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Abstract

We introduce a plan space and enumeration procedure for regular queries with memory (RQMs),

based on existing k-register automata and WavePlans. Furthermore, we analyse the complexity

of the plan space and enumeration procedure and show that cost-based enumeration using

dynamic programming is possible. Additionally, we experimentally justify the proposed plan

space by showing that in a substantial number of cases an enumeration procedure that considers

the topological- and data constraints of an RQM separately misses out on optimal plans, and

that planning the data constraints of an RQM, even for a fixed topological plan can produce

order of magnitude performance differences.
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1 Introduction

Motivation. The graph database model has seen a strong, renewed interest in database research

in recent years [1]. It elegantly captures the connectivity that exists in many types of data

nowadays, which is something that is difficult to achieve in many traditional database management

systems. Examples of such connected data are social networks (i.e. groups of people and

the relationships amongst them), information networks (i.e. citation information on scientific

papers or internet hypermedia), technological networks (i.e. computer networks, airline routes

or power grids) and biological networks occurring in genomics, chemical structure and the

relationships between species, for instance [2].

Part of a graph database model are the set of operations that can be performed on such a model.

Querying is one such operation. Queries on a graph database model can be divided into two

categories; queries on the data stored in the vertices of a graph, and queries on the topology of

the graph. The former category is conceptually no different from traditional relation queries,

whereas the latter is very different from- and hard to express in traditional relational queries.

Even more valuable and interesting queries to ask of a graph database are those queries that

combine both of these categories. That is, queries that express constraints on topology and data.

[3][4][5].

Consider as an example the property graph presented in Figure 1.1a. This property graph is

part of a movie database, capturing relations between persons, directors and movies. Such a

property graph can be converted to a data graph where we allow only a single integer data value

to be associated with each vertex. In this case, we associate each vertex of type :Person with

its age property, and the :Director vertex with its credits. Additionally, the genre property

of the :Movie type can be mapped to integer values 1, 2, 3 and 4 for values historical drama,

science fiction, thriller and documentary, respectively. The resulting data graph is shown

in Figure 1.1b. Such queries on data and topology often take the shape of path queries, where

6
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CHAPTER 1. INTRODUCTION

we want to find all pairs of vertices u, v such that there exists a path from u to v where all

edges and vertices along this path satisfy the constraints expressed in the path query. One class

of these queries is known as regular path queries (RPQs) since the constraints are expressed

through a regular language [1].

An example of a regular path query on a movie database is "Find all pairs u, v of people such

that u likes a movie directed by someone who has worked with a producer that produced a

movie that v likes". On the graphs in Figure 1.1 this would result in pairs (0,13), (0,14) and

(0,15).

These RPQs have been studied intensively over recent years, supplying a rich body of theoretical

work [1]. One recent work suggests the extension of RPQs with memory (RQM) [3]. That is,

besides expressing constraints on the edges and vertices through a regular language, the regular

language is extended so as to allow the storage of data encountered along a path and comparison

against the stored values later on.

For example, an RQM could ask that the movies liked by u and v are of the same genre, by

storing the data values in vertices 1, 2 and 3 and comparing them against the data values in

vertices 9, 10, 11 and 12. This would reduce the result to pairs (0,13), (0,14).

Problem statement. Query planning is a vital part of any database system and concerns

translating a query into a multitude of plans that can be used to evaluate that query. Such a set

of plans is called a plan space. Generating plans within a plan space is known as enumeration of

that plan space. A plan in the broadest sense is an ordering of operations that, when executed,

results in the answer to a query.

Query planning in the context of RQMs has not been studied thus far. While [3] introduces k-

register automata as a way of representing RQMs, such an automaton represents only a single

ordering of the operations necessary to evaluate a query.

Hence, the problem we study is that of representing RQMs in a way that allows a rich, yet

tractable plan space to be defined and enumerated.

Contributions. We introduce k-register waveplans as a way of representing plans for RQMs,

which are an extension of Waveplans as introduced in [6].

Additionally, we provide a plan space for RQMs, analyze its complexity and experimentally

justify the use of this particular plan space, by showing that plans with the same structure

with respect to topology but a different structure with respect to data display order of magnitude

8



CHAPTER 1. INTRODUCTION

performance differences. Moreover, a plan space and enumeration procedure that does not

consider topology and data together misses out on finding optimal plans in a substantial proportion

of cases. Hence, planning for topology and data both is essential.

Furthermore, we outline an enumeration procedure for the given plan space, analyze its complexity

and present a brief sketch of a cost-model that allows for cost-based enumeration based on

dynamic programming.

Organization. The remainder of this thesis is organized as follows; Chapter 2 provides a brief

discussion of other research regarding querying graphs using registers. Chapter 3 provides the

theoretical preliminaries from [3] on which this thesis builds directly. Chapter 4 introduces

k-register waveplans and a plan space thereof in the context of RQMs. Chapter 5 provides

a procedure for enumerating the proposed plan space and analyzes its complexity. Chapter

6 concludes the theoretical contributions by outlining an execution procedure that solves the

evaluation problem of RQMs given an automaton as a plan. Chapter 7 acknowledges the way in

which the proposed system was prototyped, and defines how the choice for the proposed plan

space is empirically justified. Finally, Chapters 8 and 9 present the outcome of this empirical

evaluation and summarize the theoretical- and experimental contributions.

9



2 Related Work

The expressiveness and complexities of graph query languages is an active research topic.

Many languages and fragments thereof have been studied for queries regarding topological

constraints. Few have considered the data encountered along a path.

Besides [3], on which this work is directly based, [4] compares the expressiveness of REMs as

proposed in [3] to Walk Logic (WL), originally presented by Hellings et al. [5], concluding

that while REMs are rather limited in terms of expressive power compared to WL, the latter is

intractable due to its data complexity being non-elementary.

Subsequently, [4] proposes Register Logic (RL), that closes REMs under Boolean combinations

and existential quantification over vertices, paths and register assignment. A fragment of this

language, called NRL+, is based on nested REMs (NREM), which extend the expressive power

of REMs while remaining tractable since the combined complexity is shown to be in P SPACE.

An example, as given in [4], of a query that can be expressed in NRL+, but not as an REM is:

find pairs of vertices u and v such that there is a vertex w and a path π from u to v in which

each vertex is connected to w.

They allow a vertex’s identifier to be assigned to a register, which is equivalent to assuming all

vertices have distinct data values in the data graph model. Hence, registers are used to test the

connectedness of w.

10



3 Preliminaries

This chapter covers the theoretical preliminaries from [3] necessary to build the proposed

system. First, we cover the data in terms of the data graph model and data paths. Second,

a formal definition for regular queries with memory is provided.

3.1 Data Graph

A data graph is a collection of vertices and edges such that each vertex is associated with one

integer value, called a data value. Additionally, edges are associated with a label. The set of all

labels is referred to as an alphabet. Hence, this model is an abstracting of more commonplace

graph models, such as property graphs. Figure 1.1 shows an example of a property graph, and

a data graph that can be obtained from it. Formally, a data graph is defined as follows:

Definition 3.1.1. (Data Graph) A data graph over Σ and D is a tuple G = 〈V ,E,ρ〉 with

• V a finite set of vertices, and

• E ⊆ V ×Σ×V a set of labeled edges, and

• ρ : V →D a function that assigns a data value to each vertex in V .

where Σ is a finite labeling alphabet and D ⊂Z is a finite set of data values.

To express the connectedness of vertices within a graph we use the concept of a path. A path

is a sequence of alternating vertices and edge labels, always starting- and ending with a vertex,

such that all triples consisting of two vertices and an edge label represent an edge in the graph.

Formally, a path is defined as:

11



CHAPTER 3. PRELIMINARIES 3.2. PATH QUERIES

Definition 3.1.2. (Path) A path from vertex v1 to vn in a graph G = 〈V ,E〉 is a sequence

π = v1a1v2a2v3...vn−1an−1vn

such that (vi , ai ,vi+1) ∈ E for 1 ≤ i < n.

The notation λ(π) is used to denote the word a1...an−1 which is the sequence of labels along

π. An example of a path is the sequence π = 0 likes 1 directedBy 4 in Figure 1.1b, which is a

path from 0 to 4.

The notion of a path can be modified to cover data graphs, by replacing vertices with their

data value. Formally, a data path is defined as:

Definition 3.1.3. (Data Path) Let π = v1a1v2...vn−1an−1vn be a path from v1 to vn in a data graph.

The data path corresponding to π is

wπ = ρ(v1)a1ρ(v2)a2ρ(v3)...ρ(vn−1)an−1ρ(vn)

Thus, a data path is defined as a sequence of alternating data values and labels, always

starting and ending with data values. The notation λ(wπ) is used to denote the word a1...an−1

for data paths as it is for normal paths.

The data path corresponding to π = 0 likes 1 directedBy 4 is wπ = 47 likes 1 directedBy 58.

3.2 Path queries

Queries on graphs come in many different forms. The particular form under consideration here,

is an instance of a path query.

3.2.1 Regular path queries

A path query asks for all pairs (u,v) in G such that there exists a path π with a particular word

λ(π). Regular path queries (RPQs) are path queries where the word along the path must be part

of a regular language L, rather than equal to a particular word. An RPQ Q is an expression of

the form

Q = x
L−→ y

12



CHAPTER 3. PRELIMINARIES 3.2. PATH QUERIES

where L is a regular language over Σ, typically represented as a regular expression, and x and y

are variables that bind to vertices. Formally, the answerQ(G) to an RPQQ on graph G is the set

of pairs of vertices (u,v) such that there is a path π from u to v with λ(π) ∈ L.

3.2.2 Regular queries with memory

Libkin et. al. [3] studies several language formalisms that can be used to extend RPQs by

taking into account data values along a path, in terms of their relative expressive power and

complexity. They conclude that register automata are the only formalism that can offer an

interesting increase in expressive power compared to standard RPQs, while maintaining an

acceptable complexity. A more detailed discussion of the expressive power and complexity

follows at the end of this chapter.

