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Abstract This paper considers the problem of syn-
chronizing a pair of oscillators with Huygens’
coupling to a desired periodic trajectory, by using feed-
forward control. Two particular examples are consid-
ered: a modified version of the classical Huygens’
system of pendulum clocks coupled through a com-
mon bar and a pair of self-sustained mass–spring–
damper oscillators mounted on a suspended bar. For
both cases, it is demonstrated that if the coupling bar
is excited by a suitably designed feed-forward control,
then it is possible to indirectly force the oscillators to
track a desired periodic trajectory. Additionally, suffi-
cient and necessary conditions for the stability of the
desired synchronous solution are derived by using the
Poincaré method of perturbation and a numerical study
is conducted in order to illustrate the theoretical find-
ings. Ultimately, it is demonstrated that the proposed
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feed-forward control induces the desired synchronous
motion provided that, besides the coupling bar, there
exists a diffusive coupling between the oscillators and
the intrinsic parameters of the system satisfy certain
constraints.
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1 Introduction

1.1 Historical notes

One of the earliest reports on synchronization is due to
the Dutch scientist Christiaan Huygens (1629–1695),
who among other things, invented the pendulum clock
and wrote one of the seminal scientific works of that
times, namely the ‘Horologium Oscillatorium’ [1]. In
late February 1665, Huygens, who was confined to his
bedroom for several days due to an illness, made an
exciting discovery: twoof his pendulumclocks hanging
from a common support—a wooden bar supported by
twochairs—always swung together in oppositemotion,
i.e., the pendula were synchronized in anti-phase. In a
letter to his father, Huygens referred to this odd phe-
nomenon as ‘the sympathy of two clocks’ [2]. Nowa-
days, this sympathy is known asHuygens’ synchroniza-
tion [3–5] and the suspended bar coupling the clocks
is referred to as Huygens’ coupling [6,7].
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1.2 Literature review

There exist several works aiming to provide a rigor-
ous explanation for the synchronization phenomenon
observed by Huygens in his pendulum clocks. For
example, for the case of identical pendula, it has been
found that the coupling strength, i.e., the ratio between
the mass of the coupling bar and the mass of the pen-
dula, plays a key role in the onset of synchronization
and other behaviors like beating death, in which one of
the clocks stop oscillating [8,9].

Likewise, there are works, see, e.g., [10–14], in
which it has been demonstrated that the damping in
the system has a strong influence on the type of syn-
chronization: for relatively large damping the pendula
tend to synchronize in anti-phase, whereas for rela-
tively small damping the pendula ‘prefer’ to synchro-
nize in-phase.

On the other hand, the stiffness in the coupling bar
also plays a key role in determining the frequency of
the synchronous solution such that when the stiffness
in the coupling is ‘low’ the oscillation frequency of
the synchronous solution is larger than the average of
eigenfrequencies of the uncoupled pendula, whereas
when the stiffness is ‘large’ then the frequency of the
synchronous solution is smaller than the average of the
eigenfrequencies of the uncoupled oscillators [15,16].

There also exist works where the pendula are
assumed to be nonidentical [17–19]. In these cases, the
pendula do not achieve complete synchronization, but
rather frequency synchronization is observed.

Regarding the coupling bar, most of the models
available in the literature consider that the bar is a rigid
body, see, e.g., [8,10,11,20,21]. Just recently, a model
that (partly) takes into account the flexibility of the cou-
pling bar has been derived [22].

At this point, it is worth mentioning that the case
of more than two pendula coupled through a Huygens’
coupling has also been the topic of current research. For
example, in [23], a system consisting of two movable
platforms with N pendulum-like oscillators mounted
on each platform is presented. The authors demonstrate
that the pendula may exhibit the so-called chimera
state: the pendula in one platform are completely syn-
chronized, whereas those placed on the other platform
oscillate out of synchrony.

Finally, it should be noted that different methods
have been used to analyze the onset of synchroniza-
tion in oscillators with Huygens’ coupling. For exam-

ple, in [8], conditions for the onset of synchronization
in a simplified Huygens’ system are derived by using
a Poincaré map. Furthermore, in [24], the stability of
the synchronous solutions is investigated using bifur-
cation analysis and the center manifold theory. More-
over, in [21,25,26], a energy balance method is used
for determining conditions for the onset of synchronous
motion in coupled pendulum-like oscillators. And in
[11], analytic conditions for the existence and stability
of synchronous solutions in a pair of pendulawithHuy-
gens’ coupling are provided. Likewise, several experi-
mental platforms have been developed in order to fur-
ther investigate Huygens’ synchronization [8,10,27–
29], and recently, a modern version of Huygens’ exper-
iment has been created using monumental pendulum
clocks [22].

1.3 Problem statement

Most of the works related to the study of Huy-
gens’ synchronization, including those mentioned in
the previous subsection, consider the problem of self-
synchronization, i.e., the case where the pendula syn-
chronize, in a natural way, either in-phase or in anti-
phase. Furthermore, in these studies the amplitude, fre-
quency, and phase of the periodic synchronous solution
are completely determined by the intrinsic parameters
of the pendula and the coupling structure.

However, to the best of our knowledge, the case
of controlled synchronization in Huygens’ system of
pendulum clocks has not been investigated in detail,
although we have made some steps on this direction in
our previous work, see [30]. In particular, the follow-
ing question is still open: given the Huygens’ system of
pendulum clocks, how to enforce a desired synchronous
periodic motion in the pendula?

This question becomes more relevant when the pen-
dulum clocks are replaced by other self-sustained oscil-
lators, like for example mechanical motors or electric
generators, where besides synchrony, it is desired that
the systems oscillate at certain frequency and phase.

Furthermore, in the case of self-synchronization,
when the pendula synchronize in anti-phase, the cou-
pling bar comes to standstill, whereas for the case that
the pendula achieve in-phase synchronization, the cou-
pling bar exhibits an oscillatory behavior. From an
energy view point, the oscillation of the coupling for
the in-phase synchronization regime may be an unde-
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sired situation because the energy required to keep the
pendula synchronized in-phase is larger than in the case
where the pendula achieve anti-phase synchronization.
Hence, a natural question at this point is: how to control
the coupling bar such that when the pendula synchro-
nize in-phase the coupling bar does not oscillate but
rather converges to standstill?

