
 Eindhoven University of Technology

MASTER

Semantical search term clustering for performance prediction

Coenders, R.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/56dde279-e36a-416c-8c92-1074704c02a2

Semantical Search Term
Clustering for Performance

Prediction

Master Thesis

Rik Coenders

Department of Mathematics and Computer Science
Data Mining Group

Supervisors:
Dr. Ekaterini Ioannou
Dr. Nikolay Yakovets

Mark van Werven, MSc

Final version

Eindhoven, August 2019

Abstract

Search engine advertisers are responsible for creating and maintaining advertisements that will
be shown in a search engine. They do so with a specific marketing goal, such as maximizing the
return of investment on these advertisements. The ‘slots’ in a search engine that are available
for advertisement are sold in an auction. As such, one of the main challanges in search engine
advertising is to optimize bids for each specific search term. Many search terms only have a few
impressions, and, because of that, performance metrics for a single search cannot be determined
very reliable. This makes it hard to determine the optimal bid, which causes the advertisement
goals not to be reached. In this thesis, an approach is introduced to get a set of historical search
terms that are semantically similar to a specific search term, such that the expected values of the
performance metrics of the search term can be predicted by aggregating over the metrics of the
similar search terms. The approach is based on clustering search terms together that have a high
similarity. The similarity between two search terms will be calculated using a pre-trained word
vector model.

Semantical Search Term Clustering for Performance Prediction iii

Preface

This research was done within the Data Mining Group of the Department of Mathematics and
Computer Science at the Eindhoven University of Technology. It was supervised by Dr. Ekaterini
Ioannou, who is an assistant professor in this group.

The project was done in co-operation with ADchieve. ADchieve is founded in 2005 to fill in the
need for automation in the, until then, very labor intensive market of search engine advertising.
The company focusses on automation of advertisement campaign creation and management. This
is done mostly for, but not limited to, search advertisements in Google. ADchieve is a Premium
Google Partner and a Google Ads API partner.

ADchieve has offices in Den Bosch and Rotterdam, both in The Netherlands. Both locations
together host around 30 employees (as of August 2019). At ADchieve, people are working with a
background in software engineering, data science, econometrics and search engine advertising.

In recent year ADchieve shifted it’s focus from pure creation of advertisements to a more data-
driven decision making approach, which includes coming up with smart marketing and econometric
models for customers, satisfying their specific needs.

The project is done as master graduation project. The project started at February 4th, 2019
and was finished on August 28th, 2019. A total of 116 8 hour work days were spend on the project,
giving 928 hours in total.

I would like to thank my supervisor Dr. Ekaterini Ioannou for guiding me during the project.
She helped me by picking the problem statement and guided me in the right direction during the
project. Also, I would like to thank Mark van Werven, CEO of ADchieve, for making it possible to
do the project at ADchieve and making the resources available to do so. In addition, I would like
to thank my colleages at ADchieve for providing the necessary information about search enginge
advertising and marketing automation in general and for providing feedback on the project and
this report.

Semantical Search Term Clustering for Performance Prediction v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Problem Definition 3
2.1 Search Engine Advertising . 3
2.2 Bid management . 6
2.3 Performance metrics . 6
2.4 Product data . 8

3 Related work 11
3.1 Search Engine Advertising . 11
3.2 Semantical similarity between search terms . 12
3.3 Scalable processing . 13

4 Method 15
4.1 Search term normalization . 15
4.2 Search term similarity . 16

4.2.1 Word similarity . 16
4.2.2 Soft cosine similarity . 18

4.3 Search term clustering . 19
4.4 Metric prediction . 21

5 Evaluation 25
5.1 Data set . 25
5.2 Similarity measures . 27
5.3 Clustering . 29

6 Conclusion 33

Bibliography 35

Semantical Search Term Clustering for Performance Prediction vii

List of Figures

2.1 Example of the Google Search page . 4
2.2 Example of the blind second price auction . 6

4.1 Continous Bag of Words (CBOW) model . 17
4.2 Skip-gram model . 17
4.3 Example clustering and corresponding overlapping areas 21

5.1 Number of centroids for different values of �1 . 29
5.2 Min, max and average number of clusters a search term belongs to for different

values of �2 . 30

Semantical Search Term Clustering for Performance Prediction ix

List of Tables

2.1 Google match types and examples . 5
2.2 Available performance metrics . 7
2.3 Example search term performance data . 7
2.4 Example product values . 9
2.5 Used notation in problem definition . 9

4.1 Example centroids . 20
4.2 Example search terms and corresponding areas . 20
4.3 Example centroid similarity . 22
4.4 Example area similarity . 23
4.5 Search terms similar to ‘red bike’ . 23
4.6 Used notation in method . 24

5.1 Sample of search terms with historical metrics . 26
5.2 Amount of non-zero values per metric for search terms 26
5.3 Search terms affected by normalization rules . 26
5.4 Amount of distinct values for product attributes 27
5.5 Sample word similarity . 27
5.6 Closest words . 28
5.7 Sample search term similarity . 28
5.8 Closest search terms . 28
5.9 Cluster size info . 30
5.10 Overlapping area info . 30
5.11 Influence of goal on result . 30
5.12 Missing values comparison . 31

Semantical Search Term Clustering for Performance Prediction xi

List of Algorithms

1 Centroid selection . 19
2 Similar search terms retrieval . 21

Semantical Search Term Clustering for Performance Prediction xiii

Chapter 1

Introduction

Nowdays, search engines are the main way of finding content on the web. A user enters a search
term into the search engine and the search engine shows the most relevant web pages. The most
popular search engine at the moment of writing is Google, with a global market share of 92:81%
in April 2019 [2]. A significant portion of searches are made for finding products to buy. This
thesis focusses on such searches.

Website owners typically run advertisement campaigns in a search engine like Google. For this
service, they pay the search engine per click on an advertisement. An auction model is used where
advertisers can bid on specific keywords to determine for which searches their ad will be shown.
The placement of advertisements in a search engine is called search engine advertising (SEA).

A whole industry exists around search engine advertising and internet markering in general.
Companies in the SEA industry try to optimize for their clients which advertisements should be
shown and for what searches. This is done by analysing performance and running experiments to
test hypotheses. There can be different goals within search engine advertising, such as increasing
revenue, profit, brand awareness or market share.

Profit margins in the online retail business are often small, so it is important not to bid too
much on keywords that do not generate a lot of revenue. But bidding too low will cause an ad
not to be shown, giving a drop in visitors to the advertisers website.

Companies such as ADchieve use smart algorithms and econometric models to determine the
optimal bids. These algorithms are fed with historical performance data that can be extracted
from the search engine. To optimize the algorithms, it is desirable to have as fine-grained data as
possible by splitting up the keywords, so different search terms will match different keywords.

For example, for the search terms “buy television” and “compare televisions”, it is possible to
create one keyword matching both or to create one keyword for each search term. In the latter
case it is possible to set a different bid for both keywords, whereas in the fist case only one bid can
be set. The different search terms can have different optimal bids, so it is benificial to split up the
keywords and to choose a different bid for each one. But, by doing this, another problem arises.
On these keywords that match very specific search terms, there is hardly any search traffic. Many
search terms only have a few impressions (the number of times an ad is shown for this search
term). Because of that, performance metrics for a single search term cannot be determined very
reliable. This makes it impossible to depend on these performance metrics for determining the
optimal bid.

The problem that will be addressed in this thesis is this problem of predicting the performance
metrics for a single search term, by using data from related search terms. The challenges that
arise for doing so are how to determine which search terms are similar and how many similar
search terms should be taken into account for predicting the performance metrics. Also, since a
lot of search terms are available, the calculation should be done in an efficient manner, because
otherwise the calculation costs in terms of time and resources would become to high.

Semantical Search Term Clustering for Performance Prediction 1

CHAPTER 1. INTRODUCTION

Contribution

In this thesis, an approach is proposed to predict the performance metrics of a single search term,
by taking similar search terms into account. This is done by transforming each word into an
embedding vector. These word embeddings capture the semantical properties of a word and can
be used to calculate the similarity between two words. The semantical similarity between two
search terms is calculated by using the soft cosine similarity between the search terms. This
similarity measure is used to to create clusters of semantically similar search terms, so similar
search terms can be queried quickly. These clusters might overlap.

Data from the related search terms is used to get a more reliable predication of the performance
metrics of a single search term, than would be the case when using only data of the single search
term itself.

This thesis is focused on English search terms, although the same approach might be used for
other languages as well with some minor modifications.

Organization

In Chapter 2 the advertisement model of a search engine like Google will be discussed, as well
as the data that can be extracted from the search engine. The chapter also contains a formal
definition of the problem of predicting performance metrics based on similar search terms.