Conditions on data

Register automata move from one state to another by reading the appropriate letter from a

finite alphabet and comparing the currently read data value to the ones previously stored

in the registers. The version of register automata under consideration here will use Boolean

conditions to compare data values, rather than only checking for equality. To define such

conditions formally, assume that, for each k > 0, we have variables x1, ...,xk . Then conditions

in Ck are given by the grammar:

c := x=
i | x

,
i | z

= | z, | c∧ c | c∨ c | ¬c, 1 ≤ i ≤ k

where z is a data value from D, also referred to as the constant. Let D⊥ = D∪ {⊥}, where ⊥ is a

special symbol signifying that the register is empty. The satisfaction of a condition is defined

with respect to a data value d ∈ D and a tuple τ = (d1, ...,dk) ∈ Dk⊥ as follows:

• d,τ |= x=
i if and only if d = di ,

• d,τ |= x,i if and only if d , di ,

• d,τ |= z= if and only if d = z,

• d,τ |= z, if and only if d , z,

• d,τ |= c1 ∧ c2 if and only if d,τ |= c1 and d,τ |= c2,

• d,τ |= c1 ∨ c2 if and only if d,τ |= c1 or d,τ |= c2, and

13



CHAPTER 3. PRELIMINARIES 3.2. PATH QUERIES

• d,τ |= ¬c if and only if d,τ 6|= c.

The symbol ε is used as a shorthand for a condition that is true for any valuation and data value.

Regular expressions with memory

It is convenient to define an extension of regular expressions that allows data values to be stored

in registers and incorporates the conditions previously defined. The regular language in a query

can subsequently be defined by an expression rather than directly by a register automaton,

which is impractical to write.

Typically, regular expressions for RPQs involve three operators; disjunction, conjunction and

closure. Hence, a regular expression with memory (REM) consists of these operators, an assignment

operator that denotes storing a data value in a number of registers and a condition operator that

compares a data value against a Boolean condition. Formally, a regular expression with memory

is defined as:

Definition 3.2.1. (Regular Expression with Memory) Let Σ be a finite alphabet and x1, ...,xk a

set of variables. Then regular expressions with memory (REMs) are defined by the grammar:

e := ε | a | e+ e | e · e | e+ | e[c] | ↓ x.e,

where a ranges over alphabet symbols, c over conditions in Ck , and x over tuples of variables

from x1, ...,xk . Furthermore, e + e denotes disjunction, e · e conjunction, e+ closure, e[c] the

application of condition c and ↓ x.e the assignment of the current data value into registers i for

all xi ∈ x.

A regular expression with memory e is well formed if it satisfies two conditions:

• Subexpressions e+, e[c] and ↓ x.e are not allowed if e reduces to ε. Formally, e reduces to ε

if it is ε, or it is e1 + e2 or e1 · e2 or e+
1 or e1[c] or ↓ x.e1, where e1 and e2 reduce to ε.

• No variable appears in a condition before it appears in ↓ x.

In the remainder of this work, all REMs are assumed to be well formed.

Since a regular language that supports assignments to- and comparisons against registers can

be defined in terms of an REM, regular path queries can now be extended to support these

operations as well. Regular queries with memory are formally defined as:

14
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Definition 3.2.2. (Regular query with memory) A regular query with memory (RQM) is an

expression Q = x
e−→ y, where e is a regular expression with memory. Given a data graph G,

the result of the query Q(G) consists of pairs of vertices (u,v) such that there is a data path w

from u to v that belongs to the language L(e) generated by e.

Recall the regular path query "Find all pairs u, v of people such that u likes a movie directed

by someone who has worked with a producer that produced a movie that v likes", and the

regular query with memory which additionally requires that the two movies involved are of the

same genre. These queries can now be expressed formally as:

Q = x
e−→ y, with

e = likes · directedBy · dealsWith · produced · likedBy

and,

Q′ = x
e′−→ y, with

e′ = likes · ↓ x0.directedBy · dealsWith · produced[x=
0 ] · likedBy

where one register, identified by variable x0, is used to store the genre of the movie.

Expression semantics

In order to define the semantics of REMs, it is convenient to first define the concatenation of two

data paths w = d1a1...an−1dn and w′ = dnan...am−1dm. Notice that it is only defined if the last data

value of w equals the first data value of w′ . The definition naturally extends to concatenation

of several data paths. If w = w1...wl , then w1...wl is referred to as a a splitting of a data path w

into w1, ...,wl .

The semantics of REMs is defined by means of a relation (e,w,σ ) ` σ ′ , where e is a REM, w is a

data path and both σ and σ ′ are k-tuples over D∪{⊥}. The intuition is as follows: starting with

a memory configuration σ (i.e. values of x1, ...,xk), parsing w according to e yields a memory

configuration σ ′ . The language of e is then defined as

L(e) = {w | (e,w,⊥) ` σ for some σ },

where ⊥ is the tuple of k values ⊥.

The relation ` is defined inductively on the structure of expressions. Recall that the empty word

corresponds to a data path with a single data value d (i.e. a single vertex in a data graph). The

notation σx=d is used for the valuation obtained from σ by setting all the variables in x to d:
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• (ε,w,σ ) ` σ ′ if and only if w = d for some d ∈ D and σ ′ = σ ,

• (a,w,σ ) ` σ ′ if and only if w = d1ad2 and σ ′ = σ ,

• (e1 · e2,w,σ ) ` σ ′ if and only if there is a splitting w = w1 ·w2 of w and a valuation σ ′′ such

that (e1,w1,σ ) ` σ ′′ and (e2,w2,σ
′′) ` σ ′ ,

• (e1 + e2,w,σ ) ` σ ′ if and only if (e1,w,σ ) ` σ ′ or (e2,w,σ ) ` σ ′ ,

• (e+,w,σ ) ` σ ′ if and only if there is a splitting w = w1...wm of w and valuations σ =

σ0,σ1, ...,σm = σ ′ such that (e,wi ,σi−1) ` σi for all i ∈ [m],

• (↓ x.e,w,σ ) ` σ ′ if and only if (e,w,σx=d) ` σ ′ , where d is the first data value of w, and

• (e[c],w,σ ) ` σ ′ if and only if (e,w,σ ) ` σ ′ and σ ′ ,d |= c, where d is the last data value of w.

Take note that in the last item it is required that σ ′ , and not σ , satisfies c. The reason for this

is that the initial assignment might change before reaching the end of the expression and this

change should be reflected when we check that condition c holds.

3.2.3 Complexity and expressive power

Having defined regular queries with memory, it is useful to return to the issues of expressive

power and complexity, so as to observe the motivation for studying RQMs in the first place.

It is straightforward to see that RQMs properly subsume RPQs in terms of expressive power,

provided that the regular expressions used in such RPQs allow only disjunction, conjunction

and closure.

The increase in expressive power of being able to write constraints on data values using registers

comes at the cost of increasing the combined complexity from P to NP -complete for RQMs

over finite languages and to P SPACE-complete for RQMs in general. Fortunately, the P SPACE

combined complexity means that these queries remain tractable, which is not the case for some

similar formalisms [3][4].
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4 Query Planning

The necessity of query planning is well-known throughout DBMS research. Planning regular

queries with memory comes with its very particular set of challenges, however. The aim of this

chapter is to establish (1) which operations RQM plans must capture beyond those present

in k-register automata and (2) which formalism can effectively represent these operations.

Additionally, we will present a brief overview- and analysis of the plan space. That is, the set of

plans that is considered for an arbitrary RQM.

We conclude that RQM plans must capture assignments, conditions and projection, as well as

the order of assignments and conditions at a particular stage of a plan. Furthermore, we will see

that an extension of WavePlans we call k-register waveplans that can capture these operations.

Finally, we consider the plan space PSRP and show that O(|r |nc|r |) is an upper-bound on the

complexity of PSRP .

4.1 Plan operations

4.1.1 Projection

For the sake of efficient execution of a query, the size of the intermediate result much be kept as

small as possible. It is convenient to take a relational perspective on the size of an intermediate

result, not least because the proposed plan execution will be built upon a relational system.

That is, it is helpful to think of the size of the intermediate result in terms of width (i.e. size of

a single tuple) and height (i.e. the number of tuples) of a table of intermediary results.

For regular path queries, the width can be kept very small. In fact, it can be kept constant at a

value of two, storing only the end-points of an intermediary result. Such a pair is often referred

to as a subject-object pair. Little can be done to reduce the height, since it is subject to the query

and the data.
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The following example will illustrate that, unfortunately, storing only subject-object pairs in

our intermediary results is not feasible for RQMs.

Consider the REM e = likes · ↓ x0.directedBy · dealsWith · produced[x=
0 ] · likedBy from our

running example. Here, we store the genre of a movie in the 0th register. Given this REM,

such a data value can only come from (1) the target vertex of an edge labeled likes or (2) the

source vertex of an edge labeled directedBy. Should we only store subject-object pairs, the

assignment ↓ x0 will have to be evaluated together with edges labeled likes or directedBy,

since if the subject-object pair corresponding to likes were joined with those of directedBy,

the reference to the necessary vertex would be lost, since it is neither the subject not the object,

but actually the join predicate.

The plan space is thus severely restricted should one only use subject-object pairs in the evaluation

of RQMs. We will see examples later that further illustrate why plans outside of this restricted

space might be preferable.

In order to obtain an unrestricted plan space, we employ limited projection push-down. Returning

to our example, we could, instead of a subject-object pair, store a triple of vertices such that

likes can be joined with directedBy before applying the assignment. Notice that once the

assignment has been made, we can once again store a subject-object pair. Hence, the width of

our intermediate results will be flexible, and deciding which vertices to keep will be part of

planning an RQM.

Thus we arrive at the first operation that RQM plans must capture; projection. This might seem

straight-forward since query planning in general involves planning projection operators, but

the automata-based representations of regular queries we have seen thus far do not involve

projection while only end-points of paths are stored.

4.1.2 Assignments and conditions

In order to compare data values against a register, such a register must first be assigned a value.

Recall that the semantics of an assignment operation ↓ x.e are defined as setting the value in

the ith register equal to the first data value in a data path that satisfies e for all xi ∈ x. This

works when an assignment is always performed together the first label in e, but it breaks when

we introduce flexible intermediate results. Hence, for assignments, and subsequently also for

conditions, there must be some additional bookkeeping to make sure the correct data values

are used. To this end we introduce the notion of a step in a path.
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Steps

When considering only subject-object pairs, we always deal with the end-points of an intermediate

result. For a tuple consisting of three or more vertices this is not the case. After all, a triple

could be used to store the result of a path consisting of two labels, in which case it holds the

end-points and the vertices on which the two labels join. However, it could just as well be used

to store the result of a path consisting of three labels, for which one of the intermediary vertices

has been projected out, while the other has not. Hence, we will have to keep track of which part

of the path it is actually storing. To this end, we will store m-tuples with 2 ≤m ≤ n+ 2 where n

is the number of concatenations in the input REM. Such tuples will consists of pairs (s,v) where

s ∈N uniquely identifies a step in a path and v a vertex.

