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Abstract

In recent years, many researches focused on the development of autonomous techniques
of UAVs as they have potentials to explore unknown areas and perform risky tasks
to replace human operations. Advanced UAVs are equipped with many sensors and
powerful mini computers, which provide the possibility to locate its position and build
a map automatically in various environments. Our work focuses on realizing real-time
localization and mapping in indoor and outdoor environments of an UAV based on
multi-sensor fusion.

In this master thesis work, approaches of multi-sensor fusion are explored and im-
plemented on an UAV to solve Simultaneous Localization and Mapping (SLAM)
problems for both indoor and outdoor environments. Firstly, we adopted an ORB
feature and optimization based RGB-D visual SLAM approach which is one of the
state of the art SLAM solutions. Based on which a tightly-coupled visual and Inertial
Measurement Unit (IMU) fusion approach is integrated to improve its accuracy. In
order to implement these methods on the UAV, the transform between camera and IMU,
and IMU intrinsic parameters are calibrated. Then GPS information is fused into the
system to improve tracking robustness outdoor.

Comparison experiments are conducted between a visual SLAM program and our im-
plemented SLAM solution in indoor and outdoor environments. Results show our ap-
proach achieves higher accuracy in indoor localization performance by fusing IMU and
RGB-D camera. As for outdoor evaluations, our program is able to keep on tracking in
extreme situations with the help of GPS module if it is available, which is more robust
than the solution based only on vision.
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Zusammenfassung

In den letzten Jahren konzentrierten sich viele Forschungen auf die Entwicklung
autonomer Techniken von UAVs, da sie das Potenzial haben, unbekannte Gebiete zu
erkunden und riskante Aufgaben zu erfüllen, um menschliche Operationen zu ersetzen.
Fortgeschrittene UAVs können mit mehr Sensoren und leistungsstarken Minicomputern
ausgestattet werden. Dadurch können sie ihre Position lokalisieren und automatisch
eine Karte in verschiedenen Umgebungen erstellen. Unsere Arbeit konzentriert sich auf
die Echtzeit-Lokalisierung und Kartierung eines UAV in Innen- und Außenbereichen
auf der Basis von Multisensorsicherungen.

In dieser Masterarbeit werden Ansätze der Multi-Sensor-Fusion untersucht und in
einem UAV implementiert, um SLAM -Probleme für Innen- und Außenumgebun-
gen zu lösen. Erstens haben wir einen auf ORB-Funktionen und Optimierungen
basierenden visuellen SLAM-Ansatz für RGB-D eingesetzt, der eine der modernsten
SLAM-Lösungen ist. Basierend darauf ist ein eng gekoppelter visueller und IMU
-Fusionsansatz integriert, um die Genauigkeit zu verbessern. Um die Methoden auf
dem UAV zu implementieren, werden die Transformation zwischen Kamera und IMU
sowie die intrinsischen Parameter der IMU kalibriert. Dann werden GPS-Informationen
in das System eingebunden, um die Robustheit der Nachverfolgung außerhalb des
Bodens zu fördern.

Vergleichsexperimente werden zwischen einem visuellen SLAM-Programm und un-
serer implementierten SLAM-Lösung in Innen- bzw. Außentests durchgeführt. Die
Ergebnisse zeigen, dass unser Ansatz durch die Kombination von IMU und RGB-D-
Kamera eine höhere Genauigkeit bei der Lokalisierungsleistung in Innenräumen erzielt.
Was Outdoor-Auswertungen angeht, könnte unser Programm in Extrin-Situationen mit
Hilfe des GPS-Moduls, falls verfügbar, weiter verfolgen, was robuster ist als die Leis-
tung einer visuellen SLAM-Lösung.
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Chapter 1

Introduction

Unmanned Aerial V ehicles (UAVs) have been widely used in different aspects in
the society, such as industry monitoring and condition survey [13]. Most UAVs are
remotely controlled by a human operator or follow a global navigation satellite system
(GNSS) in obstacle-free heights. When equipped with various onboard sensors and
Systems on chip, UAVs are expected to operate challenging tasks in more areas such as
autonomous operation in unmanned traffic management.

1.1 Motivation
Even though it has made significant progress in terms of utilization of flying robots,
there remains many issues that constrain the research of UAVs. One of the most
important topics is how to get accurate positions and build a map in unknown and
unstructured environments, especially when both indoor and outdoor situations are
concerned at the same time. It is also the key challenge to realize autonomous flying
and navigating or even perform dangerous missions without human manipulations.

In the last two decades, many approaches have been proposed for the problem of
SLAM [16] and recent researches have been focusing on V isual SLAM (VSLAM)
[10] because of the low weight and consumption of cameras [6]. However, the utility
of stand-alone VSLAM is severely limited due to robustness issues and drifts [19]. As
for indoor situation, VSLAM often locates an inaccurate position and could not work
for a long time due to accumulation of data drift [3]. Moreover, VSLAM may miss
keyframes when the UAVs are flying too fast or rotating around, which probably lead
to corruption of SLAM system [3].

Recent years much work in VSLAM has focused on integrating inertial measurements
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or other data from sensors such as GPS [19][12]. Some approaches already prove their
performances in indoor [19] or outdoor SLAM [23] but few works focus on both situa-
tions. Thus the problems exist in data accuracy, real time availability and so on.

1.2 Objectives
The main task of this master thesis project is solving localization and mapping problem
in indoor and outdoor environments based on sensor fusion for a UAV. To be more
specific, the goals are listed as follows:

• Design and build the system architecture based on the well developed hardware
platform.

• Realize accurate localization and mapping in indoor environments by fusing a
RGB-D camera and an IMU.

• Realize localization and mapping of a UAV outside the buildings with the help of
GPS module.

• Make benchmarks on standard and own datasets.

1.3 Contributions
Since this thesis is application based, the major contribution of this thesis is to combine
existing methods and solutions to build a complete architecture for this use case: realize
multi-sensor fusion SLAM for autonomous UAVs in indoor and outdoor environments.
More specifically, the main contribution of this thesis consists of:

• Extending ROS publishing functions based on ORB-SLAM21 program. Thus the
system is supposed to be able to publish camera poses and map point clouds in
ROS platform.

• Implementing RGB-D inertial ORB SLAM by fusing RGB-D camera and IMU
to realize accurate and robust performance in indoor environments.

• Implementing calibration methods for IMU calibration and IMU-Camera calibra-
tions in order to conduct visual-inertial methods on the UAV.

• Fusing GPS module to help track poses when visual-inertial SLAM loses its track-
ing.

1https://github.com/raulmur/ORB SLAM2
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1.4 Master Thesis Structure
The remainder of this master thesis is organized as follows:

• Chapter 2 reviews the state of the art technologies of SLAM and visual-inertial
odometry (VIO) approaches. Different methods are discussed and important con-
cepts are introduced in this chapter.

• Chapter 3 describes the methods that are used in this master thesis work. First
of all, the RGB-D ORB-SLAM2 program is introduced and many methods are
conducted based it. Then visual-inertial approaches are fused into ORB-SLAM2
system, and in order to realize it calibration methods are discussed. At last the
GPS-inertial algorithms are integrated into the system to provide essential help in
tracking.

• Chapter 4 describes how the methods are implemented on the real UAV architec-
ture. To be more specific, more ROS functionalities are added in ORB-SLAM2
program, IMU and the transform between IMU and camera are calibrated, and the
implementations of multi-sensor fusion SLAM tracking is introduced.

• Chapter 5 presents the procedures and results of evaluation experiments based on
benchmarks. The testing platform, evaluation tools and analysis of results are
discussed.

• Chapter 6 summarizes the thesis, where the problems are described, the methods
and implementations are outlined, and conclusions and future work are given.
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Chapter 2

State of the Art

In this chapter, the state of the art approaches for localization and mapping problems are
presented. In SLAM part, important components are introduced based on RGB-D based
ORB-SLAM and key approaches are illustrated. Next the researches of visual inertial
odometry are presented as they help to improve the accuracy of localization in visual
SLAM.

2.1 Simultaneous Localization and Mapping System
The techniques of SLAM are aiming to build a map of an unknown environment and
localize the position in the map based on real time operation. The implementations are
mainly focused on robotics, autonomous driving, virtual reality and augmented reality
areas. SLAM is expected to perform a based function for higher level applications such
as path planning[10].