Chapter 3 will cover work related to search engine advertising, similarity measures and scalable
clustering techniques. For these works, a brief description will be given of their contents. Also,
it will be stated how they relate to the problem of performance metric prediction and why these
works can be used in solving this problem or why not.

A method for predicting performance metrics is described in Chapter 4. This chapter is
split up into several subproblems that will be discussed one by one. These subproblems are the
preprocessing of the data, picking a similarity measure, using this similarity measure for creating
a clustering, and using this clustering for the prediction of performance metrics.

The performance of this solution is evaluated in Chapter 5 on data from a customer of ADchieve.
A description of the data set will be given as well as implementation choices and their consequences.

The final chapter, Chapter 6 contains a conclusion of the findings from the evaluation of the
method and what needs to be done to bring the theory into practice. The strong points and the
possible areas for improvement will also be discussed in that chapter.

2 Semantical Search Term Clustering for Performance Prediction

Chapter 2

Problem Definition

As stated in Chapter 1, there exists a big industry around search engine advertisement. This
chapter explains how search engine advertising works (Section 2.1) and goes into detail on what
bid management is (Section 2.2), an important area of search engine advertisement. It explains why
bidding on keyword level is desirable and the problem that arises when doing so. In Section 2.3 the
available performance metrics will be discussed. These metrics are important for bid management.
Section 2.4 will describe the data that is available about the products that are being sold, a data
source that can be a very useful addition to the performance metrics.

In Table 2.5 at the end of the chapter, all notation that will be introduced in this chapter will
be summarized.

2.1 Search Engine Advertising
Search engines are being used to find webpages about some topic. To find the desired web pages,
a user enters a search term (or query) into the search engine and the search engine will respond
with a set of relevant web pages. Search engines can make money by showing paid results next to
their normal search results.

The description of the search engine in this thesis is mostly generic, but globally follows the
principles of how the Google search engine works.

There are several kinds of results returned by the search engine, which are indicated in Fig-
ure 2.1. The search term that is entered by the user is “buy tv”. This is indicated with Q in the
figure. There are normal, unpaid search results, that are also called organic results. These results
are marked with an O in the figure. Besides organic search results, the search engine also shows
paid results, called advertisements. Google has multiple types of advertisements in their search
results, including text advertisements (marked with a T in the figure) and shopping advertise-
ments (marked with an S in the figure). This thesis only focusses on text advertisements, but the
introduced approach can be extended to other advertisement types as well. When, from now on,
advertisements are mentioned, text advertisements are meant.

An advertisement in Google consists of a heading text and a description. Some more fields can
be shown in the advertisement such as the store location and additional links, but they will not
be discussed here for brevity. Each advertisement has a destination URL. This is where a user
will be directed to when clicking on the advertisement.

The advertisement positions can be bought by website owners. The people buying these ad-
vertisements are called advertisers. For advertising in Google Search, Google has the Google Ads
platform, formerly known as AdWords. Advertisers can decide what the advertisment should look
like in this platform.

Advertisers can indicate on what search queries they want to be shown with so called keywords.
The search engine will show the advertisement when people search for this keyword. The entered
search term does not have to match the keyword exactly. It is possible to indicate how broad the

Semantical Search Term Clustering for Performance Prediction 3

CHAPTER 2. PROBLEM DEFINITION

Q

S S S S S

T

T

O

O

Figure 2.1: Example of the Google Search page, returned when searching with search term “buy
tv”

matching of a keyword to a search term should be by using so-called match types. The match
types used by Google are shown in Table 2.11 and a description and an example are given for each
match type. Every keyword consists of a keyword text and a match type. The keyword text and
match type together determine what search terms the keyword will match.

From now on, consider a single advertiser that wants his advertisements shown in the search
engine. The advertiser pays the search engine per click on an advertisement. Let K denote the
set of all keywords the avertiser wants to be found on. When the advertiser wants to advertise
on a keyword k 2 K, he can set a bid for this keyword. This is the maximum cost per click the
advertiser is willing to pay. This bid is also referred to as the maxCPC. This bid for the keyword is
the maximum cost that the advertiser needs to be pay for a single click on an advertisement that
is shown because the search term matches the keyword k.

There can be multiple advertisers wanting to advertise for the same search term. To determine
which advertisements are shown and at what position (the top position is considered the most
valuable), a blind second price auction [8] is used. This is a form of a Vickrey auction [30]. In this
kind of auction, the competitor advertisers will not see each other’s bids. Every advertiser pays
the price from the next bid lower than theirs. So, the highest bidder pays the second highest bid,
hence the name second price auction. From every advertiser, at most one advertisement is shown,
so for simplicity it is assumed that from every advertiser exactly one keyword matches the search
term.

Let X = fx1; x2; : : :g be the set of all advertisers that want to advertise on search term s and
let b1; b2; : : : be the bids of the advertisers x1; x2; : : : on the keywords corresponding to s.

There is a predefined number of n slots available for showing advertisements in the search
results. This number of slots is determined by the search engine. The position the advertisement
of advertiser xi will get is denoted as ri, with 1 � ri � jXj. If ri > n, the advertisement will not

1Source: https://support.google.com/google-ads/answer/7478529?hl=en

4 Semantical Search Term Clustering for Performance Prediction

https://support.google.com/google-ads/answer/7478529?hl=en

CHAPTER 2. PROBLEM DEFINITION

Table 2.1: Google match types and examples matching the keyword ‘women’s hats’

Match type Description Example search terms
Broad match Matches misspellings, synonyms,

related searches, and other rele-
vant variations.

buy ladies hats
women’s clothing

Broad match
modifier

All the words (or close varia-
tions of those words) in any or-
der. Additional words may ap-
pear before, after, or between
these words.

women’s scarves and hats
winter hats for women

Phrase
match

Matches of the phrase (or close
variations of the phrase) with ad-
ditional words before or after

blue women’s hats
buy women’s hats
women’s hats on sale

Exact match Exact matches of the term or
close variations of that exact
term with the same meaning.

women’s hats
ladies hats
hats for women
hats women

be shown.
Advertisements with the higher bids will get a smaller position, that is,

8xi;xj2Xbi > bj) ri < rj

It is assumed that a smaller position is better for an advertiser.
The cost advertiser xi has to pay if his advertisement is shown (ri � n) is defined as follows:

costi =

(
bj if ri < jXj
minimum bid if ri = jXj

where xj is the advertiser with rj = ri + 1.
If ri > n, then the advertisement of xi is not shown and xi does not have to pay at all.

The costs only need to be paid in case of a click on the advertisement, not for every time the
advertisement is shown.

Note. Google uses a slightly different model, where the ranking is not only based on the bid, but
also on a quality score (how relevant Google considers the advertisement to be). These differences
will be ingored for simplicity.

Example 1. Consider a scenario with four advertisers and with three available advertisement
slots. The advertisers and their corresponding bids are shown in Figure 2.2. The advertiser x3
had the highest bid so it will get the first slot. x3 has to pay the bid of the advertiser ranked
second, which is x1. So the cost for x3 will be the bid of x1 which is 3. x1, who was ranked second
pays the bid of x2 who was ranked third, and so on. x4 does not end up in the top 3 advertisers
and since there were only 3 slots availble the advertisement of x4 will not be shown and their will
also be no costs for x4. Note again that the costs given in this example, only need to be paid when
someone actually clicks on the advertisement.

The auction will be held again for every search, but the bid needs to be set beforehand by the
advertiser, and not per search.

Semantical Search Term Clustering for Performance Prediction 5

CHAPTER 2. PROBLEM DEFINITION

x3
b3 = 3
cost3 = 2:5

x1
b1 = 2:5
cost1 = 2

x2
b2 = 2
cost2 = 1

x4
b4 = 1
cost4 = 0

Shown

Not shown

Figure 2.2: Example of the blind second price auction

2.2 Bid management
The process of determining the desired bid for a keyword is called bid management. Bid man-
agement can be done manually, but for a large number of keywords that is infeasable. A lot of
factors can be taken into account when determining the desired bid, such as the product that is
advertised for, the time of day and information about the user (e.g. whether this is a returning
visitor or not).

What bid is desired depends on the goals of the advertiser. An advertister publishes an ad to
get some value out of it, such as increased store purchases. The value an advertiser gets can be
modelled as a function of random variables with the bid as parameter. The optimal bid is the bid
where this function is maximized. The distibution of the random variables in the function depends
on the context, such as the keyword, the advertisement, the competitors, the product being sold,
et cetera. The historical performance measures, such as what percentage of people order when
they have clicked on an advertisement, can be an important indicator for estimating the outcome
of the function.