This work elaborates on these open questions. In
particular, a suitable feed-forward control is designed,
which ‘destroys’ the natural tendency of the pendula
to synchronize and at the same time, the oscillation
in the coupling bar are eliminated when the pendula
achieve complete synchronization. Furthermore, since
the feed-forward control converts the Huygens’ system
of coupled pendula into a nonautonomous system, the
analysis techniques mentioned in Sect. 1.2 may not be
useful in determining analytic conditions for the exis-
tence and stability of the desired synchronous solution.
Consequently, in this work the analysis is conducted by
using a perturbation method for nonautonomous sys-
tems.

1.4 Contributions

As mentioned before, most of the works reported in
the literature about Huygens’ synchronization consider
the problem of self-synchronization, in which the syn-
chronous solution in the system is entirely determined
by the intrinsic properties of the oscillators. In con-
trast, this paper focuses on the case of controlled syn-
chronization. Specifically, a feed-forward controller is
designed,which allows inducing a desired synchronous
motion in a pair of oscillators with Huygens’ coupling.
Furthermore, the proposed controller does not require
to have any knowledge about the state variables of
the oscillators. Instead, it only requires to have knowl-
edge of the desired periodic trajectory and its first two
derivatives. Therefore, the proposed synchronization
scheme can be seen as an open-loop synchronization
scheme. Note that the use of an open-loop synchro-
nization scheme finds interesting applications like for
example in the synchronization of power grids [31].

Also, there is a certain degree of novelty in themath-
ematical models considered here. In general, the classi-
cal Huygens’ systemof pendulum clocks ismodeled by
two simple pendula coupled through a rigid bar. Here,
besides the coupling bar between the pendula, a spring
has been added between the masses of the pendula.

This addition to the model is key in order to enforce
the desired synchronous motion. In fact, in Sect. 3, it is
analytically demonstrated that if this spring is removed
then it is impossible to achieve the desired synchronous
motion with the proposed feed-forward controller. The
controller, however, has the limitation that it requires
to impose constraints on the intrinsic parameters of the
system.

Furthermore, the synchronization strategy discussed
heremaybe applicable to a larger class of self-sustained
oscillators. To illustrate this, Sect. 4 presents a ‘gen-
eralized’ Huygens’ system, in which the pendulum
clocks are replaced by self-sustained mass–spring–
damper oscillators. Also for this case, it is analytically
and numerically demonstrated that the proposed con-
troller induces the desired synchronous behavior in the
oscillators.

In summary, this paper investigates the onset of con-
trolled synchronization in pairs of self-sustained oscil-
lators interacting viaHuygens’ coupling fromaControl
Theory perspective.

1.5 Outline of the paper

The rest of the manuscript is organized as follows. Sec-
tion 2 introduces a key result for analyzing nonau-
tonomous systems, which is based on the Poincaré
method of perturbation. Next, Sects. 3 and 4 present
the design of the feed-forward controller for achieving
controlled synchronization in a pair of self-sustained
oscillators with Huygens’ coupling. Also, necessary
and sufficient conditions for the stability of the desired
synchronous solution are provided.As particular exam-
ples, we consider the classical Huygens’ experiment
of pendulum clocks, presented in Sect. 3, whereas in
Sect. 4 a pair of self-sustained mass–spring–damper
oscillators is considered. Then, in Sect. 5, the analytic
results obtained in Sects. 3 and 4 are illustrated by
means of numerical simulations. Finally, a discussion
about the applicability of the results obtained here and
some conclusions are presented in Sect. 6.

2 Preliminaries: existence and stability of periodic
solutions in nonautonomous systems

Consider the nonautonomous system of equations

ẏs = λs ys + μFs(y1, . . . , yl , μ, ωt), s = 1, . . . , l, (1)
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where λs are the so-called characteristic exponents of
system (1)whenμ = 0 and Fs are analytic and periodic
functions of period T = 2π/ω.

Assumption The characteristic exponents of (1) can
be classified as follows:

λs = insω, s = 1, . . . , k, ns ∈ Z, (2)

λs = −as ± bs, s = k + 1, . . . , l, as, bs ∈ R+.

(3)

Hence, for μ = 0, system (1) has the following
asymptotic solutions

y0s = αseinsωt , s = 1, . . . , k,

y0s = 0, s = k + 1, . . . , l, (4)

where αs are constants determining the amplitude of
the solution.

The following theorem presented in [32] provides
conditions for the existence and stability of periodic
solutions in system (1). For the proof, the reader is
referred to [33]. An analogous theorem for autonomous
systems is provided in [34].

Theorem 1 Periodic solutions of the nonautonomous
set of equations (1), which become periodic solutions
(4) of the fundamental system, i.e., system (1) with
μ = 0, can correspond only to such values of constants
α1, . . . , αk , which satisfy equations

Ps(α1, . . . , αk) :=
∫ T

0
Fs(y01 , . . . , y0l , t)e−insωt dt = 0,

(5)

for s = 1, . . . , k. If for certain set of constants α1 =
α∗
1 , . . . , αk = α∗

k which satisfy condition (5), the real
part of all roots χ of the following characteristic equa-
tion is negative

p(χ) = det

(
∂ Q

∂α

∣∣∣∣
α=α∗

− χ I

)
= 0, (6)

where

∂ Q

∂α

∣∣∣∣
α=α∗

=

⎡
⎢⎢⎣

∂ P1
∂α1

· · · ∂ P1
∂αk

...
. . .

...
∂ Pk
∂α1

· ∂ Pk
∂αk

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
α1=α∗

1 ,...,αk=α∗
k

(7)

where I ∈ R
k×k is the identity matrix.