A classical visual SLAM framework is shown in Fig. 2.1, where the architecture in-
cludes two main components, the front-end and the back-end, and two additional parts
loop closing and mapping. The front end abstracts sensor data into models that es-
timates motions between neighbor images and environment features. However, it is
not sufficient to accurately generate poses as accumulating drift is unavoidable, even
if other sensor data may be integrated to improve accuracy[3]. Thus the back end and
loop closure are necessarily added into SLAM framework. The back end receives cam-
era poses from the font end and loop closure, after which optimization algorithms are
implemented to derive global consistent trajectories and map. Loop closure takes the
charge of associating new measurements with older landmarks according to historical
trajectories to calculate a global consistent estimation.
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Figure 2.1: A typical visual SLAM system graph

2.1.1 SLAM Problem Formulation
The modern SLAM is often formulated as a maximum a posterior (MAP) estimation
problem, based on which many approaches are proposed such as in [9], [24] to solve
it. In SLAM one main task is estimating the trajectory of the robot which includes
a bundle of poses and we assume it is an unknown variable X . As sensors normally
collect data with time intervals, the poses are discrete and could be formulated as
x1; :::; xM . The other task is building a map which is assumed consisting of many
landmarks (expressed as Y , consists of y1; :::; yN ). With every move of the robot, the
pose of itself and the positions of landmarks it senses are estimated.

The motion model of the robot could be formulated as

xi = f(xi�1; ui) + wi (2.1)

where ui is the control input while wi is the noise. f(:) is a function of control model
which is used to describe the motion process. As a consequence of that, the probability
function for xi is P (xijxi�1; ui).

A measurement zk is derived when the robot moves to xik and detects a landmark yjk.
Similarly, a measurement model becomes

zk = h(yjk; xik) + vk (2.2)

where vk is a random noise in this measurement while h(:) is a known measurement
function. A probability function for the measurement is P (zkjxik; yjk).

Finally, the goal of the SLAM estimation is to find the variables X�; Y � that maximize
the joint probabilities of trajectory and measurements. According to the Bayes theorem
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and MAP estimation, it is derived [3]

fX�; Y �g = argmax
X;Y

P (x0)
MY

i=1

P (xijxi�1; ui)
NY

k=1

P (zkjxik; yjk) (2.3)

Many approaches are proposed in order to slove the problem described above. Early
theoretical analysis of SLAM algorithms were based on the use of filters such as EKF,
Information filter, unscented kalman filter and so on, due to the practical advantages
such as simplicity and efficiency. However, many constraints limit the development of
EKF kind of algorithms including nonlinear errors, the Markov assumption and data
storage. Currently more SLAM solutions are based on iterative nonlinear optimization
algorithms according to theories such as bundle adjustment based graph optimization,
pose graph optimization [24] and factor graphs [9].

2.1.2 Iterative Non-linear Optimization
Refer to the equations 2.1 and 2.2, it is assumed that the noises wi and vk are Gaussian
variables with respective covariances 
�1

i and 
�1
k , i.e. the matrices 
 are the informa-

tion matrices of the observed data, then we have:

P (xijxi�1; ui) / exp(�
1
2

(xi � fi(xi�1; ui))T
i(xi � fi(xi�1; ui))) (2.4)

P (zkjxik; yjk) / exp(�
1
2

(zk � hk(xik; yjk))T
k(zk � hk(xik; yjk))) (2.5)

Besides, error of equation 2.1 is defined as:

ek(xik�1; xik) = fik(xik�1; uik)� xik (2.6)

while the error of landmark measurements is:

ek(xik�1; yjk) = hk(xik�1; yjk)� zik (2.7)

Both error functions have a similar format and for simplicity, it is concluded the states
vector X = x1; :::xN represents either a robot pose or a landmark pose, thus the joint
probability can be written as:

P (X;Z) /
KY

k=1

exp(�
1
2
eTk
kek) (2.8)
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Maximizing the probability distribution function is equivalent to minimizing its negative
log-likelyhood, i.e.[28]

x� = argmin
x

� logP (X;Z) = argmin
x

F (x) (2.9)

= argmin
x

KX

k=1

ek(xi; xj)T
kek(xi; xj) (2.10)

Mathematically, equation 2.10 is a Least Square Problem and normally non-linear
optimization methods are used to solve it. A general iterative method is described as
following:

• choose an initial value of x0 for iteration.

• for kth iteration, solve for a good step �xk which makes kF (xk + �xk)k2
2 ap-

proximate local minimum.

• finish if �xk is small enough, the iteration is believed to be converged.

• otherwise, let xx+1 = xk + �xk, return to the second step.

Actually it is a procedure of finding descent gradient and also the local minimum value.
However, the problem exists in SLAM is how to solve �xk with limited computation
resources.

A distinctive way is doing the second order Taylor expansion of cost function respect to
x:

kF (xk + �xk)k2
2 � kF (x)k2

2 + J(x)�x+
1
2

�xTH�x (2.11)

where J is the derivative of kF (x)k2 (Jacobian matrix) while H is the second deriva-
tive (Hessianmatrix). Afterwards the �x is solved out by derivation of its incremental
function,

�x� = argmin
x
kF (x)k2

2 + J(x)�x+
1
2

�xTH�x (2.12)

then it is derived
H�x = �JT (2.13)

This method is called Newton method which simply solves the problem but with many
problems. The big issue of it is calculating H matrix as it increases computing burden
when the problem is in large dimensions. SLAM systems usually adopt Gauss-Newton
method and Levenberg-Marquardt algorithm instead. The Gauss-Newton method is an
approximation of Newton method that consists in ignoring the second order in Taylor
expansion. However, it suffers from some of same drawbacks as the Newton method,
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with the exception that it cannot converge to a maximum, because the modified Hessian
H is positive by construction[28]. Levenberg-Marquardt algorithm improves Gauss-
Newton method by adding a trust region to �x to avoid instability of convergence.
The Levenberg-Marquardt algorithm formulates as following:

argmin
�x

1
2
kF (xk) + J(xk)�xkk2 ; st:t: kD�xkk2 6 � (2.14)

where � and D are parameters to limit �x value.

2.1.3 ORB Feature and Feature Matching
The front end in a SLAM system is actually a V isual Odometry (VO) which
estimates motions of the camera roughly according to information between neighbor
images. The solutions are generally categorized into feature-based and direct methods.
Feature-based approaches are allowed to build accurate and robust SLAM systems with
self-relocation and loop closing [20]. It is true that such systems depend on availability
of features in the environment, the reliance on detection and matching thresholds, and
also the fact that most feature detectors are optimized for speed rather than precision.
Direct methods work with the raw information and dense-direct methods exploit all
the information in the image. However, only in scenes with poor distinguish features,
direct solutions can outperform feature-based methods[3].

In feature based SLAM, features are the landmarks mentioned above thus they are ex-
pected to be stable and distinctive during the motion of camera. Oriented FAST and
Rotated BRIEF (ORB) is a fast robust local feature detector which is based on the
Features from Accelerated Segment Test (FAST) keypoint detector and the visual
descriptor Binary Robust Independent Elementary Features (BRIEF). Its aim is
to provide a fast and efficient alternative to Scale-Invariant Feature Transform
(SIFT) detector. SIFT detector extracts features with full consideration of transforms
such as brightness, scale and rotation. However, it comes with huge computations as
SIFT feature is hard to be calculated by CPU in real-time. ORB detector solve the ori-
entation issue of FAST detector and improves computation speed by adopting BRIEF
descriptor. The procedure of extracting ORB features is as following [25]:

• FAST corner extraction: find out the corners in the image. Compared with orig-
inal FAST, the main direction of features are calculated in ORB which provides
rotation invariability to BRIEF descriptors.

• BRIEF descriptors: describe surrounding areas of each extracted feature from last
step by using simple binary tests between pixels.
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Feature matching (an example shown in Fig. 2.2) solves the problem of data association
between different images which plays a significant role in visual SLAM, that it is used to
match landmarks between neighbor frames. Precisely matching the descriptors among
images or maps reduces burden of pose estimation, optimization and other operations.
However, errors exists widely during feature matching due to similar textures in many
cases. And this becomes one of the main limits of visual SLAM performance because
outliers should be found out and removed.