Consider again the path π = 0 likes 1 directedBy 4. A 3-tuple that stores this path is t =

((0,0), (1,1), (2,4))

Assignments and conditions must hence take into account a step to which they are to be applied.

We will refer to such assignments and conditions as wavefront assignments and wavefront conditions,

respectively. They are defined formally as:

Definition 4.1.1. (Wavefront assignment) An wavefront assignment is a tuple a = 〈s, r〉 where

• 0 ≤ s ≤ n+ 1 is the step of a pair (s,v) such that a depends on v, and

• 0 ≤ r ≤ k is the register that a provides (i.e. assigns a value).

Let e =↓ x.a · ↓ x′ .b be an REM with x = (x0) and x′ = (x1,x2). This assignment will produce

three wavefront assignments: a1 = 〈0,0〉, a2 = 〈1,1〉 and a2 = 〈1,2〉, since x depends on the vertex

in step zero (i.e. the source vertex of a) and provides register zero, while x′ depends on step one

and provides registers one and two.

Definition 4.1.2. (Wavefront condition) A wavefront condition is a tuple o = 〈s, c〉 where

• 0 ≤ s ≤ n+ 1 is the step of a pair (s,v) such that o depends on v, and

• c a condition.

Let Ro ⊆ {0, ..., k} denote the set of registers that o depends on. That is, the set of registers

that are referred to in c. Notice that Ro = ∅ for conditions that do not contain sub-expressions of

the form x=
i or x,i . Also, consider a condition c := x=

0 ∧x
=
1 . It will produce a wavefront condition

o with Ro = {0,1}.
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We will use the term data join to refer to assignments and conditions in general. This is because,

in any realistic DBMS scenario, the data and topology of a data graph are going to be decomposed.

Hence, assignments and conditions are essentially just joins against a data-structure capturing

data, rather than topology.

4.1.3 Local and global data joins

A final observation to make before introducing a formalism that can represent query plans

incorporating the ideas sketched above, is that data joins can be either local or global. That is, a

join with data can be performed before, or after a join on topology.

Consider once more the running example where the genre of a movie that person u likes and

person w directed is stored in a register. A choice must be made to either lookup and store the

movies u likes, or lookup and store movies that w directed. Suppose we chose the first option.

Without the need to store the genre in a register, that would be that. The only remaining course

of action is to join the movies u likes with movies w directed on the predicate that they are the

same movie. With the assignment however, there is a second choice to be made. Namely, do

we first join on the edge labels and subsequently assign the register its value, or do we assign

register values first, and then perform the join on the edge labels. In the first case, we say that

the assignment is global, whereas in the second case it is local. The same principle applies to

conditions. Hence, a plan must be able to represent a set of local- and a set of global data joins

associated with the evaluation of an edge label.

4.2 k-Register Waveplans

Having provided a sketch of the peculiarities of planning RQMs, and introducing some of the

necessary concepts such as projection, local- and global assignments and conditions, and steps,

we can introduce a formalism that can represent plans for RQMs. We will extend WavePlans

from Yakovets et al. [6] into something we call k-register waveplans.

4.2.1 Waveplans

WavePlans are introduced in [6] to provide a rich plan space for RPQs. A WavePlan consists

of one or more automata, called wavefronts. WavePlans posses multiple features that produce

a rich plan space for RPQs. We consider two of these features, namely inverse transitions and

20



CHAPTER 4. QUERY PLANNING 4.2. K-REGISTER WAVEPLANS

transitions over views.

Inverse transitions

An inverse transition is a transition that expands an intermediate result by prepending tuples

from the graph or cache rather than appending them.

Consider REM e = likes · directedBy · dealsWith, which is the first part of our running

example. Let I1 = {(0,1), (0,2), (0,3)} be the set of tuples corresponding to the path π1 = likes,

I2 = {(1,4), (2,4), (3,4)} be the set of tuples corresponding to the path π2 = directedBy and I3 =

{(4,5), (4,6), (4,7), (4,8)} the set of tuples corresponding to the path π3 = dealsWith. A regular

transition might append I3 to I2, yielding I4 = {(1,5), (1,6), ..., (3,7), (3,8)}, which is the result

corresponding to the path π4 = directedBy · dealsWith. Conversely, an inverse transition

might prepend I1 to I2, yielding I5 = {(0,4)} which corresponds to π5 = likes · directedBy.

To denote inverse transitions, we add a dot to the label of a transition. For example, the label

dealsWith · denotes a normal transition, whereas · likes denotes an inverse transition.

Transitions over views

A transition over a view expands an intermediate result from the cache rather than from the

graph.

Consider again the sets I1 and I4 from the previous section. If both of these sets are cached

during the execution of a plan, a transition over a view can expand I1 by appending I4. Similarly,

for sets I3 and I5, a transition over a view can expand I3 by prepending I5. Notice that the set

that is being appended- or prepended now represents a path with more than one label.

Let Q be the set of states in a WavePlan, where every state q ∈ Q has an associated label lq.

Let L = {lq | q ∈ Q}. Transitions over views can be represented by taking a label from L rather

than from Σ. This denotes that the output of a state q with label lq is used as the input for a

transition labeled lq. Figure 4.1 shows a WavePlan consisting of two wavefronts wf0 and wf1

for the expression likes · directedBy · dealsWith. Where wf0 represents the view likes ·

directedBy, wf1 prepends the result of this view in the transition from state 1 to 2.

With inverse transitions and transitions over views defined, we can introduce k-register wavefronts.

Formally, the definition of k-register wavefront is as follows:
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3 4 5
likes ⋅ directedBy ⋅

0 1 2
dealsWith ⋅ ⋅ 5

wf0

wf1

Figure 4.1: A WavePlan for likes · directedBy · dealsWith

5 6 7
∅, likes ⋅ , ∅ { ↓ }, directedBy ⋅ , ∅x0

0 1 4
∅, dealsWith ⋅ , ∅

wf0

wf1

[0, 1] [0, 1] [0, 2], [0]

[2, 3]

2
∅, produced ⋅ , ∅

3
∅, ⋅ 7, { }x=

0
∅, likedBy ⋅ , ∅

[2, 3] [2, 4] [0, 4] [0, 5]

Figure 4.2: A k-register waveplan for likes · ↓ x0.directedBy · dealsWith · produced[x=
0 ] ·

likedBy

Definition 4.2.1. (k-Register Wavefront) Let Σ be a finite labeling alphabet, D ⊂ Z a finite set

of data values and ∆ a finite set of data joins. A k-register wavefront is a tupleA = 〈Q,q0,F,δ,τ0〉

with

• Q a finite set of states where

– every q ∈Q has a label lq,

– every q ∈Q has an associated set P vq ⊂N called a vertex projection,

– every q ∈Q has an associated set P rq ⊂N called a register projection,

• q0 ∈Q the starting state,

• F ⊆Q a set of accepting states,

• δ ⊆Q ×∆×Σ· ×∆×Q a transition relation, and

• τ0 ∈ Ck⊥ the initial configuration of the registers.

where Σ· =
⋃
a∈Σ∪L{a·, ·a} is a shorthand for the extended set of labels containing all labels in Σ

and a label for each state q ∈Q.
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Figure 4.2 shows a k-register waveplan for the whole query in our running example. The

k-register wavefront wf0 computes the result of likes · ↓ x0.directedBy. Notice that the

assignment ↓ x0 is local on the transition from 6 to 7. Furthermore, the result is a pair of

vertices for steps 0 and 2, as well as the 0th register, as indicated by the vertex- and register

projections [0,2] and [0], respectively. Empty register projections have been omitted.

The behaviour of wf1 is relatively straight-forward, except perhaps for the transition from state

2 to state 3. Here, the result of wf0 is prepended to that of dealsWith · produced, after which

the global condition x=
0 is applied.

4.3 Plan Space

For any given RQM there are multiple k-register waveplans that evaluate it. We call the set of

such waveplans the plan space.

Consider the standard plan space PSWP for RPQs as presented in [6]. Notice that any such RPQ

is also an RQM, since the grammar for REMs covers that of regular expressions as present in [6].

Let e be an arbitrary REM. We will refer to r as the regular part of e to mean the RPQ obtained

by removing any assignments and conditions from e.

A naive way of obtaining a plan for an RQM with expression e is to take the plans in PSWP for

its regular part r and add on the necessary data joins in a prescribed manner. This could be

done by adding full projections to each state. That is, to never project out any of the steps or

registers. Additionally, all data joins would be added to each transition reaching a final state.

Thus, we obtain plans which keep full intermediate results around until the end of evaluation,

at which point the assignments and conditions are performed. Such a plan could subsequently

be optimised by pushing data joins back to the earliest transition that covers their dependencies,

and then to reduce the projections as much as possible. In this way, every plan in PSWP will

lead to exactly one plan in the naive plan space for RQMs.

A more comprehensive plan space considers, for each plan in PSWP , all possible legal placements

of the data joins. For each of these plans, projections are minimised. We will refer to this

plan space as the standard regular query with memory plan space, or PSRP . Notice that PSRP is

considerably richer than the naive plan space.

The need for this richer plan space comes from the observation that the planning of an RQM’s

regular part and its data joins are orthogonal. That is, a plan p ∈ PSWP that is optimal with

respect to the regular part r of some REM e in Q : x
e−→ y need not be the basis of a plan for Q
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that is optimal with respect to both the regular part- and the data joins of e.

Plan space complexity

Ideally, the complexity of the plan space PSRP for an arbitrary RQM Q := x
e−→ y would be

defined in terms of two parameters; the size |r | of the regular part of e and the number of data

joins n. However, we will show with an example that such a general definition is not possible.

Consider the REMs e = a·b[5=] and e′ = a[5=]·b. For both REMs, the regular expression obtained

by removing all data joins is r = a ·b. Hence, the size of the regular part and the number of data

joins are the same for e and e′ . However, the number of plans for e and e′ is not the same. For e,

the condition 5= can be evaluated locally with b or globally with a · b. For e′ , the condition can

be evaluated locally with a, globally with a · b but also locally with b, since the target vertex of a

on which 5= is evaluated is also the source vertex of b.

Hence, the size of the plan space for an REM e is inherently dependent on the structure of e, not

just the size of its regular part and the number of data joins involved. In order to at least obtain

an upper-bound on the complexity of the plan space, we can assume that any data join can be

evaluated at any point in the plan. Clearly, this set of plans properly subsumes PSRP since it

includes all legal placements of data joins, as well as many illegal ones. From WaveGuide we

know that P (r) = Θ(c|r |) for some constant c is the number of plans for a regular expression r. If

a data join can be evaluated at any point in a plan, than the number of plans P (r,n) for regular

expression r with n data joins is larger than P (r) by a factor f (t,n) that is the number of ways

to distribute n data joins over t transitions. Since t is directly proportional to |r | we have that

f (t,n) =O(|r |n) and so also that P (r,n) =O(|r |nc|r |).