Then, for sufficiently small μ, this set of constants
will correspond to a unique, analytically w.r.t μ asymp-
totically stable periodic solution of Eq. (1). If the real
part of at least one root of Eq. (6) is positive, then the
corresponding solution is unstable.

x

k

b

θ1 θ2

m m

g
l l

M u(t)

kp

Fig. 1 Schematic diagram of the simplified Huygens’ system

The following symbols are used through this work:
R denotes the real numbers, the positive real numbers
are indicated by R+, and Z is the set of integers.

3 Controlled synchronization in a simplified
Huygens’ system using feed-forward control

Consider the system depicted in Fig. 1. It consists of
an actuated and rigid coupling bar, which is elastically
attached to a fixed support by means of a spring and a
damper.Attached to the bar, there are two self-sustained
pendula, which are modeled as point masses attached
to the lower end of a massless rod. Furthermore, note
that the pendula are assumed to be identical.

The equations of motion describing the dynamic
behavior of the system are

ml2θ̈1 = −mlẍ cos θ1 − mgl sin θ1 − d θ̇1

− kpl2(sin θ1 − sin θ2) cos θ1 + τ1, (8)

ml2θ̈2 = −mlẍ cos θ2 − mgl sin θ2 − d θ̇2

+ kpl2(sin θ1 − sin θ2) cos θ2 + τ2, (9)

(M + 2m) ẍ = −kx − bẋ − ml
2∑

i=1

(
θ̈i cos θi

− θ̇2i sin θi

)
+ u(t), (10)

where θi ∈ R in [rad] denotes the rotation angle of
pendulum i , for i = 1, 2, x ∈ R is the horizontal dis-
placement of the coupling bar in [m], the mass of each
pendulum and the mass of the coupling bar are denoted
by m [kg] and M [kg], respectively, l [m] is the length
of the massless rod of each pendulum, d [N ms/rad] is
the damping constant corresponding to the rotational
viscous damping in the pendula, k [N/m] and b [N s/m]
are the stiffness and damping constants, respectively,
of the coupling bar, and g [m/s2] is the gravitational
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Enforcing synchronization in oscillators 3013

acceleration. The coupling bar is externally driven by
the control input u(t) ∈ R, which is to be designed,
and the masses of the pendula are connected through
a linear spring with elasticity kp [N/m]. Finally, each
pendulum is converted into a self-sustained oscillator
by the term τi , which is given by

τi = ν
(
γ 2 − θ2i

)
θ̇i , i = 1, 2, (11)

where γ ∈ R+ defines the switching between positive
and negative damping and ν ∈ R+ denotes the strength
of the damping.

Remark 1 It should be noted that in the mechanical
system depicted in Fig. 1 there are two types of cou-
pling: at the top, the pendula are coupled by a rigid bar
elastically attached to a support, i.e., by a Huygens’
coupling, and in the bottom, the pendula are connected
through a linear spring, i.e., a static coupling. In the
upcoming analysis, it will become clear that the pres-
ence of the linear coupling spring is key for inducing a
desired synchronous motion in the coupled pendula.

The (controlled) synchronization objective is to syn-
chronize the pendula to a desired trajectory while pre-
venting the oscillations in the coupling bar, i.e., it is
desired that

lim
t→∞ θi (t) = θref(t),

lim
t→∞ θ̇i (t) = θ̇ref(t), lim

t→∞ x(t) = ẋ(t) = 0, (12)

where θref ∈ R is a desired trajectory. In this work, it
is assumed that θref is the periodic signal

θref(t) = η sinωt, (13)

where the constants η, ω ∈ R+ are the amplitude and
frequency, respectively, of the desired trajectory.

3.1 Proposed feed-forward controller

In order to achieve the desired synchronization objec-
tive (12), the following feed-forward control u(t) is
considered

u(t) = 2ml
d2

dt2
sin θref(t)

= 2ml
(
θ̈ref cos θref − θ̇2ref sin θref

)
, (14)

where m and l are as described in (8)–(10) and θref is
as given in (13).

The design of the control input (14) is rather intu-
itive: it has been designed such that when the pen-
dula synchronize to the desired reference θref , the term
−ml

∑2
i=1

(
θ̈i cos θi − θ̇2i sin θi

) + u(t) on the right-
hand side of Eq. (10) becomes zero and, as a conse-
quence, the coupling bar, see Fig. 1, comes to standstill.

3.2 Analysis of the controlled system

Next, the controlled system (8)–(10), (14) is analyzed in
order to determine conditions under which the control
objective (12) is achieved.

As a first step, it is assumed that the desired angu-
lar displacement θref , see Eq. (13), is ‘small’, i.e., it is
assumed that

• [H − 1] : η << 1.

Consequently, system (8)–(10) with control (14) is
(partly) linearized by replacing sin θi ≈ θi , cos θi ≈ 1,
and sin θref ≈ θref , cos θref ≈ 1. This yields

θ̈1 = − ẍ

l
− g

l
θ1 − d

ml2
θ̇1 − kp

m
(θ1 − θ2) + τ1

ml2
,

(15)

θ̈2 = − ẍ

l
− g

l
θ2 − d

ml2
θ̇2 + kp

m
(θ1 − θ2) + τ2

ml2
,

(16)

ẍ = − k

M
x − b

M
ẋ

−μ

2∑
i=1

(
gθi + l θ̇2i θi + d

ml
θ̇i − τi

ml

)
+ ū,

(17)

where ū = 2μl
(
θ̈ref − θ̇2refθref

)
and μ := m

M is the
coupling strength. The next assumption is that the rota-
tional damping in the pendula, the amplitude of the van
der Pol term (11), and the stiffness coefficient kp of the
coupling spring are ‘small’ in the sense that these terms
scale with a small parameter μ.

In other words, the following is assumed

• [H − 2] : d = μp, ν = μc, and kp = μk̄ p, with
p, c, k̄ p ∈ R+.