Figure 2.2: Feature matching between two images

2.2 Visual Inertial Odometry
IMU is fast (100-200 Hz) and it estimates 6-DoF pose accurately for a short period
of time, but suffers drift due to sensor noise. Current pure visual SLAM solutions
are prone to the failures of localization due to strict environment conditions or high
flying velocity. By integrating IMU into the system, the robustness of SLAM will
be improved. Thus VIO is a hot topic which associates VSLAM and IMU to derive
more robust results. VIO problems be solved by either filter based or optimization
based solutions. If fusion algorithms are concerned, they are usually divided into
loosely-coupled and tightly-coupled approaches [4].
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2.2.1 Filter based VIO
Filter based approaches generally are fast, less complex and modular but often need
failure detection and are less accurate. Especially for loosely-coupled approaches,
Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) are widely
used to fuse the results from VSLAM and IMU. Paper [31] proposals the solution that
the visual framework is treated as a black box and the metric state estimation is devel-
oped based on EKF. Fig. 2.3 shows an illustration of the solution. Recently researches
are focusing on improving the performance of EKF algorithm, such as [27] propsed
an indirect feedback Kalman filter integration based on error propagation model, and
[8] presented an algorithm for processing pairwise time-correlated measurements in a
Kalman filter.

Figure 2.3: An example of EKF based loosely-coupled VIO solution [31]

Tightly-coupled approach deals with features from camera and data from IMU using
a specific filter and poses are calculated afterwards. Such algorithms could achieve a
high accuracy but brings very high computational complexity because 3D features in the
state need special handling. One of the classical algorithms is EKF-based SLAM [11],
in which the current camera pose and feature positions are jointly estimated. More
recently, Multi State Constraint Kalman Filter (MSCKF) [19] is proposed, in
MSCKF a measurement model that is able to express the geometric constraints that arise
when a static feature is observed from multiple camera poses is considered when con-
ducting EKF algorithm which results to accurate, consistent and real-time visual inertial
navigation. In [15] an improvement of MSCKF approach is presented which makes the
system more consistent and experiments show it outperforms than EKF-based SLAM.
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2.2.2 Optimization based VIO
The main idea of this kind of methods is using nonlinear optimization algorithms to
optimize a cost function which contains errors from both camera and IMU. Open
Keyframe based V isual Inertial SLAM (OKVIS) is one of the most famous open
source in this area and VINS is another state of art open source. OKVIS is proposed in
[14] which introduces a framework of tightly coupled fusion of inertial measurements
and image keypoints in a nonlinear optimization problem that applies linearization
and marginalization in order to achieve keyframing. As a result, the framework
achieves high accuracy and outperforms the MSCKF approach though demands more
computations. Below an state-of-art optimization method of fusing IMU into SLAM
system is explained mathematically.

The main idea is every time an optimization is operated in SLAM, the IMU error term
linked between relevant frame and last frame is jointly added and optimized. For ex-
ample, when tracking is performed and the camera pose is predicted, the current frame
could be optimized by minimizing the feature reprojection error of matched points and
the IMU error term[22]:

�� = argmin
�

(
X

k

Eproj(k; j) + Eimu(i; j)) (2.15)

where the feature reprojection error Eproj is derived according previous equation 2.10
and the IMU error term Eimu is calculated based on IMU model and its preintegration.
This kind of problem can still be solved by approaches described in section 2.1.2 such
as Gauss-Newton or the Levenberg-Marquardt algorithms. Additionally, Paper [22]
proposes a method to compute an initial estimation for a visual-inertial full BA of the
scale, gravity direction, velocity and IMU biases, given a set of keyframes processed
by a monocular SLAM algorithm. Thus it reduces noises when integrating IMU by
precisely estimating biases of those IMU parameters.

2.3 Mulit-sensor Fusion
In order to realize robust SLAM in different environments with high accuracy in long
term running, using only a visual inertial odometry is not sufficient. It is prone to failure
in large-scale environments involving indoor-outdoor transitions because the global po-
sition is unobserved, as well as history information constantly needs to be marginalized
out and small trajectory errors sum up over time due to the limited memory capacity
[29]. Thus, more sensors such as GPS are supposed to be fused in the system to solve
the issues. However, this brings a problem of how to fuse different sensor data in dif-
ferent time frequencies and various noise patterns. Moreover, how to smoothly switch
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from indoor SLAM to outdoor SLAM, as GPS and visual odometry are significantly
influenced by environment changes, is still a challenging topic. One of the problems is
that there maybe large discrepancies between GPS measurement and the estimated state.

Most multi-sensor data fusion for navigation systems that currently appear in the
literature can also be categorized into fliter-based and optimization approaches.
Conventional filter-based methods usually employ modified Kalman filters, EKF is pro-
posed to fuse inertial measurements with GPS data and a camera-based pose estimate
in [30]. Later an iterated EKF based fusion framework is generalized in [17]. However,
both methods have a problem that IMU works in high frequency and it takes the main
character in computing poses. Paper [1] proposes an EKF-based VIO framework which
is able to correct its pose estimate by integrating external pose updates, such as GPS
measurements. A loosely coupled, derivative-free UKF framework is employed in [26],
which achieves smooth and globally consistent estimates of position in real-time for
indoor and outdoor autonomous flight. It is admitted that filter based approaches could
achieve suboptimal results as history data are dropped during propagation.

2.4 Robot Operating System
Robot Operating System (ROS) provides hardware abstraction, device drivers,
libraries, visualizers, message-passing, package management and so on, to help create
robotic related applications and convieniently share to other robots without much efforts
[18]. The ROS architecture has been designed and divided into three levels of concepts
which are the Filesystem level, the Computation Graph level and the Community level.

ROS has it own unique file system and a ROS program (formed as a package) is nor-
mally divided into folders with specific functionalities. As can be shown in Fig. 2.4.

Manifests provide information of the application such as license, compilers, depen-
dencies and etc. There are many different message types and users could define their
own message structures in their applications. Similarly, services could also be created
uniquely to define the requests and responses in ROS.

Upon all the ROS programs, ROS creates a network where all the processes are
connected, nodes are interacted, data is transmitted and information is shared (shown in
Fig. 2.5).

Each application runs as a node that is connected with ROS network, which means it
can receive as well as send out messages respect to topics on the network. Generally dif-
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Figure 2.4: ROS Filesystem structure [18]

Figure 2.5: ROS Computation Graph Level structure [18]

ferent nodes take charge different functions and interacts with each other. While Master
is more like a controller which supervises the nodes and all the interactions cannot be
proceed without the Master. Parameter Server stores key data in the network which is
shared by nodes, thus it is possible to configure the nodes while they are running. Be-
sides, every message belongs to a Topic which is published by nodes. Also, a node can
receive messages simply by subscribing to a specific topic.
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Chapter 3

Methodology

In this chapter the main contents and methodologies are described in three subsequent
parts, which will be later used in the implementations. More specifically, a real-time
ORB SLAM is efficiently expended its functionalities in ROS in order to adapt hardware
& software environments on the drone; then IMU data is integrated in the program with
RGB-D camera as an input; finally GPS is fused and used as an compensate odometry
whenever the robot loses its tracking.

3.1 Overall Framework
This master thesis proposes a sensor fusion approach which integrates IMU, RGB-D
camera and GPS on a SLAM system. The overall methods framework of the SLAM
system is illustrated in Fig. 3.1 that shows specific methods adopted in the program.

Figure 3.1: The System Overall Methods Graph

An RGB-D ORB SLAM system is used and modified as the basis system at the
beginning, the program has proved its efficiency, stability and accuracy for SLAM
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problems. Then visual-inertial methods are developed based on it, which includes
IMU calibration, IMU-camera calibration, visual-inertial odometry initialization and
visual-inertial tracking methods. It is supposed that with these proposed methods,
the system could be more robust. Finally, a method that generates GPS-IMU pose
is utilized and is integrated in the SLAM system, which gives the ability to adapt to
dynamic environments for the drone.

3.2 RGB-D ORB SLAM
Currently there are already many well developed visual SLAM solutions which achieve
decent performances in real-time experiments. In chapter 2 where SLAM problem and
solutions are analyzed, it is concluded that feature based visual SLAM using nonlinear
optimization methods is able to have precise, real-time and robust performance. On the
one hand, feature based front-end approaches are not sensible to sunlight or dynamic
objects and they are well developed in recent years, which ensures the stability and
robustness of the SLAM systems. On the other hand, non-linear optimization based
back-end SLAM generally performs better than filter based SLAM solutions even
though it consumes more computation resources. Filter based methods suffers from
non-linear errors and enormous data storage in long term running. To make it worse,
loop closing approach is hard to be supported in filter based SLAM systems due to
the Markov Assumption that the past and future data are independent if the current
state is known. In consequence, a ORB feature based visual SLAM system called
’ORB-SLAM2’ is utilized in this master thesis work.

