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1 Introduction

This document provides a revision of the notation originally introduced in [20]
for describing kinematics and dynamics quantities of mechanical systems com-
posed by several rigid bodies. Relative to the first edition, this new version
includes an expanded section on frame acceleration (Section 5.4), the correction
of a few typos, and the change of the fonts used in the notation from single face
to bold face.

The notation detailed in this document is inspired by the well-known Feath-
erstone notation introduced in [7], also used, with small adaptations, in the
Handbook of Robotics [16]. Featherstone’s notation, while being extremely
compact and pleasant for the eye, is not fully in accordance with Lie group for-
malism, with the potential of creating a misunderstanding between the robotics
and geometric mechanics communities.

The Lie group formalism is well established in the robotics literature [13, 14,
10]. However, it is less compact than Featherstone’s notation [7], leading to long
expressions when several rigid bodies are present as in the case of a complete
dynamic model of humanoid or quadruped robots.

This report aims, therefore, at getting the best from these two worlds. The
notation strives to be compact, precise, and in harmony with Lie Group formal-
ism. The document furthermore introduces a flexible and unambiguous notation
to describe the Jacobians mapping generalized velocities of an arbitrary frame
to Cartesian linear and angular velocities, expressed with respect to a reference
frame of choice.

2 A quick overview on the developed notation

Quick reference list for the symbols used in this document. Precise definition is
given in the text below.

A,B,C, . . . coordinate frames
p an arbitrary point
oB origin of B
[A] orientation frame associated to A
B[A] frame with origin oB and orientation [A]
Ap coordinates of point p w.r.t. to A
AoB coordinates of the origin oB w.r.t. to A
AHB homogeneous transformation from B to A
AXB velocity transformation from B to A
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CvA,B twist expressing the velocity of B w.r.t. to A written in C
Cv∧A,B 4× 4 matrix representation of CvA,B
CvA,B× 6× 6 matrix representation of the twist cross product
CvA,B×̄∗ 6× 6 matrix representation of the dual cross product
CaA,B acceleration of a frame B w.r.t. frame A, written in C

Bf coordinates of the wrench f w.r.t. B

AXB wrench transformation from B to A〈
Bf ,BvA,B

〉
duality pairing between a wrench and a twist

CJA,B Jacobian relating the velocity of B w.r.t. A expressed in C
CJA,B/F Jacobian relating the velocity of B w.r.t. A expressed in C,

where the moving-base velocity is expressed in F

BML
B 6× 6 inertia tensor of link L expressed w.r.t. frame B

BILB 3× 3 inertia tensor of link L expressed w.r.t. frame B

3 Math preliminaries

3.1 Notation

The following notation is used throughout the document.

• The set of real numbers is denoted by R. Let u and v be two n-dimensional
column vectors of real numbers, i.e. u,v ∈ Rn, then their inner product
is denoted as uTv, with “T” the transpose operator.

• The identity matrix of dimension n is denoted In ∈ Rn×n; the zero column
vector of dimension n is denoted 0n ∈ Rn; the zero matrix of dimension n×
m is denoted 0n×m ∈ Rn×m.

• The set SO(3) is the set of R3×3 orthogonal matrices with determinant
equal to one, namely

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1 }. (1)

When endowed with matrix multiplication, SO(3) becomes a Lie group,
the Special Orthogonal group of dimension three.

• The set so(3), read little so(3), is the set of 3×3 skew-symmetric matrices,

so(3) := {S ∈ R3×3 | ST = −S }. (2)

When endowed with the matrix commutator as operation, the set becomes
a Lie algebra.

• The set SE(3) is defined as

SE(3) :=

{[
R p

01×3 1

]
∈ R4×4 | R ∈ SO(3),p ∈ R3

}
. (3)

When endowed with matrix multiplication, it becames the Special Eu-
clidean group of dimension three, a Lie group that can be used to represent
rigid transformations and their composition in the 3D space.
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• The set se(3) is defined as

se(3) :=

{[
Ω v

01×3 0

]
∈ R4×4 | Ω ∈ so(3),v ∈ R3

}
. (4)

When endowed with the matrix commutator as operation, se(3) becomes
the Lie algebra of the Lie group SE(3).

• Given the vector w = (x; y; z) ∈ R3, we define w∧ (read w hat) as the 3×3
skew-symmetric matrix

w∧ =

xy
z

∧ :=

 0 −z y
z 0 −x
−y x 0

 ∈ so(3). (5)

Given the skew-symmetric matrix W = w∧, we define W∨ ∈ R3 (read W
vee) as

W∨ =

 0 −z y
z 0 −x
−y x 0

∨ :=

xy
z

 ∈ R3. (6)

Clearly, the vee operator is the inverse of the hat operator.

• Given a vector v = (v;ω) ∈ R6, v and ω ∈ R3, we define

v∧ =

[
v
ω

]∧
:=

[
ω∧ v

01×3 0

]
∈ se(3). (7)

• Similarly to what done for vectors in R3 few lines above, we define the vee
operator as the inverse of the hat operator such that[

ω∧ v
01×3 0

]∨
:=

[
v
ω

]
= v ∈ R6. (8)

• Given two normed vector spaces, E and F , and a function f : E 7→ F , we
define (where it exists) the differential of f at x̄ ∈ E as the linear function
Df(x̄) : E 7→ F such that

lim
x→x̄

||f(x)− f(x̄)−Df(x̄) · (x− x̄)||
||x− x̄||

= 0. (9)

When E = F = R, the differential Df evaluated at x = x̄ in the direc-
tion z is simply the classical derivative of a function multiplied by the
perturbation z ∈ R, i.e.,

Df(x̄) · z =
df

dx

∣∣∣∣
x=x̄

z.