Another important assumption in the upcoming analy-
sis is that the natural frequency of the uncoupled pen-
dula, given by

√
g/ l, coincides with the frequency ω

of the desired reference signal θref given in Eq. (13).
Hence, it is assumed that the length of each pendulum
satisfies
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• [H − 3] : l = g
ω2 .

Under assumptions [H − 2] and [H − 3] and defin-
ing the dimensionless time variable τ = ωt and dimen-
sionless displacement variable y = x/ l, it is possible to
write system (15)–(17) in the following dimensionless
form

d

dτ

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1
θ̇1
θ2
θ̇2
y
ẏ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−1 0 0 0 q s
0 0 0 1 0 0
0 0 −1 0 q s
0 0 0 0 0 1
0 0 0 0 −q −s

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1
θ̇1
θ2
θ̇2
y
ẏ

⎤
⎥⎥⎥⎥⎥⎥⎦

+μ f (θ, t),

(18)

where

f (θ, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

ml2ω

(
c(γ 2 − θ21 ) − p

)
θ̇1 − k̄ p

mω2 (θ1 − θ2) − H(θ1, θ2, θ̇1, θ̇2, θ̄ref ,
˙̄θref , ¨̄θref)

0
1

ml2ω

(
c(γ 2 − θ22 ) − p

)
θ̇2 + k̄ p

mω2 (θ1 − θ2) − H(θ1, θ2, θ̇1, θ̇2, θ̄ref ,
˙̄θref , ¨̄θref)

0

H(θ1, θ2, θ̇1, θ̇2, θ̄ref ,
˙̄θref , ¨̄θref)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where H(·) = ∑2
i=1 θi (1 + θ̇2i ) + 2( ¨̄θref − ˙̄θ2ref θ̄ref).

Furthermore, it should be noted that the quadratic
terms in μ have been neglected in Eq. (18). Moreover,

q = k

Mω2 , and s = b

Mω
, (20)

and θ̄ref is the dimensionless reference signal, i.e.,
θ̄ref = η sin(τ ) and ˙̄θref and ¨̄θref are the first and second
derivative of the dimensionless reference with respect
to the dimensionless time τ , i.e., ˙̄θref = d

dτ
θ̄ref =

η cos τ and ¨̄θref = d2

dτ 2
θ̄ref = −η sin τ .

The next step in the analysis is to diagonalize system
(18). For this purpose, the following transformation is
defined

θ := V z, θ = [
θ1 θ̇1 θ2 θ̇2 y ẏ

]T
,

z = [
z1, . . . , z6

]T
, z1, . . . , z6 ∈ R, (21)

where V is the matrix of eigenvectors associated to
matrix A in Eq. (18). It is important to stress the fact
that the algebraic multiplicity and the geometric mul-
tiplicity of the eigenvalues of matrix A in Eq. (18) are

equal and consequently, the columns of matrix V are
linearly independent, i.e., matrix V is invertible.

Using transformation (21), system (18) is diagonal-
ized as follows:

d

dτ

⎡
⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

i 0 0 0 0 0
0 −i 0 0 0 0
0 0 i 0 0 0
0 0 0 −i 0 0
0 0 0 0 σ1 0
0 0 0 0 0 σ2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6

⎤
⎥⎥⎥⎥⎥⎥⎦

+μV −1 f (V z, t),

(22)

where σ1 = − s
2 + √

(s2 − 4q) and σ2 = − s
2 −√

(s2 − 4q).
At this point, it is worth noting that system (22)

has the form of the nonautonomous system (1), and
therefore, system (22) can be analyzed by using the
results presented in Sect. 2.

3.3 Conditions for the existence of the desired
synchronous solution

Note that for μ = 0, system (22) has the following
asymptotic solutions

z1(τ ) = αeiτ , z2 = α2e−iτ , z3(τ ) = α3eiτ ,

z4(τ ) = α4e−iτ , z5(τ ) = z6(τ ) ≡ 0. (23)

Next, in order to find the values of α’s in the above
equation, it is necessary to consider Eq. (21) with zi ’s
as defined in (23). This yields the following expressions
for the angular displacements

θ1(τ ) = −iα1eiτ + iα2e−iτ , (24)

θ2(τ ) = −iα3eiτ + iα4e−iτ . (25)

Furthermore, θ1 and θ2 must be real, and the amplitude
should coincide with the desired amplitude η, see Eq.
(13). Then, it follows that the values of α’s should be
chosen as follows:

α1 = α2 = α3 = α4 = η

2
. (26)

Substitution of (26) into (24)–(25) yields the desired
(dimensionless) synchronous solution
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θ1(τ ) = θ2(τ ) = η sin τ. (27)

However, this solution exists only if condition (5)
in Theorem 1 is satisfied. For the present case, this
condition is given by

P1 = P2 = P3 = P4

= − πη

8l2mω

(
cη2 + 4(p − cγ 2)

)
= 0. (28)

Solving (28) for γ yields

γ = ±
√

η2c + 4p

4c
. (29)

Finally, note that this condition can be written in
terms of the original parameters of the van der Pol term
(11) as follows, see Assumption [H − 2] in previous
subsection

γ = ±
√

η2ν + 4d

4ν
. (30)

3.4 Stability of the desired synchronous solution

The stability of the desired (dimensionless)
synchronous solution (27) can be determined from the
characteristic equation (6) in Theorem 1, which for the
present case is given by

p(χ) = χ4 + a3χ
3 + a2χ

2 + a1χ + a0 = 0, (31)

where

a3 = 2πs(η2 + 2)

Γ (q, s)
+ πcη2

l2mω
, (32)

a2 = π2

(
4

k̄2p
m2ω4 + 3η4 + 16η2 + 16

4Γ (q, s)

+ c2η4

4gl3m2 + cη2s(sη2 + 12)

4ωl2mΓ (q, s)

)
, (33)

a1 = π3

(
8k̄2ps(η2 + 2)

m2ω4Γ (q, s)
+ c2η4s(η2 + 4)

8gl3m2Γ (q, s)

+cη2(3η4 + 16η2 + 16)

8ωl2mΓ (q, s)
+ 2cη2k̄2p

ωl2m3ω4

)
, (34)

a0 = π4k̄2p
m2ω4

(
l2m(η2 + 4)(3η2 + 4)ω + cη2s(η2 + 4)

l2mωΓ (q, s)

)
,

(35)

where Γ (q, s) = q2 − 2q + 1 + s2.