Fig. 3.2 shows the system modules and logic flow of the ORB-SLAM2 program. The
system is composed of several modules which are tracking, local mapping, loop closing
and relocalization. Details are described as following:

• Tracking
The tracking thread in fron-end uses constant motion model to track and optimize
poses. More specifically, the main task is extracting ORB features and estimating
pose based on the last frame or the keyframe, then optimizing the pose by min-
imizing reprojection errors. Afterwards a new keyframe will be created if some
conditions are satisfied. Additionally, if tracking is lost, this thread will try to
reinitialize the pose by global relocalization and track the local map.

• LocalMapping
The local mapping thread works on building the local map and maintaining cov-
isibiliy graph of keyframes and referenced map points. To be more specific, the
thread takes the responsibilities of keyframe culling and insertion, new map points
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generation to build the local map. Moreover, poses and map points are optimized
in local map using the covisibiliy graph and performing local bundle adjustment.

• LoopClosing
The loop closing thread takes charge of detecting large loops and correct the ac-
cumulated drift by performing a pose-graph optimization. Large loops detection
is achieved by bag-of-words matching solution, which is also could be used in
relocalization detection when tracking is lost.

• Relocalization
The reloccalization thread only works when the system loses its tracking, it keeps
on associating map points in current frames with historical keyframes using bag-
of-words. Whenever there is a successful detection, the pose is optimized and
tracking procedure continues.

Figure 3.2: ORB-SLAM2 system threads and modules [21]

In the paper [21], experiments have proved the accuracy and robustness of this SLAM
system in many situations and achieved top performance compared with other SLAM
solutions. Thus our multi-sensor fusion SLAM system could be developed based on this
ORB SLAM system. Ideally, IMU information can be fused in tracking thread and the
optimization methods could also be replaced by VIO optimization approaches. More
importantly, loop closing and place recognition are still able to work with new changes
in the new system. As for GPS, it is supposed to be fused with IMU as a new module in
the system due to its uncertainty and availability.
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3.3 RGB-D Visual-Inertial SLAM
Visual-inertial provides an efficient and cheap solution for SLAM problems. On the
one hand, IMU provides self-motion information in very high frequency which help
achieve high accuracy in short term period. On the other hand, vision offers rich
information of the environment and could track precisely in long-term round due to
loop closing [22]. Moreover, complicated initialization procedure of monocular camera
will be avoided, as well as pose estimation will be simplified by adopting RGB-D
camera, which provided both RGB images and depth images.

In this thesis work, RGB-D visual-inertial SLAM program is developed based on visual-
inertial monocular approaches proposed in research paper [22]. The following sections
describe three main parts in details, that are transform matrix calibration of IMU and
camera, IMU preintegration and bias estimation, and visual-inertial tracking.

3.3.1 IMU-Camera Calibration
It is known that the IMU and camera are fixed on the different position of the drone.
In order to jointly fuse two sensors, a transform matrix has to be used to calculate
the position from IMU coordinate system to camera coordinate system, or vice versa.
Generally, there are many methods to calibrate IMU and camera. Here it is not
possible to physically measure the position relation between two sensors, but could
do it using data generated from sensors with some algorithms. However, before the
transform matrix is calibrated, the intrinsic parameters of the IMU (e.g. scale, axis
misalignment, nonlinearities, ...) need to be calibrated and its correction applied to the
raw measurements. As for camera parameters, since the it is already provided by itself,
there is no need to calibrate the camera in this thesis work. Thus the calibration of the
IMU is introduced first.

3.3.1.1 IMU Intrinsic Calibration

An IMU actually is a combination of accelerometers and gyroscopes of three-axis.
The goal of IMU intrinsic calibration is estimating average ”white noise” and ”bias
instability” for both accelerometers and gyroscopes based on the IMU measurement
model.

While many methods have been proposed to determine the intrinsic parameters from
sample data, deriving them from an Allan standard deviation plot is probably the most
common and standardized procedure. Allan variance is a approach of analyzing a se-
quence of data in the time domain, in order to identify different noise terms that exist in
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inertial sensor data[32]. For an averaging length of time t, the Allan variance of an IMU
is calculated as following:

• Put the IMU stable for enough long time, collect data and divide it for many
queues to ensure the result is robust.

• Compute the averages of each queue (a(t)1, a(t)2, ..., a(t)n), where n is the num-
ber of queues.

• The Allan variance is calculated by

AV AR(t) =
1

2 � (n� 1)

X

i

(a(t)i+1 � a(t)i)2 (3.1)

• Then Allan deviation is derived by

AD(t) =
p
AV AR(t) (3.2)

thus the random process could be plotted and intrinsic parameters can be read
from the figure.

• The random walk measurement for the noise is obtained by fitting a straight line
on the Allan deviation plot, then the white noise is the value at t = 1.

• The bias instability is around the minimum value on the Allan deviation plot.

With the intrinsic parameters derived from method described above, it is enabled to
work on the IMU and camera calibration further. Since it is hard to find the parameters
from the Datasheet of the IMU used in this thesis work, this approach is adopted to
solve IMU calibration problems.

3.3.1.2 Transform Matrix Calibration

The camera-IMU calibration aims to estimate relative position relationship of a camera
system with respect to an IMU, in order to increase robustness and accuracy in state
estimation in SLAM problems.

A unified temporal and spatial calibration approach is implemented in this thesis work
which has been proposed in paper [7]. It is a framework that can be used to jointly
estimate the temporal offset as well as spatial position relationships between sensors.
There are mainly two benefits from camera-IMU calibration by adopting this method.
On the one hand, it is the approach provides a solution of handling time synchronization
between sensors especially with different sampling rates. Since there is no hardware
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support available and IMU often outputs in high frequency, this approach could solve
the problem well. On the other hand, based on IMU and camera measurement models,
the approach achieves very high accuracy by adopting maximum likelihood estimation
methods while making use of all available sensor information.

3.3.2 IMU Preintegration and Initialization
Normally an IMU has a 3-axis accelerometer and a 3-axis gyroscope which makes it
be able to measure the rate of rotation and the acceleration at a fixed frequency. In
order to make use of IMU measurements into factor graph based visual SLAM systems,
IMU preintegration theory is adopted. Consequently, the IMU bias and many other
parameters have to be estimated to provide better results of visual-inertial odometory.

Preintegrated IMU Measurements

Figure 3.3: Different rates for IMU and camera [5]

As can be seen from Fig. 3.3, the input rates of camera and IMU are significantly differ-
ent which makes it impossible to simply fuse them together. In this thesis program,
a state-of-the art preintegration theory [5] is adopted that enables the preintegrated
IMU model to be seamlessly integrated into SLAM factor graph framework. Simply
speaking, the IMU preintegration can be used as a measurement between two consecu-
tive keyframes and an error function could be formulated together with the estimation
model. As a consequence of that, an optimization problem is structured based on the
factor graph. The discrete evolution of the IMU orientation Rb, position Pb and veloc-
ity Vb in the world coordinate system W after a time interval �t can be represented as
following [5]:
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where gw is gravity, !tb and atb are the acceleration and angular velocity of the IMU
sensor at time t respectively, ba represents the bias of the accelerometer while bg is the
gyroscope bias.

Then based on the IMU Gaussian noise model, an preintegrated measurement model
from time ti to time tj is derived in [5]:

� eRi;j = RT
i RjExp(��ij)

�eVij = RT
i (Vj � Vi � gw�tij) + �Vij

� ePij = RT
i (Pj � Pi � Vi�tij �

1
2
gw�t2ij) + �Pij

(3.4)

where the random noise is described by the random vector [��Tij; �V T
ij ; �P T

ij ].

IMU Initialization

The aim of IMU initialization, obviously, is to compute an initial estimation for viusal-
inertial non-linear optimization procedures. Paper [22] proposes an initializing method
to try to estimate the scale, gravity direction, velocity and IMU biases by using several
keyframes. This method has shown its necessity and reliability in the paper, thus it is
adopted in this thesis to provide estimations at the beginning. The main procedures in
the IMU initialization are concluded as follows.