Since every keyword has its own (unknown) optimal bid, it is desirable to calculate the optimal
bid for every keyword specific. Because data on a single keyword is often sparse and some keywords
do not have historical data yet, calculating the optimal bid based on only historical data from the
single keyword is hard. The goal of this thesis is to create a set of search terms similar to a specific
search term and calculate aggregated metrics, such that the aggregate metrics of the similar set
are as close as possible to the real (unknown) metrics of the search term. In this way, it is possible
to estimate optimal keyword specific bids for keywords with no or little historical data.

2.3 Performance metrics
In this section, the available performance metrics will be explained. Performance metrics are an
important factor for determining the optimal bid, because the performance metrics can give an
estimation of how much money an advertiser will get out of the advertisement and how much the
advertisement will cost him. With this information the advertiser can determine what bid is most
benifical.

Definition 1. S is the set of historical search terms for all adverisements of the advertiser.

For every search term, there are historical performance metrics that can be extracted from the
search engine. Only aggregdated data per search term can be extracted. Click stream data, that
contains a record for every single impression including user data, is not available. The retrieved
data contains several performance metrics, of which the ones shown in Table 2.2 are the most

6 Semantical Search Term Clustering for Performance Prediction

CHAPTER 2. PROBLEM DEFINITION

Table 2.2: Available performance metrics

Metric Short name Description
Impressions impr Number of times the ad was shown
Clicks clicks Number of clicks on the ad
Click through rate ctr Percentage of impressions that got a click
Cost cost Total cost for the ad
Cost per Click cpc Average cost per click (calculated by deviding

the cost through the number of clicks)
Conversions conv Number of sales following a click on the ad

(these are measured by the website and then
imported into Google Ads)

Conversion Rate cr Number of conversions per click (calculated by
deviding the number of conversions through
the number of clicks)

Conversion Value cv Total revenue coming from the conversions
Value per Conversion vpc Average value per conversion
Cost per Conversion cpa Average cost per conversion
Return on Ad Spend roas Conversion value divided by the cost

Table 2.3: Example search term performance data

Search Term impr clicks ctr cost cpc conv cr cv vpc cpa roas
best tv 5 2 0:40 0:53 0:27 0 0:00 0:00 0:00 inf 0:00
android tv 10 1 0:10 0:17 0:17 0 0:00 0:00 0:00 inf 0:00
soundbar 25 7 0:28 2:73 0:39 1 0:33 199:95 199:95 2:73 73:24
soundsbar 8 1 0:13 0:13 0:00 0 0:00 0:00 0:00 inf 0:00

important ones. The table gives the name of the metric in combination with a “short name” that
will be used to reference to the metric in this thesis. Also a description of the metric is given. One
of the performance metrics described are the conversions. Conversions are some form of action
the user performed after clicking on an advertisement, such as a purchase. The advertiser tracks
this conversion and sends it to the search engine. The search engine connects the conversion to
the corresponding advertisement. The advertiser can also specify a value for the conversion, which
will be the conversion value. The conversion value typically is the amount of money the purchase
is worth.

Definition 2. The random variables �impr(s); �clicks(s); : : : indicate performance of search term
s 2 S. The observerd historical values for these metrics are denoted ��impr(s); ��clicks(s); : : :, with
impr and clicks the metrics corresponding to the short name in Table 2.2.

To refer to a performance metric in general, the notation �:::(s) is used.
Table 2.3 contains example values for some search terms, with numbers that are comparable

with a typical customer of ADchieve. Lots of rows have few impressions, and mostly no conversions.
A separation of the performance measures shown in Table 2.2 can be made into two categories:

counter performance metrics and derived performance metrics. Counter performance metrics are
only increasing over time. Derived performance metrics can be calculated based on the counter
performance metrics. In Table 2.2, the metrics ‘impressions’, ‘clicks’, ‘cost’, ‘conversions’ and
‘conversion value’ are counter metrics. The other metrics in this table are derived metrics that
can be calculated from the mentioned counter metrics.

The derived performance metrics say something about the result of a single search, and there-
fore are the one that are most relevant for optimal bid calculation. This paper will therefore only
focus on predicting derived performance metrics. Derived performance metric prediction can be
done by applying the calculation of the derived metric to predictors of the counter metrics. It is

Semantical Search Term Clustering for Performance Prediction 7

CHAPTER 2. PROBLEM DEFINITION

not necessary that these counter performance metrics are predicted accurately to get a prediction
for the derived performance metrics, as long as the counter metrics have the same scalar derivation
from the real expected value, because the scalar derivation will cancel out in the calculation of the
derived performance metric.

2.4 Product data
Often advertisements are based on a specific product or a group of products, for example an
advertisement for a brand. Data about the products can be an enrichment to the available search
term data. For example brands are often occuring in search terms and therefore being able to
identify these words as a brand can be benificial for determining similarity between search terms.

An example product with the product properties is shown in Table 2.42.
The set of products that will be offered by the advertiser will be denoted P , with P =

fp1; p2; : : :g. For these products, a number of properties are available. Z = fz1; z2; : : :g is the
set of product properties. �z(p) will denote the value of property z 2 Z for product p 2 P .

2Source: https://support.google.com/merchants/answer/7052112?hl=en

8 Semantical Search Term Clustering for Performance Prediction

https://support.google.com/merchants/answer/7052112?hl=en

CHAPTER 2. PROBLEM DEFINITION

Table 2.4: Example product values

Field Example Value
Id A2B4
Content Language en
Target Country US
Title Mens Pique Polo Shirt
Description Made from 100% organic cotton, this classic red men’s polo has a slim

fit and signature logo embroidered on the left chest. Machine wash cold;
imported.

Product Category Apparel & Accessories > Clothing > Outerwear > Coats & Jackets
Link http://www.example.com/asp/sp.asp?cat=12&id=1030
Image Link http://www.example.com/image1.jpg
Condition new
Availability in stock
Price 15.00 USD
Brand Google
GTIN 3234567890126
MPN GO12345OOGLE
Color Black

Table 2.5: Used notation in problem definition

Notation Description
K Set of keywords from the advertiser
k Keyword
s Search term
X Set of advertisers that want to advertise on a specific search term
x Advertiser
bi Bid of advertiser xi
n Number of advertisement slots availble in the auction
ri Advertisement position in the search results for advertiser xi
costi The price advertiser xi has to pay per click on his advertisement
S Set of historical search terms
�:::(s) Performance of search term s 2 S
��:::(s) Historical performance search term s 2 S
�̂:::(s) Estimated performance search term s 2 S
P Set of products from the advertiser
p Product
Z Set of product properties
z Product property
�z(p) Value of property z for product p

Semantical Search Term Clustering for Performance Prediction 9

Chapter 3

Related work

A lot of research has already been done to bid management in search engine advertising. In
Section 3.1 some works that are relevant to this area will be discussed. More specific to the
approach chosen in this thesis are the sections following thereafter. Section 3.2, is about works
related to search term similarity. For the clustering approach in this thesis, it is necessary to
have a similarity measure between two search terms. At last, processing at scale will be discussed
(Section 3.3). With the amount of search terms available, simple clustering approaches would be
to computationally expensive, so a clustering approach optimized for large scale data is required.

For all related work advantages and disadvantages and their applicability to the problem defi-
nition will be given.

3.1 Search Engine Advertising
There are multiple types of online advertising auction systems. Perlich et al. [25] describe a method
for determining an optimal bid in a real time bidding (RTB) auction. In an RTB auction, a bid
is placed at the moment a user visits a webpage. In their paper, Perlich et al. describe that for
an individual user, data is gathered and analysed. When the user is considered relevant, it will
be put in a pool of users on which advertising is desired. An opportunity score is calculated for
every targeted user for a specific advertisement. The opportunity could be the conversion rate or
something else. In the opportunity score, the site on which the ad will be shown also is taken into
account. On this opportunity score, the bid is based. A base bid is modified by a factor depending
how the opportunity score differs from some base score. Logistic regression is used to predict the
opportunity score.

The extra user information that is taken into account can be very useful, but it is not possible
to do this in the auction model used for the Google search engine, because the bid is not placed
real time for a single user, but beforehand.

Kitts and Leblanc [17] present a mechanism that calculates a bid for each keyword. A different
bid is placed on different times of the day. It estimates the number of clicks per time unit based
on the keyword, time and position. Data from surrounding time slots is taken into account by
applying a weight. An estimation is made of which position would be received with what bid.
Then the revenue is estimated. The bid is determined by exploring the bidding landscape, instead
of taking the optimum directly. A tradeoff between exploration and exploitation is made when
choosing the bid. Semantics of search terms are not taken into account. So, this does not work
well for long tail keywords, because they have only little amount of data. However, not including
long tail keywords would result in missing an import part of the conversions [4]. Empirical analysis
on the data of some of the customers of ADchieve shows this same importance.

