rule changes
every time a new sample set Y is taken, each numerical experiment is repeated 50 times, each time with
a di�erent set of values of a and u, and sample set Y . The �nal integration error is the average of these
50 errors.

For demonstration purposes, the initial degree (N) and number of nodes (D) are 5 and 4 respectively,
and the number of levels S is 8. For each level i, the results are compared with those of an implicit
quadrature rule of degree N + (i � 1) � 2 (this ensures that both the quadrature rules have the same
degree) that is generated by using the set of monomials. Due to the inclusion of monomials in the
basis set, the convergence of the quadrature rule is dependent on the regularity of the integrand and
this is reected in the results. Figure 4.5 shows the results for the six types of Genz functions. The
�rst four Genz functions are analytic and thus show exponential convergence. The C0-function (f5(�))
and the discontinuous function (f6(�)) have algebraic convergence. The error is lower by a constant
factor when using the approximate-integrand quadrature rule. Note that the number of nodes for the
approximate-integrand quadrature rule is larger than that of the polynomial-based implicit quadrature
rule. This implies that more function evaluations are needed for the quadrature rule generated using
Algorithm 6.

33

(a) f 1(�) (b) f 2(�)

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.5: Convergence of the absolute integration error for each of the Genz test functions using the implicit
quadrature rule, approximate-integrand quadrature rule using the standard uniform distribution.

34

4.3 Integrand based cubature

The previous section focused on generating quadrature rules by incorporating information obtained
from the integrand. This involved constructing a piecewise linear approximant using evaluations of the
integrand and using it as one of the basis functions to construct a quadrature rule. As described in Section
3.2, cubature rules are commonly generated either using the tensor product approach or the sparse grid
approach (using the Smolyak algorithm). This is straightforward since a multivariate polynomial is a
product of the univariate polynomials as described in De�nitions 2 and 3, and the distribution function
can be written as a tensor product (equation (2.22)). Recent research is focussed towards the generation
of positive cubature rules for use in non-intrusive uncertainty quanti�cation. For instance, the reduced
cubature rule algorithm [5] focuses on eliminating multiple nodes from a given tensor grid or Smolyak
sparse grid. The work done in [38, 34, 50] is focussed towards generating cubature rules by minimization
of the integration error. Recent approaches take advantage of the availability of large sample sets to
construct quadrature/cubature rules [48, 17, 6].

In this section, we extend the approximate-integrand quadrature rule to multiple dimensions. Following
the approach of the previous section, if we try to construct a multi-linear appoximation of the integrand we
will hit a roadblock. This is because the domain discretization is not unique and constructing multi-linear
approximant is not straightforward. For instance, in two dimensions, we have the choice of either using
triangles or quadrilaterals. In addition, as we move to higher dimensions construction of piecewise linear
basis functions is also not trivial. An alternative approach is to marginalize the multidimensional function
in a given dimension and use it to construct a quadrature rule, which in turn can then be used to
construct a cubature rule using the tensor product approach. This is the approach taken here. This
section is structured as follows. First, the process of marginalization of a function will be discussed in the
continuous and discrete setting. Second, the algorithm for generating the cubature rule will be described.
Finally, the cubature rule will be tested on the Genz test functions to verify its convergence properties.

4.3.1 Marginalization

The process of marginalization of a multivariate function is similar to that of marginalization of a joint
PDF (equation (2.12b)). Given a multivariate function f : � 7! R, where � := I1 � : : : � Id. The
marginalized function fi(�i) of f(�) in the ith direction is given by

fi(�i) =
Z

1

: : :
Z

i� 1

Z

i+1

: : :
Z

d
f(�1; : : : ; �d)p(�1; : : : ; �d)d�1 : : : d�i�1d�i+1 : : : d�d: (4.30)

This is viewed as averaging the function f(�) over every other direction except in the ith direction.
The discrete version follows directly. Suppose that in each interval Ii (i = 1; : : : ; d), a set of points
f�(k)
i gnk=1 are given. Then, we take the n-fold Cartesian product of these sets to obtain

f�(k)gn
d

k=1 := f�(k)
1 g

n
k=1 � : : :� f�

(k)
d g

n
k=1: (4.31)

We use this set to obtain evaluations of f(�): ff(�(k))gn
d

k=1. This set is then used to obtain the discrete
form of fi(�i) (characterized by n points) as follows:

fi(�
(k)
i) =

1
nd�1

nX

k1=1

: : :
nX

ki� 1=1

nX

ki+1=1

: : :
nX

kd=1

f(�(k1)
1 ; : : : ; �(ki� 1)

i�1 ; �(ki+1)
i+1 ; : : : ; �(kd)

d); k = 1; : : : ; n:

(4.32)
Thus, the marginalization of ff(�(k))gn

d

k=1 in the ith direction is given by ffi(�
(j)
i)gnj=1.

