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Abstract 

This paper reviews the most important results on divergent multi-echelon systems. In particular, we concentrate on the 
interactions between the elements that constitute such a multi-echelon system, in order to determine several service measures 
(e.g. external customer service level and inventory holding costs). We distinguish between two types of policies: installation 
stock and echelon stock policies. A comparison between these two types of policies revealed that the complexity of the 
analysis is concentrated at different aspects, which are discussed by reviewing the most important papers on both types. 
Special attention is given to the applicability of the models. Extensions to divergent multi-echelon systems with more than 
two stages are also treated. 
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1. Introduct ion  

Over the last decade considerable emphasis is put on 
the coordination of  all operations of  the material sup- 
ply chain. Traditional logistics operations have taken 
place on the basis of  buying material at a supplier 
and selling products to customers without explicit ex- 
change of  information other than prices and lead times. 
However, the decrease of  product life cycles has un- 
veiled the need for frequent exchange information on 
material availability and forecasts upstream in the sup- 
ply chain as well as capacity information downstream 
on a routine basis. Experience on such information 
exchange has been gained within large vertically in- 
tegrated companies during the seventies and eighties. 
It was found that a prerequisite for effective coordi- 
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nation of  the supply chain is the measurement of  op- 
erational performance in terms of  due date reliabil- 
ity, stock availability and other customer service mea- 
sures. This enables partners to update relevant infor- 
mation on customer demand and supply performance, 
so that effective supply chain management is achieved. 

One of  the main difficulties of  cost-efficient and 
effective supply chain management is to determine 
the target service levels (associated with the service 
measures selected), so that the prespecified external 
service targets are met at minimum cost. Nowadays 
such targets are based on historical data and intuitive 
reasoning. The quantitative analysis of  multi-echelon 
systems contributes to the solution of  this problem, 
since it enables to predict the performance of  a sup- 
ply chain given the performance targets for individual 
stockpoints. Much progress on this analysis has been 
made in the last decade, as we will show in the sequel. 
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In this paper we review the most important results 
of three decades of multi-echelon theory from a ser- 
vice measure perspective. This paper complements 
the survey papers [70] and [28], which focus on 
cost-optimization issues. Since shortage costs are of- 
ten hard to determine in practice, service measures 
are used as operational surrogates. Even in situations 
where shortage costs can be determined (e.g. in the 
case of  contractual arrangements regarding shortage 
penalties), service measures are needed in order to 
have direct information on physical performance of 
the supply chain. 

In this paper we distinguish between two differ- 
ent types of  performance measures along the supply 
chain: internal and external performance measures. 
The latter are related to the service provided to exter- 
nal customers at the most downstream stockpoints of 
the supply chain (e.g. the fill rate and customer wait- 
ing times). The former are related to internal customer 
service (e.g. fill rate), and relevant costs (e.g. order- 
ing, holding and transportation costs). We emphasize 
that, in some sense, internal service is irrelevant as 
long as external service is according to prespecified 
targets at a minimum internal cost. 

A prerequisite to determine these performance mea- 
sures is to have models to analyze the physical behav- 
ior (i.e., operational characteristics) of multi-echelon 
systems. Therefore we concentrate on analyzing the 
interactions between the elements that constitute a 
multi-echelon system. When such analysis yields in- 
sight into the evolution of material stocks of a multi- 
echelon system over time we are able to determine the 
service measures and the costs. Like in the companion 
review paper [70], we primarily focus on numerical 
tractability and applicability of these analyses, rather 
than analytic optimality. 

The paper is organized as follows. In Section 2 we 
introduce the major elements that constitute a multi- 
echelon system and affect its control. In our review 
we use these elements as a classification instrument. 
For instance, we distinguish between so-called instal- 
lation stock and echelon stock policies. In Section 3 we 
discuss the major results regarding installation stock 
policies. We distinguish between supply chains for 
consumable products and repairable products (spare 
parts). As much as possible we give a unifying treat- 
ment of subsequent contributions to show the progress 
made with regard to real-world systems. In Section 4 

we give an extensive treatment of echelon stock poli- 
cies. Special attention is given to the notion of im- 
balance, which is specific to echelon stock policies 
in the case of divergent supply chains. Another im- 
portant aspect of echelon stock policies discussed in 
Section 4 is the rationing rule in situations where a 
stockpoint does not have sufficient stock to satisfy all 
downstream stockpoints. In installation stock policies 
rationing is not considered since one typically assumes 
FCFS. Based on our review of the literature in Sec- 
tions 3 and 4 we propose directions for future research 
in Section 5. 

2. Multi-echelon system dements 

In the planning and control of a supply chain we 
distinguish between two kinds of network structures, 
which are the building blocks for more complex net- 
work structures. Usually the upstream part of a chain is 
characterized by a convergent structure. For instance, 
several components are assembled into one subassem- 
bly or finished product. Such an assembly stage may 
be subdivided in several phases separated by interme- 
diate stockpoints. After the assembly stage the finished 
product is stored at a central depot, which supplies a 
number of downstream stockpoints. The distribution 
of such a finished product from the central depot to the 
end-stockpoints is characterized by a divergent struc- 
ture. 