• Gyroscope bias is approximated by using Gauss-Newton method to solve the
problem of minimizing the error between gyroscope integration and relative ori-
entation for a set of sequent keyframes.

• Scale and gravity are estimated by associating at least four keyframes
within visual information and IMU preintegration, then use Singular V alue
Decomposition SVD to calculate the values. Need to mention that SVD takes
decent computing resources but generates accurate results.

• The accelerometer bias is not considered in the second step which makes it is hard
to distinguish gravity and accelerometer. Thus it is proposed to optimize gravity
direction with a fixed gravity magnitude.

With a successful IMU initialization procedure, the SLAM system is able to start fus-
ing IMU preintegrations with accurate initial estimations. However, one the problems
exists in how to judge the initialization is successful or reliable. Moreover, computation
burden is another problem to be solved.
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3.3.3 Visual-Inertial tracking
The visual-inertial SLAM solution proposed in [22] uses monocular camera and IMU
as input sensors. Based on their solution, it is developed a RGB-D camera based
vusial-inertial SLAM system. The main idea is removing the complicated and time
consuming procedure of creating an initial map with monocular camera and a simple
tracking initialization of RGB-D camera is added.

As depth cannot be recovered from a single image, the approach proposed in [22] uses
a heuristic initialization algorithm to select a better result from calculating in parallel
two geometrical models, in order to derive accurate and relative depth information.
However, the RGB-D camera offers depth image for every RGB image, thus it is
not necessary to recover depth information from motions. Instead, a keyframe is
created, start pose is set and an initial map is created from image features with depth
information. With this method, the massive computation will be avoid and the delay of
monocular initialization is eliminated.

The main task of the visual-inertial tracking is estimating and optimizing camera poses.
As for camera pose prediction, it is more reliable to use IMU information to estimate
current state obviously. After which the map points in the local map are projected and
associated. Here the pose is optimized by minimizing the feature reprojection error
together with IMU error between the last frame and the current frame [22]. However, it
is concerned that if the map was updated before optimization, the state of the last frame
will be influenced and cannot be associated. In order to avoid that, the last keyframe will
be associated instead of the last frame in the optimization procedure when it happens. It
is assumed the current frame is j while the last frame or keyframe is j � 1. If the map
is not updated, then

x =
�
Rj�1
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j�1
w ; V j�1
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(3.5)

is supposed to be optimized. And the error function to be solved is

x� = argmin
x

(
X

k

Eproj(k; j) + EIMU(j � 1; j) + Eprior(j � 1)) (3.6)

where k indicates a given feature match and Eprior is the priori error from the last
keyframe optimization. If the map is updated, only the current frame will be optimized
and there will be not priori error term as the map is changed. In order to solve this kind
of non-linear optimization problems, as mentioned in section 2.1.2, Gauss-Newton
method or Levenberg-Marquardt algorithm could be used.

Once pose tracking with last frame of keyframe is finished, the visual-inertial local
map tracking is performed to increase its robustness and precision. Similar with visual-
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inertial tracking described above, current frame is optimized by associating with more
keyframes which have common map points in the local map. After that the map is
updated if tracking is successful.

3.4 GPS Association and Integration
Without GPS information, the SLAM system faces a problem that the poses estimated
are respect to the starting point instead of the real world position. However, though
GPS provides information of global positions in high frequency, its stability is strongly
influenced by environments. Generally GPS signal is not available inside the buildings,
and only valid outside the room where there are no high buildings nearby. Thus GPS
signal has to be handled before fusing in the SLAM system and the system should not
be interrupted if GPS is suddenly disabled. This section introduces a solution of how
GPS signal is validated and fused in visual-inertial SLAM.

3.4.1 Global Position Integration
As explained above, GPS signal is only available in specific areas which means
the SLAM system may still lose its tracking even if GPS sensor is fused. Thus a
solution is proposed that whenever the SLAM system tracking lost happens and
GPS signal is available, GPS and IMU will help to locate its positions continually
until the SLAM system reinitialize tracking again. More details will be explained below.

In visual-inertial SLAM system, poses are expressed as the transform from camera to its
world coordinate system, the transform is expressed as Twc. More specific, it is supposed
the origin of world coordinate system in SLAM is the position when the SLAM system
is initializing. It is assumed Pw is the pose of camera in world coordinate system, Pc
is the pose of camera in its own coordinate system which is actually an identity matrix.
Thus we have

Pw = Twc � Pc
= Twc � I

(3.7)

The equation above also explains the reason why the transform Twc could be used to
present camera pose.

When visual-inertial SLAM loses its tracking, the transform Twc cannot be calculated
in the system. If Twc is computed by an alternative solution, the SLAM system will be
able to continue tracking its position. It is known that GPS module only provides global
information of its latitude, longitude and altitude without orientation. If orientations
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could be used from IMU data, the poses of IMU could be calculated. It is used Pi to in-
dicate the IMU pose in its own coordinate system, and a new ’world’ coordinate system
is create when GPS is initialized. Thus in this ’world’ the pose of IMU is indicated as
Po and the transform from IMU to its coordinate system is presented as Toi. Similarly,
we have

Po = Toi � Pi
= Toi � I

(3.8)

Fig. 3.4 shows transform relationships between different coordinate systems on the
drone. The transform from camera to IMU coordinate system is indicated as Tic. And
Two is the transform from the new ’world’ to the SLAM world coordinate system. Thus
it is derived that

Twc = Two � Toc
= Two � Toi � Tic

(3.9)

From the equations it is known that Twc could be computed by multiplying transforms
described above. Since the transform Toi could be calculated by GPS and IMU module
and the transform from camera to IMU coordinate system Tic has been introduced and
precomputed in previous sections, the only thing left is how to derive Two.

As can be seen from Fig. 3.4, Two physically will be fixed after the SLAM system and
GPS module are initialized. So it could be estimated by using Twc when the visual-
inertial SLAM is still in tracking

Two = Twc � Tco
= Twc � T�1

oc

= Twc � (Toi � Tic)�1
(3.10)

However, when visual-inertial SLAM loses its tracking, even if GPS and IMU are able
to help continually calculate its poses in SLAM world system, map points are no longer
be created and map may not be updated in this situation.

3.4.2 GPS & IMU Association
This section introduces a method of calculating the transform from IMU to the world
coordinate system Toi. It is based on the assumption that the distance between GPS and
IMU is too small that can be neglected.
Firstly, we have to verify if the GPS signal is stable when GPS is activated. Thus it is
supposed that GPS module is only initialized when it sends the same global coordinates
several times. Then this position is set as the reference position for IMU coordinate
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Figure 3.4: Relationships among SLAM Coordinate Systems

Figure 3.5: Geodetic and ENU Coordinate systems

system. After the position changes, the new position with respect to its reference
position can be computed. Finally the pose of IMU in the new ’world’ coordinate
system and the transform Toi will be derived accordingly.

It is known that a typical GPS module uses standard WGS84 geodetic coordinate system
to present its global position, which is different from the coordinate system in IMU
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frame. Thus before the position information from GPS is utilized, it has to be converted
to local coordinate system (shown in Fig. 3.5).
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Chapter 4

Implementations

4.1 Overall Framework
This thesis work is based on ORB-SLAM2 project[21] and its further work of visual
inertial monocular SLAM[22]. More functionalities are added such as publishing
trajectories and environment point clouds in ROS instead of saving as files, IMU fused
SLAM with RGB-D camera as an input, and GPS fusing to help track. Further more,
the program is modified to adapt the setup on the experimental drone.

The framework of the program done in this thesis is shown in Fig. 4.1. In general,
the SLAM system runs as an independent node and subscribes messages from GPS
topics, IMU topics and image topics. The first two topics come from Mavros software
stack and the last is directly from the RGB-D camera driver software. If SLAM
tracking is successful, the system will publish data of its poses and map point clouds of
environment, otherwise it will reinitialize the system or try to find past trajectory.

The SLAM system can be divided as many components, including subscribers, tracking
thread, local mapping thread, loop closing and publishers. Details are explained as
follows:

• Subscribers deal with receiving and synchronizing messages by subscribing spe-
cific topics in ROS network. After extraction, messages are sent to system input
port with time stamps.