When E = Rn and F = Rm, then Df(x̄) has the following matrix repre-
sentation

[[Df(x̄)]] =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


x=x̄
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and Df(x̄) · z should be interpreted as the vector [[Df(x̄)]][[z]] obtained by
multiplying the matrix [[Df(x̄)]] with the vector [[z]].

The power of the notation Df(x) · z lies on the fact that it can deal
with even more general maps such as those where the input and output
spaces are (normed) matrix vector spaces, such as E = Rn×m and F =
Rl×p equipped with the Frobenius norm. This is particularly useful when
dealing with maps such as a robot’s forward kinematics, where one deals
with maps of the form f : Rn → R4×4 representing the pose (position and
orientation) of each rigid link.

When E = E1 × E2 × · · · × Ep and consequently having f as a map
E 3 (x1,x2, . . . ,xp) 7→ f(x1, . . . ,xp) ∈ F , we will use D1f , D2f , . . . , Dpf
to refer to the differential of f with respect to its first, second, . . . , p-th
argument. For further details on this derivative notation, we refer the
reader to [1, Section 2.3] and [18, Chapter 2].

4 Points and coordinate frames

A frame is defined as the combination of a point (called origin) and an orien-
tation frame in the 3D space [4, 19]. We typically employ a capital letter to
indicate a frame. Given a frame A, we will indicate with oA its origin and with
[A] its orientation frame. Formally, we write A = (oA, [A]).

Frames can be time moving with respect to a given reference frame and can
be used, e.g., to describe the position and orientation in space of a rigid body
as time evolves. They are also used to express a coordinate system for a wrench
exchanged by two bodies or used to define a coordinate system to describe a
robot task, such as a frame attached to the center of mass and oriented as the
inertial frame.

Newton’s mechanics requires the existence of an inertial frame. In this doc-
ument, we usually indicate this inertial frame with the letter A (where A stands
for Absolute). As common practice, for robots operating near the Earth sur-
face, we will assume the frame A to be fixed to the world’s surface, disregarding
non-inertial effects due to the Earth’s motion.

4.1 Coordinate vector of a point

Given a point p, its coordinates with respect to a frame A = (oA, [A]) are
collected in the coordinate vector Ap. The coordinate vector Ap represents the
coordinates of the 3D geometric vector

→
r oA,p connecting the origin of frame A

with the point p, pointing towards p, expressed in the orientation frame [A].
Mathematically, we write this as that is

Ap :=


→
r oA,p ·

→
xA

→
r oA,p ·

→
yA

→
r oA,p ·

→
z A

 ∈ R3, (10)

where · denotes the scalar product between two vectors and
→
xA,

→
yA,

→
z A, are

the unit vectors defining the orientation frame [A].
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4.2 Change of orientation frame

Given two frames A and B, we will employ the notation

ARB ∈ SO(3) (11)

to denote the coordinate transformation from frame B to frame A. The coordi-
nate transformation ARB only depends on the relative orientation between the
orientation frames [A] and [B], irrespectively of the position of the origins oA
and oB .

4.3 Homogeneous transformation

To describe the position and orientation of a frame B with respect to another
frame A, we employ the 4× 4 homogeneous matrix

AHB :=

[
ARB

AoB
01×3 1

]
. (12)

Given a point p, the homogeneous transformation matrix AHB can be also
used to map the coordinate vector Ap to Bp as follows. Let Ap̄ and Bp̄ denote
the homogenous representation of Ap and Bp, respectively. That is, let Ap̄ :=
(Ap; 1) ∈ R4 and likewise for Bp̄ (the symbol ; indicates row concatenation).
Then

Ap̄ = AHB
Bp̄, (13)

which is the matrix form of Ap = ARB
Bp + AoB . We refer to [13, Chapter 2]

for further details on homogeneous representation of rigid transformations.

5 Velocity vectors (twists)

In the following, given a point p and a frame A, we define

Aṗ :=
d

dt

(
Ap
)
. (14)

In particular, when p is the origin of a frame, e.g., p = oB , we have

AȯB =
d

dt

(
AoB

)
.

It is important to note that, by itself, expressions like ȯB or ṗ have no meaning.
Similarly to (14), we also define

AṘB :=
d

dt

(
ARB

)
(15)

and

AḢB :=
d

dt

(
AHB

)
=

[
AṘB

AȯB
01×3 0

]
. (16)
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The relative velocity between a frame B with respect to a frame A can be
represented by the time derivative of the homogenous transformation matrix
AHB ∈ SE(3). A more compact representation of AḢB can be obtained by
multiplying it by the inverse of AHB on the left or on the right. In both cases,
the result is an element of se(3) that will be called a twist. Multiplying on the
left, one obtains

AH−1
B

AḢB =

[
ART

B −ART
B
AoB

01×3 1

] [
AṘB

AȯB
01×3 0

]
=

[
ART

B
AṘB

ART
B
AȯB

01×3 0

]
. (17)

Note that ART
B
AṘB appearing on the right hand side of (17) is skew symmetric.