4.3.2 Approximate-integrand cubature rule

We wish to integrate (3.1) and the approach we take is as follows: suppose that the integrand f(�) is
known. The approximation used in this section to construct cubature rules is as follows:

f(�) �
dY

i=1

fi(�i); (4.33)

35

where fi(�i) is the marginal in ith direction given by (4.30). This enables the use of the marginal of f(�)
to construct a quadrature rule for a particular dimension. This can be shown using (3.1) as follows:

If =
Z

�
f(�)p(�)d� �

Z

�

dY

i=1

fi(�i)
dY

i=1

pi(�i)d�

=
Z

�

dY

i=1

fi(�i)pi(�i)d�

=
dY

i=1

Z

Ii
fi(�i)pi(�i)d�i:

As before, we do not have a closed form expression for f(�), but only the evaluations of f(�) at a certain
set of points. To this end, we construct the point set de�ned by (4.31) and obtain the evaluations of f(�)

over this set. Then, we construct the sequence of sets
�
ffi(�

(j)
i)gnj=1

�d
i=1

The next step is to construct a
quadrature rule in each dimension using the approximate-integrand quadrature rule described in Section
4.2.1 and take a tensor product of the resulting quadrature rules. For the sake of simplicity, we describe
the algorithm for the case of I1 = : : : = Id.
Suppose that a large set of samples Y := fyigKi=1 (yi 2 R) are available. The initial step is to choose a set
of D points (D � K) from Y and take an d-fold Cartesian product of this set. This is the set given by
(4.31). To this end, we take the �rst D samples from Y as follows:

FD := fy1; : : : ; yDg:

Then the d-fold Cartesian product of FD has Dd points and is de�ned as follows:

FD := FD � : : :� FD: (4.34)

Now f(�) is evaluated at each of the nodes in FD and the resulting evaluations are used to obtain the
marginalization of f in the ith dimension. It can be seen that the discrete version of the marginalization
is being performed (equation (4.32)), hence, a set of points ffi(yj)gDj=1 are obtained. This set is then used
to construct a piecewise linear interpolant fDipl of f in the ith direction. This piecewise linear interpolant

and the set Y are then used to construct a quadrature rule iQ(K)
Mi

(N � Mi � N + D), of polynomial
degree N � 2, using Algorithm 4. The pre�x-superscript of the quadrature rule operator denotes the
dimension. We denote the nodes and weights of iQ(K)

M�i by the sets XMi and Wi = fw(i)
j g

Mi
j=1 respectively.

Once we have constructed such quadrature rules for each of the dimensions i = 1; : : : ; d, the cubature
rule is constructed by taking its tensor product as follows:

Q (K)
M f =

�

di=1

iQ(K)
Mi

�
f =

dY

i=1

iQ(K)
Mi

!

fi; (4.35)

where
 is the tensor product operator as shown in (3.43), Q (K)
M is the cubature rule operator, and

M � (N +D)d. The steps of the method are outlined in Algorithm 7. Using XM1 ; : : : ; XMd as an input
to Algorithm 7 and de�ning FD = XM1 � : : : �XMd is a possible step to generate a nested cubature
rule. But such an approach leads to exponential growth of nodes and will be dealth with in future work.
Figure 4.6 depicts cubature nodes in two dimensions generated for each of the 6 Genz functions. For
demonstration purposes, we take the polynomial degree (N) in each dimension as 5, the size of the �xed
samples D as 5, and the size of the sample set Y as 100. The samples are uniformly distributed in [0; 1].
Each sub�gure also has the contours of the Genz function used. We see that there is no speci�c relation
between the function used and the ordering of the cubature rule nodes. This could be due to our choice of
FD. Since we chose the elements of FD without any speci�c criteria, we do not observe any such relation.

36

(a) f 1(�) (b) f 2(�)

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.6: Examples of cubature rules for each of the Genz test functions. The contour plots of the Genz
function used is also given. Please look to the bottom-left corner for f3(�)

37

Algorithm 7 Approximate-integrand cubature rule

Input: Two positive integers N and D, and a sample set Y := fyigKi=1

Output: Cubature rule Q (K)
M of polynomial degree (N � 2) such that Nd �M � (N +D)d.