For the analysis of convergent multi-echelon sys- 
tems (e.g. assembly systems) we refer to [70]. We 
focus on the literature concerning the control of diver- 
gent multi-echelon systems. In Section 2. I we present 
the divergent multi-echelon system under considera- 
tion. The behavior of  the stock levels in such a system, 
depends on the ordering policies of the stockpoints. In 
Section 2.2 we present some practically useful contin- 
uous and periodic review ordering policies. For every 
ordering policy we distinguish between two variants: 
the installation stock policy and the echelon stock pol- 
icy. In Section 2.3 we present the operating details 
of both variants, and demonstrate the differences. The 
order policy and its control parameters affect the in- 
ternal customer service as well as the service provided 
to external customers. In Section 2.4 we define three 
major service measures. 
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We introduce some notation which will be used in 
the remainder of  this paper: 

L0 := lead time from supplier to the central depot, 
Li := lead time from central depot to retailer i, 
M := number of retailers, 
cg i 1= the probability that the net stock (stock on 

hand minus back orders) at retailer i is non- 
negative at the end of an arbitrary replen- 
ishment cycle, 

fli := fraction of the demand satisfied directly 
from the stock on hand at retailer i, 

Yi := one minus the ratio of  the average short- 
age at retailer i immediately before arrival 
of  a replenishment order and the average 
demand at retailer i during an arbitrary re- 
plenishment cycle, 

Di,t+,, := demand at retailer i in [t , t  + v), 
Dtt+, : =  aggregate system demand in [t , t  + v); 

D,.,+~, = Y ' ~ l  Ot, t+.' 
1~ := the (echelon) inventory position of retailer 

i at time t just after ordering (rationing), 
Si := order-up-to level of stockpoint i, 
si := reorder-point of  stockpoint i, 
Qi := order quantity of stockpoint i, 

where stockpoint i refers to retailer i for 1 ~< i ~< M 
and refers to the depot for i = 0. In principle the vari- 
ables L0, Li, D~,t+v, Dta+v and I] are random variables. 
Note that we use the notation for a two-echelon diver- 
gent system. In general for N-echelon models a dif- 
ferent notation is required (cf. [72] ), which we omit 
here for sake of clarity of the exposition. 

2.1. Divergent systems 

A divergent multi-echelon system is characterized 
by the property that a stockpoint is supplied by ex- 
actly one other stockpoint, and supplies one or more 
stockpoints. An N-echelon system is a multi-echelon 
system where the highest number of stockpoints on a 
path between the unique root stockpoint of the sys- 
tem and an end-stockpoint equals N. Most papers in 
the literature restrict to two-echelon systems (N = 2), 
in which the unique stockpoint, also called the depot, 
supplies M end-stockpoints, which are called retail- 
ers (see Fig. 1). Only these retailers face stochastic 
customer demand, which is stationary at each retailer, 

Retailers 

Y 7  
Supplier Central Depot ~ v 

Fig. 1. Schematic representation of a divergent two-echelon in- 
ventory system. 

and independent of the demands at the other retail- 
ers. The supplier of the depot has an infinite capacity 
i.e., whenever the depot places a replenishment or- 
der, this can be delivered after a lead time L0. The 
lead time from the depot to retailer i is denoted by 
Li. Like in most papers we explain the analysis by 
considering this divergent two-echelon inventory sys- 
tem. However, when the results can be extended to the 
more general divergent N-echelon system this will be 
pointed out. 

In this paper we concentrate on the specific prob- 
lems occurring in divergent systems. Therefore we 
will not address the N-serial system in much detail. 
The N-serial system is a specific case of the divergent 
N-echelon system, in which every stockpoint has a 
unique supplier, but also has a unique successor. Quite 
some work in the literature has been devoted to this 
system. For an extensive overview on papers using dy- 
namic programming we refer to the survey paper [ 27 ]. 
Another cost-related approach to analyze these serial 
systems is presented in [70]. Other more service re- 
lated papers on this subject are [7,16,10,39,40]. 

2.2. Ordering policies 

This paper addresses two major order disciplines: 
continuous review policies and periodic review poli- 
cies. In the case of continuous review, the stock level is 
monitored constantly and, immediately after this level 
drops below a reorder point, an order can be placed 
to replenish the stock. Furthermore, the demand pro- 
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cess is usually assumed to be a compound Poisson 
process, or simply a Poisson process. In the case of 
periodic review, the stock level is inspected periodi- 
cally, so that orders are generated at review moments 
only. In this case the demand per review period may 
have an arbitrary distribution. 

In our review we focus on practically useful replen- 
ishment policies, which are easy to implement and do 
not necessarily have to be cost-optimal. Examples of 
such policies are the order-point, order-up-to policy 
and the order-point, order-quantity policy. The order- 
point, order-up-to policy is characterized by the con- 
trol parameters (s, S). This means that at any time 
when the stock level at equals or drops below s, an or- 
der is placed immediately. The quantity of this order 
is such that the stock level returns to a target order-up- 
to level S. This policy has been proven to be optimal 
for a single location inventory system which assumes 
a constant ordering cost, linear holding and stock- 
out costs, fixed replenishment lead time and back- 
ordering of unsatisfied demand [ 33,34]. Under some 
assumptions (among other things orders do not cross 
in time) Kaplan [37] extends this result by proving 
that the (s, S) policy is also optimal for the random re- 
plenishment lead time case. The periodic review ana- 
logue of the (s, S) policy is denoted by (R, s, S) (if  
s equals S, then the s is suppressed). This means that 
every R time units the inventory is inspected, and or- 
ders are generated at these review moments only. The 
order-point, order-quantity policy is characterized by 
(s, nQ). This means that when the stock level x falls 
to or below reorder-point s an order of nQ products 
is placed where Q is the base order-quantity and n is 
the minimum integer with x ÷ nQ > s. The periodic 
review analogue of the (s, nQ) policy is denoted by 
(R ,s ,  nO). 