Define BvA,B and BωA,B ∈ R3 so that

BvA,B := ART
B
AȯB , (18)

Bω∧A,B := ART
B
AṘB . (19)

The left trivialized velocity of frame B with respect to frame A is

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6. (20)

By construction,

Bv∧A,B = AH−1
B

AḢB . (21)

Note the slight abuse of notation in using the hat operator ∧ in (19) and (21)
that maps a vector into its corresponding matrix representation (respectively,
from R3 to R3×3 using (5) in (19) and from R6 to R4×4 using (7) in (21)).
Similarly to what is done in (17), right multiplying AḢB by the inverse of AHB

leads to

AḢB
AH−1

B =

[
AṘB

AȯB
01×3 0

] [
ART

B −ART
B
AoB

01×3 1

]
=

[
AṘB

ART
B

AȯB − AṘB
ART

B
AoB

01×3 0

]
. (22)

Define AvA,B and AωA,B ∈ R3 as

AvA,B := AȯB − AṘB
ART

B
AoB (23)

Aω∧A,B := AṘB
ART

B . (24)

The right trivialized velocity of B with respect to A is then defined as

AvA,B :=

[
AvA,B
AωA,B

]
∈ R6. (25)

By construction,

Av∧A,B = AḢB
AH−1

B . (26)
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5.1 Expressing a twist with respect to an arbitrary frame

Straightforward algebraic calculations allow to show that the right and left
trivialized velocities AvA,B and BvA,B are related via a linear transformation.
Inspired by the notation introduced in [7], we denote this linear transformation
with AXB and define it as

AXB :=

[
ARB

Ao∧B
ARB

03×3
ARB

]
∈ R6×6. (27)

As mentioned, the right and left velocities then satisfy

AvA,B = AXB
BvA,B . (28)

The inverse transformation of AXB is given by BXA and it is straightforward
to show that BXA = AX−1

B (recall that AoB = −ARB
BoA).

Lie group theory related notes. To draw a connection with Lie group
theory, indicating with g = gA,B := AHB ∈ SE(3) an arbitrary element of the
Special Euclidean group (i.e., a rigid transformation), AXB is nothing else than
Adg. Given g ∈ SE(3) and ξ ∈ se(3), then

Adg ξ := g ξ g−1 ∈ se(3). (29)

The operator Ad : SE(3)×se(3)→ se(3) is the adjoint action of the group SE(3)
to its algebra se(3). Taking g = AHB and ξ = Bv∧A,B , one sees immediately

that g ξ g−1 appearing in the right hand side of (29) equals

AHB
Bv∧A,B

AH−1
B , (30)

which, recalling the definition of BvA,B given in (21), is equivalent to

AḢB
AH−1

B = Av∧A,B , (31)

by definition of AvA,B given in (26). The adjoint action of the group SE(3) to
its algebra se(3), given by (29), is linear with respect to its second argument.
It is therefore possible, when representing se(3) as a vector in R6 (as done in
(7)) to define the adjoint action (with a slight abuse of notation) as a map
Ad : SE(3)×R6 → R6. In this way, for g = AHB , one gets with straightforward
computations that AvA,B = Adg

BvA,B , with Adg = AXB given in (27).
Given the ubiquity of the velocity transformation AdgA,B

(and its associate
wrench transformation Ad∗gA,B

that we will introduce in Section 6) in multibody
dynamics computations, it is convenient to indicate it simply with the compact
notation AXB (respectively, BXA). We stress here, however, the importance
to not forget its connection with Lie group theory: this can help, in particular,
to be able to understand the body of literature on geometric mechanics written
with the standard Ad notation. �

We conclude this section by introducing the notation CvA,B , indicating the
velocity of frame B with respect to frame A expressed in frame C. The left
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and right trivialized velocities BvA,B and AvA,B , respectively given by (21) and
(26), are special cases of this concept. Formally, we define

CvA,B =

[
CvA,B
CωA,B

]
∈ R6 (32)

as
CvA,B := CXA

AvA,B = CXB
BvA,B . (33)

The latter equality follows from (28) and the identity CXA
AXB = CXB .

5.2 On the linear and angular components of a twist

As evident from (19) and (24), the angular component of the twists BvA,B
and AvA,B depends only on the relative orientation between the frames A and
B (given by the rotation matrix ARB) and its time evolution. This angular
component corresponds to the classic concept of angular velocity found in un-
dergraduate physics textbooks and it can be expressed with respect to a different
orientation frame simply by multiplying its coordinates by a suitable rotation
matrix. One gets, in this way, that

CωA,B = CRB
BωA,B = CRA

AωA,B . (34)

The linear component of the twists BvA,B and AvA,B requires, instead, a bit
more of attention. While BvA,B in (18) is the time derivative of AoB (the
coordinate vector of the origin of B with respect to the frame A) expressed in
the frame B, AvA,B is not the time derivative of AoB , but instead the (initially)
somehow counterintuitive expression given in (23). At each instant of time, the
linear velocity AvA,B is the linear velocity of the point, thought as fixed with
respect to frame B, that finds itself at the origin of frame A at the given instant
of time. The right trivialized velocity AvA,B is a key ingredient in understanding
the efficient numerical algorithms for multibody dynamics described, e.g., in
[7, 9, 14]. It also finds application in geometric mechanics when defining concepts
such as a mechanical symmetry or a momentum map [11, 2, 12].