1: Initialize the �xed set of nodes: FD = fy1; : : : ; yDg and de�ne: L = Y n FD.
2: Construct FD := FD � : : :� FD.
3: Obtain the evaluations of f(�) on the set FD.
4: for i = 1; : : : ; d do
5: Obtain the marginalization of f(�): ffi(yj)gDj=1.
6: Construct a piecewise linear approximation fDipl(�i).
7: Obtain XMi ;Wi using N , Y , FD and fDipl(�i) in algorithm 4.
8: end for
9: Construct XM := XM1 � : : :�XMd .

10: Construct W := Wd
 � � �
Wd (where
 is the kronecker product).
11: return XM, W .

4.3.3 Numerical experiments

In order to assess the accuracy of the proposed cubature rule, again the Genz integration test functions
(Appendix C) are considered and a comparison is made with the traditional tensor product with Clenshaw-
Curtis quadrature and Monte Carlo methods. For all the numerical experiments we take the dimension d
as 3, �xed number of nodes D as 4, and a sample set of size K = 80. The samples of Y are uniformly
distributed in the interval [0; 1]. In addition, the o�set parameter u and shape parameter a of the Genz
functions are chosen randomly from the uniform distribution in [0; 1]. Since the generated cubature rule
changes every time a new sample set Y is taken, each numerical experiment is repeated 50 times, each
time with a di�erent set of values of a and u, and sample set Y . The �nal integration error is the average
of these 50 errors.
Figure 4.7 depicts the convergence of the absolute error. We observe that by including the polynomial
basis, convergence of the cubature rule is observed. This convergence is dependent on the regularity
of the integrand. As expected, the �rst, second, third and the fourth Genz functions show exponential
convergence. For the �fth and the sixth Genz functions, we observe algebraic convergence. Moreover, for
these functions the error appears to be slightly lower than that of the tensor grid.

(a) f 1(�) (b) f 2(�)

38

(c) f 3(�) (d) f 4(�)

(e) f 5(�) (f) f 6(�)

Figure 4.7: Convergence of the absolute integration error for each of the Genz test functions using the implicit
quadrature rule, approximate-integrand cubature rule, and Monte Carlo sampling using the standard uniform
distribution.

39

Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, we present a new set of numerical integration methods to compute statistics of the output
in forward UQ problems. Based on the observation that the polyonmial based numerical integration rules
in literature are not e�cient while integrating non-smooth integrands, we were interested in constructing
numerical integration rules that are capable of better integrating such non-smooth integrands. More
speci�cally, we wanted to compare quadrature rules based on non-polynomial functions with those that are
polynomial-based. Furthermore, we wanted to generate a quadrature rule by incorporating information
about the integrand into the quadrature rule generation process.

With the intention of improving the algebraic convergence of less-smooth functions, we investigate the
properties of quadrature rules that were generated using a non-polynomial set of basis functions. From the
results, we were able to conclude that the accuracy of quadrature rules generated using non-Chebyshev
systems or non-polynomial Chebyshev systems was the same as that of polynomial based quadrature
rules when integrating non-smooth integrands.

Next, we wanted to incorporate some information of the integrand into the quadrature rule generating
process. To this end, we used a piecewise linear interpolant of the integrand along with monomials as
the basis for the implicit quadrature rule. The resulting quadrature rules had convergence properties
similar to that of polynomial-based quadrature rules and were accurate for non-smooth integrands. We
also analyzed the algorithm and derived lower and upper bounds for the number of nodes in the resulting
quadrature rule. We were able to conclude that our response-based quadrature rule is more accurate
when integrating non-smooth responses in UQ, but requires a few extra function evaluations.

We extend our response-based quadrature rule to higher dimensions using the tensor product approach.
The quadrature rule in each dimension was constructed using the marginalized form of the integrand.
We saw that the resulting cubature rules that perform only slightly better than that of polynomial
based tensor product cubature rules. From this we conclude that this approach is not suitable for UQ
applications as the number of nodes grew exponentially with the number of dimensions and there exist
algorithms that eliminate this dimensional dependence.

40

5.2 Future work

Based on the conclusions, the following topics are avenues for further work:

ˆ We were able to obtain convergent quadrature rules using certain sets of functions, but were unable
to establish whether a relation exists between the type of basis functions we use and the type of
integrand we intend to integrate. As a next step, it is of interest to determine if there exists sets of
basis functions that can integrate a speci�c set of integrands better than conventional quadrature
rules.