This characteristic polynomial has roots with nega-
tive real parts if and only if

an > 0, n = 0, 1, . . . , 3, a3a2 > a1, and

a3a2a1 > a2
1 + a2

3a0. (36)

If these conditions are satisfied, the (dimensionless)
desired synchronous solution (27) is asymptotically
stable.

Remark 2 At this point, it is important to stress the fact
that the coupling spring kp added to the Huygens’ sys-
tem, see Fig. 1, is an essential element for inducing the
desired synchronous solution in the coupled pendula
with the proposed open-loop control input (14). Note
that if that spring is removed, then the coefficient a0, see
Eq. (35) of the characteristic polynomial (31) becomes
0. As a consequence, one of the roots of (31) is zero,
and therefore, the asymptotic stability properties of the
desired synchronous solution are lost.

The above results are summarized in the following the-
orem.

Theorem 2 Consider the simplified Huygens’ system
of coupled pendula given in Eqs. (8)–(10) and assume
that it is desired to achieve the synchronization objec-
tive (13). Furthermore, assume that the amplitude η

of the desired trajectory (13) is ‘small’ (η << 1) and
the intrinsic parameters l and γ of the self-sustained
pendula satisfy

l = g

ω2 , and γ =
√

η2ν + 4d

4ν
. (37)

Then, the feed-forward control

u(t) = 2ml
d2

dt2
sin θref(t)

= 2ml
(
θ̈ref cos θref − θ̇2ref sin θref

)
, (38)

enforces the synchronization objective given in Eq.
(12). Furthermore, if conditions (36) are satisfied, then
the synchronous solution (12) is locally asymptotically
stable.

4 Controlled synchronization in a generalized
Huygens’ system using feed-forward control

The previous section has shown that the proposed feed-
forward control can induce the desired synchronous
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Fig. 2 Schematic diagram of the generalized Huygens’ system

motion in a pair of pendula with Huygens’ coupling.
However, the synchronization strategy proposed here
does not restrict to only pendula, but it may be applica-
ble to other self-sustained oscillators. To demonstrate
this claim, this section presents an study related to
the onset of controlled synchronization in a general-
ized Huygens’ system, in which the pendulum clocks
have been replaced by two self-sustainedmass–spring–
damper oscillators, cf. [35].

The schematic diagram of the system is depicted
in Fig. 2. It consists of two oscillators of mass m [kg],
attached to amoving bar bymeans of a springwith stiff-
ness κ ∈ R+ [N/m] and a damper with damping coef-
ficient β ∈ R+ [N s/m]. The term f (xi , ẋi ), i = 1, 2
is a nonlinear function which converts oscillator i into
a self-sustained oscillator. On the other hand, the cou-
pling bar has mass mb [kg] and it is attached to a fixed
support by a spring and a damper with linear stiffness
and damping characteristic denoted by κb ∈ R+ [N/m]
and βb ∈ R+ [N s/m], respectively. Furthermore, the
oscillators are also coupled by a spring with stiffness k
[N/m] and the coupling bar can be externally actuated
with the control input u [N/kg]. Finally, the absolute
displacements of both oscillators and the coupling bar
are denoted by xi ∈ R [m], i = 1, 2, 3, respectively.

The mathematical model describing the dynamic
behavior of the system depicted in Fig. 2 is given by

ẍ1 = −ω2(x1 − x3) − 2ξω(ẋ1 − ẋ3)

−k(x1 − x2) + f (x1, ẋ1),

ẍ2 = −ω2(x2 − x3) − 2ξω(ẋ2 − ẋ3)

−k(x2 − x1) + f (x2, ẋ2),

ẍ3 = −w2
b x3 − 2ξbwb ẋ3 − μ

2∑
i=1

ẍi + u, (39)

whereμ = m
mb

is the coupling strength,ω =
√

κ
m ∈ R+

and ξ = β
2ω ∈ R+ is the eigenfrequency (in rad) and

the dimensionless damping coefficient of the oscilla-

tors, respectively. Similarly, ωb =
√

κb
mb

∈ R+ and

ξb = βb
2ωb

denote the eigenfrequency (in rad) and the
dimensionless damping in the coupling bar.

On the other hand, the nonlinear functions f (xi , ẋi )

are

f (xi , ẋi ) = −λ
(
Hi (xi , ẋi ) − H∗) ẋi , i = 1, 2,

(40)

where λ, H∗ ∈ R+ are design parameters determin-
ing the amplitude of the self-sustained oscillation, and
function Hi is the Hamiltonian corresponding to the
uncoupled oscillator i as is given by

Hi = 1

2
mẋ2i + 1

2
κx2i , i = 1, 2. (41)

4.1 Feed-forward controller

Similar to the case of coupled pendula discussed in
previous section, here the control objective is to syn-
chronize the oscillators to a desired periodic trajectory
xref(t) and to control the vibrations in the coupling bar.
In other words, the synchronization control objective
is

lim
t→∞ x1(t) = x2(t) = xref(t), and lim

t→∞ x3 = 0.

(42)

For simplicity in the upcoming analysis, we consider
the following periodic reference

xref(t) = η sin (ωd t), (43)

where η ∈ R+ is the amplitude and ωd ∈ R+ is the
desired oscillation frequency.