24



5 Plan Enumeration

This chapter covers the enumeration procedure of the proposed plan space and its complexity.

Additionally, it covers an outline of cost-based enumeration. We will see that while dynamic

programming can still be used to develop a cost-based enumerator and reduce the complexity

of the procedure, it is still exponential in the total number of assignments and conditions, at

O(|e|2|r |68n).

We have outlined a plan space PSRP for regular queries with memory. This plan space has a

very high complexity of O(|r |nc|r |) where |r | is the size of the regular part of an RQM, n is the

number of data joins in that RQM and c is a constant. The process of constructing plans in a

plan space is known as enumeration.

We distinguish two kinds of enumeration, namely (1) exhaustive enumeration, and (2) cost-based

enumeration. Exhaustive enumeration of a plan space means constructing and storing all plans

within that space. Clearly, this is an expensive procedure given the typical complexity of plan

spaces.

Cost-based enumeration drastically reduces the complexity of enumerating a plan space by

employing dynamic programming. Let r1 and r2 be sub-expressions of a regular expression r

such that r1 and r2 can be combined to form r. The optimal substructure property of plans for r1

and r2 means that combining optimal plans for r1 and r2 yields an optimal plan for r. Notice

that a plan is optimal only with respect to some estimated cost based on a cost model.

Both kinds of enumeration are bottom-up, meaning that plans are computed for increasingly

larger sub-expressions of the input REM.

While we will give a brief outline of a cost model of RQMs on data graphs, argue that plans

for RQMs posses optimal substructure and analyse the complexity of cost-based enumeration

for RQMs, the effectiveness of cost-based enumeration with the given cost model will not be
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evaluated experimentally. Recall that we aim to experimentally justify choosing PSRP as a

plan space for RQMs. Hence, we must examine the performance gains that can be achieved

by planning for the regular part- and data joins of an RQM, both. This means comparing the

performance of all plans within PSRP and thus means applying exhaustive enumeration.

5.1 Rule-based enumeration

We will extend WaveGuide’s [6] enumeration procedure to cover PSRP . The procedure will be

rule-based, and construct plans for increasingly larger sub-expressions of an input REM e.

That is, starting with sub-expressions of size one (i.e. single labels), particular rules will

construct plans for these sub-expressions. Subsequently, these plans are used in the next

iteration of the enumeration, when plans are constructed for sub-expressions of size two. Thus

plans are generated in a bottom-up manner.

Recall the distinction between the regular part of an REM and its data joins. There will be

a set of rules RER that construct plans for sub-expressions where the size of the regular part

increases. That is, given sub-expressions e1 and e2 with regular parts r1 and r2 respectively, the

sum of the sizes of r1 and r2 is larger than the size of the regular part for which plans were

constructed in the previous iteration.

Conversely, the set of rules DER contains rules that construct plans for sub-expressions where

the number of data joins increases.

5.1.1 Sub-expressions of REMs

Sub-expressions of an REM e are subdivided in terms of size. The size |e| of an REM e can be

defined recursively as:

• 1 if e = ε or e = a for some a ∈ Σ·,

• |e1|+ |e2| if e = e1 + e2 or e = e1 · e2,

• |e1|+ 1 if e = e+
1 ,

• |e1|+ |c| if e = e1[c], and

• |e1|+ |x| if e =↓ x.e1.

where |x| is simply the size of the tuple x. The definition of the size |c| of a condition c is

not so straight-forward. To see why, consider the conditions c1 = x=
0 ∧ 5, ∧ 6, and c2 = x=

0 ∨
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Size Sub-expressions

6 ↓ x.a · b · c[(x=
0 ∨ x

=
1 ∨ 5,)∧ (x=

0 ∨ x
=
1 ∨ 6,)]

5 ↓ x.a · b · c

4 ↓ x0.a · b · c ↓ x1.a · b · c ↓ x.a · b

3 a · b · c ↓ x.a ↓ x0.a · b ↓ x1.a · b

2 a · b b · c ↓ x0.a ↓ x1.a

1 a b c

Table 5.1: Sub-expressions and their sizes for ↓ x.a · b · c[x=
0 ∨ x

=
1 ∨ (5, ∨ 6,)] with x = (x0,x1)

5= ∨ 6=. The three literals in c1 can be evaluated separately, since c1 forms a conjunction. The

literals naturally all depend on the same vertex, but x=
0 also requires the 0th register. Since

more selective conditions always improve query execution performance, and conjunctions of

conditions are at least as selective as either of the conjuncts, it is optimal to combine literals

with the same dependencies. Hence, |c1| = 2. Conversely, the three literals in c2 cannot be

evaluated separately, due to the fact that they are in disjunction with one another. Hence, c2

must be treated as a whole and |c2| = 1. Let c′ be a condition equivalent to c such that c′ is in

conjunctive normal form and all literals with the same dependencies in c′ are nested together.

Then |c| = |c′ | can be defined recursively as:

• 1 if c′ ∈ {x=
i ,x
,
i , z

=, z,},

• max(|c1|, |c2|) if c′ = c1 ∧ c2 and the dependencies of c1 and c2 are the same,

• |c1|+ |c2| is c′ = c1 ∧ c2 and the dependencies of c1 and c2 are not the same,

• 1 if c′ = c1 ∨ c2, and

• |c1| if c′ = ¬c1.

Consider the REM e =↓ x.a · b · c[x=
0 ∨ x

=
1 ∨ (5, ∨ 6,)] with x = (x0,x1). The conjunctive normal

form of the conditions is (x=
0 ∨ x

=
1 ∨ 5,)∧ (x=

0 ∨ x
=
1 ∨ 6,). Notice that the size of the conjunctive

normal form condition is one. Table 5.1 shows the sub-expressions of sizes 1 through |e| = 6 of

e.
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5.1.2 Projection graph

Before discussing the enumeration rules, it is helpful to take a step back and consider how we

might determine the projections for a state in a k-register wavefront. A naive approach would

keep the full projection in each state, and minimize them once the plan has been completed.

While this approach works for exhaustive enumeration, where all plans are generated and

stored, it will not work for cost-based enumeration. The cost estimation involved relies on

cardinality estimates for the input relations and output relation of a join. These estimates are

influenced by the projections. Hence, while constructing plans in a cost-based fashion, we must

be able to decide at every iteration what the projections will be in the final plan.

To this end, we introduce the projection graph, which is a graph that captures the dependencies

between the various literals in an REM e and allows us to decide for any sub-expression of e

what the projection should be.

Definition 5.1.1. (Projection Graph) A projection graph over regular expression with memory e

is a tuple Pe = 〈V1,V2,V3,V4,V5,E1,E2,E3,E4〉 with

• V1 a set of vertices corresponding to the labels in e,

• V2 a set of vertices corresponding to the steps storing vertices in e,

• V3 a set of vertices corresponding to assignments in e,

• V4 a set of vertices corresponding to the steps storing register values in e,

• V5 a set of vertices corresponding to conditions in e,

• Ei ⊆ Vi ×Vi+1 sets of edges for 0 < i < 3, and

• E4 ⊆ (V2 ∪V4)×V5 the final set of edges

The idea behind the projection graph is that there is a vertex for every literal in e, where

a literal is either a label (V1), assignment (V3) or condition (V5), as well as a vertex for every

step that a literal provides (V2) or depends on (V4). The edges capture the relations between the

literals, and by performing some operations on the sets of vertices and edges we will be able to

compute the projection for sub-expressions.

As an example, consider the REM e = a· ↓ x0.b · c[5= ∧ x=
0 ] · d. The projection graph for this

REM is given in Figure 5.1. We can see that there is one vertex for each of the label literals a,
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a

b

1

2

0

c

3

d

4

0↓ x0

x=
0

5
=

V1 V2 V3 V4 V5

Figure 5.1: Projection graph for e = a· ↓ x0.b · c[5= ∧ x=
0 ] · d.

b, c and d, as well as for the assignment- and condition literals ↓ x0, 5= and x=
0 . Additionally,

there are step vertices for steps 0, 1, 2, 3 and 4 which will store vertices, and step 0 which will

store register values. Observe that the resulting graph is always a 5-partite graph, hence the

structure of the tuple Pe.

To obtain the projection for a sub-expression e′ of e given Pe we apply the procedure detailed

in Algorithm 1. The sets I and J are the subsets of V1 and V3 that are reachable from literals

in e′ , respectively. The sets P and R are the vertex- and register projections, respectively. The

vertex projection P always contains the minimum- and maximum elements in I , which are the

end-points of any intermediate result. Loop [6-9] computes the subsets T of V3 reachable from

vertices in I\P . If this subset is not empty or contained within L, it means that the step v will

still be required in a subsequent plan. Hence, v is added to P . Similarly, loop [10-13] computes

the subsets T of V5 reachable from J , and adds the required steps to R.

5.1.3 Regular enumeration rules

The set of regular enumeration rules RER is schematically represented in Figure 5.2. This set

of rules is very similar to the set of rules ER from [6]. In fact, only the projections added to new

states created by a rule are introduced. We write P to denote the vertex projection, and R to

denote the regular projection.
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atom append

id description e1 e2 op seed

rule -register waveplank precondition

p:

P, R

⋅e1

| | = 1e1 null null null

atom prepend p:

P, R

⋅ e2

| | = 1e1 null null null

U

U

AA

AP
P, R

P, R

(a) Enumeration rules for labels.

concat
compound

id description e1 e2 op seed

rule -register waveplank precondition

p:

P, R

⋅We2p1 e1 | | > 1e1
 | | > 1e2

= Ud2

⋅ null

concat
compound flip p:

P, R

⋅ We1p1 e2
 | | > 1e1

= Ud1

| | > 1e2 ⋅ null

concat pipe p:

P, R

⋅e2p1 e1 | | > 0e1 | | = 1e2 ⋅ null

concat pipe flip p:

P, R

⋅ e1p1 e2 | | = 1e1 | | > 0e2 ⋅ null

direct pipeline | | > 1e1 =d2 e1 ⋅ null

inverse pipeline =d1 e2 | | > 1e2 ⋅ null

p:

p1 e1

ε

e2 p2

p:

p1 e1

ε

e2 p2

d1

d2

d1

d2

d1

d2

CC

CCF

CP

CPF

DP

IP

(b) Enumeration rules for concatenations.

kleene plus

id description e1 e2 op seed

rule -register waveplank precondition

p:

p1

 = d ⋅d1 ( )e1
+

= ⋅ dd1 ( )e1
+

null + null
d

KP

,Pe1
Re1

ε ε
e1

ε

,Pe1
Re1

(c) Enumeration rules for Kleene closures.

absorb seed 
direct pipe

id description e1 e2 op seed

rule -register waveplank precondition

p:

P, R

⋅e1

| | = 1e1 null null d

absorb seed 
inverse pipe p:

P, R

⋅ e2

null | | = 1e2 null d

d

d

ASDP

ASIP
P, R

P, R

absorb seed 
direct compound p:

,PWe
1

RWe
1

⋅We1  | | > 1e1

= Ud1

null null d

absorb seed 
inverse compound p:

,PWe
2

RWe
2

⋅We2

null  | | > 1e2

= Ud2

null d

d

d

ASDC

ASIC

,PWe
2

RWe
2

,PWe
1

RWe
1

(d) Enumeration rules for seed passing.