Ghose and Yang [9] descibe a hierarchical Bayesian modeling framework to estimate the click
trough rate and the conversion rate of an advertisement, based on the rank, brand, retailer,

Semantical Search Term Clustering for Performance Prediction 11

CHAPTER 3. RELATED WORK

keyword length and landing page quality. It does, however not take into account the semantical
value of the search terms, so, no difference will be made between very similar terms and dissimilar
terms.

Graepel et al. [11] propose a probit regression model for predicting the click trough rate of
an advertisement. The model predicts wheter there will be a click for an impression based on
the features for this impression. The input is a sparse binary vector. Features like campaign,
structure, info from the search term, and ad, product and landing page features are being used.
These vectors are fed into a factor graph on which the regression is done. Using the campaign
structure as feature depends on the knowledge of the marketeer instead of the model, this can be
solved by including the marketeers decisions as features instead of the campaign structure. How
the features should be engineered is not described by the authors.

Rutz and Bucklin [26] propose a logistic model that does take into account keyword features.
These manually chosen features try to represent the textual properties of the keyword. In this
way they try to solve the problem of wanting to know data on keyword level, but with sparse info
on keyword level. They transform the keyword into a feature vector. These features have to be
determined manually. Then the keyword performance is estimated by applying logistic regression.
Having to choose the vectors manually could be a problem because latent factors can be missed.
Also it can take a lot of time to engineer the features.

Abhishek and Hosanagar [3] propose a method in which a a set of suggested keywords is
generated with maximal aggregate profit, not exceeding a given advertising budget. A corpus is
created by crawling the website of the merchant, and crawling additional websites containing these
keywords recursively. Words are then filtered to keep the ones with the highest td-idf scores of the
document. A dictionary is created from these terms. All terms are submitted to a search engine
to retrieve relevant documents. The returned documents create a context vector and the context
vectors of two keywords are compared to get their similarity. Generated keywords are kewords
that are similar to an existing keyword. The problem with taking data from semantically similar
search terms can be solved in this way, but the test from the paper is on a really small scale, and
would not scale well to the size that is needed.

Shariat et al. [28] propose a method to evaluate bid prediction models. They suggest methods
to forming groups for A/B testing. They try to measure the difference in return of investment
(ROI) and show methods to do so. Having some measure to test different strategies can help in
picking the best strategy not on paper but in real-world.

The approach im this thesis will not determine the bids itself, but only provide data that
can be used in bidding algorithms, so a difference in ROI can come the proposed model or from
how the model is used to determine bids. Thus, an A/B-test is not useful on itself to test the
performance of the proposed method, but can be useful testing the overall impact of the method
in combination with a bidding algorithm.

3.2 Semantical similarity between search terms
There exist various metrics for measuring similarity between terms. [10], [22] and [14] provide an
overview of different types of approaches for measuring term similarity. Text similarity measures
can be divided into several categories.

Character based similarity metrics use the actual characters within a word and compare them
in some way. These methods work best for comparing relative short strings such as words or
names. Examples of character based similarity metrics are the Longest Common Subsequence
(LCS) which bases the similarity on the length of the longest substring that occurs in both strings
and the Levenshtein distance [19] that calculates the number of operations (add, remove or replace
characters) that need to be done to convert one string into the other. Another method is splitting
the string into n-grams and counting the amount of n-grams that are similar between the strings.

12 Semantical Search Term Clustering for Performance Prediction

CHAPTER 3. RELATED WORK

Another category of string similarity metrics are the term based similarity metrics that compare
a whole term, where the term is replaced by a vector of word counts and using a distance metric on
these vectors. Examples are the manhattan distance, euclidean distance, cosine distance, Jaccard
similarity [15] and dice coefficient [7]. TF-IDF [27] can be used instead of simple word counts to
reduce the impact of unimportant words that occur a lot such as ‘the’ and ‘I’.

Character and term based similarity metrics do not take into account semantical similarity
between words, only textual similarity. With corpus-based similarity metrics, semantic similarity
is trained first on a large corpus. Examples are Hyperspace Analogue to Language [20] and Latent
Semantic Analysis [18]. The latter one assumes there is a relation between the words that occur
close to eachother. By creating vectors of counts of words close by a relation can be found between
words that have similar words close by.

Knowledge based similarity metrics use information from semantic networks like WordNet
(https://wordnet.princeton.edu/). Knowledge based similarity metrics have as problem that
a semantic network needs to be available with the relevant words in the right language.

Hybrid methods combine other types of similarity methods together to obtain a better simi-
larity measure.

Another technique is focussing on groups of data, so multiple strings that are about the same
entity, for example a person has a first name, a last name, a nationality, a gender, etcetera. These
techniques are not suitable for the problem adressed in this thesis beceause only a single string
search term is given.

Collective similarity techniques do not only look at two terms, but take inner relations between
terms into account. [5] proposes a distance measure for use in clustering of linked data. In [6]
this distance measure is used to propose a strategy of finding links in combination with another
similarity measure such as string matching, that still has a factor of uncertainty. For example,
the common last name Smith could relate to the same person or to a different one. This problem
is not solvable with string matching techniques alone. A clustering is updated in an iterative
fashion. Every iteration the duplicates are updated. Duplicate detection is done by checking if
the similarity is above a given threshold.

3.3 Scalable processing
Clustering on large data sets can give performance issues and even may be infeasable. McCallum
et al. [21] introduce a technique for clustering large data sets with lots of features and lots of
clusters, by first dividing into overlapping subsets, called canopies. They do so by using an
approximate distance measure that is relatively cheap. Clustering is then done with the exact
similarity metric, but only calculates similarity of points that share at least one canopy. In this
way, the exact, but computationally more expensive similarity measure only needs to be calculated
on a limited amount of pairs.

Semantical Search Term Clustering for Performance Prediction 13

https://wordnet.princeton.edu/

Chapter 4

Method

In this chapter a method is proposed to estimate the performance metrics of a single search term
by using data from semantically similar search terms. The method makes use of historical search
terms that are retrieved from the search engine, including the historical performance measures.
Before processing, the search terms are first replaced with a normalized version. This normalization
steps makes sure that variations in search terms, that a human would consider equal, are also seen
as one search term.

To create the estimation, possibly overlapping clusters of search terms are created. This
clustering is done based on a similarity measure between two search terms, capturing the semantical
similarity of the two. For the clustering, first centroids are determined such that the centroids
are not to close to eachother but every search term is close to at least one centroid. Search terms
within a specified range from a centroid are added to a cluster with this centroid. The clusters
might overlap.

The performance metrics �:::(s) for a search term s can then be estimated by aggregating data
from the clusters that a search term belongs to and clusters that are close by. An algorithm is
proposed in this chapter to travel from one cluster into other clusters with high similarity until
enough data is gathered.

In the following sections first the normalization process will be discussed (Section 4.1). Then,
the similarity measure will be explained (Section 4.2). Following, it will be explained how this
similarity measure is used to create clusters (Section 4.4). Finally, it will be explained how these
clusters can help to get a prediction for the performance metrics (Section 4.4).

In Table 4.6 at the end of the chapter, all notation that will be introduced in this chapter will
be summarized.

4.1 Search term normalization
Normalization starts with the ‘raw’ search terms that were entered into the search engine. The
result of the normalization should be a sequence of words for each search term, which will be called
the normalized search term. The normalization of s will be denoted �s and !(�s) will denote the
sequence of words of �s. These words should only contain characters that are considered relevant.
Normalization is done to make further processing easier, because there will be less variations of
the same word.

The following normalization steps are proposed:

� Remove control characters (such as U+0000 NULL and U+0007 BELL). These are not human
readable and probably not entered on purpose by the user.

� Replace characters by their simplified (NFKC) unicode form, this makes sure that characters
that look exactly the same, are the same. An example would be the characters U+0031 DIGIT
ONE and U+2081 SUBSCRIPT ONE.

Semantical Search Term Clustering for Performance Prediction 15

CHAPTER 4. METHOD

� Remove diacritcs and replace characters by their lowercase variants, because some people
will type characters while others might not, while the same thing is meant.

� Strip whitespace characters from the beginning and the end of the search term and split to
words on one or more whitespace characters.

4.2 Search term similarity
To determine how similar two search terms �s1; �s2 are, a similarity measure is proposed in this
section.

Definition 3. The function sim(�s1; �s2) gives the similarity between the search terms �s1 and �s2,
with sim(�s1; �s2) 2 [0; 1]

sim(�s1; �s2) = 1 means the search terms are completely similar and sim(�s1; �s2) = 0 means the
search terms are completly dissimilar. The function sim is commutative. That is, sim(�s1; �s2) =
sim(�s2; �s1).