There are situations in which, however, one would like to describe the linear
and angular velocity of a frame with the somehow natural velocities AȯB and
AωA,B , respectively. With the notation introduced in this documents, this is
possible by introducing a special frame obtained combining the frames A and
B. Namely, one needs to express the velocity of frame B with respect frame A
in the new frame B[A] := (oB , [A]), that is, in the frame whose origin coincides
with the origin of B and whose orientation coincides with the orientation of A.
In this way, one gets

B[A]vA,B = B[A]XB
BvA,B =

[
ARB 0

0 ARB

] [
BRA

AȯB
BωA,B

]
=

[
AȯB
AωA,B

]
. (35)

In [3], the velocity (35) is referred to as the hybrid velocity of frame B with
respect to frame A. To avoid confusion with hybrid systems theory, however,
in this document we will call (35) the mixed velocity of frame B with respect to
frame A (we call it mixed as it has both the flavor of a left trivialized velocity due
to the linear velocity part and of a right trivialized velocity due to the angular
velocity part).
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5.3 The cross product on R6 (×)
The defining equation for the velocity BvA,B given by (21) can be rewritten as

AḢB = AHB
Bv∧A,B . (36)

By differentiating with respect to time the velocity transformation AXB given
in (27), a formula similar in structure to (36) can be obtained that prescribes
the time evolution of AXB as a function of BvA,B . Namely, one gets

AẊB = AXB
BvA,B× (37)

where the term BvA,B× is defined as

BvA,B× :=

[
Bω∧A,B

Bv∧A,B
03×3

Bω∧A,B

]
. (38)

We will refer to (38) as the matrix representation of the cross product on R6.

Basic properties of the cross product. The cross product between vectors
of R6 that derives from (38) satisfies the classical anticommutative property

CvA,B × CvD,E = −CvD,E × CvA,B . (39)

A direct consequence of the anticommutativity is that, for any CvA,B ,

CvA,B × CvA,B = 06×1. (40)

Velocity transformation and the cross product. The cross product of
velocity vectors defined via (38) satisfies the distributive property

AXB
BvA,B× = (AXB

BvA,B)× AXB = AvA,B × AXB . (41)

Lie group theory related notes. For someone knowledgeable with the the-
ory of Lie groups, a deeper look at the cross product defined via (38) reveals
that this operation turns R6 into a Lie algebra (a vector space with a anticom-
mutative bilinear operation satisfying the Jacobi identity [11, Chapter 9]).

Indeed, (38) is nothing else then the matrix representation of the adjoint
action of R6 on itself, indicated with ad, once we interpret R6 as the Lie algebra
induced by the Lie algebra homeomorphism between R6 and se(3) provided by
the hat (∧) operator defined in (7). Defining g = AHB ∈ SE(3), then (37) can
be rewritten in the usual form (cf. [11, Chapter 9, equation (9.3.4)]) as

d

dt
Adg = Adg adg−1ġ, (42)

where Adg = AXB , adg−1ġ = AvA,B×, and g−1ġ = Bv∧A,B . This standard Lie
group notation, employing Ad and ad is found in well-known robotic literature
such as, e.g., [8] and [14].

Finally, the distributive property (41) is equivalent to the identity (cf., e.g.,
[11, Chapter 9])

Adg adg−1ġ = adAdg g−1ġ Adg = adġg−1 Adg, (43)

once we pose, as in (42), g = AHB ∈ SE(3) and ġg−1 = Av∧A,B . �
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5.4 Frame acceleration and acceleration vectors

Several definitions of frame accelerations are present in the robotic literature,
such conventional and spatial accelerations [6]. In [7], “coordinate free” (or
“absolute”) frame accelerations are introduced by only considering twists with
respect to an (implicitly defined) inertial frame. In our experience, this partic-
ular definition of acceleration is convenient in obtaining computational efficient
algorithms for multibody dynamics, but it is not natural for robot task specifi-
cation and closed-loop control, where it is common to use the classical concept
of linear acceleration as the derivative of the (inertial) coordinates of a point in
space.

In this section, we start defining the apparent acceleration of a frame B
with respect to a frame A seen and expressed in a frame C simply as the time-
derivative of the corresponding velocity CvA,B , that is

C v̇A,B :=
d

dt

(
CvA,B

)
. (44)

Writing CvA,B as the product CXB
BvA,B and using the time derivative

formula for a change of coordinates given by (37), one gets

C v̇A,B = CXB

(
BvC,B × BvA,B + Bv̇A,B

)
. (45)

The equation above shows that, in general, C v̇A,B 6= CXB
Bv̇A,B . However, for

the special case C = A, one obtains the fundamental and at first-sight surprising
relationship between left and right trivialized accelerations given by

Av̇A,B = AXB
Bv̇A,B . (46)

Due to this last equality, that does not involve any cross product, it is possible
to define the (intrinsic) acceleration of a frame B with respect to a frame A
expressed in a frame C as

CaA,B := CXA
Av̇A,B = CXB

Bv̇A,B . (47)

Component-wise, the intrinsic and apparent accelerations (47) and (44) are
written as

CaA,B =

[
CaA,B
CαA,B

]
∈ R6 and C v̇A,B =

[
C v̇A,B
Cω̇A,B

]
∈ R6. (48)

Combining the above definitions and equalities and using the equality CvC,B ×
CvA,B = (CvC,B + CvB,A) × CvA,B = CvC,A × CvA,B , leads to the following
relationship between the intrinsic and apparent accelerations

CaA,B = C v̇A,B + CvA,C × CvA,B , (49)

which coincides with [6, equation(4)]. Component-wise, (49) equals

CaA,B = C v̇A,B + CωA,C × CvA,B + CvA,C × CωA,B , (50)
CαA,B = Cω̇A,B + CωA,C × CωA,B . (51)
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Note. For task specification, the following (mixed) apparent acceleration

B[A]v̇A,B =

[
B[A]v̇A,B
B[A]ω̇A,B

]
=

[
AöB
Aω̇A,B

]
. (52)

is of common use in robotics, because the linear acceleration corresponds to the
Cartesian acceleration of the origin of B with respect to frame A. From (49),
this apparent acceleration can be expressed in terms of the intrinsic acceleration
as

B[A]v̇A,B = B[A]aA,B − B[A]vA,B[A] × B[A]vA,B . (53)

Component-wise, (53) reads

B[A]v̇A,B = B[A]aA,B − B[A]vA,B × B[A]ωA,B , (54)

B[A]ω̇A,B = B[A]αA,B , (55)

where we used B[A]ωA,B[A] = 0 and B[A]vA,B[A] = B[A]vA,B .