On the other hand, similar to Eq. (14), the following
feed-forward controller is considered

u(t) = 2μ
d2

dt2
xre f (t) = −2μηω2

d sin (ωd t), (44)

4.2 Existence and stability conditions for the
synchronous solution

Now the controlled system is analyzed by using the
mathematical tool presented in Sect. 2. Specifically, in
this part we derive necessary and sufficient conditions,
which guarantee the existence and local asymptotic sta-
bility of the desired synchronous solution.
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First, by rescaling the time by τ = ωt system (39)
is written in the dimensionless form

x ′′
i = −(xi − x3) − p(x ′

i − x ′
3)

− λ̄(ax ′
i
2 + κx2i − γ )x ′

i ,−k(xi − x j ), (45)

x ′′
3 = −qx3 − sx ′

3 − μ

2∑
i=1

x ′′
i − 2μηω2

d

ω2 sin τ, (46)

for i, j = 1, 2, and the primes denote differentiation
with respect to the dimensionless time τ , and

p = 2ξ, λ̄ = λ

2ω
, a = mω2, γ = 2H∗,

q = ω2
b

ω2 , and s = 2ξbωb

ω
. (47)

Next, the following assumptions are considered:

• [H −4]: The diffusive coupling k, the damping p in
the oscillators, and the amplitudeof the nonlinearity
λ̄ are small, i.e., k = μk̄, p := μd, and λ̄ := μα,
with d, α ∈ R+.

• [H −5]: The natural frequency ω of the uncoupled
oscillators coincides with the frequency ωd of the
desired reference signal θref given in Eq. (43).

Note that assumption [H − 5] can always be satisfied
if the stiffness coefficient of the oscillators is chosen as
κ = mω2

d or if the mass of the oscillators is chosen as
m = κ

ω2
d
.

Under these assumptions andbyneglectingquadratic
terms in μ, system (45)–(46) can be written in the
weakly nonlinear form

x ′ = Ax + μΦ(x), (48)

where x = [x1 x ′
1 x2 x ′

2 x3 x ′
3]T and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−1 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 1 0
0 0 0 0 0 1
0 0 0 0 −q −s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (49)

Φ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−α(ax ′

1
2 + κx21 − γ )x ′

1 − d(x ′
1 − x ′

3) − k̄(x1 − x2)
0

−α(ax ′
2
2 + κx22 − γ )x ′

2 − d(x ′
2 − x ′

3) − k̄(x2 − x1)
0

x1 + x2 − 2x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(50)

Furthermore, system (48)–(50) is diagonalized by
defining the transformation

x = V z, (51)

where z = [z1 z2 z3 z4 z5 z6]T and V is the matrix of
eigenvectors corresponding to matrix A given in (49).
Then, by applying this transformation to system (48)
yields

z′ = Dz + μV −1Φ(V z), (52)

where D is a diagonal matrix containing the eigenvec-
tors of matrix A, i.e.,

D = diag(i,−i, i,−i, σ1, σ2), (53)

where σ1 = 1
2 (−s − √

(s2 − 4q)) and σ2 = 1
2 (−s +√

(s2 − 4q)).
Hence, for μ = 0, system (52) has the following

asymptotic solutions

z1(τ ) = r1ei(τ ), z2(τ ) = r2e−i(τ ),

z3(τ ) = r3ei(τ ), z4(τ ) = r4e−i(τ ), (54)

and z5(τ ) = z6(τ ) = 0. The coefficients r1 to r4 are
arbitrary parameters determined by the initial condi-
tions.

Note that (54) is indeed a complete family of possi-
ble solutions. However, remember that we are inter-
ested in only one solution, namely the solution for
which system (48) converges to the (dimensionless)
synchronous solution xref(τ ) = η sin τ . To find the
values of r j , j = 1, . . . , 4, we use transformation (51)
with zl , l = 1, . . . , 6 as defined in (54). This yields

x1 = −r1eiτ i + r2e−iτ i, x ′
1 = r1eiτ + r2e−iτ ,

(55)

x2 = −r3eiτ i + r4e−iτ i, x ′
2 = r3eiτ + r4e−iτ ,

(56)

x3 = x ′
3 = 0. (57)

Hence, in order to have the desired synchronous
solution x1 = x2 = η sin τ , the values of r j , j =
1, . . . , 4, should satisfy

r1 = r2 = r3 = r4 = η

2
. (58)

Next, Theorem 1 is used in order to determine if the
desired solution (54)–(58) exists and is locally asymp-
totically stable. In this case, conditions (5) inTheorem1
are simply given by
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P1 = P2 = P3 = P4

= −πη

8

(
4d − 4αγ + 3aαη2 + αη2k

)
= 0. (59)

Solving condition (59) for parameter γ yields

γ = 4d + (3a + k)αη2

4α
. (60)

From Theorem 1 it follows that condition (60) is
a necessary and sufficient condition for the existence
of the desired synchronous solution x1(τ ) = x2(τ ) =
η sin τ in system (48).

Remark 3 Note that by using (47) and Assumption [H-
4], condition (60) can be expressed in terms of the orig-
inal parameters of system. This yields the condition

H∗ = 16ξω + (3mω2 + κ)λη2

8λ
. (61)

On the other hand, the local asymptotic stability of
the desired solution (54)–(58) can be determined from
Eq. (6) in Theorem 1. This yields the following char-
acteristic polynomial

p(χ) := χ4 + a3χ
3 + a2χ

2 + a1χ + a0 = 0, (62)

where

a3 =
(

4s

Γ (q, s)
+ αη2(3a + κ)

)
π, (63)

a2 =
(
4k̄2 + α2η4(3a + κ)2

4
+ 9aαη2s + 3αη2κs + 4

Γ (q, s)

)
π2,

(64)

a1 = (
2k̄2(3a + κ)αη2

+ 32sk̄2 + (3a + κ)αη2((3a + κ)αη2s + 4)

2Γ (q, s)

)
π3,

(65)

a0 =
(
4k̄2((3a + κ)αη2s + 4)

Γ (q, s)

)
π4, (66)

where Γ (q, s) is as defined in Eqs. (32)–(35).
Finally, if coefficients (63) to (66) satisfy conditions

(36) then the synchronous solution x1(τ ) = x2(τ ) =
η sin τ in system (48) is locally asymptotically stable.