4.2.1 Word similarity
To simplify the problem of finding a similarity measure, the problem is split into creating a word
similarity measure and using this word similarity measure to create a term similarity measure. In
this section, the word similarity measure will be proposed. Words should be seen as very similar
when they have similar meaning (they are synonyms, e.g., ‘bike’ and ‘cycle’) or when one is a
misspelling of the other. Also, two words could be another form, like the verbs ‘eats’ and ‘eating’.
Or, the words can have some relation, such as ‘bike’ and ‘car’ (both means of transportation).
Also words with similar patterns should be considered similar (e.g., serial numbers).

Definition 4. The function wordsim(w1; w2) gives the similarity between words w1; w2 2W

A popular approach is to map words to a so called word embedding [1]. This is a vector that
represents the word.

Definition 5. The word embedding of a word w 2W is represented by the vector vw.

One of the most popular methods nowdays for word embedding is word2vec [23]. Word2vec
consists of two approaches to train a word embedding using a neural network, named continous
bag of words (CBOW) and skip-gram. The input and output of these models are one-hot encoded
vectors of words. A one-hot encoded vector is a vector in which one of the values is 1 and the
other values are 0. For the word wi, the i-th value is 1.

The CBOW model takes surrounding words in a sentence as input and tries to predict the
missing word. All input vectors go through the same matrix M . The sum of these vectors gives
a hidden vector. This hidden vector goes throug a second matrix M 0. On the resulting vector a
softmax layer is applied to give a output vector containing word probabilities.

The skip-gram model works in the opposite way. It takes a single word as input and tries
to predict the surrounding words. All surrounding words get the same predicted probabilities,
keeping the amount of parameters of the neural network limited.

The neural network is only used for training, the rows of the matrix M represent the word
vectors.

Figure 4.1 and Figure 4.2 give a schematic overview of the neural networks for the CBOW and
skip-gram model that are described above.

The weight matrix of the skip-gram model contains the number of words times the embedding
length parameters. Updating all paramaters during training every time can be very slow. To
optimize training of the skip-gram model, negative sampling [24] can be used. With negative
sampling, only part of the words not in the context are taken into account, instead of all. This
drastically reduces the number of parameters that are modified.

16 Semantical Search Term Clustering for Performance Prediction

CHAPTER 4. METHOD

wi�2

wi�2

wi+1

wi+2

M

M

M

M

SUM M 0 Softmax wi

Figure 4.1: Continous Bag of Words (CBOW) model

wi M M 0 Softmax

wi�2

wi�1

wi+1

wi+2

Figure 4.2: Skip-gram model

Semantical Search Term Clustering for Performance Prediction 17

CHAPTER 4. METHOD

The word2vec model only uses whole words. This means it cannot handle words that it has
not seen before, and handles rarely seen words poorly. Search terms often contain rare words.
Joulin et al. [16] solve this problem in a model they call FastText.

FastText works in a similar way as the skip-gram model of word2vec, but instead of only taking
a single word as input, n-gram substrings of the word are also taken as input. In this way, every
n-gram gets it’s own embedding. So, unseen words can also be vectorized by using the embeddings
of it’s n-grams. In case of an unseen word the average of the vectors for the seen n-grams of the
word is used as the word vector.

The FastText model can be trained on a large corpus like Wikipedia. So, way more data can
be used for training then only the available search term data.

In the trained FastText model, the properties of the products, such as the brand names and
product categories do not occur as words. However, these words occur frequently in the search
terms, so it is desirable to take them into account in some way. This can be done by adding
vectors for the words in the set of properties that are considered relevant. These properties will
be denoted Zattr. The vectors will be based on data drom other textual properties, such as the
titles and descriptions, that will be denoted Ztxt. The vector of a word w is calculated by taking
the average of the term vectors of the products where w occurs in any of the properties of Zattr.
This gives the following updated word vector for word w:

v0i =

(
1

jPrel(w)j�jZtxtj
P
p2Prel(w)

P
z2Ztxt

tv(�p;z(w)) if Prel(w) 6= ?
vi otherwise

where Prel(w) are the products that have this word w as property

Prel(w) = fpjp 2 P;9z2Zattr�(p; z) = wg

and the term vector tv(�s) is the average of the word vectors of the words in a term

tv(�s) =
1
j!(�s)j

X

w2!(�s)

vw

The similarity between words can be described by a function over its embeddings. FastText
uses the cosine similarity by default, this gives the following function for the word similarity:

wordsim(w1; w2) =
v0w1
� v0w2v0w1

v0w2

4.2.2 Soft cosine similarity
The similarity between two search terms can be determined with the soft cosine similarity [29]. The
soft cosine similarity works like the ordinary cosine similarity but adds a similarity score between
words. Using the soft cosine similarity is benifical over just using the normal cosine similarity.
With the soft cosine similarity, words that are different, but semantically similar, are also seen as
similar. Whereas, with the normal cosine similarity, these would be seen as completely different.

Let W denote the set of all words occuring in any normalized search term. The soft cosine
similarity is then defined as follows:

sim(�s1; �s2) =
sim0(�s1; �s2)

p
sim0(�s1; �s1)

p
sim0(�s2; �s2)

with
sim0(�s1; �s2) =

X

wi;wj2W

wordsim(wi; wj) � (�s1; wi) � (�s2; wj)

where (�s; w) is the relevance of word w 2W within �s. For , the count of a word for can be used
(or formally: (�s; w) =

P
w02!(s) 1[w0 = w]). Another possibility would be to use TF-IDF, but

this is expected not to work well because words that are made unimportant for TF-IDF could be
important for search term similarity.

18 Semantical Search Term Clustering for Performance Prediction

CHAPTER 4. METHOD

4.3 Search term clustering
With the method described in the section before, the similarity of two search terms can be mea-
sured. This measure can now be used to propose a clustering approach that groups together
semantically similar search terms. It consists of a method of choosing centroids that will form the
base of a cluster, and a way to determine to what clusters a search term belongs. The approach
is based on the clustering apporach by Ioannou and Garofalakis [13] that also solves the problem
of creating canonical entities from multiple entities. So, the problem is very similar.

In this approach, clusters are created around centroids, based on the similarity of a search term
with the centroids.

First the centroids need to be chosen. To reduce computation power required, only search terms
with at least minimal number of impressions are considered to be taken as centroid. All search
terms that fullfil this condition are randomly shuffled by weight, where the historical number of
impressions are taken as weight. The higher the weight, the more likely a search term is to occur
earlier in the shuffled search terms. The position of a search term si after shuffling is denoted qi.
For two search terms s1 and s2 it holds that

P [q1 < q2] =
��impr(s1)

��impr(s1) + ��impr(s2)

At the start, the set of centroids is empty. Every search term is picked one by one from the shuffled
search terms. If there is no centroid in the set of centroids with similarity with the search term
of at least threshold �1, the search term is added to the set of centroids. Because of the weighted
shuffling, search terms with more historical impressions are more likely to become a centroid. This
is done because otherwise search terms with little impressions and with little information would
be overly present in the set of centroids. The algorithm for picking the centroids is formalized in
Algorithm 1. The set of centroids will be denoted C, with C � S.

Algorithm 1 Centroid selection

function get_centroids(S;min_impressions) . S: set of search terms
candidates fsjs 2 S; �impr(s) > min_impressionsg
C ?
while candidates 6= ? do

Select a random c from candidates where each point s 2 candidates has probability
�impr(s)P

s02candidates �impr(s0) of being picked
C C [fcg
candidates fsjs 2 candidates; sim(�c; �s) < �1g

end while
return C

end function

A search term s belongs to the cluster of centroid c 2 C if s and c are similar enough, that
is, sim(�s; �c) > �2. The threshold �2 should be less than �1. This gives the following cluster with
centoroid c:

clusterc = fsjs 2 S; sim(�s; �c) < �2g

The overlapping area of the clusters with centroids C 0 2 C is the set of search terms that are
in all clusters of C 0, but not in any other cluster. This is formalized as:

overlap(C 0) = fsjs 2 S; 8c2Cc 2 C 0 , s 2 clustercg

O = fC 0jC 0 � C; overlap(C 0) 6= ?g is the set of all overlapping areas.
The shared properies of the overlapping areas will be used in Section 4.4 to predict the metrics

of a single search term.