Lie group theory related note. The formula (45), relating the acceleration
with the apparent acceleration, is written in the standard notations of Lie groups
as

d

dt
(Adg ξ) = Adg (adg−1ġ ξ + ξ̇), (56)

and it is a well-known result (cf. [11, Proposition 9.3.8]).

6 Force covectors (wrenches)

The coordinates of a wrench f with respect to a given frame B are indicated as

Bf :=

[
Bf

Bτ

]
∈ R6. (57)

Note how, in contrast to twists, just the coordinate frame with respect to which
the wrench f is expressed is indicated explicitly.

As for a twist, we can define a linear map to change the coordinates of a
wrench from a frame B to another frame A. This coordinate transformation is
denoted AXB , so that we have

Af = AXB
Bf . (58)

The mapping AXB is actually strictly connected to the transformation BXA

given in (27), and can be defined as

AXB := BXT
A =

[
ARB 03×3

−ARB
Bo∧A

ARB

]
=

[
ARB 03×3

Ao∧B
ARB

ARB

]
(59)

where, for the last equality, we made use of the identity AoB = −ARB
BoA. The

definition (59) leads, in particular, to the expected coordinate independency of
power 〈

Bf ,BvA,B
〉

=
〈
Af ,AvA,B

〉
. (60)

In the above expression, f can be interpreted as a wrench applied to a rigid
body and expressed with respect to a frame B which is fixed with respect to
the body and A as the inertial frame.
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6.1 The dual cross-product between a twist and a wrench

The time derivative of the wrench coordinate transformation AXB has a struc-
ture that resembles the velocity coordinate transformation AXB , given in (37).
Straightforward computations lead to the expression

AẊB = AXBBvA,B×̄∗ (61)

where ×̄∗ represents an operation between a twist and a wrench, that we call
the dual cross-product and indicate with ×̄∗, whose matrix representation is

BvA,B×̄∗ :=

[
Bω∧A,B 03×3
Bv∧A,B

Bω∧A,B

]
. (62)

Note how (62) can be obtained from (38) by simply transposing it and changing
its sign. This fact is actually encoded in the symbol ×̄∗ itself, in the sense
that the overline and the the star represent, respectively, the sign change and
transposition (more formally, its adjoint linear map, that is typically indicated
with a star).

The dual cross product (62) takes one twist and one wrench and returns
one wrench (as opposed to one twist from two twists as in the case of the cross
product (38)): this is also the reason why the sub- and superscripts in (61)
are also correct: when AẊB is applied to a wrench Bf expressed in B, the
dual cross product between BvA,B and Bf will return a wrench expressed in B
that can then be converted into a wrench expressed in A via AXB . The dual
cross-product also satisfies the geometrically intuitive equality

AXBBvA,B×̄∗ = AvA,B×̄∗AXB . (63)

The result is straightforward to prove.

Lie group theory related note. In the language of differential geometry,
the dual space of se(3) (namely, the space of linear applications from se(3) to
R) is indicated with se(3)∗. Wrenches belong to this space as opposed to twists
that live instead in se(3). In terms of standard Lie group notation, the wrench
coordinate transformation AXB is written

AXB = Ad∗g−1 (64)

where g := AHB ∈ SE(3). Recall that Adg = AXB and Adg−1 = BXA. Let
ξ∧ := Bv∧A,B ∈ se(3), then one gets

BvA,B×̄∗ = − ad∗ξ . (65)

The formula above makes it clear, once again, that the notation ×̄∗ has been
explicitly chosen to remind the fact that (62) is obtained from the cross prod-
uct × given in (38) and indicated with ad in standard Lie group notation, by
computing its adjoint (∗) and changing its sign (−). Finally, the time derivate
of (64) is simply

d

dt
Ad∗g−1 = −Ad∗g−1 ad∗ξ (66)

for ġ = gξ, with g = AHB and ξ = Bv∧A,B , which is equivalent to (61). �
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7 Generalized inertia tensor

The 6× 6 generalized inertia of a rigid body L (where L stands for link), when
expressed with respect to a frame C whose origin coincides with the body center
of mass is denoted CML

C and explicitly given by

CML
C =

[
mL I3 03×3

03×3 CILC

]
, (67)

with mL body mass and CILC the 3× 3 inertia tensor of L expressed in C.
The generalized inertia expressed with a generic frame B, whose origin is

not necessarily coinciding with the center of mass, is denoted and computed as

BML
B = BXC

CML
C
CXB

=

[
mLI3 −mL

Bo∧C
mL

Bo∧C BILB

]
, (68)

where

BILB = CRT
B CILC CRB −mL

Bo∧C
Bo∧C . (69)

We recall that BoC = −BRC
CoB . The term −mL

Bo∧C
Bo∧C appearing in BILB is

the classic correction term of the Huygens-Steiner (also known as parallel axis)
theorem. The matrix product o∧o∧ is sometimes written as o · o I3 + o ⊗ o,
with · and ⊗ denoting the scalar and outer products, respectively.

8 The geometric Jacobians

The goal of this section is to define a precise and unambiguous notation for the
geometric Jacobians for fixed-base and, in particular, for moving-base multibody
systems (also known as free-floating multibody systems). Geometric Jacobians
are essential tools in defining contact and constraint forces in multibody dy-
namics as well as express position and force tasks in robot control.