Figure 5.2: Enumeration rules for the regular part of expressions.
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Algorithm 1 Projection(e,Pe)
1: Let L be the set of literals in e

2: I =
⋃
l∈L∩V1

{v ∈ V2 | (l,v) ∈ E1}

3: J =
⋃
l∈L∩V3

{v ∈ V4 | (l,v) ∈ E3}

4: P = {min(I),max(I)}

5: R = ∅

6: for v ∈ I \P do

7: T = {t ∈ (V3 ∪V5) | (v, t) ∈ (E2 ∪E4)}

8: if T 1 L∧ T , ∅ then

9: P = P ∪ {v}

10: for v ∈ J do

11: T = {t ∈ V5 | (v, t) ∈ E4}

12: if T 1 L∧ T , ∅ then

13: R = R∪ {v}

14: return (P ,R)

Rule preconditions

Each rule in RER has a number of preconditions on the input sub-expressions e1 and e2, operator

op and seed seed. The role of a seed and seed passing will be discussed subsequently. Suffice it

to say that rules often require a particular operator (like · or +), particular sizes |e1| and |e2| of

sub-expressions e1 and e2 or a particular seed d.

A rule r ∈ RER is applied if and only if its preconditions are satisfied by the input parameters.

Seed passing

Seed passing is a mechanism introduced in [6] that makes sure that plans involving closures are

generated correctly.

Consider the regular expression (ab)+. Applying the rules for labels, concatenation and Kleene

closure naively might result in the WavePlan in Figure 5.3. The problem with this WavePlan

is that it is not strict. That is, the transitions forming the closure are not all appending nor all

prepending. Performing the closure once should yield a result for the expression abab, but this

plan will actually produce a result for aabb due to first prepending a and then appending b to

the intermediate result for ab.
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a ⋅ b ⋅

⋅ a

Figure 5.3: A naive WavePlan for (ab)+.

For a more detailed discussion on strictness and seed passing we refer to [6]. Since seed passing

and strictness are not of specific importance with regard to planning with respect to data, suffice

it to say that seed passing makes sure that plans for closures are generated strict and so makes

sure that the enumeration produces only plans corresponding to the input expression.

Label rules

The subset ofRER that deals with a single input sub-expression consisting of a label is composed

of atom append (AA) and atom prepend (AP).

Both rules introduce two new states; a starting state and an accepting state. Furthermore, they

create a single transition from the starting to the accepting state that has the input label and

either expands the result by appending (AA) or prepending (AP). Finally, the projections P and

R are computed by the Projection routine with input e1.

Concatenation rules

The subset of RER that deals with concatenations of sub-expressions is composed of concat

compound (CC), concat compound flip (CCF), concat pipe (CP), concat pipe flip (CPF), direct pipeline

(DP) and inverse pipeline (IP).

The first two rules, CC and CCF, deal with the case where both input sub-expressions e1 and

e2 are larger than one, and so plans p1 and p2 will have already been constructed in a previous

iteration. A plan p that combines e1 and e2 is constructed by adding a new accepting state to p1

and transitions from the old accepting states in p1 to the new accepting state. These transitions

are transitions over a view, where the view is implemented by the wavefront Ws1 from p1, or

Ws2 from p2 for CCF and CC, respectively.

The third and fourth rules, CP and CPF, perform a similar procedure, but here one of the sub-

expressions e1 and e2 is of size one. Hence, normal transitions with label e1 or e2 suffice instead

of transitions over views.

The last two rules, DP and IP, connect existing plans p1 and p2 for sub-expressions e1 and e2
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with an ε-transition, provided that there is a match between the seed of one sub-expression and

the other sub-expression itself, which means that the output of one plan is valid input to the

next.

Finally, there is the issue of projection. Since the last two rules do not introduce new states,

no new projections have to be computed. In the other four cases, projections P and R are

computed by the Projection routine with as input the super-expression of e1 and e2. That is,

the expression obtained from combining e1 and e2, which is the expression we are building

plans for in the current iteration of the enumeration.

Kleene closure rules

There is one rule in RER that deals with Kleene closures, name Kleene plus (KP). As the name

implies we consider only the closure over at least one instantiation of a regular expression. To

allow for zero or more instantiation (i.e. Kleene star), an ε label can be used in the input REM.

This rule closes an existing plan p1 for e1 by adding two states and three ε-transitions.

The projections Pe1 and Re1 are the projections from an accepting state in p1. Notice that an

arbitrary accepting state suffices, since all accepting states must have the same projections,

or a plan would lead to inconsistent results. Additionally, notice that the new starting- and

accepting state have the same projections.

Seed passing rules

The final subset of rules in RER consists of absorb seed direct pipe (ASDP), absorb seed inverse

pipe (ASIP), absorb seed direct compound (ASDC) and absorb seed inverse compound (ASIC). Once

more, for a detailed discussion of the role of seed passing we refer back to [6]. With respect

to planning for data, it suffices to say that all four rules introduce two new states; a starting-

and an accepting state. For ASDP and ASIP the projections P and R are computed by the

Projection routine given e1. Conversely, the projections PWe1
, RWe1

, PWe2
and RWe2

are obtained

from accepting states in We1 and We2 , respectively, for ASDC and ASIC, respectively.

5.1.4 Data enumeration rules

The set of data enumeration rules DER is schematically represented in Figure 5.4. It consists of

rules add local data join (ALDJ) and add global data join (AGDJ). These rules have an additional

input parameter; a data join δ. For ALDJ, δ is added to the set of local data joins Dl for all
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add local 
data join

id description e1 e2 op seed

rule -register waveplank precondition

p:

P, R

| | > 0e1 null null null
d

ALDJ e1

∪ {δ}Dl

add global 
data join p:

P, R

| | > 1e1 null null null
d

AGDJ e1

∪ {δ}Dg

data  join

δ

δ

p1

p1

Figure 5.4: Enumeration rules for adding data joins.

transitions reaching an accepting state in plan p1 for sub-expression e1. Alternatively, for AGDJ,

δ is added to the set of global data joins Dg . Notice that ALDJ requires that |e1| > 0 since a data

join must be added to an expression containing at least one label. Similarly, AGDJ requires that

|e1| > 1 since a global data join only makes sense for an expression consisting of at least two

labels.

5.2 Cost-based enumeration

Having defined the rules and sub-expressions on which the enumeration procedure is based,

we can give an outline of a cost model for RQMs over data graphs, argue that plans for RQMs

posses optimal substructure and analyse the complexity of cost-based enumeration.

5.2.1 Cost estimation

With query plans defined as k-register waveplans, we can briefly discussed cost estimation.

Estimating the cost of a plan is essential if we are to build an enumerator that is capable of

finding good plans. Indeed, the only guarantee of the quality of our enumeration will be that it

returns a plan that is optimal with respect to the cost estimate.

Cost estimation on the context of RQMs is a topic that could take up an entire thesis, however.

Currently, our goals are to show the challenges in planning RQMs and showing the relative

performance of plans within a certain plan space. That is, optimal performance of enumeration

nor execution in an absolute sense is not part of our goals. Hence, we will be content with a

minimal extension of the cost estimation as presented in [6].

Duplication due to data

The one necessary extension of cost estimation from [6] to cover RQMs has to do with cardinality

estimation. Returning to our running example, suppose that we are given a plan that joins
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edges labeled likes and directedBy, estimating the cost of such a plan depends on the size, or

cardinality, of the result of likes · directedBy. Consider again the data graph in Figure 1.1b.

The cardinality of likes · directedBy is one, since (0,4) is the only distinct pair in the result.

The fact that there are three ways of reaching 4 from 0 does not matter for the cardinality.

However, consider the cardinality of likes · ↓ x0.directedBy. Now, the data values in vertices

1,2 and 3 play a distinctive role. That is, while (0,4) is still the only distinct pair of vertices in

the result, the value in the 0th register can be either 1 or 2. Thus, the cardinality of likes ·

↓ x0.directedBy is two, instead of one. To capture this discrepancy, we introduce a coefficient

to the estimate called a duplication factor. A duplication factor da·b is defined as

da·b =
n

max(n−m,1)
(5.1)

where n is the number of distinct vertices that have an incoming edge labeled a and an outgoing

edge labeled b, and m is the number of distinct data values among those same vertices.

Multiplying the estimate for likes · directedBy by dlikes·directedBy will give us an estimate for

the cardinality of likes · ↓ x0.directedBy. This will allow us to build a cost-based enumerator

that is at least aware of data joins, even though its estimates will not be particularly accurate. It

is the topic of future work to flesh out cost estimation for RQMs.

5.2.2 Optimal substructure

To efficiently enumerate a plan space that’s exponential in the size of the regular expression,

WaveGuide introduces a cost-based approach using dynamic programming. The key observation

underpinning this approach is that the enumeration problem has the optimal sub-structure

property. That is, a plan for r = a · b that is not optimal cannot be the basis for an optimal

plan for r ′ = a ·b · c. In other words, by storing only one optimal plan for each sub-expression of

an input expression r and combining these plans in a bottom-up fashion to produce plans for

larger sub-expression, the complexity of the enumeration procedure can be reduced, while still

guaranteeing that the final plan is optimal.

Let P be a problem to which the solution is the generation of an optimal plan (with respect to

cost estimation) for a given regular expression with memory e. Then, optimal solutions to sub-

problems Si are the lowest cost plans for sub-expressions si of e. Since there are many different

ways of combining sub-expressions si to obtain e, we must show two things to prove optimal

substructure, namely:
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1. a construction of a solution of P from optimal solutions for Si is optimal, and

2. during enumeration, all possible combinations of sub-problems Si resulting in P are

explored.