• Tracking thread mainly takes the charge of extracting map features, estimating
and optimizing poses.

• VIO Initialization thread tries to estimate many IMU parameters and also its
preintegration to successfully start visual inertial tracking in tracking thread.
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Figure 4.1: Sensor-fusion SLAM System Framework

• Local mapping is the back-end which improves precision of trajectory and map
points by locally optimizing associated keyframes together.

• Loop closing keeps on matching current position with historical points. Once it
finds a match, the whole trajectory and map points will be optimized globally.

• Publishers run in a loop to grab information of pose and map points and transform
to specialized message format. Then the packaged data will be pushed to ROS
network.

With the help of IMU, GPS and RGB-D camera, the system could work robustly in both
indoor & outdoor environments but tracking lost may still happen in some strict situa-
tions. Thus the system is also designed to be able to further extend more functionalities
with more sensors equipped such as downward camera, barometer and etc.
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4.2 ORB SLAM in ROS
This section introduces the ROS extension which includes mainly two parts, subscribing
and publishing. More specifically, subscribers have to deal with data receiving, storing
and synchronizing. While publishers tries to take out data from tracking thread legally,
transform its format and publish out.

4.2.1 Subscription and Message Synchronizer
Data input and output play important roles in the system and should be specially
handled in ROS environment in this thesis work. Moreover, the program runs in
real-time which means synchronization and efficiency are significantly considered.

Fig 4.2 shows how the system subscribes and handles the required messages in ROS,
before delivering them to the main process. In order to subscribe ROS messages from
related topics in ROS network, four subscribers are created in the SLAM system for
information of RGB images, depth images, IMU and GPS. RGB images and depth
images originally come from a RGB-D camera called RealSense and both images
should be received synchronously according to timestamps. Generally IMU messages
are published in a high frequency which is larger than that of camera images. Thus
during the interval of two consequent coming images, IMU messages are stored in a
message queue waiting to be sent to the system.

Besides, GPS messages are also subscribed and processed in a totally different
method. GPS signal is not always available and its stability is strongly influenced by
environments. As a consequence of that, GPS data will be initialized whenever it is
reliable and it is supposed to fuse with IMU data to derive a joint pose, which is treated
as a compensated odometry for the system. More details will be explained in section 3.4.

Function GetRecentMsg() is called to take out RBG, depth images and a sequence
of IMU messages from queues before SLAM system interface function TrackRGB()
is called. It is possible that the image queue stores more than one image and the first
image will be used while others are dropped. This is because the system may not deal
with all images in accordance with camera frequency. Also, data continuity is checked
in GetRecentMsg(), which means there should be no large time gap between the
last IMU message and first image in their queues. No matter whether messages are
successfully delivered, all the queues are cleaned for the next data input. As for GPS
part, a GPS transform message will be sent if GPS signal is available.
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Figure 4.2: Subscribers and Message Synchronizer Logic

4.2.2 Message Transform and publishing
There are two types of messages published, one is point clouds and the other is camera
transform which can be treated as the relative position from its start point. However,
those data are not formatted in SLAM system and should be transformed as ROS
messages, i.e. the main task of this ROS publisher.

The publishing flow chart is shown in Fig. 4.3 which illustrates how publisher works
in the system. The publisher keeps on running in cycle after it finishes initialization.
Before it tries to get information of current map points it will check if they are available
because the map thread may be occupied by other threads or the map is initializing.
Moreover, those map points are originally calculated from extracted features of pro-
cessed images and the procedure is down in SLAM system. Though, map points have
to be converted to point cloud format to be published out.
After that the information of camera pose is going to be published and it is noticed
that the camera pose calculated in the SLAM system is represented as transform matrix
from world coordinate system to camera coordinate system (expressed as Tcw), which
is different from the expectation of final output (as Twc). Actually the desired output is
the pose of camera in world coordinate system (pw), it can be calculated as:

pw = Twc � pc (4.1)
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Figure 4.3: SLAM system publishing flow chart

where pc is the pose of camera in its self coordinate system and thus it is an identity
matrix I . Then it is proved that pw can be expressed as Twc. Furthermore, it is calculated
according to:

Twc = T�1
cw =

�
RT
cw �RT

cwtcw
0T 1

�
(4.2)

where Rcw is the rotation matrix and tcw is the translation matrix. Generally a transform
matrix can be expressed as:

T =
�
RT t
0T 1

�
(4.3)

4.3 Calibration Experiments

4.3.1 IMU Calibration results
Since there is no information of IMU noise model parameters found from the Datasheet
of the IMU used on the drone. Allan variance method is implemented in this thesis
work in order to estimate intrinsic parameters of the IMU.

A ROS pakage tool ”imu utils” is used to analyse the IMU performance which is a
c++ version of Allan Variance Tool. The measurement procedure can be divided into
three steps: first IMU data is collected by rosbag record =camera=imu=dataraw �o
imu:bag command while the IMU is stationary with a two hours duration; then the
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program is running as a ros node and start to analyse IMU data until the result files
are output; either the parameters are found by plotting the Allan Variance deviation
with output data files or directly reading already calculated instrinsic parameters from
a yaml file.

Here the Allan variance fro accelerometers is plotted (shown in Fig. 4.4) to explain
how parameters of Random walk noise and Bias instability are computed.

Figure 4.4: Allan Variance Curve for Accelerometer

The Fig. 4.4 illustrates Allan variance deviation for accelerometers of three dimensions.
From the plot it is derived that the random walk measurement for noise is obtained
by reading its value at t = 1; while bias instability appears on the figure around the
minimum value of the curve. It measures how the accelerometer varies over a fixed time
interval at some temperature. Same analysis procedure is also applied on estimating
gyroscopes of the IMU.

The results calculated by the program is shown bellow:
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1 ---
2 type: IMU
3 name: DAI
4 Gyr:
5 unit: " rad/s"
6 avg-axis:
7 gyr_n: 8.8975161665705846e-04
8 gyr_w: 2.1279262203812394e-05
9 x-axis:

10 gyr_n: 1.1460599836020625e-03
11 gyr_w: 5.1208271429484988e-06
12 y-axis:
13 gyr_n: 8.3587772733277892e-04
14 gyr_w: 2.8467184936260364e-06
15 z-axis:
16 gyr_n: 6.8731713903633388e-04
17 gyr_w: 5.5870240974862649e-05
18 Acc:
19 unit: " m/sˆ2"
20 avg-axis:
21 acc_n: 1.8672601669695740e-02
22 acc_w: 6.4515759613252479e-04
23 x-axis:
24 acc_n: 1.7815783528441709e-02
25 acc_w: 4.1316639458000525e-04
26 y-axis:
27 acc_n: 1.6282217814715658e-02
28 acc_w: 3.2888298920089845e-04
29 z-axis:
30 acc_n: 2.1919803665929858e-02
31 acc_w: 1.1934234046166706e-03

With the provided IMU intrinsic parameters, the file which will be used in IMU-Camera
calibration is modified as following:
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1 rostopic: /mavros/imu/data
2 update_rate: 50.0 #Hz
3 accelerometer_noise_density: 1.87e-02 #continous
4 accelerometer_random_walk: 6.45e-04
5 gyroscope_noise_density: 8.90e-04 #continous
6 gyroscope_random_walk: 2.13e-05

4.3.2 IMU-Camera calibration results
A camera-IMU calibration tool is used to estimate time offset and spatial transform
of the RGB-D camera with respect to the IMU calibrated from the above section. With
this tool the calibration parameters are estimated using the method introduced in section
3.3.1.2. The steps of calibration process is shown as following:

• Prepare the required parameter files for camera, IMU and the calibration chess
board (shown in Fig. 4.5). More specifically, the intrinsics, camera model type,
resolution and etc. are required for the camera information (here the RGB-D
camera is treated as a monocular camera for simply reason). While the chess
board description is also provided, such as columns, rows and spacing lengths.

Figure 4.5: The chess board used in IMU-camera calibration

• Use ROS to create a ROS bag by recording data streams from RGB-D camera and
IMU separately. It is necessary to make sure the IMU-camera system is moved
with different angles and smoothly, in front of the calibration board. The proce-
dure is quite similar to the experiment of camera calibration.
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• After which it calibration tool is running to make estimations of time offset and
transform matrix between the IMU and the camera.