In this section, A will denote an inertial frame and B the moving-base frame,
i.e., a frame rigidly attached to one of the bodies composing the multibody
system, selected to represent the relative pose of the system with respect to
the world frame A. The configuration of a moving-base multibody system is
parametrized as q = (H, s) ∈ SE(3)×RnJ , with H = AHB ∈ SE(3) representing
the pose (position and orientation) of the moving-base frame B and s ∈ RnJ the
internal joint displacements (s stands for shape). The configuration space (more
correctly, the configuration manifold) has correspondingly dimension n = 6+nJ .

Let E denote a frame (rigidly) attached to an arbitrary body to be used, e.g.,
for the specification of a task to be executed by the robot or a possible point of
contact with the environment. The frame E could represent, e.g., the pose of
a specific frame rigidly attached to an end effector of a robot manipulator or a
hand or foot on a humanoid robot. Let

AHE = AHE(q) = AHE(H, s) (70)

denote the homogeneous transformation expressing E with respect to A as a
function of the configuration q = (H, s).
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Let δH denote an infinitesimal perturbation of the pose of the moving base
(δH ∈ THSE(3), in the language of differential geometry) and δs an infinitesimal
perturbation of the joint displacements. Then, the corresponding infinitesimal
perturbation of frame E can be computed as

AδHE = AD1HE(H, s) · δH + AD2HE(H, s) · δs, (71)

where H is short for AHB and δH is short for AδHB . Let E∆A,E and B∆A,B ∈
R6 denote the trivialized infinitesimal perturbations

E∆∧A,E := AH−1
E

AδHE , (72)

∆∧ = B∆∧A,B := AH−1
B

AδHB = H−1 δH. (73)

Combining (72) and (73) together with (71), note how E∆A,E depends lin-
early on B∆A,B and δs. Such a linear map defines the geometric Jacobian
for the (moving-base) multibody system and will be indicated with the symbol
EJA,E/B ∈ R6×(6+nJ ).

The subscript A,E/B appearing in EJA,E/B indicate that the Jacobian al-
lows to compute the infinitesimal perturbation of frame E relative to frame
A, based on the infinitesimal perturbation of the internal joint configuration
and that of the moving base, this latest perturbation being expressed with re-
spect to frame B. The superscript E appearing in EJA,E/B specifies that the
infinitesimal perturbation is expressed with respect to frame E.

The Jacobian is therefore obtained by means of two left-trivializations (one
in the output E∆A,E and one in the input B∆A,B) and for this reason, we will
sometimes refer to EJA,E/B as the doubly left-trivialized geometric Jacobian
associated to the rigid transformation AHE = AHE(AHB , s). In formulas,

E∆A,E = EJA,E/B(H, s)

[
∆
δs

]
, (74)

where we recall H = AHB and ∆ = B∆A,B .
The infinitesimal perturbation of frames E and B can be expressed with

respect to other arbitrary frames, let us say C and D. In this case, we defined
the geometric Jacobian DJA,E/C via two changes of coordinates from the doubly
left-trivialized Jacobian EJA,E/B as

DJA,E/C = DXE
EJA,E/B

BYC , (75)

where the combined twist-joint velocity transformation

BYC :=

[
BXC 06×nJ

0nJ×6 InJ

]
, (76)

with I and 0 denoting identity and zero matrix of indicated dimensions. For
the control of humanoid robots, it is common to express the moving-base and
end-effector frame twists in the mixed frames B[A] and E[A], respectively. The
associated geometric Jacobian E[A]JA,E/B[A] obtained from (75) when D = E[A]
and C = B[A] will be called the doubly mixed geometric Jacobian associated to
the rigid transformation AHE = AHE(AHB , s).
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Geometric Jacobians for fixed-based systems. For fixed-base systems
such as robot manipulators, the configuration variable is simply q = s. In this
context, as there is no moving base, the geometric Jacobians is simply written
CJA,B . One speaks then of a mixed Jacobian for B[A]JA,B and left-trivialized
Jacobian for BJA,B .

9 Moving-base multibody dynamics

In this section, we write the equations of motion of a moving-base multibody
system in a compact form. As introduced in Section 8, the configuration of
such a system will be denoted q = (H, s) := (AHB , s), with A being the inertial
frame, B the (selected) moving-base frame, and s ∈ RnJ the joint displacements.

It is common to employ the mixed velocity B[A]vA,B to express the motion
of the moving base and therefore we here employ the mixed generalized velocity
ν := B[A]ν = (B[A]vA,B , ṡ) =: (v, r) to parameterize the velocity of the entire
system. The kinematics of the moving-base system is therefore written as

Ḣ = H(Xv)∧ (77)

ṡ = r (78)

with X = BXB[A]. More compactly, we will write both equations above with
a single equation1 as as q̇ = q(Yν)∧ where Y := BYB[A] = diag(BXB[A], InJ

)
is the combined twist-joint velocity transformation from mixed to body-fixed
velocity. For more details, cf. (76) in Section 8. The total equations of motion
for the moving-base multibody system are written as

q̇ = q(Yν)∧, (79)

M(q)ν̇ + C(q,ν)ν + G(q) = S τ +
∑
k∈IC

JTk (q) fk (80)

where M the mass matrix, C the Coriolis matrix, G the potential force vector,
S := [06×nJ

; InJ
] the joint selection matrix 2, τ the joint torques, IC the set of

closed contacts, fk := Ck[A]fk the k − th contact wrench, and

Jk(q) := Ck[A]JA,Li/B[A](q) (81)

the geometric Jacobian (see Section 8 for details on the notation) associated to
the frame Li rigidly attached to the link i that is experiencing the k-th contact
and Ck denotes the contact frame3 where the contact interaction forces and
torques are expressed.