ˆ We used a piecewise linear approximant with linear extrapolation as one of our basis functions
to generate our response-based quadrature rules. Further we justi�ed the use of piecewise linear
approximants over other approximants due to the Runge phenomenon (see Appendix B.2). We
suggest further investigation into constructing a more accurate approximation of our response that
we use to generate the quadrature rule. To this end, we propose investigation into choosing a
di�erent type of starting nodal set FD so that a better approximant can be constructed.

ˆ Since we are using an approximation of the integrand in the quadrature rule generation process,
there is an error associated with the approximation. It would be of interest to investigate how this
error is propagated in the quadrature rule generation process.

ˆ We marginalize our response to construct cubature rules. This ‘marginalization’ procedure introduces
an error. As a next step, we suggest looking into quantifying the error induced due to this procedure.
Further, we suggest extending Algorithm 7 to generate a sequence of nested cubature rules.

41

Bibliography

[1] B. K. Alpert. Rapidly-convergent quadratures for integral operators with singular kernels. Lawrence
Berkeley Laboratory. 1990.

[2] I. Babuska, F. Nobile and R. Tempone. ‘A stochastic collocation method for elliptic partial
di�erential equations with random input data’. In: SIAM Journal on Numerical Analysis 45.3
(2007), pp. 1005{1034.

[3] I. Bilinois. Introduction to Uncertainty Quanti�cation. https://github.com/PredictiveScienceLab/uq-
course.

[4] L. van den Bos. ‘Non-Intrusive, High-Dimensional Uncertainty Quanti�cation for the Robust
Simulation of Fluid Flows’. Masters thesis. Eindhoven University of Technology, 2015.

[5] L. van den Bos, B. Koren and R. P. Dwight. ‘Non-intrusive uncertainty quanti�cation using reduced
cubature rules’. In: Journal of Computational Physics 332 (2017), pp. 418{445.

[6] L. van den Bos et al. ‘Generating nested quadrature rules with positive weights based on arbitrary
sample sets’. In: arXiv preprint arXiv:1809.09842 (2018).

[7] H. Brass and K. Petras. Quadrature Theory. Vol. 178 of Mathematical Surveys and Monographs.
American Mathematical Society, 2011.

[8] J. Bremer, Z. Gimbutas and V. Rokhlin. ‘A nonlinear optimization procedure for generalized
Gaussian quadratures’. In: SIAM Journal on Scienti�c Computing 32.4 (2010), pp. 1761{1788.

[9] T. S. Chihara. An Introduction to Orthogonal Polynomials. Courier Corporation, 2011.
[10] C. W. Clenshaw and A. R. Curtis. ‘A method for numerical integration on an automatic computer’.

In: Numerische Mathematik 2.1 (1960), pp. 197{205.
[11] G. Dahlquist and �A. Bj�orck. Numerical Methods in Scienti�c Computing, Volume I. Society for

Industrial and Applied Mathematics, 2008.
[12] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Courier Corporation, 2007.
[13] L. Devroye. ‘Nonuniform random variate generation’. In: Handbooks in Operations Research and

Management Science 13 (2006), pp. 83{121.
[14] P. Doubilet et al. ‘Probabilistic sensitivity analysis using Monte Carlo simulation: a practical

approach’. In: Medical Decision Making 5.2 (1985), pp. 157{177.
[15] T. A. Driscoll, N. Hale and L. N. Trefethen. Chebfun Guide. Pafnuty Publications, Oxford, 2014.
[16] R. Eckhardt. ‘Stan Ulam, John von Neumann, and the Monte Carlo method’. In: Los Alamos

Science 15.30 (1987), pp. 131{136.
[17] A. W. Eggels, D. Crommelin and J. Witteveen. ‘Clustering-based collocation for uncertainty propaga-

tion with multivariate dependent inputs’. In: International Journal for Uncertainty Quanti�cation
8.1 (2018).

[18] G. Evans and J. Webster. ‘A comparison of some methods for the evaluation of highly oscillatory
integrals’. In: Journal of Computational and Applied Mathematics 112.1-2 (1999), pp. 55{69.