The calibration results are shown as following, from which the transform matrix and
time delay offset are given, as well as other information. Since the transform from IMU
to camera is different from the opposite, both transforms are calculated by the program.
Apart from these, the tool also provides residuals in different types and gravity related
parameters which may be used in the future work.

1 cam0:
2 T_cam_imu:
3 - [0.294, -0.954, -0.066, -0.006]
4 - [-0.675, -0.158, -0.721, -0.000]
5 - [0.677, 0.256, -0.690, -0.004]
6 - [0.0, 0.0, 0.0, 1.0]
7 camera_model: pinhole
8 distortion_coeffs: [0.0, 0.0, 0.0, 0.0]
9 distortion_model: radtan

10 intrinsics: [618.134, 327.651, 618.245, 239.176]
11 resolution: [640, 480]
12 rostopic: /camera/color/image_raw
13 timeshift_cam_imu: -0.041140210575883476

However, during the practical tests, the transform matrix may vary with different cal-
ibration datasets. And it is concluded that the movements of the IMU-camera system
when it is being calibrated should be standard and make sensors fully activated.

4.4 Multi-sensor Fusion SLAM Tracking
This section introduces how tracking logic is organized in this master thesis work. Ba-
sically, the tracking thread utilizes timestamped color and depth images, IMU mes-
sages and Transform from camera to IMU world coordinate system Toc computed by
Synchronizer as input. Then the camera poses and map points are estimated and opti-
mized with these information. More details are shown in Fig. 4.6.

GPS Module

Firstly, GPS module is initialized and a reference position is set in Synchronizer if GPS
signal is detected. Then the GPS positions are converted from global coordinate system
to local frame. With IMU messages, the transform from IMU to its world coordinate
system Toi is calculated by adding orientations from IMU messages.

34



Figure 4.6: The Implemented SLAM System Tracking Graph Flow
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IMU Initialization

A new thread is created for initializing IMU in order to make preparations for visual-
inertial tracking. As described in the last chapter, the procedure will be complicated and
time consuming. Once the parameters are well estimated, the map is updated and the
thread tells the system that IMU initialization is successfully finished.

Tracking

After tracking is initialized, the system will start SLAM with only visual information
as IMU thread is still working on IMU initializing. Features are matched by feature
matching methods and poses are estimated based on motion models. Before map points
and poses are published out, they are optimized locally by non-linear optimization
approaches. It has to be mentioned that if visual tracking is not successful, the system
may still generate pose information with the help from GPS and IMU.

When IMU initialization is successfully finished, visual-inertial tracking will replace
visual tracking in order to generate more accurate results well as make tracking more
robust. Specifically, pose estimation in visual-inertial tracking is performed by feature
matching and pose graph theory using only two frames. Then local map optimizing
starts, which is similar with the method in visual local map tracking but has IMU
information. Here the optimization solutions are referenced from an open source1.

At the meantime, the transform between IMU frame world and camera frame world
coordinate systems Two is approximated according to the equation 3.10. Thus if
visual-inertial tracking lose its position, GPS and IMU are able to help locate its current
pose by equation 3.9.

Here it is supposed that GPS only serves when the main tracking methods are not
working because GPS helped tracking provides no map information and its stability is
another issue. So the system should start to try to make visual-inertial tracking return
back to work. However, visual based tracking methods have nothing to do without
previous map information. To solve the problem, the whole SLAM system is reset,
which means the map will be recreated, frames will be cleaned and tracking will be
reinitialized. Even though there will be no previous map information stored in the
system, the previous trajectories and map points are already published on ROS network
and can be easily recorded by a ROS subscriber.

Need to mention that the latest pose derived from GPS help tracking will be set as the
origin pose, in that way the trajectory will be continued from previous tracking. After

1https://github.com/jingpang/LearnVIORB
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the system is restarted and reinitialized successfully, only visual tracking will be per-
formed at the beginning. Meanwhile the parameters of IMU will be recalculated using
first 20 frames in SLAM system. When computation is done, visual-inertial tracking is
able to work again.
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Chapter 5

Evaluation and results

In order to evaluate the performance of the SLAM system, many tests are implemented
concerning to its accuracy and robustness in indoor and outdoor environments. In
indoor situations where GPS is not working, our SLAM system is expected to run with
relatively high accuracy. The EuRoC standard dataset [2] is used to make comparisons
between different SLAM systems as it provides stereo images, imu data and the ground
truth trajectory files.

When it comes to the outdoor environments, it is more focused on robustness of the
system. Currently there is no standard benchmarks for sensor fusion SLAM, dataset is
recorded with the experiment drone in the lab. Since accuracy is tested on the EuRoC
dataset, we only evaluate its robustness compared with original SLAM solutions as
measuring the ground truth of our own dataset is not possible.

Figure 5.1: The experiment drone
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The program will be running on an experiment drone shown in Fig. 5.1. But for con-
nivance and efficiency, all the tests run on a virtual machine of a Ubuntu operating
system. The master computer is equipped with an Intel Core i7-8550U (1.8Ghz) with
16Gb RAM. However, the virtual machine cannot be allocated all the source from the
master, it is configured to use half cores in maximum and 6Gb RAM.

5.1 Visual-inertial SLAM Performance comparison
In this part four different types of SLAM systems are tested which are original monoc-
ular and stereo ORB-SLAM2, the developed sensor fusion SLAM in monocular and
stereo versions. The reason why RGB-D version is not taken into account is that there
is not RGB-D and IMU benchmark standard dataset available. Moreover, the difference
between stereo and RGB-D inertial tracking is the solution of deriving pixel depths
(shown in Fig. 5.2). Thus it is believed that stereo and RGB-D inertial SLAM in this
thesis project have the similar performances.

Figure 5.2: The System Development Flow Graph [21]

The EuRoC dataset used in our benchmark are recorded in a Machine Hall and a Vicon
room (see Fig. 5.3). These places represent a kind of inner environment that are full of
visual features but with no GPS signals. The machine Hall is typically a place of indus-
try while the Vicon room is more like a living room or a laboratory. Additionally, Root
Mean Square Error (RMSE) is used to judge the accuracy of the SLAM benchmark
results. It is the standard deviation of the residuals (prediction errors), which could be a

39



measure of how far from the ground truth trajectory in these experiments. The formula
is:

RMSE =

vuut 1
n

nX

i=1

(di � fi)2 (5.1)

where di-fi is the difference between experimental and the ground truth data at the same
timestamp, and n is the size of the dataset. Below comparison experiment results are
explained with respect to the Machine Hall 01 dataset and V icon Room 1 01 dataset.

(a) Machine Hall (b) The Vicon Room

Figure 5.3: EuRoC Dataset Test Places

Machine Hall 01 Dataset
The absolute pose errors between SLAM results and the ground truth are plotted in
Fig. 5.4. The original monocular and stereo ORB-SLAM2, and the implemented
monocular/stereo + IMU ORB-SLAM2 are compared together. It is necessary to
mention that the trajectory derived from monocular ORB-SLAM2 has no scale, which
means it is not possible to directly compare the result with the ground truth. In order to
solve the problem, an algorithm is used to automatically re-scale the trajectory to best
fit the ground truth.

All of SLAM solutions show similar performances of accuracy in such a small inner
factory environment in Fig. 5.4. The RMSE is around 0.030.04 meter for the four
programs even though the result of stereo ORB-SLAM2 has the relatively higher
maximum error value compare to others.

The plots in Fig. 5.5 illustrate the 3-dimensional trajectory where errors are mapped.
The colors show how big the errors between experiment result and the ground truth data
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are. As can be seen from these figures, the errors get increased in the middle on the
trajectory and decrease when the camera comes back to the original point. This can
be explained that the loop closing is possibly working and then optimizing the whole
trajectory.

(a) ORB-SLAM2 Monocular (b) ORB-SLAM2 Stereo

(c) Monocular Inertial ORB SLAM (d) Stereo Inertial ORB SLAM

Figure 5.4: Absolute Pose Error Evaluations on Machine Hall 01 Dataset
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(a) ORB-SLAM2 Monocular (b) ORB-SLAM2 Stereo

(c) Monocular Inertial ORB SLAM (d) Stereo Inertial ORB SLAM

Figure 5.5: Error Mapped onto Trajectory of Testing Results and the Ground Truth in 3
Dimensions using Machine Hall 01 Dataset
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Vicon Room 1 01 Dataset
Same experiments are also conducted using one of the Vicon Room datasets from Eu-
RoC dataset. Similarly, the IMU inertialed SLAM solutions are able to achieve good
results either from absolution pose errror evaluation figures (shown in Fig. 5.6) or from
eroor mapped trajectory plots (shown in Fig. 5.7).