Remark 4 Again, note that the spring k = μk̄, which
couples the oscillators, see Fig. 2, is essential for the
stability of the desired synchronous solution. Specifi-
cally, note that if this spring is removed, i.e., if k̄ = 0,
then a0 = 0 in Eq. (66), and consequently, one of the
roots of (62) is equal to zero and the synchronous solu-
tion is not asymptotically stable.

It is important to note that the above results are
directly applicable to theweakly nonlinear system (48),
in which quadratic terms in μ have been neglected.
However, under suitable assumptions, these results are
also applicable to the original system (39). In fact, using
the above results and this discussion yields to the fol-
lowing result for the original system (39).

Theorem 3 Consider the mechanical system consist-
ing of two self-sustained oscillators with Huygens’
coupling, which is described by model (39) with
‘small’ damping, ‘small’ nonlinearity (40), and cou-
pling spring with positive stiffness k. Furthermore,
assume that the coupling bar is driven by the feed-
forward control u given in (44).

Then, the synchronous solution (42) exists and is
locally asymptotically stable if and only if the follow-
ing is satisfied: (1) the eigenfrequency ω of the uncou-
pled oscillators coincides with the frequency ωd of the
desired synchronous solution, (2) the term H∗ in (41)
satisfies condition (61), and (3) the roots of the char-
acteristic polynomial (62) have negative real parts.

5 Numerical results

In this section, the analytic results obtained in the pre-
vious section are illustrated bymeans of computer sim-
ulations.

5.1 Huygens’ system of pendulum clocks with
feed-forward control

First, system (8)–(10) is considered with the following
parameter values cf. [36]: m = 0.1 [kg], k = 1 [N/m],
b = 0.5 [N s/m], d = 0.001 [N ms/rad], g = 9.81
[m/s2], kp = 1 [N/m], and ν in Eq. (11) is ν = 0.57
[kgm2/rad3s]. Furthermore, the reference signal is as
given in (13) with η = 0.05 [–] and ω = 8.8589 [rad].
For these parameter values, it follows from Theorem 2
that the length l of each pendulum and the term γ of
the van der Pol term (11) should be chosen as follows:
l = 0.125 [m] and γ = 0.0488 [rad]. Moreover, for
the considered parameter values, the roots of the char-
acteristic polynomial (31) are: χ1 = −1.213+ 120.1i ,
χ2 = −1.213 − 120.1i , χ3 = −3.187 + 5.99i , and
χ4 = −3.187 − 5.99i . Consequently, all conditions
of Theorem 2 are satisfied and it is expected that the
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Fig. 3 Limit behavior of the uncontrolled system (8)–(10). Top:
transient behavior. Bottom: ‘steady’ behavior. In both plots, the
colors indicate the following. Blue: θ1, red: θ2, and black: θref .
Since the control input is set to zero, the coupled pendula do
not synchronize to the desired trajectory. Instead, the pendula
synchronize in anti-phase and the oscillation frequency is almost
twice the oscillation frequency of the desired trajectory. (Color
figure online)

pendula will asymptotically synchronize to the desired
reference trajectory.

To illustrate the above discussion, system (8)–(10)
with input (14) is numerically integrated by using the
parameter values mentioned above and the following
initial conditions: θ1(0) = −0.02 [rad], θ2(0) = 0.018
[rad], and the remaining initial conditions are all set to
zero.

In a first numerical study, the control input u(t), see
Eq. (14), is set to zero.Obviously, for this case the oscil-
lators do not synchronize to the desired synchronous
solution, as shown in Fig. 3. Instead, the oscillators
exhibit anti-phase synchronization and the frequencyof
the synchronous solutions is entirely determined by the
intrinsic parameters of the uncontrolled system. In fact,
as shown in the bottom panel of Fig. 3, the oscillation
frequency of the pendula is almost twice the oscillation
frequency of the reference trajectory θref .

In a second numerical study, the proposed input (14)
is applied to the system of coupled pendula (8)–(10).
The parameter values and initial conditions are exactly
the same as those used in the first numerical study. As
expected, when the open-loop control is applied, the
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Fig. 4 Limit behavior of the controlled system (8)–(10), with
control (14). Top: limit behavior of the coupled pendula. Blue
line: θ1 [rad]. Red line: θ2 [rad], Black line: desired reference
θred [rad].Middle: horizontal displacement x [m] of the coupling
bar. Bottom: applied open-loop control. (Color figure online)

pendula synchronize to the desired reference trajectory,
as shown in the top panel of Fig. 4. Furthermore, the
coupling rigid bar comes to standstill once the pendula
synchronize, as shown in the middle panel of Fig. 4.
Finally, the applied control input (14) is depicted in
the bottom panel of Fig. 4. Clearly, the proposed open-
loop synchronization strategy successfully induces the
desired synchronous motion in the pendula.

5.2 Generalized Huygens’ system with feed-forward
control

Now, the analytic results presented in Sect. 4 are numer-
ically illustrated. For that, system (39) is numerically
integrated by using the following parameter values,
which have been (partly) taken from the experimen-
tal platform presented in [35]: ω = 13.2950 [rad],
ξ = 9 × 10−3 [–], k = 5 [N/m], λ = 595.7699 [–
], m = 0.210 [kg], κ = 37.10 [N/m], μ = 0.0515 [–].
For these parameter values, it follows that the value of
H∗, seeEq. (61), should be chosen as H∗ = 1.1×10−3.
The initial conditions in the oscillators are x1(0) =
3 × 10−3 [m], x2(0) = [m]

First, the limit behavior of the uncontrolled system
is investigated. The obtained results are shown in Fig.
5. Note that although the oscillators are released close
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Fig. 5 Numerical results for the uncontrolled system. a Tran-
sient behavior. b Limit behavior. c Projection of the trajectories
on the (x1, x2)-plane. The uncontrolled system has the tendency
to synchronize in (almost) anti-phase and the amplitude, fre-
quency, and phase of the solutions are entirely determined by the
intrinsic parameters of the system

to in-phase, see Fig. 5a, after transients, the oscillators
synchronize in (almost) anti-phase as shown in Fig. 5b,
c. It should be noted that perfect anti-phase synchro-
nization is not possible due to the coupling spring k, see
Fig. 2 and model (39). In this case the amplitude, fre-
quency, and phase of the periodic synchronous solution
is completely determined by the intrinsic parameters of
the system.