[19] G. Evans. Practical Numerical Integration. Wiley New York, 1993.
[20] A. Forrester, A. Sobester and A. Keane. Engineering design via surrogate modelling: A Practical

Guide. John Wiley & Sons, 2008.
[21] W. Gautschi. ‘A survey of Gauss-Christo�el quadrature formulae’. In: EB Christo�el. Springer,

1981, pp. 72{147.

42

https://github.com/PredictiveScienceLab/uq-course
https://github.com/PredictiveScienceLab/uq-course

[22] W. Gautschi. Numerical Analysis. Springer Science & Business Media, 2011.
[23] W. Gautschi. Orthogonal Polynomials. Oxford University Press, 2004.
[24] W. M. Gentleman. ‘Implementing Clenshaw{Curtis quadrature, I Methodology and Experience’. In:

Communications of the ACM 15.5 (1972), pp. 337{342.
[25] A. Genz. ‘A package for testing multiple integration subroutines’. In: Numerical Integration. Springer,

1987, pp. 337{340.
[26] T. Gerstner and M. Griebel. ‘Numerical integration using sparse grids’. In: Numerical Algorithms

18.3-4 (1998), pp. 209{232.
[27] G. H. Golub and J. H. Welsch. ‘Calculation of Gauss quadrature rules’. In: Mathematics of

Computation 23.106 (1969), pp. 221{230.
[28] M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering. Springer Science &

Business Media, 2013.
[29] D. Hackmann. ‘Karhunen{Lo�eve expansions of L�evy processes’. In: Communications in Statistics-

Theory and Methods 47.23 (2018), pp. 5675{5687.
[30] P. R. Halmos. Measure Theory. Vol. 18. Springer, 2013.
[31] L. M. Hodges. ‘Quadrature, Interpolation and Observability’. PhD thesis. Texas Tech University,

1997.
[32] D. Huybrechs. ‘Stable high-order quadrature rules with equidistant points’. In: Journal of computa-

tional and applied mathematics 231.2 (2009), pp. 933{947.
[33] J.-P. Imhof. ‘On the method for numerical integration of Clenshaw and Curtis’. In: Numerische

Mathematik 5.1 (1963), pp. 138{141.
[34] J. D. Jakeman and A. Narayan. ‘Generation and application of multivariate polynomial quadrature

rules’. In: Computer Methods in Applied Mechanics and Engineering 338 (2018), pp. 134{161.
[35] V. Kaarnioja. ‘Smolyak Quadrature’. Masters thesis. Helsingfors Universitet, 2013.
[36] S. Kapur and V. Rokhlin. ‘High-order corrected trapezoidal quadrature rules for singular functions’.

In: SIAM Journal on Numerical Analysis 34.4 (1997), pp. 1331{1356.
[37] S. Karlin and W. Studden. Tchebyche� Systems: With Applications in Analysis and Statistics.

Interscience, New York, 1966.
[38] V. Keshavarzzadeh, R. M. Kirby and A. Narayan. ‘Numerical integration in multiple dimensions

with designed quadrature’. In: SIAM Journal on Scienti�c Computing 40.4 (2018), A2033{A2061.
[39] C. Knight and A. Newbery. ‘Trigonometric and Gaussian quadrature’. In: Mathematics of computa-

tion 24.111 (1970), pp. 575{581.
[40] V. I. Krylov and A. H. Stroud. Approximate Calculation of Integrals. Courier Corporation, 2006.
[41] O. Le Mâ�tre et al. ‘Uncertainty propagation using Wiener{Haar expansions’. In: Journal of

computational Physics 197.1 (2004), pp. 28{57.
[42] M. Loeve. Probability Theory. Graduate Texts in Mathematics. Springer, 1977.
[43] J. Ma, V. Rokhlin and S. Wandzura. ‘Generalized Gaussian quadrature rules for systems of arbitrary

functions’. In: SIAM Journal on Numerical Analysis 33.3 (1996), pp. 971{996.
[44] M. D. McKay, R. J. Beckman and W. J. Conover. ‘Comparison of three methods for selecting

values of input variables in the analysis of output from a computer code’. In: Technometrics 21.2
(1979), pp. 239{245.

[45] N. Metropolis and S. Ulam. ‘The Monte Carlo method’. In: Journal of the American Statistical
Association 44.247 (1949), pp. 335{341.

[46] W. J. Moroko� and R. E. Caisch. ‘Quasi-Monte Carlo integration’. In: Journal of Computational
Physics 122.2 (1995), pp. 218{230.

[47] E. Novak and K. Ritter. ‘Simple cubature formulas with high polynomial exactness’. In: Constructive
Approximation 15.4 (1999), pp. 499{522.