1This notation is derived from Lie group theory, when considering the configuration mani-
fold Q = SE(3)×RnJ as the Lie group defined by the direct product of the groups SE(3) and
(RnJ ,+).

2The joint selection matrix (see, e.g., [5]) simply emphasizes the fact that moving-based
systems are typically underactuated, requiring establishing physical contact with the environ-
ment in order to fully control their posture.

3Note that Ck is allowed to move with respect to the link frame Li, at it happens, e.g., for
a rolling contact. This is exactly the reason why one needs to use Ck[A]JA,Li/B[A] and not
Ck[A]JA,Ck/B[A] as contact Jacobian.
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On velocity parametrization. Note that M, C, G, J appearing in (80)
depend on the choice of the moving-base velocity: if we would have chosen,
e.g., BvA,B instead of B[A]vA,B as done above, this would have led to matri-
ces/vectors with different entries. It is possible to pass from one representation
to another by suitable left- and right-multiplication by means of a suitable gen-
eralized velocity transformation Y.

On contact Jacobians. To better understand (81), recall that the infinites-
imal power injected into the multibody system by a contact wrench Cf is given
by 〈

LXC
Cf , LJA,L/B[A](q)ν

〉
=〈

Cf ,CXL
LJA,L/B[A](q)ν

〉
=
〈
Cf ,CJA,L/B[A](q)ν

〉
. (82)

It is essential to note that, in general, CJA,L/B[A] 6= CJA,C/B[A] because CXL

can be time varying because the contact frame C might move with respect
to the link (and consequently with respect to L) which is experiencing the
contact wrench. At each instant of time, the twist CJA,L/B[A](q)ν represents
the (combined linear and angular) velocity of a frame rigidly attached to the
link that, at that moment, has the same position and orientation of frame C.

Lie group theory related note. In the robotics literature, the equations of
motions (80) are often referred to, with abuse of terminology, as forced Euler-
Lagrange equations. While, indeed, the variational principle and the Lagrangian
play a central role in obtaining the unforced equations

M(q)ν̇ + C(q,ν)ν + G(q) = 0, (83)

it is important to realize that the Lagrangian is a mapping defined on the
tangent bundle of Q = SE(3) × RnJ , that is L : TQ → R, (q, q̇) 7→ L(q, q̇).
The classical Euler-Lagrange equations, typically written in coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = {1, 2, . . . , n}, (84)

with n the configuration space dimension, do not apply in our context because
Q is not Rn. Indeed, to obtain (83), one needs to resolve to geometric mechanics
[11]. In this context, one first defines a trivialized Lagrangian as the difference
between kinetic and potential energy, where the velocity is parameterized via
the trivialized velocity. Typically, one defines the trivialized Lagrangian as
l(q, ξ) := L(q,qξ) = 1/2 〈I(q)ξ, ξ〉 −V(q), where ξ = Bν is the left-trivialized
generalized velocity, V denotes the potential energy, and I(q) the inertia matrix
satisfying M(q) = YT I(q)Y, if we employ the mixed mass matrix M(q) and
combined twist-joint velocity transformation Y as in (79) and (80), respectively.
One then applies a modified version of the Euler-Lagrange equations (typically
referred to as the Hamel equations, cf., e.g., [11, Section 13.6]) to the trivialized
Lagrangian l, obtaining a differential equation in (q, ξ). The interested reader
is referred to [15, Section II] and references therein for further reading.
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A Comparison with other existing notations

In this section, our notation is compared with equivalent notations commonly
appearing in the literature. Namely, Featherstone’s notation appearing in [7,
16],[16], Siciliano’s notation appearing in [17], Spong’s notation appearing in
[19], and the Lie group notation appearing in [13, 14, 10]

A.1 Featherstone’s notation

In [7] and in the second chapter of [16], based on it, the concept of spatial
velocity and acceleration is used to explain rigid body algorithms. It is worth
noting that in [7] the term spatial has a totally different meaning with respect
to how it is used in [13]. In particular, in [7], spatial is used to indicate a 6D
vector, being it a twist, a link acceleration, a wrench, or momentum, while in
[13], the term spatial is used to indicate a 6D vector expressed with respect to
an inertial reference frame.

In [7], 6D vectors are composed using the angular-linear serialization. In
this report, we use instead the linear-angular serialization. In the remining of
this section, we explicitly show the difference between this report’s and Feath-
erstone’s notation (disregarding the difference in angular-linear serialization).

Homogeneous transformations. In Featherstone’s notation, the homoge-
neous transformation is seldom used, as most of the theory is introduced using
directly 6D vectors. For this reason there is not direct equivalent of the notation.

Velocities. In Featherstone’s notation, the 6D rigid body velocity of a body-
frame B expressed in a frame C is indicated as

CvB .

All velocities in Featherstone’s are always relative to an implicitly defined in-
ertial frame A. In this report’s notation, we prefer to explictly indicate this
dependency, and therefore the equivalent expression for this velocity is

CvA,B .