2.3. System control 

The control of multi-echelon systems is often com- 
pletely decentralized in the sense that ordering deci- 
sions at a stockpoint are solely based on the instal- 
lation stock, i.e., the inventory position at this stock- 
point. The inventory position is defined as the sum of 
all planned orders at this stockpoint and its physical 
stock minus its back orders. An obvious advantage of 
an installation stock policy is that it does not require 
any information about the inventory situation at other 

stockpoints. However, due to this lack of information 
about the entire system the cost effectiveness of  these 
policies is limited. E.g. excessive demand may not 
be identified at upstream stockpoints due to the delay 
in information through resulting replenishment orders 
upstream. One way of taking such information into 
account is to control the inventory based on the ech- 
elon stock, i.e., the echelon inventory position at this 
stockpoint. The echelon inventory position is defined 
as the sum of all planned orders at this stockpoint plus 
its physical stock plus that in transit to or on hand at its 
downstream stockpoints minus eventual back orders at 
its end-stockpoints. Since in echelon stock policies the 
order decisions are based on the complete knowledge 
of how much stock is downstream, we need informa- 
tion on how the products flows through the system. 
Due to the developments in the area of information 
technology this is not a problem anymore. 

The definition of the echelon inventory position 
given above can be seen as an analogue of the inven- 
tory position. However, it is more common to define 
the echelon inventory position of a stockpoint by all 
stock in transit to this stockpoint plus its physical stock 
plus that in transit to or on hand at its downstream 
stockpoints minus back orders at its end-stockpoints. 
To illustrate the possible difference between the two 
definitions, let us consider the case where a stock- 
point uses a periodic review policy. In case all re- 
view moments coincide with arrival times of replen- 
ishment orders, then both definitions yield identical 
material flows. However, if replenishment orders ar- 
rive between two review moments then material flows 
may differs. If  back orders at the supplying stockpoint 
are included in the echelon inventory position, then 
an arrival of a replenishment order at this supplying 
stockpoint between two subsequent review moments 
may lead to partial shipments to resolve this back- 
order position. This cannot occur when only in tran- 
sit stock is included in the inventory position. In case 
of a continuous review policy, in principle, both def- 
initions lead to the same material flow in the system 
(depending on how an arriving order is allocated to its 
successors). In the remainder of this paper we shall 
use the latter definition, just like most papers using the 
echelon stock concept. 

An important difference between installation stock 
and echelon stock policies is pointed out by Chen and 
Zheng [ 10]. In the former policies the inventory po- 
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sition of a stockpoint includes all outstanding orders, 
i.e., in transit to this stockpoint or back-ordered at the 
supplier, while for echelon stock policies the echelon 
inventory position of a stockpoint only includes the 
in transit orders to this stockpoint. As a consequence, 
a stockpoint using an installation stock policy can al- 
ways raise its inventory position to a desired level. 
If some part of the order cannot be delivered imme- 
diately it is back-ordered at its supplier. So we may 
model every stockpoint as a single location inventory 
system with a random lead time, i.e., the transporta- 
tion time plus an additional waiting time. In echelon 
stock policies this lead time exactly equals the trans- 
portation time. However, in these policies it is more 
difficult to determine the echelon inventory position, 
since the stockpoint cannot be regarded as a single lo- 
cation inventory system. 

Recently Axs~iter and Rosling [5] compared in- 
stallation stock policy and echelon stock policy. They 
proved that when every stockpoint in a multi-echelon 
system is controlled by an order-up-to policy an in- 
stallation stock policy can always be replaced by an 
equivalent echelon stock policy, and vice versa. When 
every stockpoint in a serial system is controlled by an 
(s,  nQ) policy an installation stock policy can always 
be replaced by an equivalent echelon stock policy, but 
not vice versa. 

2.4. Service measures 

In order to determine good (or even optimal) con- 
trol parameters of the ordering policy we need to de- 
termine the costs of holding inventory, order costs and 
the cost of stock-outs. As argued in [ 51 ] the stock-out 
cost may be ascribed to a lost sale or a rush delivery. 
More often however, the primary consideration is the 
possible loss of customer goodwill. One usually is not 
able, in practice, to assign these costs. Hence, they 
are determined indirectly by a certain service level. 
In this paper we consider three different service mea- 
sures [38]: 

• The non-stock-out probability ( a ) :  the proba- 
bility that the net stock (the stock on-hand mi- 
nus back orders) is non-negative at the end of 
an arbitrary replenishment cycle. 

• The fill rate (fl):  the fraction of the period de- 
mand that is satisfied directly from the stock on 
hand. 

• The modified fill rate (y) :  one minus the ratio of 
the average shortage immediately before arrival 
of a replenishment order and the average demand 
during an arbitrary replenishment cycle. 