[48] S. Oladyshkin and W. Nowak. ‘Data-driven uncertainty quanti�cation using the arbitrary polynomial
chaos expansion’. In: Reliability Engineering & System Safety 106 (2012), pp. 179{190.

43

[49] T. Patterson. ‘On the Construction of a practical Ermakov-Zolotukhin multiple integrator’. In:
Numerical Integration. Springer, 1987, pp. 269{290.

[50] M. Sinsbeck and W. Nowak. ‘An optimal sampling rule for nonintrusive polynomial chaos expansions
of expensive models’. In: International Journal for Uncertainty Quanti�cation 5.3 (2015), pp. 275{
295.

[51] R. C. Smith. Uncertainty Quanti�cation: Theory, Implementation, and Applications. SIAM, 2013.
[52] S. A. Smolyak. ‘Quadrature and interpolation formulas for tensor products of certain classes of

functions’. In: Doklady Akademii Nauk. Vol. 148. 5. Russian Academy of Sciences. 1963, pp. 1042{
1045.

[53] G. Szeg�o. Orthogonal Polynomials. Vol. 23 of Colloquium publications. American Mathematical
Soc., 1939.

[54] H. Tijms. Probability: A Lively Introduction. Cambridge University Press, 2017.
[55] L. N. Trefethen. Approximation theory and approximation practice. SIAM, 2013.
[56] L. N. Trefethen. ‘Is Gauss quadrature better than Clenshaw{Curtis?’ In: SIAM Review 50.1 (2008),

pp. 67{87.
[57] L. N. Trefethen, A. Birkisson and T. A. Driscoll. Exploring ODEs. SIAM, 2017.
[58] G. W. Wasilkowski and H. Wo�zniakowski. ‘Weighted tensor product algorithms for linear multivariate

problems’. In: Journal of Complexity 15.3 (1999), pp. 402{447.
[59] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton

University press, 2010.
[60] D. Xiu and J. S. Hesthaven. ‘High-order collocation methods for di�erential equations with random

inputs’. In: SIAM Journal on Scienti�c Computing 27.3 (2005), pp. 1118{1139.
[61] D. Xiu and G. E. Karniadakis. ‘The Wiener{Askey polynomial chaos for stochastic di�erential

equations’. In: SIAM Journal on Scienti�c Computing 24.2 (2002), pp. 619{644.

44

Appendix A

Orthogonal polynomials

In this appendix the essential aspects of univariate orthogonal polynomials are explained. They can be
extended to the multivariate case in a manner explained in [59, Chapter 3]. Since orthogonal polynomials
are essential to construct gPC expansions and Gaussian quadrature rules, we summarize the basics for
easy reference and review. A detailed discussion can be found in [53, 23, 9].
Let N0 := f0g [N, where N = f1; 2; : : :g be the set of non-negative integers. Moreover, let P(n) be the
space of polynomials of degree less than or equal to n (n 2 N0). Then P(n) can be written as

P(n) = spanf1; �; : : : ; �ng: (A.1)

Thus any polynomial of degree equal to n can be written as

Pn(�) = an�n + an�1�n�1 + : : :+ a1� + a0; (A.2)

where an 6= 0.
Let p : � 7! R+ be a weight function, where � � R. A set of polynomials fPn(�); n 2 N0g is said to be an
orthogonal set of polynomials with respect to p(�) if the following property holds:

Z

�
Pi(�)Pj(�)p(�)d� = i�ij ; i; j 2 N0; (A.3)

where
�ij =

�
1; i = j;
0; i 6= j;

and i is the normalization constant.
It can be seen that i is given by

i =
Z

�
Pi(�)2p(�)d�; i 2 N0: (A.4)

If the normalization constant is equal to 1, then the set of orthogonal polynomials is called orthonormal.
For a given weight p(�), the existence and uniqueness of a set of orthogonal polynomials is guaranteed
upto a multiplicative sign when Z

�
j�jnp(�)d� <1; (A.5a)

and Z

�
�2np(�)d� > 0; (A.5b)

for all n 2 N0.
A set of orthogonal polynomials fPn(�)gn2N0 with respect to p(�) satis�es the following three-term
recurrence relation:

� �Pn(�) = bnPn+1(�) + anPn(�) + cnPn�1(�); n � 1; (A.6)

where bn; cn 6= 0 and cn=bn�1 > 0. Moreover, P�1(�) = 0 and P0(�) = 1 are taken to completely de�ne
the polynomial set.