Semantical Search Term Clustering for Performance Prediction 19

CHAPTER 4. METHOD

Table 4.1: Example centroids

Cluster Centroid
A blue bike
B bike
C mountain bike
D mountain boots

Table 4.2: Example search terms and corresponding areas

Search term In Cluster AreaA B C D
bike No Yes Yes No bc
bicycle No Yes No No b
blue bike Yes No No No a
bike blue Yes Yes No No ab
blue mountain bike Yes Yes Yes No abc
blue mountain bikes Yes No Yes No ac
mountain bike No Yes Yes No bc
mountain bike helmet No No Yes No c
mountain boots No No No Yes d
mountain gear No No Yes Yes cd

Example 2. Consider a scenatio with the 4 centroids shown in Table 4.1. All the centroids have
a corresponding cluster. In Table 4.2 some example search terms are given and the clusters the
search terms belong to based on their similarity with the centroids of the clusters. The search
term ‘blue mountain bike’ is similar to the centroids ‘blue bike’ (cluster A), ‘bike’ (cluster B) and
‘mountain bike’ (cluster C). Because of this, the search term belongs to the area overlapping these
three clusters, area abc. Figure 4.3a and Figure 4.3b show the overlap of the clusters corresponding
to this example and the corresponding overlapping areas.

20 Semantical Search Term Clustering for Performance Prediction

CHAPTER 4. METHOD

A

B
C

D

(a) Clusters

a

b
c

d

ab
ac

bc

cd

abc

(b) Overlapping areas

Figure 4.3: Example clustering and corresponding overlapping areas

4.4 Metric prediction
In this section, an alogrithm is introduced that can be used to predict the performance metrics of
a single search term, based on the clusters from the previous section.

Algorithm 2 Similar search terms retrieval

function get_similar_terms(s; goal)
C 0 fcjc 2 C; sim(�s; �c) > �2g
queue fojo 2 O;9c02oc0 2 C 0g
total 0
visited ?
result ?
while queue 6= ? do

o argmaxo02queue areasim(s; o0)
if total

goal � areasim(s; o) then
result result[f(s0; areasim(s; o))js0 2 overlap(o)g
total total +

P
s2overlap(o)

��impr(s)
visited visited [fog
queue queue n fog
queue queue [(fo0jo0 2 O;9c02o0c0 2 og n visited)

else
queue ?

end if
end while
return result

end function

Algorithm 2 gives search terms that are considered similar to a search term s. It starts with
the areas of the clusters that s belongs to, and keeps expanding outwards until enough data is
available to give a reliable prediction for the performance metrics. When to stop is determined by
a goal value. The algorithm returns a set of similar search terms and corrseponding similarity. The
algorithm makes use of a similarity measure between two overlapping areas, because calculating the
similarity of a search term with all the search terms inside the area would be to computationally
expensive. The area similarity takes the average of the similarities of the search term with all

Semantical Search Term Clustering for Performance Prediction 21

CHAPTER 4. METHOD

Table 4.3: Example centroid similarity

Centroid Similarity
A 0:95
B 0:75
C 0:5
D 0:3

centroids of the overlapping area and is formalized in the following equation:

areasim(s; C 0) =
1
jC 0j

X

c2C0

sim(�s; �c)

with s 2 S and C 0 � C
The working of the algorithm will be explained with the following example:

Example 3. Take the example clustering of Figure 4.3. Lets say, there is a search term ‘red bike’.
The similarity between ‘red bike’ and the clusters is given in Table 4.3. To get the similar terms
of s with goal 100, first the clusters to which s belongs are determined. When �2 is assumed to
be :75, this would be cluster A and B. The queue of areas to be considered is then filled with all
areas overlapping cluster A or B, namely a, b, ab, ac, bc and abc. For each of these areas, the area
similarity is calculated and the most similar area will be picked. Table 4.4 shows the results of
this calculation, In this case, the most similar area is a, with a similarity of 0:95. The algorithm
would go through the following steps:

� Take the area with the highest similarity: a (with similarity 0:95)
Check if this area should be added. 0:95 � 0

100 , so it should be added.
Add the search terms from a to the result: ‘blue bike’
No new areas to add.
The total becomes: 0 + 40 = 40

� Take the area with the highest similarity: ab (with similarity 0:85)
Check if this area should be added. 0:95 � 40

100 , so it should be added.
Add the search terms from ab to the result: ‘bike blue’
No new areas to add. The total becomes: 40 + 10 = 50

� Take the area with the highest similarity: b (with similarity 0:75)
Check if this area should be added. 0:95 � 50

100 , so it should be added.
Add the search terms from b to the result: ‘bicycle’
No new areas to add.
The total becomes: 50 + 20 = 70

� Take the area with the highest similarity: abc (with similarity 0:73)
Check if this area should be added. 0:95 � 70

100 , so it should be added.
Add the search terms from abc to the result: ‘blue mountain bike’
Add areas from cluster C to the queue: c, cd
The total becomes: 70 + 20 = 90

� Take the area with the highest similarity: ac (with similarity 0:73)
Check if this area should be added. 0:73 < 70

100 , so it should not be added.

The resulting search terms with their relevant similarity are given in Table 4.5

Now, the count performance metrics can be calculated by taking the weighted sum of the
perofmance metric for the similar search terms. The predicted performance metric will become:

22 Semantical Search Term Clustering for Performance Prediction

CHAPTER 4. METHOD

Table 4.4: Example area similarity

Area Similarity # of impressions
a 0:95 40
b 0:75 20
c 0:50 30
d 0:30 20
ab 0:85 10
ac 0:73 15
bc 0:63 12
cd 0:40 16
abc 0:73 20

Table 4.5: Search terms similar to ‘red bike’

Search term Area similarity
blue bike 0:95
bike blue 0:85
bicycle 0:75
blue mountain bike 0:73

�̂:::(s) =
1P

(s0;�)2similar_terms(s) �

X

(s0;�)2similar_terms(s)

� � ��:::(s0)

The predicted performance metrics can now be used existing bid management algorithms to
determine a bid on keyword level.

Semantical Search Term Clustering for Performance Prediction 23

CHAPTER 4. METHOD

Table 4.6: Used notation in method

Notation Description
�s Normalized version of search term s
sim(�s1; �s2) Similarity between search terms �s1 and �s2
!(�s) The sequence of words in �s
wordsim(w1; w2) Similarity between words w1 and w2
w Word
W Set of all words occuring in any normalized search term

of S
vw Word vector of word w
Zattr Product properties that are considered to contain rele-

vant words
Ztxt Textual product properties that are used as a corpus
v0w Modified word vector of word w
Prel(w) Set of products having word w as property
tv(s) Term vector of string s
(�s; w) Relevance of word w in search term �s
�1 Threshold 1
�2 Threshold 2
q Position of the search term after shuffling
C Set of centroids
c Centroid
�c Normalized version of the centroid c
min_impressions Minimal number of impressions needed for a search term

to be abe to become a centroid
get_centroids(S;min_impressions) Algorithm to get the set of centroids based on the histor-

ical search terms S
clusterc Cluster with centroid c
C 0 Subset of C that indicates an overlapping area
overlap(C 0) Search terms in overlapping area C 0
areasim(s; C 0) Similarity between search term s and overlapping area

C 0
O Set of overlapping areas
goal Number of impression that should at least be gathered

from relevant terms
get_similar_terms(s; goal) Algorithm to get the terms similar to s
�̂:::(s) Estimated value of �:::(s)
� Search term relevance

24 Semantical Search Term Clustering for Performance Prediction

Chapter 5

Evaluation

In this chapter the procedure described in Chapter 4 will be evaluated and the results will be
presented and discussed. This procedure was implemented using Python 3.7. The implementa-
tion makes heavy use of the packages numpy (https://www.numpy.org/) and pandas (https:
//pandas.pydata.org/). All evaluations were performed on a MacBook Pro (Retina, 15-inch,
Mid 2015) in a Docker container with 8GB memory available.

First, the data set that will be used in the evaluations will be described (Section 5.1). A brief
overview of the properties of the data will be given. The effects of applying the normalization rules
from Section 4.1 will be shown. Then, the word and term similarity measures will be evaluated
(Section 5.2). Some sample term similarities will be given as an indicator of how well the similarity
measure performs. Futhermore, the clustering procedure will be evaluated (Section 5.3). The
performance of different parameter values for the clustering will be compared and discussed. At
last, the performance prediction will be discussed.

5.1 Data set
Data from of one of the customers of ADchieve is used. The selected customer is active in multiple
countries. Only the advertisements of this customer targeting the USA will be used, to keep a
uniform data set with only English search terms and elimination of possible issues with performance
differences between countries.