Claim (1) is shown in [6] by structural induction on a fixed parse tree of e, and split into

cases based on the operator in the parse tree. To extend this argument, we must consider the

assignment- and condition operators.

Suppose that e =↓ x.e1. Let p1 denote the optimal plan for e1. The optimality of a solution for e

is subject only to the cost of performing the assignment to the result of e1. Since p1 is an optimal

plan for e1, applying the assignment to its result cannot be more expensive than applying it to

the result of any plan p for e1 that is sub-optimal. Thus, a plan that applies the assignment x to

the result of p1 is optimal for e.

Suppose that e = e1[c]. Let p1 denote the optimal plan for e1. Again, the optimality of a solution

for e is subject only to the cost of evaluating c over the result of e1. Therefore, an optimal plan

for e can be constructed from p1.

Combining the argument from [6] that we consider all combinations s1 and s2 for e such that

|s1| + |s2| = |e|, with the observation that the ALDJ and AGDJ rules consider all plans for sub-

expression s1 of e such that s1 and e have the same regular part r and s1 has n − 1 data joins

whereas e has n, results in the conclusion that we do indeed consider all combinations of

problems Si resulting in P .

5.2.3 Complexity of cost-based enumeration

The key difference between the complexity of WaveGuide’s enumeration procedure and the one

proposed here, lies in the number of sub-expressions for which plans are generated. In case of

regular expressions, this number is polynomial in the size of the expression. Figure 5.5 shows

the sub-expressions for regular expression r = abcdef . Since the number of sub-expressions at

the bottom of the pyramid is |r | = 6 and every other level has one fewer sub-expression than the

level below, we can write the number of sub-expressions of a regular expression r of size |r | as:

|r |∑
i=0

|r | − i =
|r |2 + |r |

2
(5.2)

For regular expressions with memory, there is an additional number of sub-expressions, namely

those formed by adding a data join. Here, we run into the same difficulty as we did when
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analyzing the plan space complexity; the number of sub-expressions of an REM is dependent

on its structure. We can make two assumptions that will allow us to derive an upper-bound

on the number of sub-expressions of an REM in terms of the size |r | of its regular part and the

number of data joins n in it.

First, assume that the data join can be evaluated together with two labels. That is, assume that

none of the data joins are assignments on the first vertex, or conditions on the last vertex of a

path.

Second, assume that the number of labels before the two labels a data join can be evaluated

with is the same as the number of labels after.

In case of r = abcdef this means we assume any data join can be evaluated together with c, d or

any sub-expression containing c or d. This subset consists of those sub-expressions inside the

pentagon in Figure 5.5.

To see that these assumptions lead to an upper-bound, consider what happens if we should

change the labels with which a data join can be evaluated. For example, consider a data join

that can be evaluated with b or c. This change would shift the pentagon to the left, enabling b

and ab as sub-expressions with which to evaluate our data join, but disabling d, de and def .

Choosing the middle two labels maximizes the size of the pentagon, and thus the number of

sub-expressions with which a data join can be evaluated. From equation 5.2 we can derive that

the number of sub-expressions outside our maximized pentagon is:

2


( |r |−2

2

)2
+
( |r |−2

2

)
2

 = 2

 |r |2 − 2|r |
8

 (5.3)

And so the difference, which is the number of sub-expression with which a data join can be

evaluated is:
|r |2 + |r |

2
− 2

 |r |2 − 2|r |
8

 =
|r |2 + 4|r |

4
(5.4)

Each of these sub-expressions will spawn an additional:

n∑
i=1

(
n
i

)
= 2n − 1 (5.5)

sub-expressions, since there are 2n − 1 ways to add 1 up to n data joins to a sub-expression that

has none. Combining equations 5.2, 5.4 and 5.5 yields an expression for the maximal number

of sub-expressions of any REM with regular part r and n data joins:

|r |2 + |r |
2

+
|r |2 + 4|r |

4

(
2n − 1

)
(5.6)
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abcdef

bcde

abcde bcdef

abcd cdef

abc bcd cde def

ab bc cd de ef

a b c d e f

Figure 5.5: Sub-expressions of regular expression r = abcdef .

Asymptotically, this means that there are O(|r |22n) sub-expressions for an expression e with

regular part r and n data joins. This increased number of sub-expression will drastically

impact the complexity of the enumeration procedure. Algorithms 2 and 1 provide pseudo-code

for the routine that generates plans with data joins and the overall enumeration procedure,

respectively.

The sub-routines seedConst, seedKleene, getPlans and memoizeMin are not changed from

[6], except for the minor detail that set of plans that getPlans iterates over is now called RER

instead of ER. Because of the increase in the number of sub-expressions fromO(|r |2) toO(|r |22n)

the complexities of seedKleene and memoizeMin change to O(|r |2n) and O(|r |22n), respectively.

The complexities for the other two routines are unchanged.

The complexity of the new sub-routine getPlansWithData is O(|r |2n) since there are O(|r |)

seeds, and the rules in DER must consider all sub-expressions with the same regular part r

and n− 1 data joins, of which there are O(n).

To analyse the complexity of the overall enumeration procedure, we will have to investigate the

loops L[1-9], L[10-30], L[11-30], L[13-30], L[14-20] and L[25-30]. Starting with the inner-most

loops, the complexity of L[14-20] is O(|r |422n) since there are O(|r |22n) sub-expressions s2 and

memoizeMin is the most expensive sub-routine within the loop. The same bound and argument

hold for L[25-30]. Since loops L[14-20] and L[25-30] are equally expensive, and lines 23 and 24

are less expensive, the complexity of L[13-30] becomes O(|r |623n). Hence, loops L[11-30] and

L[10-13] will have complexities of O(|e||r |623n) and O(|e|2|r |623n), respectively. The bound on

L[1-9] follows from the fact that there are O(|r |) expressions s of size one, since data joins play

no role here, and is therefore O(|r |32n). Using the fact that |e| ≥ |r | yields an overall complexity

of O(|e|2|r |68n).

38



CHAPTER 5. PLAN ENUMERATION 5.2. COST-BASED ENUMERATION

Algorithm 2 getPlansWithData(e)
1: Plans ps

2: for each d ∈ getSeeds(e) do

3: for each rule ∈ DER do

4: Let D be the set of data joins in e

5: for each δ ∈D do

6: if rule.precondition(e, null, null, null, δ) then

7: Let e′ be the REM with the same regular part as e

and set of data joins D\{δ}

8: p1← bestPlan(e′ ,d)

9: Plan p← rule.genPlan(p1, null, null, δ)

10: ps.add(e)

11: return ps
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Algorithm 3 WGEnum(Q = (x,e,y))
1: for all s ⊆ e : |s| = 1 do

2: seedConst(s, Q)

3: seedKleene(s, Q)

4: if s = a then

5: P ← getPlans(a, null, null, null)

6: memoizeMin(P ,ai)

7: if s = a+ then

8: P ← getPlans(a, null, +, null)

9: memoizeMin(P ,a+)

10: for 1 < l ≤ |e| do

11: for 1 ≤ l1 < l do

12: l2 = l − l1
13: for each s1 ⊆ e : |s1| = l1 do

14: for each s2 ⊆ e : |s2| = l2 do

15: if s1 · s2 ⊆ e then

16: P ← getPlans(s1, s2, ·, null)

17: memoizeMin(P ,s1 · s2)

18: if s1 + s2 ⊆ e then

19: P ← getPlans(s1, s2,+, null)

20: memoizeMin(P ,s1 + s2)

21: Let D be the set of data joins in s1

22: if D , ∅ then

23: P ← getPlansWithData(s1)

24: memoizeMin(P ,s1)

25: for each s ⊆ e : |s| = l do

26: seedConst(s, Q)

27: seedKleene(s, Q)

28: if s = s+1 ⊆ e then

29: P ← getPlans(s1, null, +, null)

30: memoizeMin(P ,s+1 )

31: return bestPlan(e,Q)
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6 Plan Execution

With plans in PSRP defined as k-register waveplans, we can present a procedure for executing

such waveplans and thus answering regular queries with memory. This procedure will be an

extension of [6], and concern a fix-point procedure of crank, reduce and cache routines, where

intermediate results are expanded from the graph or a view, duplicates are removed and the

new intermediate results are stored, respectively.

As with enumeration, the execution procedure is built on that presented in [6]. It concerns a fix-

point procedure where the execution is carried out iteratively until no new results are produced.

The terms execution and search are used interchangeably since the execution procedure is

similar to the breadth-first search graph algorithm.

The input to the search is a data graph G and a k-register waveplan AQ constructed from a

given regular query with memory Q = x
e−→ y. We say that the automaton AQ guides the search,

since the graph search and a run of the automaton are carried out in lockstep. That is, each

transition in AQ specifies the exact operations to be carried out in an iteration of the search,

and the state of AQ determines which transitions can be taken.

During the search, intermediate results take the shape of a triple consisting of two m-tuples as

defined in Chapter 4 and a state in the k-register waveplan. For example, the triple (v,r,q) with

v = ((0,v1), (1,v2), (2,v3)) and r = ((0,2), (1,5)) denotes an intermediate result with vertices v1, v2

and v3 for steps 0, 1 and 2, respectively, register values 2 and 5 for registers 0 and 1 and state q.

6.1 Search routine

The search starts by cranking the graph based on the waveplan A. The structure and state of

A determine the exact implementation of the crank routine. The tuples produced by cranking
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the graph are stored in ∆R0 , and subsequently cached in C0.

While |∆Ri | > 0 the last iteration produced new tuples, and so a fix-point has not yet been

reached. We proceed by continuing to crank, reduce and cache.

The crank procedure now takes Ci as input parameter, sinceAmight require expanding results

from the cache.

The new cache stored in ∆Ci+1 will need to be reduced. That is, duplicate tuples within Ci and

in Ci ∪∆Ci+1 need to be removed from ∆Ci+1 in order to avoid unnecessary work and unbounded

execution.

After the delta has been reduced and stored in ∆Ri+1 it can be cached intoCi+1 and a new iteration

may be started.

When |∆Ri | > 0 no longer holds true, the last iteration did not produce any new results and a fix-

point has been reached. The result of the regular query with memory Q can now be extracted

from C which is the union of all caches produced by the search. To do this, triples (v,r,q) ∈ C

can be filtered on the predicate q ∈ F, where F is the set of accepting states in A.