In the determination of these service levels the differ- 
ence between installation and echelon stock policies 
becomes clear. For instance, consider the a-service 
level of retailer i, 

ai = Pr{I~ - Dt,t+L,+w, >~ 0}, 

where Wi denotes an additional waiting time. In in- 
stallation stock policies it is fairly easy to obtain an 
expression for I] (e.g. in order-up-to policies 1] = Si). 
However, the order placed at time t arrives after the 
transportation time Li plus the additional waiting time 
Wi. Usually it is hard to obtain the distribution of Wi, 
since it generally depends on the parameters of the or- 
dering policies and the characteristics of the demand 
processes. In echelon stock policies Wi simply equals 
zero. However, it is rather cumbersome to obtain an 
expression for I~, since in general it depends on the 
parameters of the ordering policies and the character- 
istics of the demand processes. In Section 3 we give 
some analytical expressions for the service levels de- 
fined for installation stock policies (e.g. the fill rate 
and the modified fill rate in Section 3.1.2), and in Sec- 
tion 4 we give expressions for the service levels for 
periodic review echelon order-up-to policies (e.g. the 
non-stock-out probability, the fill rate and the modi- 
fied fill rate in Section 4.1.5). 

3. Installation stock policies 

In this section we review important contributions 
in controlling divergent multi-echelon systems using 
the installation stock concept. Most of the papers 
[21,30,64,32] determine the service performance of 
such a system for a given specification of the control 
parameters (e.g. the reorder point s, the batch size 
Q). Some papers [52,55] also indicate how these (or 
some of these) control parameters should be chosen, 
such that an additional constraint is satisfied. E.g. 
Sherbrooke [55] gives an optimization procedure to 
allocate the safety stock among the facilities given any 
total system stock investment. Schneider, Rinks and 
Kelle [52] derive a heuristic that aims at minimizing 
the holding costs under a service level constraint. 
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Below we use the following additional notation: 

/2i := the effective lead time of retailer i, 
ai := rate of  customer arrivals at retailer i, 
/zi := mean lead time demand at retailer i, 
0-/2 := variance of lead time demand at retailer i, 
Bi := the expected number of  products back-ordered 

at stockpoint i, 
Oi := number of  outstanding orders at stockpoint i, 

where stockpoint i refers to retailer i for 1 ~< i ~< 
M, and refers to the depot for i = 0. In Section 3.1 
we address systems under continuous review, and in 
Section 3.2 we address the systems under periodic 
review. 

3.1. Continuous review policies 

In most papers concerning continuous review poli- 
cies demand is assumed to be a (compound) Pois- 
son process with rate ai. The inventory at stockpoint i 
is controlled by an installation stock (si, nOi) policy, 
where not only retailers back-order excess demand, 
but also the depot when it is not able to fill all retailers. 

One of the first papers which models the system 
interactions in divergent multi-echelon environments 
is the METRIC model of  Sherbrooke [55]. METRIC 
stands for "Multi-Echelon Technique for Recoverable 
Item Control", and analyzes how to maintain an in- 
ventory of repairable items (items usually with high 
cost and low demands) using an (Si - 1, Si) policy, 
which for the case of  unit demand corresponds to an 
order-point, order-quantity policy with Qi : =  1 and 
s i : = S i - 1 .  

The work on ( S i -  1, Si)-systems like METRIC can, 
in general, be viewed in either installation or echelon 
stock terms. However, in Section 3. I. 1 we elaborate 
on the METRIC model (for repairable items), since 
this model constitutes the basis for a lot of  installation 
stock models which analyze a model similar to MET- 
RIC, but for consumable items. Since these consum- 
able items usually have low cost and high demand, 
the order size required for these items generally will 
exceed 1. In those cases an order-point, order-up-to 
policy cannot be described by an equivalent order- 
point, order-quantity policy. In Section 3.1.2 we ad- 
dress these installation stock models for consumable 
items. In Section 3.1.3 we address specific modeling 
problems concerning the analysis of these models. 

3.1.1. Repairable items 
METRIC models a supply system consisting of a re- 

pair depot and an arbitrary number of operating bases. 
The depot and the bases maintain an inventory of spare 
parts. The demand for spare parts is only generated 
at the bases and is assumed to be compound Pois- 
son. For ease of presentation we suppose that at base 
i failures occur according to a Poisson process with 
rate ai. When an item fails at base i, with some prob- 
ability ri it can be repaired at that base according to 
an arbitrary probability distribution of the repair time, 
otherwise it must be returned to the depot, where it is 
repaired according to some other arbitrary repair time 
distribution. It is assumed that there every item can 
be repaired and that lateral supply between bases is 
not possible. So, whenever a failure occurs the base 
supplies, if possible, an item from the stock on-hand. 
Immediately after such a failure this item is sent to the 
repair unit of the base, or sent to the depot for repair. 
When a failed item is sent to the depot, at the same 
time the base places a resupply request on the depot. 
As a consequence, the items are not batched for repair 
and resupply requests. 

The main METRIC goal is to allocate the available 
safety stock over the bases and depot such that the 
costs induced by the back orders are acceptable, i.e., 
equals a prespecified amount. Hence, we need to com- 
pute the expected number of products back-ordered at 
a base, say base i, and the depot. This number is de- 
noted by Bi and Bo, respectively. Denote the number 
of outstanding orders at base i and at the depot by Oi 
and O0, respectively, it follows that 

Bi=E{max[O, O i - S i ] } ,  i = 0 , 1  . . . . .  (1) 