A dataset containing all search terms and their corresponding performance metrics for the
period May 2018 until April 2019 is extracted from Google Ads, using the googleads Python
package (https://github.com/googleads/googleads-python-lib). In this dataset there are
15164 distinct search terms. A sample of the search terms in this dataset with the corresponding
counter performance metrics is shown in Table 5.1. The data is sparse, as only 0:9% of the search
terms has had a conversion, as can be seen in Table 5.2. This table shows the amount of zero
and the amount of non-zero values for the counter performance metrics ‘impressions’, ‘clicks’ and
‘conversions’. The counter metrics ‘cost‘ and ‘conversion value‘ are not shown because when a
search has had a click, there are also costs and when the search term has had a conversion, there
is also a positive conversion value. Because only search terms that were actually searched for can
be retrieved, it makes sense that every search term in the data set has at least one impression.

The search terms are normalized according to the approach described in Section 4.1. After
normalization, the number of distinct search terms decreases to 15142 distinct search terms, a
decrease of 0:15%. So, nearly all search terms are already in the normalized form. For simplicity,
search terms that after normalization have characters that are not in the Basic Latin and Latin-1
Supplement unicode blocks are removed from the data set. Doing so makes it easier to print and
to debug the data set, and the search terms that are removed represent only 0:01% percent of the
impressions, so removing them will not have a significant impact.

In Table 5.3 the impact of the seperate normalization rules is shown, by giving the number of

Semantical Search Term Clustering for Performance Prediction 25

https://www.numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://github.com/googleads/googleads-python-lib

CHAPTER 5. EVALUATION

Table 5.1: Sample of search terms with historical metrics

Search term impr clicks cost conv cv

tcx riding shoes 10 3 1.84 0.0 0.000000
forma vs tcx boots 1 1 0.60 0.0 0.000000
red helmet nexx xg 100 1 1 0.50 0.0 0.000000
scorpion exo covert helmet 211 10 4.55 0.0 0.000000
alpinestars motocross boots smx 3 size 43 2 2 0.82 0.0 0.000000
klim kodiak cerco 1 1 0.50 0.0 0.000000
airoh aviator 2.2 5748 440 200.57 8.0 3459.840088

Table 5.2: Amount of non-zero values per metric for search terms

Zero Zero (%) Non zero Non zero (%)

Impressions 0 0.0% 15164 100.0%
Clicks 122 0.8% 15042 99.2%
Conversions 15030 99.1% 134 0.9%

search terms that are modified by each specific normalization rule.
For evaluation, the data set is randomly split up into a training set and a test set. 20% of the

records is put in the test set, the other values are put in the train set. This gives a train set of
13056 records and a test set of 3265 records. This percentage is chosen to keep as much records
in the training set as possible while still having a test set of significant size.

Besides search term history, the current product data is also gathered. 8039 products are
currently being sold. The amount of distinct values for the attributes ‘brand’, ‘series’ and ‘category’
are shown in Table 5.4. There are only a few brands and a few categories, so a lot of products
share the same brand or category.

Table 5.3: Search terms affected by normalization rules

%

Remove control characters 14 0.1%
Replace characters by simplified form 16 0.1%
Remove diacritics and change to lower case 41 0.3%
Strip whitespace 0 0.0%

26 Semantical Search Term Clustering for Performance Prediction

CHAPTER 5. EVALUATION

Table 5.4: Amount of distinct values for product attributes

Brand 34
Series 437
Category 19

5.2 Similarity measures

In this section, word similarity will be evaluated. To embed the words, a pretrained FastText model
is used [12]. By using a pre-trained model, the steps of gathering and preprocessing a corpus and
of training the model can be skipped. The pre-trained model is trained on English texts from
Common Crawl (https://commoncrawl.org/) and Wikipedia (https://www.wikipedia.org/).
The model gives vectors of length 300 and uses n-grams of length 5, a window of size 5 and negative
sampling of 10 words.

For the model to work, the words in this model should have the same normalization as the
normalization used for the search terms. So these words are replaced by their normalized variants.
In case two words have the same normalized variant, the first one occuring in the model is taken.
The pretrained model has the most occurring words first, so in this way, the vector for the most
occurring variant is used.

The words in the fields ‘brand’, ‘series’ and ‘category’ from the product data occur often in the
search terms. Therefore, these words are updated in the model with a new vector that is obtained
by calculating a term vector for the title and one for the description of each product. The title
and description fields are the most relevant textual fields and their contents relate to the context
of the brands, series and categories. The average of these two term vectors forms a vector for
each product. The vector for one of the values of the fields is formed by taking the average of the
product vectors where this value occurs. From the 490 words that occur in the brand, series or
category of a product, 264 of them did not have a specified vector before. These words occur in
11786 search terms (77:8%), so they are very relevant words.

With the word vector model, the cosine similarities between words can be calculated. A sample
of words with their most similar words is given in Table 5.6 and Table 5.5 contains a sample of
word combinations and their similarity. In Table 5.5 it can be seen that for example words as
‘roof’ and ‘shark’ have a high similarity, which makes sense because these words are conceptually
close. ‘shark’ is a series within the brand ‘roof’. In Table 5.6 it can be seen that the words closest
to for example ‘2019’ are also years, so that also makes sense. The same holds for ‘helmet’ and
‘visor’, that have a part to whole relationship.

Now soft cosine similarity can be used to determine search term similarities. Just like with the
words similarities, some tables are given to show the results (Table 5.8 and Table 5.7). In Table 5.7
it can be seen that slight variations of the search term such as ‘airoh aviator 2.2’ and ‘airoh aviator

Table 5.5: Sample word similarity

word 1 word 2 similarity

roof shark 0.889734
scorpion held 0.822869
boxer v8 0.338027
4-touring sambia 0.779889
held spector 0.884803
shoei neotec 0.702001
g001.01xl g001.04-ms 0.905213
roof helmet 0.551451
helmet t-shirt 0.460801

Semantical Search Term Clustering for Performance Prediction 27

https://commoncrawl.org/
https://www.wikipedia.org/

CHAPTER 5. EVALUATION

Table 5.6: Closest words (with at least 5 impressions)

value match 1 similarity 1 match 2 similarity 2 match 3 similarity 3

roof boxxer 0.980291 desmo 0.950107 helmets 0.940191
helmet helment 0.830647 visor 0.737213 helments 0.725274
3 2 0.984587 4 0.982823 6 0.952771
usa states 0.634237 america 0.610631 united 0.582304
2019 2018 0.905180 2016 0.576770 2015 0.575396
helmet helment 0.830647 visor 0.737213 helments 0.725274
2.2 2.3 0.977052 2.1 0.956891 1.2 0.924909

Table 5.7: Sample search term similarity

term 1 term 2 similarity

cardo packtalk slim cardo packtalk bold 0.817766
airoh aviator 2.2 airoh aviator 2.0 0.929796
nexx helmets held helmets 0.582525
nexx helmets held gloves 0.275382

2.0’ are considered the most similar search terms. It can be seen in Table 5.7 that search terms
that have little in common, such as ‘nexx helmets’ and ‘held gloves’ have a low similarity.

Table 5.8: Closest search terms (with at least 5 impressions)

value match 1 similarity 1 match 2 similarity 2 match 3 similarity 3

klim gear discount klim gear 0.635840 klim gear for sale 0.617685 klim clothing 0.602292
schuberth e1 schuberth e1 xl 0.834619 schuberth e1 ebay 0.819774 schuberth e1 cut 0.815966
shark modular helmet shark modular helmets 0.980577 shark modular helmets 0.980577 shark modular 0.927996
klim kodiak klim kodiak test 0.831905 klim kodiak jacket 0.777091 klim badlands pro vs kodiak 0.678276
tcx boots tcx boot 0.892424 tcx boots closeout 0.869662 tcx boots closeout 0.869662

28 Semantical Search Term Clustering for Performance Prediction

CHAPTER 5. EVALUATION

5.3 Clustering
In this section, the clustering method of Section 4.3 will be evaluated and the impact of the
parameters of the clustering method on the result will be shown. Also in this section the estimation
of performance metrics will be evaluated.

Centroids are picked from the search terms. Search terms with a higher number of impressions
are more likely to be picked as centroid. Only search terms with at least 3 impressions are
considered. This limits the amount of centroids that need to be taken into account. There are
4846 search terms with at least 3 impressions, which is 32:0% of the total. For different values for
threshold �1, this gives the number of centroids shown in Figure 5.1.

It is desired to get a high similarity within a cluster, so the similarity threshold should not
be too low. On the other hand, a higher threshold means less terms that are close enough to a
centroid, so there will be more centroids. It is desired to not have too many centroids. These two
are contradicting. To balance the two, for threshold �1 the value 0:8 is chosen. This gives 955
centroids. The average similarity between two centroids is 0:30 and the average similarity for the
search terms with the closest centroid is 0:81.