45

Most of the orthogonal polynomial sets used in this report (and in general, for gPC applications) can be
expressed using the generalized hypergeometric series [61]. We obtain di�erent sets of polynomials upon
using di�erent valid combinations of parameters. These sets of polynomials belong to the Askey-scheme
of polynomials and their weighting functions are the PDFs of some common distributions [61].

Examples of orthogonal polynomials
Here, some of the common orthogonal polynomial sets will be discussed.
Hermite polynomials: These set of polynomials have

p(�) =
1
p

2�
e

� �2
2 ; (A.7)

as their weighting function, and �1 < � <1. The set of Hermite polynomials Hn(�) satisfy the following
three-term recurrence relation:

Hn+1(�) = �Hn(�)� nHn�1(�); n > 0: (A.8)

These polynomials have the PDF of standard Gaussian distribution as their weighting function and thus
form the gPC basis for standard normally distributed inputs.
Jacobi polynomials: These set of polynomials have

p(�) = (1� �)�(1� �)� ; � > �1; � > �1; (A.9)

as their weighting function, and �1 � � � 1. The Jacobi polynomials Jn(�) satisfy the following three-term
recurrence relation:

�Jn(�) =
2(n+ 1)(n+ �+ � + 1)

(2n+ �+ � + 1)(2n+ �+ � + 2)
Jn+1(�) +

�2 � �2

(2n+ �+ �)(2n+ �+ � + 2)
Jn(�)

+
2(n+ �)(n+ �)

(2n+ �+ �)(2n+ �+ � + 1)
Jn�1(�)

: (A.10)

These polynomials have the PDF of Beta distribution as their weighting function and thus form the gPC
basis for beta distributed inputs.
When � = � = 0, the PDF of the Beta distribution reduces to uniform distribution on the interval [�1; 1]
and the Jacobi polynomials become the Legendre polynomials.

46

Appendix B

Construction of piecewise linear
approximants

The �rst section of this appendix describes the process by which we construct piecewise linear approximants
of an integrand f(�) in Section 4.2.1 and onwards. In the second section of this appendix, we explain the
reasons for choosing a piecewise linear approximant over other polynomial approximations.

B.1 Construction of f Dpl

Following the problem setting from Section 4.2.1, we take the �rst D (D 2 N+) samples fy1; : : : ; yDg
from the set Y . We rearrange these elements so that they are in ascending order and de�ne the resulting
set as

F D := f�1; : : : ; �Dg; (B.1)

where �1 < : : : < �D, and �1 = minfyigDi=1 and �D = maxfyigDi=1. The integrand is evaluated at each of
the samples in F D to obtain the set ff(�i)gDi=1. The piecewise linear approximant fDpl : R 7! R is then
constructed as follows:

fDpl (�) =
DX

i=1

f(�i)hi(�); (B.2)

where hi(�) is the hat-function given by

hi(�) =

8
><

>:

���i� 1
�i��i� 1

; �i�1 � � � �i;
�i+1��
�i+1��i ; �i � � � �i+1;
0; otherwise,

for i = 2; : : : ; (D � 1); (B.3a)

and
h1(�) = �2��

�2��1
; � � �2; ; hD(�) = ���D� 1

�D��D� 1
; �D�1 � � : (B.3b)

To obtain evaluations of fDpl outside the domain F D, we use linear extrapolation. Figure B.1 shows the
second and �fth Genz test functions and their linear interpolants constructed using a given set Y . For
demonstration purposes, the shape factor a is 0:417, and the o�set u is 0:720, both of which are randomly
chosen. For the �rst Genz function, we take a set Y with 106 samples that are uniformly distributed in
[0; 1] and D as 10. For the second Genz function, we take a set Y with 106 samples that are normally
distributed with a mean 0 and standard deviation 1, and D as 10. This procedure has a few drawbacks.
Since we obtain a completely di�erent set F D whenever we change Y (i.e., when we take a new set of
samples), we will also have a new fDpl (�). This indicates that the piecewise linear interpolant that we
obtain is not unique. Furthermore, since we are extrapolating linearly, it is possible to get large errors in
function evaluations as can be seen from the green plots in Figure B.1.

47

(a) Second Genz function (b) Fifth Genz function

Figure B.1: The second and �fth Genz functions (red) and their piecewise linear interpolants (blue). Evaluation
of the interpolants over Y to demonstrate the error of linear extrapolation (green).