Accelerations. Featherstone [7, 16] uses the dot notation ˙(·) to indicate the
differentiation with respect to an implicitly defined inertial frame, and the ring

notation (̊·) to indicate the differentiation with respect to the frame in which
the quantity is expressed. As we do not implicitly assume the existence of
an absolute inertial frame, we just use the ˙(·) to indicate the differentiation
in coordinates. Using this definition, it is easy to see that the body (spatial)
acceleration defined in Featherstone as

C v̇B = CaB
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is equivalent, in this report’s notation, to

CaA,B = CXA
Av̇A,B , (85)

where A is the inertial frame implicitly used in Featherstone’s, and CaA,B is the
(intrinsic) acceleration defined in (47). Note that from (46), using this report’s
notation, we get

Bv̇A,B = BXA
Av̇A,B , (86)

that in Featherstone’s notation is written

Bv̊B = Bv̇B . (87)

Adjoint transformations. The adjoint transform that maps a motion vector
expressed in a frame B in one expressed in a frame C is indicated in this report
as CXB . This notation is directly take from Featherstone’s, where it is indi-
cated with CXB . However, the transformation matrix for a 6D force vector is
indicated with CX∗B in Featherstone’s, while in this report’s we use CXB . The
main reasons behind this choice are: a) the star is typically used to indicate
the adjoint (in the sense of adjoint linear transformation in linear algebra) and
indeed, in this report’s notation we get CXB = BX∗C , which is not the case in
Featherstone’s; b) CXB maps wrenches into wrenches while BXC maps twists
into twist and we use a right superscript to indicate a twist and a right subscript
to indicate a wrench.

6D Cross Product. In Featherstone’s, the 6D Cross product of a 6D mo-
tion vector v and a 6D motion vector u is indicated as

v × u.

A very similar notation is used in this report, namely

v × u.

The 6D cross product of a 6D motion vector v and a 6D motion vector f is
indicated in Featherstone’s as

v ×∗ f .
To indicate explicitly that ×∗ is nothing else that minus the adjoint represen-
tation of the Lie algebra of SE(3) to itself, we write the same operation as

v×̄∗f .

Further details are given in the explanation of (62).

Recap on this report’s and Featherstone’s notation comparison. Sum-
marizing, the main difference and similarities of the two notations are the fol-
lowing.

This report Featherstone [7]
CvA,B

CvB
CaA,B

C v̇B = CaB
C v̇A,B

C v̊B
CXB

CXB

CXB CX∗B
v× v×
v×̄∗ v×∗
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A.2 Siciliano’s notation

In this section, we compare this report’s notation the notation used in the
classical book of Siciliano et al. [17].
Homogenous transformation. In [17], the homogeneous transformation that
maps the coordinates of a point from a frame A to a frame B is indicated with

TA
B =

[
RA
B oAB

03×1 1

]
. (88)

Comparing it with (12), we obtain the following comparison table.

This report Siciliano et al. [17]
AHB TA

B
ARB RA

B
AoB oAB

Note that, in Siciliano et al.’s notation, oAB is simply denoted pB whenever A is
an inertial frame.

Velocity of a frame. In [17], the velocity of a frame B is denoted

vB =

[
ṗB
ωB

]
. (89)

Comparing it with (35), indicating with A the inertial frame implicitly assumed
by the Siciliano notation, we have

This report Siciliano et al. [17]
B[A]vA,B vB
AȯB ṗB
AωA,B ωB

A.3 Spong’s notation

In this section, we compare this report’s notation the notation used in the
classical book of Spong et al. [19]. In [19] the base frame of the fixed robot
is indicated with 0, while the frame of the end-effector is indicated with n. To
simplify the comparison between the two notations, we will use A to indicate
the frame 0 and B to indicate the frame n.
Homogenous transformation. In [19, Section 2.6], the homogeneous trans-
formation that maps the coordinates of a point from a frame A to a frame B is
indicated with

HA
B =

[
RAB dAB
03×1 1

]
. (90)

Comparing it with (12), we obtain the following comparison table.

This report Spong et al. [19]
AHB HA

B
ARB RAB
AoB dAB
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Velocity of a frame. In [19, Section 4.6], the velocity of a frame B w.r.t. to
a inertial frame A is denoted

ξAB =

[
vAB
ωAB

]
=

[
ȯAB
ωAB

]
. (91)

Comparing it with (35), we have

This report Spong et al. [19]
B[A]vA,B ξAB
AȯB vAB = ȯAB
AωA,B ωAB

A.4 Lie group theory notation

In this section, we compare this report’s notation the notation used in the
classical book of Murray et al. [13]. In [13] the inertial frame is indicated with
A, while the body frame is indicated with B. However, when used as suffix
these letters are used lower-case, so as a or b.
Homogenous transformation. In [13, Section 4.2], the homogeneous trans-
formation that maps the coordinates of a point from a frame A to a frame B is
indicated with

gab =

[
Rab pab
03×1 1

]
. (92)

Comparing it with (12), we obtain the following comparison table.

This report Murray et al. [13]
AHB gab
ARB Rab
AoB pab

Velocity of a frame. In [13, Equation 2.53, Section 4.2], the so-called spatial
velocity of a frame B with respect to a frame A is defined as

V̂ sab =

[
vsab
ωsab

]
=

[
−ṘabRTabpabpab + ṗab

(ṘabR
T
ab)
∨

]
. (93)

Comparing it with (23), it is clear that this is equivalent to what in this report
is referred as right trivialized velocity AvA,B .

Similarly, in [13, Equation 2.55, Section 4.2], the body velocity of a frame B
with respect to a frame A is defined as

V̂ bab =

[
vbab
ωbab

]
=

[
RTabṗab

(RTabṘab)
∨

]
. (94)

Comparing it with (23), we see that this is equivalent to what in this report is
referred as the left trivialized velocity BvA,B .

The overall comparison of velocities between this report and [13] is given in
the following table:
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This report Murray et al. [13]
AvA,B V̂ sab
AvA,B vsab
AωA,B ωaab
BvA,B V̂ bab
BvA,B vbab
BωA,B ωbab
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