Algorithm 4 GuidedSearch(G,A)

1: ∆R0 = crank(G,∅,A)

2: C0 = cache(∆R0 ,∅)

3: i = 0

4: while |∆Ri | > 0 do

5: ∆Ci+1 = crank(G,Ci ,A)

6: ∆Ri+1 = reduce(∆Ci+1,Ci)

7: Ci+1 = cache(∆Ri+1,Ci)

8: i = i + 1

9: C =
⋃

0≤j≤i Cj

10: return extract(C)

6.1.1 Crank routine

The first application of the crank routine on line one iterates over all outgoing transitions from

the starting states ofA. First, a look-up of all the edges in G that have the same edge label as the

current transition’s label is performed. Subsequently, local- and global data joins are applied,

in that order. The resulting m-tuples are returned together with the state in A reached by the

transition.
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5 6 7

3

{3, 4}, ∅ {3, 4}, ∅ {3, 4, 5}, ∅

∅, produced ⋅ , ∅ ∅, likedBy ⋅ , ∅

0 1 4

{1, 2}, ∅ {1, 2}, ∅ {0, 2}, {0}

∅ ⋅ directedBy, ∅
2

{ ↓ }, ⋅ likes, ∅x0 ∅, dealsWith ⋅ , ∅ ∅, 7 ⋅ , { }x=

0

{0, 3}, {0} {0, 5}, ∅

Figure 6.1: A k-register waveplan for the running example query.

Later applications of crank iterate over all outgoing transitions from states present inCi , however.

They too perform look-up and local data joins. After that though, results in Ci are expanded

by the newly found tuples by either prepending or appending them, based on the transition’s

label. Only after this join on topology as happened, are the global data joins applied.

Let us consider the execution of a k-register waveplan for our running example, where we

ask "Find all pairs u,v of people such that u likes a movie directed by someone who has worked

with a producer that produced a movie that v likes, given that the movies have the same genre".

Figure 6.1 shows such a plan. The execution of this plan is presented in Figure 6.2, where i

indicates the iteration number of the execution routine. In the 0th iteration (i.e. before the

while-loop), the crank routine is applied to the transitions from states 5 to 6, and 0 to 1. The

first produces pairs of vertices for edges labeled produced. Similarly, the second produces pairs

of vertices for edges labeled directedBy.

In the first iteration, transition (6,7) is input to the crank routine. Notice that state 7 has a

vertex projection Pv = {3,4,5} since vertices for step 4 will be required later on to evaluate the

condition x=
0 . Hence, this application of crank will produce triples, representing results of

produced · likedBy. Transition (1,2) also serves as input to the crank routine in this iteration.

It produces pairs corresponding to likes · directedBy, as well as assigning a value to the 0th

register. Since both vertex 1 and 2 have data value 1, there exists a duplicate entry with vertices

(0,2), register assignment (1) and state 2, which is subsequently removed by the reduce routine.

The second iteration expands results for likes · directedBy by appending dealsWith. Notice

that, due to the fact that register 0 cannot yet be projected out, there occurs some duplication

due to data as discussed in Section 5.2.1

The third and final iteration appends the results from (6,7) produced in the first iteration to

the results from (2,3) produced in the second iteration. Notice that the condition x=
0 , which

expresses that the two movies involved are of the same genre, is in the set of global data joins
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Figure 6.2: Execution of the plan from Figure 6.1.
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on (3,4) and is therefore evaluated after the results from (2,3) and (6,7) have been joined. It

is important to recognize that (2,3) produces steps 0, 3 and register 0, whereas (6,7) produces

steps 3, 4 and 5. Hence, all the required steps and registers are available to evaluate x=
0 before

the projection to steps 0 and 5 is applied.
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7 Experimental Setup

This chapter briefly discusses the implementation of the proposed system. Furthermore, it

formalizes the hypotheses central to this thesis, and describes the methodology by which to test

them.

The hypotheses are twofold; (1) topology and data planning are orthogonal, and (2) data planning

significantly impacts performance for fixed topology.

7.1 Implementation

By and large, the implementation of the proposed system is the same as that of WaveGuide

[6]. We will reiterate some of the important aspects of the implementation regarding planning,

execution and hardware, as well as indicating how the current implementation differs from

WaveGuide.

7.1.1 Planning

The implementation regarding query planning consists of two main parts; parsing and enumeration.

To parse regular expressions with memory the Java distribution of the ANTLR library is used.

Subsequently, the enumeration is implemented in Java. These choices are inherited from WaveGuide.

7.1.2 Execution

Like WaveGuide, the current execution procedure is built using procedural SQL in PostgreSQL.

PostgreSQL was originally chosen because it is open-source and has a well performing implementation

of procedural SQL.

Transitions in a Waveplan are deployed to a database by translating them to a procedural SQL

routine called transition(), and storing the code as data in a table trans. The code for a
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Figure 7.1: Overview of the proposed system.

particular transition is then injected into the main execution procedure as described in Chapter

6, thus implementing the crank routine.

The data graph is decomposed into two tables; serialfacts and data. The first table stores

triples consisting of a subject (vertex), predicate (edge label) and object (vertex). This represents

the topology of the graph. The second table stores pairs consisting of a subject (vertex) and a

data value. This represents the data in the vertices of the graph.

Since intermediate results may consist of n+ k steps, with n the number of steps used to store

vertices, and k the number of steps to store registers, the cache covers all n+k steps, even though

many steps will only contain null values. Other approaches using decomposition of a tuple into

multiple rows were considered, but these proved inferior to storing the full projection in terms

of performance.

Figure 7.1 shows an overview of the proposed system and the interactions between its various

components.

7.1.3 Hardware

The hardware available for the experimental evaluation consists of a Intel(R) Core(TM) i5-

4690K CPU @ 3.50GHz, 8GB of RAM, a 332GB partition of a 7200RPM HDD running Ubuntu

18.04.1 LTS.
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7.2 Edge walks

To asses the performance of k-register waveplans we will look at the number of edge walks that

a plan makes. The number of edge walks is defined as the total number of unique edges of

the input graph that the execution procedure must store. Since the reduce routine removes

duplicate tuples, we know that each tuple that is cached represents exactly one edge walk.

Thus, the number of edge walks is the total size of the cache after execution has finished.

The motivation for this choice of statistic is that it can be regarded as implementation agnostic.

That is, its value does not depend on the implementation of particular operations. Nor does it

depend on the hardware on which an experiment runs. A statistic like total execution time, for

instance, would depend on these factors. Given that the logical operations necessary to execute

a plan, as well as the order in which they are applied, is fixed, the execution routine must cache

the same number of tuples, regardless of the way in which these tuples are obtained. Hence,

with better implementation and hardware a plan will run faster, but it won’t cache fewer tuples.

As an example, consider the execution presented in Figure 6.2. Operations crank(5, 6), crank(0,

1), crank(6, 7) and crank(2, 3) produce 5, 3, 7 and 8 tuples, respectively. Additionally, operations

reduce(1, 2) and reduce(3, 4) produce 2 tuples each. Hence, the total number of tuples, and

thus the total number of edge walks, is 27.

7.3 Input

The input to an experiment consists of a data graphG and a set of regular queries with memory,

known as a workload.

7.3.1 Data graph

The data graph is extracted from the YAGO2 data set. YAGO2 is a knowledge base built from

Wikipedia, GeoNames and WordNet [7]. This data has been serialized into triples consisting

of a subject, predicate and object. Additionally, a subset of predicates has been identified as

representing data values. One such predicate is hasIncome. The value found at the object

of an edge labeled hasIncome thus concerns a monetary value, and can be serialized into a

pair consisting of the subject and a data value. Since the grammar for REMs only allows for

equality and inequality tests, data values will need to be categorized in order to avoid extremely

selective queries. For monetary values, for instance, values are categorized with respect to their
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hasIncome
"Royal Dutch Shell" "23900000000"^^dollar

(s, 23900000000)

YAGO2

Serialized

(s, 10)Categorized

Figure 7.2: Serialization and categorization of a monetary value.

order of magnitude. That is, we take the base-10 logarithm of the integer value, assuming it

is positive. Figure 7.2 shows an example of serialization and categorization for a triple with

predicate hasIncome, where s is a variable representing the serialization of the subject.

7.3.2 Workload

The set of RQMs that serve as input to an experiment are obtained by first defining patterns,

and then mining labels to make these patterns concrete.

Patterns

Patterns are regular expressions with memory, using placeholder labels like a, b and c. An

example pattern is:

e = (a · ↓ x0.b[x=
0 ] · c)+ (7.1)

Two properties are important when defining patterns; (1) a pattern must contain at least one

assignment and one condition that depends on an assignment, and (2) a condition that depends

on an assignment must be inside of a Kleene plus. These properties are important, because

if they are not met, an RQM that is defined by such an REM can be rewritten as a conjunctive

regular path query (CRPQ). We abstain from providing a full comparison between the expressiveness

and complexity of CRPQs compared to RQMs, but suffice it to say that since an RQM without

use of assignments and conditions is an RPQ, it is therefore also a CRPQ. Furthermore, an RQM

that does not check against a register within a closure can be thought of as a number of RPQs

with a variable binding to each vertex where a register is used. Since the number of register
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a b c

p1 p2

same 
unit

Figure 7.3: Graph representation of pattern (a · ↓ x0.b[x=
0 ] · c)+.

uses is finite, so is the number of RPQs. Hence, there is an equivalent CRPQ and a condition

over the variables that produces the same result as such an RQM.

Mining

To obtain a concrete workload, we assign predicates from YAGO2 to the labels in a pattern.

When looking for predicates from YAGO2 to assign to labels, it is helpful to think of a pattern

as a graph. For instance, the pattern 7.1 can be mined using the graph displayed in Figure 7.3.

Notice that, besides the topological structure of 7.1, there are also edges for the data values

necessary to perform an assignment and evaluate a condition. For a query to make any sort of

semantic sense, we require that p1 and p2 produce data values that have the same unit, say a

monetary value. If this constraint were not in place, we might end up comparing a monetary

value to a person’s height, for instance. Such a comparison would negate the value of using

real data, since data values might as well have been sampled if there is no need for a relation

between them. Consider the following pattern:

e = (↓ x0.a · b[x=
0 ])+ (7.2)

It’s graph representation is given in Figure 7.4. Notice that in this case, the two edges capturing

data values must not only have the same unit, but they must actually have the same predicate,

since a data graph only allows a single data value to be associated with each vertex. We have

found the data graph model and the YAGO2 data set to be rather irreconcilable on this point.