(a) ORB-SLAM2 Monocular (b) ORB-SLAM2 Stereo

(c) Monocular Inertial ORB SLAM (d) Stereo Inertial ORB SLAM

Figure 5.6: Absolute Pose Error Evaluations on V icon Room 1 01 Dataset
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(a) ORB-SLAM2 Monocular (b) ORB-SLAM2 Stereo

(c) Monocular Inertial ORB SLAM (d) Stereo Inertial ORB SLAM

Figure 5.7: Error Mapped onto Trajectory of Testing Results and the Ground Truth in 2
Dimensions using V icon Room 1 01 Dataset
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The Table 5.1 shows the RMSE results of the four SLAM systems running on the
Machine Hall 01, V icon Room 1 01 and V icon Room 2 03 datasets. It is con-
cluded that, on the one hand, the visual-inertial SLAM achieves better results than
visual SLAM. On the other hand, stereo based SLAM systems could perform similar
results compared with monocular based SLAM solutions. When the performances of
Machine Hall 01 and V icon Room 1 01 are compared, it is found that the average
errors are larger by using V icon Room 1 01 dataset. This is probably the reason that
the camera was moving faster and there were lacking of close loops in the V icon Room
1 01 dataset.

However, all these SLAM solutions cannot pass the V icon Room 2 03 dataset bench-
mark. Specifically, in this dataset the camera runs even faster and spins frequently
which gives heavy burdens and difficulties on feature tracking. Apart from this, the
optimization procedures in these SLAM systems generally require high computing re-
sources. Especially for visual-inertial SLAM systems, it is found that the performances
are even worse due to IMU initializing and fused optimizing. One the of possible
solution is optimizing the codes and algorithms and another other one is updating
computation hardware and RAM.

EuRoC ORB Mono ORB Stereo VIORB Mono VIORB Stereo

RMSE (m) RMSE (m) RMSE (m) RMSE (m)

MH 01 easy 0.035 0.049 0.022 0.028

V1 01 easy 0.097 0.10 0.047 0.042

V2 03 difficult Failed Failed Failed Failed

Table 5.1: Results Comparison

In summary, the implemented visual-inertial SLAM is able to achieve precise and robust
results in normal indoor situations. It also has to be admitted that this solution requires
high computing resources which may potentially cause failures in some cases such as
the camera moves too fast or when there are too many features to deal with. Using GPS
could help to improve this problem, and the GPS fused visual-inertial SLAM evaluation
is discussed next.
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5.2 Multi-sensor Fusion SLAM Evaluation
The performance of the implemented multi-sensor fusion SLAM is evaluated in this
section. Since there is no standard dataset with ground truth, we recorded our own
dataset outside to make comparisons. Here it is not necessary to evaluate the accuracy
of the system as GPS only helps tracking few times in the middle of tracking lost and
system restart, which will not influence the general visual-inertial tracking part. Thus
the main task is evaluating the robustness of the SLAM systems.

The dataset is recorded outside the buildings in an environment full of features, but
there are several quick spin movements to increase visual tracking difficulties. Then the
ORB-SLAM2 and multi-sensor fusion SLAM are evaluated by running on the dataset.
Two screenshots are captured after a quick shit of the drone, shown in Fig. 5.8 and Fig.
5.9. ORB-SLAM2 loses its tracking after soon and not be able to continue track its
position. Actually it runs into the mode of relocalizing and tries to match current frame
with any previous frames. While the multi-sensor fusion SLAM restarts the tracking
module with the help of GPS and IMU, and continues its tracking successfully.

Figure 5.8: The ORB-SLAM2 Lost Tracking

Additionally, the genrated maps are plotted in Fig. 5.10 and Fig. 5.11 from original
ORB-SLAM2 and our multi-sensor fusion SLAM programs respectively. Fig. 5.10
only built half of the map as it lost its tracking in the middle of benchmarking. While
our SLAM solution is tested, with the help from GPS and IMU modules, the system

46



Figure 5.9: Our Program is Still on Tracking

kept on publishing point clouds on the ROS platform for the whole time, and its map is
visualized as Fig. 5.11.

Figure 5.10: The half map built by ORB-SLAM2

However, it is admitted that the tracking after restart is not very stable even though
the system could finish its tracking successfully through the recorded dataset. One of
the reason is that the program is not fully optimized and tracking and local mapping
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Figure 5.11: The full map built by our SLAM in ROS platform

threads cost too much computing resources. Especially it is found the system runs a
bit slower when local mapping is performed which includes huge computations of non-
linear optimizations. Another reason is that the parameters are re-estimated and the
accuracy is strongly influenced by environments. If the parameters are estimated not
properly, it will increase the burden of optimizations and consequently may make the
system fail on visual-inertial tracking.
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Chapter 6

Conclusion and Future Work

6.1 Summary
In this thesis, a multi-sensor fusion SLAM system is implemented based on a RGB-D
camera, a IMU and a GPS modul
Based on related works, different approaches are discussed and they provide theoretical
support for solving the localization and mapping problem in real-time operation.

First of all, a state of the art ORB feature based RGB-D SLAM solution is adopted and
based on which many approaches could be conducted to fuse into the system. Then a
subscriber and a publisher are added to give the abilities to work in ROS environment.
The subscriber takes the responsibilities of subscribing necessary messages from ROS
topics and preparing the data for SLAM system. While the publisher takes the charge
of catching map points from system and transforming to point clouds before they are
published on ROS, and taking out camera pose and packaging into a ROS message. Af-
ter that the methods of calibrating IMU intrinsic parameters and the transform between
IMU and camera are carried out. The results give significant supports for the imple-
mentations of visual-inertial algorithms. Next the visual-inertial approaches and RGB-
D ORB SLAM are fused. More specifically, an visual-inertial tracking initialization
method is added to prepare for the fused tracking, and an IMU preintegration method is
added to calculate its preintegration value for visual-inertial tracking. Further more, an
optimized tightly-coupled VIO algorithm is chosen to solve the SLAM problem. Thus
the SLAM system is able to operate in ROS environment in real-time. Finally the GPS
module is fused into the system to help avoid tacking lost situations. With this module,
the system is able to work in extreme environments outside the buildings. After the sys-
tem is fully developed, evaluations are conducted to compare the performance between
original ORB-SLAM2 programs and the implemented SLAM system with respects to
the accuracy and robustness.
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6.2 Conclusion
According to the results of our implemented SLAM solution and comparisons with
other the state of the art SLAM systems, it is able to achieve higher accuracy in indoor
situations while also show robustness with the help of GPS module in outdoor environ-
ments. However, failures may still happen without GPS signals due to motion blur, fast
rotation, environments with less features and etc. Additionally, optimization based so-
lutions provide the possibility of reaching high accuracy but require decent computing
resources while it is performing non-linear optimizations.

6.3 Future Work
As discussed in the last section, the results of experiments clearly show that our algo-
rithm outperforms the visual SLAM systems but requires more computing resources.
Therefore the future work could be optimizing codes to promote operation efficiency
or balancing its accuracy and computational burden according to different using cases.
Another work is avoiding map reset while the system is using GPS module to help track
camera pose. Visual-inertial tracking has to be reinitialized as it requires associating
current frame with previous frame, but the map may be kept unchanged by skipping
unsuccessful map building steps.
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Appendices

Appendix A: Abbreviations
UAV Unmanned Aerial Vehicle
GNSS Global Navigation Satellite System
SLAM Simultaneous Localization and Mapping
VSLAM Visual SLAM
IMU Inertial Measurement Unit
EKF Extended Kalman Filter
VO V isual Odometry
ORB Oriented FAST and Rotated BRIEF
FAST Features from Accelerated Segment Test
BRIEF Binary Robust Independent Elementary Features
SIFT Scale Invariant Feature Transform
VIO Visual Inertial Odometry
UKF Unscented Kalman Filter
MSCKF Multi State Constraint Kalman Filter
OKVIS Open Keyframe based V isual Inertial SLAM
ROS Robot Operating System
SVD Singular Value Decomposition
SVD Root Mean Square Error
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