B.2 Other approximants

Since the sample set F D that we use to construct the approximant has samples randomly distributed, we
have no control over the spacing of its elements. The reason for not using globally smooth polynomial
interpolation such as Lagrange interpolation (and others) is that they give rise to the Runge phenomenon.
This is shown in Figure B.2, where we take a set Y with 106 samples that are uniformly distributed
in [0; 1] and D as 10. This phenomenon is further ampli�ed if we take normally distributed samples
since the domain is unbounded. Furthermore, adding a D-degree Lagrange polynomial to the space
f1; �; : : : ; �N�2g (where N > D) does not have any advantage as we already have a D-degree polynomial
in that space.

Figure B.2: The �fth Genz function (blue) and its Lagrange interpolant (black).

48

Appendix C

Genz integrand family

This appendix lists the Genz test functions [25] and their exact integrals [49] over the domain [0; 1]d. Each
of the test function has a speci�c property: oscillatory, piecewise continuous, steepness, that is useful
for testing various numerical integration methods. These properties can be varied using the parameter
sets fa1; : : : ; adg and fu1; : : : ; udg. The parameter set faig controls the shape (slope) of the curves while
the parameter set fuig controls the o�set. We use these functions to assess the accuracy of the various
numerical integration methods that we generate in this report. The shape and o�set parameter sets are
sampled from a uniform distribution in [0; 1].

C.1 Integrand 1: Oscillatory

Integrand:

f1(x) = cos

2�u1 +
dX

i=1

xiai

!

; for [0; 1]d: (C.1)

Exact value of the integral:

Z

[0;1]d
f1(x)dx =

2d
Qd
i=1 ai

cos

1
2

dX

i=1

ai + 2�u1

!
dY

i=1

sin
�ai

2

�
: (C.2)

C.2 Integrand 2: Product peak

Integrand:

f2(x) =
dY

i=1

�
a�2
i + (xi � ui)

2
��1

; for [0; 1]d: (C.3)

Exact value of the integral:

Z

[0;1]d
f2(x)dx =

dY

i=1

ai
�
tan�1 (aiui) + tan�1 (ai � aiui)

�
: (C.4)

C.3 Integrand 3: Corner peak

Integrand:

f3(x) =

1 +
dX

i=1

aixi

!�(d+1)

; for [0; 1]d: (C.5)

Exact value of the integral:

Z

[0;1]d
f3(x)dx =

1
d!
Qd
i=1 ai

1X

i1=0

: : :
1X

id=0

(�1)
P d
k=1 ik

1 +
dX

k=1

akik

!�1

: (C.6)

49

C.4 Integrand 4: Gaussian

Integrand:

f4(x) = exp

�
dX

i=1

a2
i (xi � ui)

2

!

; for [0; 1]d: (C.7)

Exact value of the integral:

Z

[0;1]d
f4(x)dx =

�d=2
Qd
i=1 (erf (aiui) + erf (ai � aiui))

2d
Qd
i=1 ai

; (C.8)

where
erf(x) =

2
p
�

Z x

0
e�t

2
dt:

C.5 Integrand 5: C0 function

Integrand:

f5(x) = exp

�
dX

i=1

ai jxi � 0:5j

!

; for [0; 1]d: (C.9)

Exact value of the integral:

Z

[0;1]d
f5(x)dx =

dY

i=1

2 (1� exp(�ai=2))
ai

: (C.10)

C.6 Integrand 6: Discontinuous function

Integrand:

f6(x) =

(
0; xi > ui 8i = 1; : : : ; d;
exp

�Pd
i=1 xiai

�
; otherwise

; for [0; 1]d: (C.11)

Exact value of the integral:
Z

[0;1]d
f6(x)dx =

dY

i=1

exp(aiui)� 1
ai

: (C.12)

50

	Introduction
	Mathematical preliminaries
	Introduction to probability
	Monte Carlo method
	Spectral expansion methods

	Numerical integration
	Quadrature rules
	Cubature rules

	Non-polynomial quadrature rules
	Conclusions and future work
	Appendix Orthogonal polynomials
	Appendix Construction of piecewise linear approximants
	Construction of fDpl
	Other approximants

	Appendix Genz integrand family
	Integrand 1: Oscillatory
	Integrand 2: Product peak
	Integrand 3: Corner peak
	Integrand 4: Gaussian
	Integrand 5: C0 function
	Integrand 6: Discontinuous function