When the distribution of Oi is known B i c a n  easily 
be computed from ( 1 ). We also need the distribution 
of the outstanding orders at a base i and at the depot. 
Since a failed item can be repaired both at the base 
and at the depot, an outstanding order at a base can be 
an item on order at this base or an item on order at the 
depot. The outstanding orders at each base can simply 
be analyzed by a single-echelon model. The number 
of outstanding orders of each base at the depot and 
the total number of outstanding orders at the depot 
can be analyzed as a divergent two-echelon system as 
introduced in Section 2.1. We shall address these two 
analyses separately. 
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The depot analysis 
An operating base is modeled as a retailer. A de- 

mand occurrence for a single item at a retailer can be 
seen as the occurrence of a failure at a base, which 
cannot be repaired at the base but is sent to the depot 
for repair. The requests from all bases correspond to 
the demand at the depot. If on-hand stock at the de- 
pot is sufficient, a spare item is sent to the base after 
Li time units. Besides sending a resupply request, the 
failed item is sent to the repair unit for repair. The base 
not only plays the role of a retailer demanding spare 
items, but also of a supplier supplying failed items to 
the depot. The in-transit time of a failed item from 
base i to the depot, plus the repair time at the depot 
equals the lead time L0 and is independent of base i. 
Since with probability 1 - "/ ' i  a failed item will be re- 
paired at the depot, the demand process of retailer i 
is a Poisson process with rate (1 - " / - i ) ~ i ,  Hence, the 
demand process at the depot is a Poisson process with 
rate A := Y~i( 1 - Ti) ,~  i. Since the depot uses a one- 
for-one replenishment policy, the demand process at 
the supplier is identical to the demand process at the 
depot. We assume ample repair capacity, i.e., immedi- 
ately after the arrival of a failed item at the depot the 
repair starts. Hence, the amount of outstanding orders 
at the depot O0 is identical to the occupancy level, i.e., 
the number of busy servers, in an M/GI/cx~ queue. 
According to the theorem of Palm [47], the steady- 
state probability distribution of the occupancy level 
in an M/GI/oo queue is Poisson with rate A E Lo, if 
the arrival rate equals A and the mean service time 
equals E Lo. In [29] Palm's theorem is extended to 
the compound Poisson demand case, under the condi- 
tion that the repair times of all items in one demand 
batch are identical. 

The base analysis 
Consider the repair unit at base i. The arrival rate 

of failed items equals 7"i,~ i. Assuming ample repair 
capacity and that the repair times are i.i.d, following 
an arbitrary distribution with mean Ti. Hence, from 
Palm's theorem, the number of outstanding orders at 
the repair unit of base i is Poisson distributed with 
m e a n  Ti,~iTi . However, some of the failed items are 
sent to the depot for repair. The arrival rate of resup- 
ply requests of base i at the depot equals (1 - ri)Ai. 
The effective lead time £,i,k of the kth order of base i 
is at least the shipping time Li, but possibly an addi- 

tional waiting time Wi,k (due to material shortage at 
the depot), 

ff~i,k = Li + Wi.k, 

i = 1 , 2  . . . . .  M, k = l , 2  . . . . .  (2) 

where Wi,k denotes the additional waiting time of the 
kth order of base i. When both the stock-outs at the 
depot are filled on a first-come-first-served (FCFS) 
basis, and the demand at base i is Poisson distributed, 
Wi,k is independent of the base placing the order. 

For the special case where the depot lead time 
equals a constant 10, Sherbrooke [57] derived the 
cumulative distribution function F of Wi,k (denoted 
by W). For So > 0, 

So-I 
Fw(w) = ~ (A(lo - w) )  k -a(to-w) ~ e , 

k=O 

O<~ w<~ lo 

and for So = 0, Fw(w)  = 0 for 0 <~ w < l0 and 
Fw(lo) = 1. This result can be verified immediately 
from the observation of Axsater [2]: a product or- 
dered by the depot is used to fill the S0th demand fol- 
lowing this order. Hence the cumulative distribution 
function F of the time elapsed between the placement 
of an order and the occurrence of the S0th demand fol- 
lowing this order corresponds with an Erlang (A, S0) 
distribution. 

We now return to the relation stated in (2).  We 
like to emphasize that the successive waiting times, 
Wi, k and Wi,k+l, are identically distributed, but are also 
correlated. Hence, we cannot use Palm's theorem to 
obtain the distribution of the number of outstanding 
orders of base i at the depot. Now METRIC makes 
the following approximation: disregard the correlation 
between successive waiting times by defining 

ff-'i,k :-~ Li q- E Wi.k, 

i = 1 , 2  . . . . .  M, k = l , 2  . . . . .  (3) 

Under this assumption Palm's theorem can be used. 
The number of outstanding orders of base i at the 
depot is Poisson distributed with mean ( 1 - ~'i) Ai E El. 
Hence, Oi is Poisson distributed with mean Ai [ ziTi + 
(1 - - 7 " i ) ] ] ~ - / ~ i ] .  The only aspect which needs to be 
analyzed is E Wi,k. 
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As already mentioned, O0 is Poisson distributed 
with mean A E Lo. From ( 1 ) we obtain B0. Next, by 
applying Little's well-known formula [43] we have 

I~w = Bo /A ,  (4) 

where/zw is the expected waiting time of a product or- 
dered at the depot. Since the demand at a base follows 
a Poisson process, the waiting time Wi,k is independent 
of the base i (and also of k). Hence, using the Pois- 
son Arrivals See Time Averages (PASTA) property of 
Wolff [74], E Wi,k  = [2,W. The analysis becomes more 
complicated when the demand process at each base is 
a compound Poisson process, since then the waiting 
time Wi, k also depends on the base placing the order 
and Little's formula does not hold anymore (except 
for some specific cases). Further on the applicability 
of Little's formula will be discussed. 

