Experimental characterization of tungsten monoblocks exposed to pulsed high heat loads

Citation for published version (APA):

Document status and date:
Published: 01/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Jan. 2020
Experimental characterization of tungsten monoblocks exposed to pulsed high heat loads

V.D. Shah, J.A.W. van Dommelen and M.G.D. Geers
V.Shah1@tue.nl

1. Introduction
In future tokamak based nuclear reactors (such as ITER), the divertor performs the vital function of extracting heat and ions from the plasma. Furthermore, the divertor design for ITER consists of tungsten (W) monoblocks, equipped with a CuCrZr heat sink. Under normal operating conditions, the presence of pulsed high heat flux (HHF) loads of 10 to 20 MWm⁻² will result in a steep temperature gradient along the monoblock depth, ultimately evolving the bulk microstructure due to recrystallization and grain growth, in addition to degradation of the surface via melting, roughening, erosion and crack nucleation. These microstructural changes will adversely influence the thermal fatigue lifetime of the monoblocks, and are a major concern for the reactor lifetime. Thus, an in depth understanding of the damage mechanisms under HHF loading is necessary. As a first step, a thorough macro to micro scale characterization of the W monoblocks exposed to several thousand cycles of pulsed HHF loads is performed in this work.

2. Method
HHF exposure:
- Electron beam exposure at ITER divertor testing facility (IDTF), Russia.
- Loading scheme: 10 MWm⁻² (5000 cycles) + 20 MWm⁻² (1000 cycles).

Post exposure characterization:
- Roughness: Interferometry.
- Microstructure:
 1) Light microscopy.
 2) EBSD.
- Hardness: Micro-indentation.

3.2 Results: Microstructure characterization
- Recrystallized grain structure up to depth levels of 5.5 mm.
- Depth greater than 5.5 mm: Initial grain structure (deformed state).
 - Abnormal grain growth near surface, due to high temperature.
 - Surface to bulk: Transition from low angle to high angle (≥ 15°) type grain boundaries.

3.3 Results: Structure – Property
- The hardness varies over the depth due to temperature variations.
 - Significant loss of hardness in top region following HHF exposure.
 - Two stage hardness profile:
 1) Recovery and partial recrystallization (T: 920-1100°C).
 2) Full recrystallization (T > 1100°C).

4. Conclusion
Substantial roughening of the monoblock surface was observed along with barreling of the monoblock geometry following the HHF exposure. Additionally, significant changes in the grain structure occurred up to 5.5 mm along the monoblock depth due to recrystallization. However, no recrystallization assisted macro-crack formation was observed. The inhibition of the macro-crack formation can be attributed to the higher fraction of low angle grain boundaries near the surface, thereby enhancing the strain compatibility between the grains and aiding in ductile behavior of the recrystallized W.

Figure 1: Tokamak based concept of a fusion reactor along with the divertor component (a and b), designed based on the W monoblock geometry with a CuCrZr heat sink. The images in (c) and (d) respectively show the isometric and the front view of the monoblock geometry.

Figure 3: The HHF assisted change in the reflectivity of the top 5–5.5 mm of the monoblock.

Figure 4: Macrostructural changes in the monoblock geometry following HHF exposure with (a) a significant barreling of the geometry, and (b) the surface topography with a mean roughness of 41.8 µm as compared to 0.72 µm in the unexposed state (not shown here).

Figure 5: Microstructural characterization of the HHF exposed monoblock (T-H plane), (a) optical micrograph (b) Height direction IPF map of the recrystallized region (c) Temperature/depth dependent grain boundary character distribution corresponding to the map shown in (b).