Every centroid gets a corresponding cluster. Within these clusters lie all search terms that have
a similarity of at least �2 with the centroid of the cluster. In Figure 5.2 the different minimum,
maximum and average number of clusters a search term belongs to are given for different values
of �2. A lower value for �2 means more words will belong to at least one cluster, which is positive
because that means that for more words the relevant performance metrics can be calculated. On
the other hand does a lower value of �2 means that more terms that might not be similar end up
in the same cluster. So, the value of �2 should be balanced. The value 0:6 is chosen for �2, because
at this value the average number of clusters has dropped to an acceptable number, and from that
point, the avarage number more or less stays the same from that point. Taking a higher value of
�2 would increase the number of search terms with no or few cluster, which would mean for these
search terms nothing meaningful can be said.

A description of the sizes of the clusters and the number of impressions the search terms in
a cluster have in total is shown in Table 5.9. The size of cluster varies greatly. The search term
‘merlin hamlin kevlar hoody’ is on its own in a cluster, whereas the centroid ‘hjc helmets’ has 4775
terms in the cluster.

The clusters give 9582 overlapping areas. On average, an overlapping area overlaps 33:9 clus-
ters. The overlapping area overlapping the most clusters overlaps 315 clusters. See Table 5.10

Next, a goal value needs to be chosen. The results for different goals for ‘shark race r pro
carbon helmet’ shown in Table 5.11. As goal the value 300 is chosen. A higher goal would lead to
including data from less relevant terms and a lower goal would lead to including too little data to
be significant.

0:5 0:6 0:7 0:8 0:9
� 1

500

1000

1500

N
um

b
er

of
ce

nt
ro

id
s

Figure 5.1: Number of centroids for different values of �1

Semantical Search Term Clustering for Performance Prediction 29

CHAPTER 5. EVALUATION

0:4 0:5 0:6 0:7
� 2

0

100

200

300

400

500

600

700

N
um

b
er

of
cl

us
te

rs

Figure 5.2: Min, max and average number of clusters a search term belongs to for different values
of �2

Table 5.9: Cluster size info

Search terms # Impressions

Minimum 1.000000 4.000000
Average 410.961257 25231.779058
Median 194.000000 7185.000000
Maximum 4775.000000 153662.000000

Table 5.10: Overlapping area info

Search terms # Clusters

Minimum 1.000000 1.000000
Average 1.362555 33.867863
Median 1.000000 17.000000
Maximum 724.000000 315.000000

Table 5.11: Influence of goal on result

Goal Number of search terms Average similarity Min similarity

100 46 0.783011 0.751495
200 68 0.770985 0.736153
300 79 0.765115 0.727521
500 79 0.765115 0.727521

30 Semantical Search Term Clustering for Performance Prediction

CHAPTER 5. EVALUATION

Table 5.12: Amount of search terms from the test set for which an estimation can be made

%

ctr 3031 92.8%
cpc 3031 92.8%
conversion_rate 933 28.6%
cpa 933 28.6%
roas 933 28.6%
value_per_conversion 933 28.6%

In the original data set there were lots of missing values (eg the conversion rate could not
be calculated because there were no conversions). One of the goals of this project was to reduce
this. By considering the test set as unseen search terms and running them through the prediction
algorithm, it can be tested how many of the unseen search terms can be predicted with the
subscribed method. The results of this test are shown in Table 5.12. It can be seen that for a
significant portion of unseen search terms an estimation can now be made of their performance
metrics.

Semantical Search Term Clustering for Performance Prediction 31

Chapter 6

Conclusion

In Chapter 5 it was shown that word vectorization in combination with the cosine similarity
measure can be an efficient method to determine the similarity between to search terms.

Besides the similarity measure, a clustering method was proposed to group the search terms
into clusters based on this similiarity measure. This is done in an efficient manner that allows for
large scale data sets to be used. For the search terms that end up together within a cluster it can
be argued that they are similar, altough the similarity and quality of the clustering is a subjective
thing.

With the proposed method for getting the estimation for a search term is possible to retrieve
an estimation for a lot of terms for which this could not be done before. In that way, the proposed
method solves the given problem. Whether the estimated performance metrics are actually better
than the data known before and how much these values contribute into picking a better bid needs
to be tested with a real life test such as an A/B-test, and is beyond the scope of this thesis.

In future work, the method proposed in this thesis can be extended with more data sources to
make it more reliable. Also, the method could be combined with other, already existing methods,
to get the benefits of both.

Semantical Search Term Clustering for Performance Prediction 33

Bibliography

[1] A brief history of word embeddings (and some clarifications). https://www.linkedin.com/
pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/. Ac-
cessed: 2019-05-24. 16

[2] Search engine market share worldwide. http://gs.statcounter.com/
search-engine-market-share. Accessed: 2019-05-24. 1

[3] Vibhanshu Abhishek and Kartik Hosanagar. Keyword generation for search engine advertising
using semantic similarity between terms. In Proceedings of the ninth international conference
on Electronic commerce, pages 89–94. ACM, 2007. 12

[4] Chris Anderson. The long tail: Why the future of business is selling less of more. Hachette
Books, 2006. 11

[5] Indrajit Bhattacharya and Lise Getoor. Deduplication and group detection using links. In
KDD workshop on link analysis and group detection, 2004. 13

[6] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for cleaning and integration.
In Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery, pages 11–18. ACM, 2004. 13

[7] Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):
297–302, 1945. 13

[8] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the
generalized second-price auction: Selling billions of dollars worth of keywords. American
economic review, 97(1):242–259, 2007. 4

[9] Anindya Ghose and Sha Yang. An empirical analysis of search engine advertising: Sponsored
search in electronic markets. Management science, 55(10):1605–1622, 2009. 11

[10] Wael H Gomaa and Aly A Fahmy. A survey of text similarity approaches. International
Journal of Computer Applications, 68(13):13–18, 2013. 12

[11] Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Herbrich. Web-
scale bayesian click-through rate prediction for sponsored search advertising in microsoft’s
bing search engine. Omnipress, 2010. 12

[12] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov.
Learning word vectors for 157 languages. In Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018), 2018. 27

[13] Ekaterini Ioannou and Minos Garofalakis. Holistic query evaluation over information extrac-
tion pipelines. Proceedings of the VLDB Endowment, 11(2):217–229, 2017. 19

[14] Ekaterini Ioannou and Slawek Staworko. Management of inconsistencies in data integration.
In Dagstuhl Follow-Ups, volume 5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.
12

Semantical Search Term Clustering for Performance Prediction 35

https://www.linkedin.com/pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/
https://www.linkedin.com/pulse/brief-history-word-embeddings-some-clarifications-magnus-sahlgren/
http://gs.statcounter.com/search-engine-market-share
http://gs.statcounter.com/search-engine-market-share

BIBLIOGRAPHY

[15] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des
jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901. 13

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016. 18

[17] Brendan Kitts and Benjamin Leblanc. Optimal bidding on keyword auctions. Electronic
markets, 14(3):186–201, 2004. 11

[18] Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211, 1997. 13

[19] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710, 1966. 12

[20] Kevin Lund. Semantic and associative priming in high-dimensional semantic space. In Proc.
of the 17th Annual conferences of the Cognitive Science Society, 1995, 1995. 13

[21] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of high-dimensional
data sets with application to reference matching. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 169–178. Citeseer,
2000. 13

[22] Rada Mihalcea, Courtney Corley, Carlo Strapparava, et al. Corpus-based and knowledge-
based measures of text semantic similarity. In Aaai, volume 6, pages 775–780, 2006. 12

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013. 16

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013. 16

[25] Claudia Perlich, Brian Dalessandro, Rod Hook, Ori Stitelman, Troy Raeder, and Foster
Provost. Bid optimizing and inventory scoring in targeted online advertising. In Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 804–812. ACM, 2012. 11

[26] Oliver J Rutz and Randolph E Bucklin. A model of individual keyword performance in paid
search advertising. Available at SSRN 1024765, 2007. 12

[27] Gerard Salton and Michael J McGill. Introduction to modern information retrieval. mcgraw-
hill, 1983. 13

[28] Shahriar Shariat, Burkay Orten, and Ali Dasdan. Online evaluation of bid prediction models
in a large-scale computational advertising platform: decision making and insights. Knowledge
and Information Systems, 51(1):37–60, 2017. 12

[29] Grigori Sidorov, Alexander Gelbukh, Helena Gómez-Adorno, and David Pinto. Soft similar-
ity and soft cosine measure: Similarity of features in vector space model. Computación y
Sistemas, 18(3):491–504, 2014. 18

[30] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal
of finance, 16(1):8–37, 1961. 4

36 Semantical Search Term Clustering for Performance Prediction

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Related work
	Method
	Search term normalization

	Evaluation
	Data set
	Similarity measures
	Clustering

	Conclusion
	Bibliography