This concludes our analysis of METRIC. For a more 
extensive analysis we refer to Sherbrooke [59]. He 
presents METRIC and its assumptions extensively, al- 
though, in our opinion, he disregards to discuss the im- 
plicit assumption that the rate ~.i is independent of the 
number of failures at base i. Indeed, when the number 
of items at base i is large the decrease of/~i will be 
negligible, otherwise the impact of this assumption is 
a priori not clear. 

Extensions 
Several extensions of METRIC have been devel- 

oped over the years. For a more extensive review we 
refer to [3,13,44,46]. We shall briefly discuss some 
of these extensions. 

Graves [30] and Slay [62] developed the so-called 
VARI-METRIC model which uses another approxi- 
mation to determine Oi. An important difference with 
METRIC is that the order-and-shipment times Li are 
assumed to be deterministic. Using a result in Simon 
[61] (he determines the distribution of Oi when the 
back orders at the depot are filled on a FCFS basis), 
they compute the first two moments of Oi. Graves 
[30] and Slay [62] propose to fit a negative bino- 
mial distribution on these moments, to approximate 
the distribution of Oi. Graves [30] compared the per- 
formance of this approximation and the METRIC ap- 
proximation with exact results obtained by computing 
the required stockage levels for four bases such that 
every base meets his predefined service level a, i.e., 

Pr{O/< Si} >>- oz. It appears that the METRIC approx- 
imation computes too low stockage levels in 11.5% of 
the 2304 cases considered, while the negative bino- 
mial api~roximation results in wrong stockage levels 
in only 0.9% of these cases. 

An essential extension to METRIC concerns the 
incorporation of the multi-indenture relationship 
between end items and their comprising modules. 
Consider an aircraft engine consisting of a number 
of replaceable modules. METRIC minimizes the ex- 
pected back orders of all items (both engines and 
modules), while in practice only shortages of end 
items (engines) affect the downtime of the sys- 
tem. Sherbrooke [56] was the first to recognize this 
multi-indenture relationship. Muckstadt [45] ex- 
tended the METRIC to a multi-indenture model also 
called MOD-METRIC. Sherbrooke [ 58 ] extends the 
VARI-METRIC model by taking the multi-indenture 
relationship into account. In Lee [41] and Axs~iter 
[ 1 ] the basic model is extended by allowing lateral 
transshipments (between the bases). 

The METRIC based models discussed so far fo- 
cus on characterizing the steady-state behavior of the 
inventory levels for a given ordering policy, using 
the steady-state distribution (or an approximation 
thereof) to determine the average costs associated 
with the policy. For Poisson demand and determinis- 
tic lead times Axs~iter [2] provides a more efficient 
and direct method to find the optimal inventory policy 
minimizing an inventory cost function that reflects 
costs incurred on an average unit. This approach does 
not require the METRIC assumption, neither does 
it provide any information on the steady-state dis- 
tribution of inventory levels, necessary to determine 
service levels. Recently Axs~iter, Forsberg and Zhang 
[4] proposed an alternative approach to determine 
"appropriate" order-up-to levels Si in case of com- 
pound Poisson demand and deterministic lead times li. 
They replace the compound Poisson demand process 
at every retailer by an "equivalent" Poisson demand 
process such that the ratio between the mean and stan- 
dard deviation is the same as for the real distribution. 
As a consequence the demand process at the depot 
also becomes a Poisson process. Next, the algorithm 
of Axs~iter [ 2 ] provides the optimal order-up-to levels 
in the adapted model (Poisson demand), which are 
used to compute the order-up-to levels in the original 
model (i.e., compound Poisson demand). This ap- 
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proach can easily be adapted when every stockpoint 
is controlled by an order-point, order-quantity pol- 
icy (see Section 3.1.2). Also, extension to systems 
with three or more echelons is straightforward, yet no 
numerical results are available. 

3.1.2. Consumable items 
The METRIC model cannot be extended to the case 

where the batch sizes exceeds 1, since Palm's theo- 
rem requires Q = 1. For items with a high demand it 
makes sense to have a batch size Q larger than 1 due 
to the ordering costs which have to be paid for ev- 
ery order. Deuermeyer and Schwarz [ 21] extend the 
decomposition method of METRIC to analyze the di- 
vergent two-echelon (s, nQ) system for consumable 
items. They consider the case of Poisson demand at 
retailer i with rate ai. 

Suppose retailer i places an order of Qi at the de- 
pot. This order arrives after an effective lead time £i 
given by (2).  In contrast with METRIC, which does 
not require a deterministic li, in the model of  Deuer- 
meyer and Schwarz [21] deterministic lead times li 

are assumed. Lot-splitting at the depot is prohibited. 
Back orders at the depot are filled on a FCFS basis. 

The analysis is based on the METRIC approxima- 
tion, i.e., the effective lead times are defined by (3).  It 
is important to realize that this enables to decompose 
the divergent two-echelon system into several single 
location inventory systems. Before we elaborate on the 
analysis, we show how to determine the service mea- 
sure fli and Yi, respectively. Deuermeyer and Schwarz 
[21] give a computationally convenient normal ap- 
proximation of the expressions derived in Hadley and 
Whitin [ 31 ] : 

f l i  = 1 --  [oe(s + )  --  ol(si  -]- Qi )  - ( - s i )  + ] / Q i ,  ( 5 )  

! 
Yi = 1 - [ ( s  +) - fl(si + Qi) 

-- ( - - S i ) + ( ½ ( S i ' 4  - 1) - a ( O ) ) l / a i Q i ,  (6) 

where 

Ol(U) :mO'i4) (O--I 'Li~ -- (U--]~i)~ (O--~'£i~ , 
\ O'i / \ ori ,1 

J~(U) := ½ [0=2(~ (U--l'1~i~ -- O.i ) I 

with x + = max(0,  x) ,  o=i := v/=~-7 and ~i := AiEr-.i. 
4)(-) and @(-) are the standard normal density and 

complementary distribution, respectively. The service 
measure y~ is the modified fill rate definition intro- 
duced in [51], which is defined as one minus the 
amount of cumulative back orders per unit time di- 
vided by the mean demand per unit time. Notice the 
difference with our y-definition in Section 2.4 which 
is based on the behavior of the stock at the end of a 
replenishment cycle, instead of the behavior per time 
unit. 