That is, there was no combination of predicates that matched pattern 7.2 while also being

categorizable. In summary then, fifty combinations of label a, b and c were mined for pattern

7.1 to comprise the experimental workload.
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a b

p1 p1

Figure 7.4: Graph representation of pattern (↓ x0.a · b[x=
0 ])+.

7.4 Planning orthogonality

Recall that a plan can be optimal with respect to topology, and with respect to topology and data.

The first is referred to as being topologically optimal, the second as being overall optimal.

Intuitively, this means that a plan that is optimal overall does not always have the same topological

order as a plan that is topologically optimal.

Consider the following three regular expressions with memory, when applied to the data graph

from Figure 1.1b.

e1 = likes · directedBy · dealsWith · produced · likedBy (7.3)

e2 =↓ x0.likes · directedBy · dealsWith · produced · likedBy[x=
0 ] (7.4)

e3 = likes· ↓ x0.directedBy · dealsWith · produced[x=
0 ] · likedBy (7.5)

Notice that e3 is the expression from our running example. Enumerating and executing the

plans for e1 yields the plan in Figure 7.5 as one of the optimal plans with respect to the number

of edge walks, producing a total of 15.

Since e1 is the regular part of both e2 and e3, we know that the order in which the labels are

evaluated in the plan in Figure 7.5 is the optimal topological order for plans for e2 and e3.

To show that a plan for an REM with assignments and conditions that is optimal overall, can

have the same topological order as a plan that is topologically optimal, consider the plan for

expression e2 in Figure 7.6. This plan has the same topological order as the plan in 7.5, which

we saw is the optimal topological order. Since the 0th register can be assigned only one value

(namely 47), there is no duplication due to data, and so the number of edge walks for this plan

is also 15, meaning that it is optimal overall.

Finally, consider the plan for expression e3 in Figure 7.7. This plan also has the optimal

topological order. When applied to the data graph from our running example, this plans
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0 1 2 3 4 5
likes ⋅ directedBy ⋅ dealsWith ⋅ produced ⋅ likedBy ⋅

[0, 1] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

Figure 7.5: k-Register waveplan for e1.

0 1 2 3 4 5
, likes{ ↓ }x0 ⋅ directedBy ⋅ dealsWith ⋅ produced ⋅ likedBy , ⋅ { }x

=

0

[0, 1] [0, 1], [0] [0, 2], [0] [0, 3], [0] [0, 4], [0] [0, 5]

Figure 7.6: k-Register waveplan for e2.

produces 21 edge walks. Conversely, the plan in Figure 7.8 also evaluates e3, but does not

have the optimal topological order. This order, when applied to e1 would yield 27 edge walks.

When applied to e3, however, it only produces 14 edge walks, by being able to projection the

0th register out immediately after use. Hence, this plan is not optimal with respect to topology,

but it is optimal with respect to topology and data.

7.4.1 Improvement ratio

We will investigate the orthogonality between topological optimality and overall optimality by

looking at a statistic we call the improvement ratio. This statistic represents the proportion of a

workload for which better plans were found by planning for topology and data both.

Let W be a workload consisting of regular queries with memory of the shape Q := x
e−→ y. To

obtain the improvement ratio ψW over W , we produce a regular expression r for every Q ∈W

by removing all assignments and conditions from e. Enumerating the plans for both e and r

yields sets of plans E and R, respectively. Then, executing all plans in E and R yields E′ ⊆ E

and R′ ⊆ R which are the sets of optimal plans for e and r, respectively. Since r is the regular

part of e, the plans in R′ are topologically optimal for e. By counting the number of times

that the intersection between E′ and R′ is empty, we count the number of times that a better

plan was found by planning for topology and data both. For if the intersection is non-empty,

it means that an optimal plan could have been found by planning with respect to data only for

an optimal plan for r. By dividing the number of times a better plan was found by planning for

0 1 2 3 4 5
likes ⋅ , directedBy{ ↓ }x0 ⋅ dealsWith ⋅ produced , ⋅ { }x

=

0
likedBy ⋅

[0, 1] [0, 1] [0, 2], [0] [0, 3], [0] [0, 4] [0, 5]

Figure 7.7: Sub-optimal k-register waveplan for e3
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0 1 2 3 4 5
dealsWith ⋅ produced ⋅ directedBy, ⋅ { , }⏐

↓ x0 x
=

0
likes⋅ likedBy ⋅

[2, 3] [2, 3] [2, 4] [1, 4] [0, 4] [0, 5]

Figure 7.8: Optimal k-register waveplan for e3
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R′ ⊆ R

remove assignment & conditions

enumeration

execution

Figure 7.9: Obtaining the sets of optimal plans for an RQM and its regular part.

topology and data both by the size of the workload, we obtain the improvement ratio. Formally,

this ratio can be expressed as:

ψW =
1
|W |

∑
Q∈W

(E′ ∩R′ = ∅) (7.6)

where we assume that the predicate (E′ ∩R′ = ∅) evaluates to zero or one. Figure 7.9 shows the

process of obtaining E′ and R′ from Q schematically.

Hence, our first hypothesis can now be formulated as: there are regular queries with memory

for which an overall optimal plan can only be found by planning with respect to topology and

data both. Formally, this can be written as ψW > 0 for some workload W .

7.5 Data planning performance

Intuitively, the second hypothesis states that planning with respect to data is useful to begin

with. Let E be the set of plans obtained from REM e, and Er ⊂ E a set of plans that share the

topological order r. Then, any performance difference between plans p,q ∈ Er is due to the way

the interactions with data have been planned. Hence, for every topological order r of an REM

e we will investigate the subset Er and look at the difference in order of magnitude of the best-

and worst performing plans within that subset. Again, performance is expressed in the number

of edge walks.
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8 Experimental Results

The experiment results for the orthogonality of planning with respect to topology and data, as

well as the results of planning with respect to data for fixed topology are summarized in this

chapter.

8.1 Planning orthogonality

The improvement ratio ψW of the workload W mined based on pattern e = (a· ↓ x0.b[x=
0 ] · c)+ is

ψW = 0.16. This means that for 16% of the queries in the workload an overall optimal plan did

not have the same topological order as a topologically optimal plan. In other words, for just this

pattern and workload, an overall optimal plan could not have been obtained by not considering

topology and data together during planning.

8.2 Data planning performance

Figure 8.1 shows the relative frequency of the difference in order in magnitude (ODE) between

the best performing (i.e. smallest number of edge walks) and worst performing (i.e. largest

number of edge walks) plans within sets of plans that have a shared topological order. Hence,

this difference in performance is solely due to planning with respect to data.

Twenty percent of sets display at least one order magnitude difference in the number of edge

walks between the best- and worst performing plans for the pattern e.

Figure 8.2 breaks down the relative frequency of the ODE on a query-by-query level. That is,

it shows for each query the relative frequency of subsets of plans with shared topological order

that display a certain ODE. For example, for query number four, around 80% of subsets did

not display an order of magnitude difference between the best- and worst performance plans,
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Figure 8.1: Order of magnitude difference between best- and worst edge walks.

whereas the other roughly 20% displayed one order of magnitude difference.

The extreme cases, in both figures, of three or four orders of magnitude difference for a given

order must be regarded with some caution. Namely, there are queries within the workload for

which the result is empty. Hence, a plan that can discard all tuples early on, may well cache

orders of magnitude fewer tuples than a plan that discard its tuples later, even though the

absolute number of tuples considered by the latter plan may not be particularly large.
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Figure 8.2: Relative frequency of ODE for subsets with shared topological order.
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9 Conclusion

We have introduced k-register waveplans as a way of representing plans for RQMs. This approach

combines the strengths of register automata [3] and WavePlans [6]. Additionally, we have

investigated the peculiarities in planning RQMs, and have proposed a plan space PSRP for

RQMs, arguing that the complexity of this plan is O(|r |nc|r |) where |r | is the size of regular

part of the input REM, n is the total number of assignments and conditions and c is a constant.

An extension of the enumeration procedure as detailed in [6] has been proposed. This extension

adds projection to the existing enumeration rules, and adds two new rules to cover both local-

and global assignments and conditions. Additionally, the optimal substructure of the enumeration

problem for RQMs has been shown, which together with the consideration of the effect that

data has on cardinality estimation, can be used to implement cost-based enumeration. We have

analyzes the complexity of the enumeration procedure and have concluded that it isO(|e|2|r |68n)

where |e| is the size of the input REM, |r | is the size of its regular part and n is the total number

of assignments and conditions in e.

Furthermore, we have extended the fix-point procedure used to execute WavePlans to cover

plans with flexible intermediate result sizes.

On an empirical note, we have investigated two hypotheses; (1) topology and data planning are

orthogonal, and (2) data planning significantly impacts performance for fixed topology plans.

The former hypothesis was formalized as ψW > 0 for some workload W , which states that we

expect the proportion of plans that are optimal overall, but have a different topological order

than the optimal topological order is larger than zero. In other words, we hypothesized that

certain optimal plans can only be found by planning with respect to topology and data both.

The improvement ratio ψW over a workload W consisting of fifty variations of the pattern
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e = (a · ↓ x0.b[x=
0 ] · c)+ obtained from- and evaluated over a data graph extracted from the YAGO2

data set, was found to be ψW = 0.16.

Hence, even for a simple pattern which uses only one register for a single assignment and

a single condition, we could not have found an overall optimal plan without planning for

topology and data together in 16% of the queries in W .

We have also found some evidence to support the second hypothesis. Indeed, plans with the

same topological structure but different interactions with data can display order of magnitude

differences in performance with respect to edge walks. Our results show that just over a fifth

of all groups with the same topological structure produce order of magnitude differences in

performance. While this result might seem small at first glance, it must again be taken into

account that only one register was used, once in an assignment and once in a condition. We

speculate that the effect on performance increases significantly when more registers are used.

Hence, to already observe order of magnitude performance differences for a fifth of all groups

with only one register, is actually a fairly strong result.

In summary, we conclude that there is some evidence that overall optimal plans can only be

obtained by considering topology and data together for a substantial proportion of queries.

Furthermore, we have seen that planning with respect to data can produce order of magnitude

differences in performance for sets of queries with a shared topological order. Both of these

conclusions were reached for a very modest query pattern, using only one register for one

assignment and one condition, but also on a limited workload.

This conclusion encourages us to expand upon the methodology by (1) considering larger and

more varied data sets, (2) building much larger workloads to test this hypothesis more rigorously

and (3) expanding the grammar of the query language to be able to write more realistic queries.
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