The depot analysis 
The analysis of the depot is hard due to the com- 

plexity of the demand process. In general this demand 
process is a non-stationary compound point process. 
However, Deuermeyer and Schwarz [21 ] only con- 
sider the case where all order sizes Qi (i = 1 . . . . .  M) 
are identical, say Qr. Hence, the demand process at 
the depot becomes a counting process. Furthermore, 
the lead time l0 is deterministic, and the order size 
Q0 is a multiple of Qr. They approximate the demand 
process at the depot as the order process of one ar- 
tificial retailer, with a demand process which is the 
superposition of the M Poisson processes at the retail- 
ers, a Poisson process in itself with rate A := ~ '~ l  Ai. 
To illustrate the difference between the real demand 
process at the depot and the demand process result- 
ing from this approximation we consider a divergent 
two-echelon model with two end-stockpoints. Fig. 2 
depicts the demand process of  both retailers. A circle 
represents the arrival of a customer, and a filled circle 
means that an order is placed at the depot. Also as- 
sume that Qr = 2, hence for each retailer an order is 
placed at the depot after every two customer-arrivals 
at this retailer. The demand process at the depot fol- 
lows by superposing the order-processes at every re- 
tailer. The artificial retailer places an order after every 
two customer-arrivals (irrespective of where the cus- 
tomers arrive). From Fig. 2 it becomes clear that the 

Retailer 1 O @ O @ 

Retailer 2 O • O 

D~po~ A A A 

Depot (Approx.) z~ ~ A 

Fig. 2. The demand process at retailer !, retailer 2, the depot and 
the depot (using the approximation), respectively (M = 2 and 
Qr = 2 ) .  
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actual demand process at the depot and the order pro- 
cess of  the artificial retailer are different. 

Using well-known approximations from renewal 
theory we obtain the mean and variance of the depot 
lead time demand, denoted by/.to and o- 2 , respectively. 

AIo 1 - -  Q r  and o .2 Alo 
/z0 = ~- r  + 2Q--~ = ~-2" (7) 

Finally, Deuermeyer and Schwarz [21 ] fitted a normal 
distribution on/.t0 and 0" 2. 

The retailer analysis 
Under the METRIC approximation every retailer 

can be modeled as a single location under (si, nQi) 
control with a fixed lead time E/:i .  In order to deter- 
mine the effective lead time/~i, E W is computed as 
in Section 3.1.1. This means that we first determine 
B0 by substituting (7) in (5),  and next use Little's 
formula to obtain E W = Bo/A. 

Extensions 
Svoronos and Zipkin [64] followed the same ap- 

proach as Deuermeyer and Schwarz [21]. The key 
innovation of their paper is not to treat the effective 
lead time of a retailer as deterministic, but approx- 
imate both the mean and the variance of this effec- 
tive lead time, and fit a negative binomial distribution 
on these two moments. With the result of Svoronos 
[ 63 ], who extended the results of Hadley and Whitin 
[ 31 ] by considering a stochastic leadtime, an expres- 
sion for Bi can be obtained. Furthermore, Svoronos 
and Zipkin [64] derived the exact mean and variance 
of the depot lead time demand, and fitted the better 
performing Mixed Translated Poisson (MTP) distri- 
bution (i.e., with probability 1 - p  we obtain a shifted 
Poisson distribution with mean v and shift A, and with 
probability p we obtain a shifted Poisson distribution 
with mean v and shift A + 1) on these moments. In 
[42] a two moment approximation is used to fit the 
depot lead time demand. However, to analyze the re- 
tailers they use a quite different approach: instead of 
modeling the lead times as an intermediate step, they 
estimate the back orders at the retailers directly from 
the back orders at the warehouse, using a disaggre- 
gation procedure similar to that of Graves [30]. A 
numerical study performed by Svoronos and Zipkin 
[64] indicates that their model is more accurate than 

those of Deuermeyer and Schwarz [21] and Lee and 
Moinzadeh [42]. 

New developments in the analysis of  these depot- 
retailer systems have appeared recently. In [ 11 ] every 
stockpoint uses an (s, S) policy. The demand process 
at each retailer follows a stationary stuttering Pois- 
son process (i.e., a compound Poisson process with 
geometrically distributed order-sizes) and all retailers 
are identical. Their approach to estimate the expected 
fill rate fundamentally differs from (5),  since the ex- 
pected back orders at the end of each reordering cycle 
at retailer i is determined by conditioning on the event 
of a depot stock-out, namely 

(1 - p)BI  +p]32, 

where p is the steady-state probability that the depot 
is unable to satisfy an order of retailer i, and Bl and 
/32 are the expected back orders per cycle at retailer i 
given that the depot is unable/able to satisfy the order, 
respectively. A more general model is studied in [ 12], 
where stockpoint i uses an (si, Si) policy. The demand 
at every retailer is a stationary Poisson process. They 
provide an expected upper bound for the stock-outs at 
the depot per unit time, which is used to approximate 
the reorder point and the order-up-to level at the depot, 
in order to minimize average depot cost. 

3.1.3. Specific modeling problems 
"When a retailer uses an ( Si, nQi) replenishment pol- 

icy or the demand processes at these retailers are com- 
pound Poisson the analysis of the model becomes far 
more complex. This is due to two phenomena. First 
of all, the analysis above relies on the applicability of 
Little's formula, which does not hold in general. Sec- 
ondly, the assumptions under which models are ana- 
lyzed so far are such that replenishment orders are sat- 
isfied completely or back-ordered completely. In gen- 
eral this does not hold. Let us look into these phenom- 
ena in more detail. 

The applicability of Little's formula 
As shown in the retailer analysis in Section 3.1.2, 

an expression for E W is derived from Little's formula. 
It turns out that the applicability of Little's formula 
is restricted to particular cases. The following are the 
most studied cases in the literature where the formula 
can be applied: 

(i) Unit demand (e.g. METRIC and its extensions). 
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(ii) Deterministic demand sizes D and reorder level 
s is a multiple of  D (e.g. Svoronos and Zipkin 
[64] assume identical order batches at the re- 
tailers, resulting into deterministic demand sizes 
at the depot). 

(iii) Exponential demand sizes. 
With compound Poisson demand Little's formula can- 
not be generally applied to derive the average waiting 
time/zw. This is caused by the fact that the sizes of 
subsequent back orders are not i.i.d, with the same 
distribution as the demand distribution Fo. More pre- 
cisely, the first back order that occurs at a stock-out 
occasion has a different distribution, whereas all sub- 
sequent back orders until the next replenishment are 
i.i.d, with distribution Fo. In case some demand can 
still not be filled by this replenishment a similar sit- 
uation occurs with the customer demand size that is 
only partially filled as opposed to the demands that are 
not filled at all. We can see that for the above three 
cases all back orders are i.i.d, with distribution Fo. 
For exponential demands this is caused by the lack of 
memory of the exponential distribution. 

To appreciate the errors caused by applying Little's 
formula we present some simulation results for a sin- 
gle location (s, nQ) model with compound Poisson 
demand with rate A and a customer batch size of D. 
This rate A equals 1 and batch size D has a mean of 
100 and a squared coefficient of variation c 2. We var- 
ied c~ as 0.5, 1, 1.5 and 2. The reorder level s is deter- 
mined for a fill rate fl, where fl is varied as 0.50, 0.75, 
0.9. The order size Q equals 1000. Order-splitting is 
allowed. In Table 1 we compare/zw with 1/,1~ ttle, where 

B 
/'Ll~ttle := ~- E D' 

where B is the expected number of backlogged prod- 
ucts. Furthermore we provide an approximation for 
/zw based on the assumption that the first back order 
has the same distribution as the stationary residual life 
distribution associated with FD. This yields the fol- 
lowing approximation for/zw, 

Approx B ( E D 2 ) 
~ '  := a~------~ + ~r \ ~ - - ~  E D  , (8) 

where ~" equals the probability that the net stock 
(physical stock minus back orders), is negative. In 
[ 17] an accurate approximation for ~- is derived. 
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Table 1 
The behavior of the expected waiting time of a product determined 
by simulation, Little's formula and approximation (8) 

Approx /~ C2D ]-~W /,t,~ ttle /'/'W 

0.5 0.5 1.42 1.30 1.42 
1.0 1.37 1.38 1.36 
1.5 1.32 1.44 1.30 
2.0 1.24 1.44 1.26 

0.75 0.5 0.51 0.46 0.52 
1.0 0.50 0.50 0.50 
1.5 0.48 0.53 0.50 
2.0 0.45 0.54 0.48 

0.9 0.5 0.16 0.13 0.17 
1.0 0.15 0.16 0.17 
1.5 0.15 0.17 0.17 
2.0 0.15 0.18 0.16 

From the results of Table 1 we see that this adapta- 
tion of Little's formula yields a robust and accurate 
approximation. Also the simulation reveals that /zw 
is rather insensitive with regard to c 2. More research 
needs to be done to investigate this phenomenon. 

Heterogeneous systems and lot splitting 
In most papers on two-echelon inventory systems 

under installation stock policies with lot sizing the 
following assumptions are made: 

• Lot sizes are identical for all retailers. 
• In case of shortages at the depot the retailer order 

is delayed until it can be satisfied completely. 
The latter assumption is referred to as the no-lot- 
splitting assumption. The impact of these assumptions 
has never been explicitly investigated. In practice the 
assumption of identical lot sizes of retailers (or cus- 
tomers) is invalid. E.g. suppose that the retailers are 
in fact wholesalers, power retailers and other stock 
points of the company that owns the depot. Then the 
EOQ formula tells us that lot sizes depend on the de- 
mand at each customer base and the cost structure of 
each base. These are in practice quite different. 

It is quite common to split lots in case of mate- 
rial shortages. Lot-splitting also impacts the cash flow 
of the supplier companies and their capital tied up in 
inventory. Indeed, if lot-splitting is applied remnant 
stock does not occur in case of shortages and cus- 
tomers can be invoiced immediately for the products 
shipped. Moreover, customers may be able to start op- 


