Then, in a second study, the control input (44) is
applied to system (39). The synchronization objec-
tive is as given in (42) with xref as given in (43) with
η = 6× 10−3 and ωd = ω = 13.2930. For the consid-
ered parameter values, it is expected from Theorem 3
that the desired synchronous solution (42) exists and is
locally asymptotically stable. The obtained results are
shown in Fig. 6. Clearly, the oscillators synchronize to
the desired reference signal xref , as shown in Fig. 6a,
b. Furthermore, when the oscillators synchronize, the
coupling bar comes to standstill as shown in Fig. 6c.
Finally, the applied control input is shown in Fig. 6d.

These results nicely illustrate the good performance
of the proposed feed-forward controller.

5.3 On the robustness of the proposed controller

Finally, we present a numerical study in order to illus-
trate the performance of the controller when there are
parameter mismatches between the oscillators. In par-
ticular, the case where the oscillators have slightly
different eigenfrequency is considered. Hence, system
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Fig. 6 Numerical results for the controlled system. Clearly, the
controlled system performs as desired: the oscillators synchro-
nize to the reference trajectory xref as shown in a, b, and the
coupling bar comes to standstill, as shown in c. The feed-forward
control applied to the coupling bar is shown in d

(39) is again numerically integrated byusing the param-
eter values used in Sect. 5.2, except that the stiffness
coefficient κ of oscillator 1 is assumed to have a 10%
variation with respect to the nominal value. There-
fore, the parameter κ corresponding to oscillator 1
is κ = 38.9634 [N/m]. Consequently, the eigenfre-
quency of oscillator 1 is ω = 13.6213 [rad], whereas
the eigenfrequency of oscillator 2 coincides with the
eigenfrequency of the reference trajectory, which is
wd = 13.2930 [rad].

The obtained results are shown in Fig. 7 from which
it is clear that due to the frequency mismatch, perfect
tracking of the desired reference xref is not possible,
as shown in Fig. 7a, b. In particular, Fig. 7c shows
that oscillator one has smaller amplitude (blue signal)
than the reference signal (black signal), whereas the
amplitude of the second oscillator (red signal) is larger
than the amplitude of the reference signal. However,
the oscillators are still synchronized in frequency to
the reference trajectory. Furthermore, the coupling bar
does not come to standstill, but rather it keeps oscillat-
ing with small amplitude. The reason is because, due
to the parameter mismatch between the oscillators, the
right-hand side of the third equation in (39) does not
vanish.
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Fig. 7 Numerical results for the case of nonidentical oscillators

In summary, the proposed controller cannot induce
perfect tracking of the reference trajectory when there
are parameter mismatches. This, however, is not sur-
prising since all the analysis has been conducted under
the assumption of identical oscillators. Nevertheless,
the results presented here suggest that, for nonidenti-
cal oscillators, the controller is able to induce at least
frequency synchronization.

6 Discussion and conclusions

This work has presented a synchronization strategy
based on a feed-forward controller for self-sustained
oscillators interacting via Huygens’ coupling. The pro-
posed controller overcomes the natural tendency of
the oscillators to synchronize and instead, enforces a
desired synchronous solution.

Two particular cases have been considered, namely
the classical Huygens’ system of pendulum clocks and
a pair of self-sustained mass–spring–damper oscilla-
tors. For both cases, the proposed feed-forward con-
troller is able to induce the desired synchronousmotion.
This fact suggest that the proposed synchronization
strategy may be applicable to a larger class of self-
sustained oscillators.

Furthermore, a modification has been made to the
classical Huygens’ system. This modification, which
consists in adding a linear coupling spring between
the masses of the oscillators, is key since without

this spring, it is impossible to induce the desired syn-
chronous behavior, as discussed in Remarks 2 and 4.

On the other hand, a formal analysis of the controlled
system has been conducted by using the Poincaré
method of perturbation. The analysis has revealed that
the proposed feed-forward controller may enforce the
desired synchronousmotion, provided that some intrin-
sic parameters of the pendula satisfy certain conditions,
as discussed in Theorem 2. Furthermore, sufficient and
necessary conditions that guarantee the asymptotic sta-
bility of the desired synchronous solution have also
been provided.

At this point, it is worth mentioning that the pro-
posed controller requires that the intrinsic parameters in
the oscillators satisfy certain constraints. Specifically,
it is required that the eigenfrequency of the oscillators
should coincide with the frequency of the desired tra-
jectory. This can be a limitation in the cases that the
parameters of the system cannot be modified or chosen
freely.

Also, it is important to stress the fact that, although
we have presented a numerical study related to the
robustness of the proposed controller against parameter
mismatches, see Sect. 5.3, the analytic results presented
in this work have been derived under the assumption of
identical oscillators. It would be interesting to further
analyze the robustness properties of this synchroniza-
tion strategy. A first step on this direction may be to
experimentally validate this results by using the exper-
imental platform presented in [35].

Finally, it should be noted that the controller does
not require to have any knowledge about the state of
the oscillators, i.e., the controller can indeed be seen as
an open-loop controller and the resulting synchroniza-
tion may be referred to as open-loop synchronization.
Note that open-loop synchronization—to synchronize
two or more systems without using feedback—may
find interesting applications. For example, in [37] it
has been experimentally demonstrated that it is possi-
ble to synchronize several uncoupled Lorenz systems
by applying a common clock-like signal to all of them.
As experimentally demonstrated by the author of that
reference, such scheme can be used for the encryp-
tion and recovery of low-frequency audio signals with
random noise. Another interesting application of open-
loop synchronization is in power grids. For example,
in [31], an open-loop synchronization technique for a
power grid is presented. It is demonstrated that this
open-loop technique has a faster dynamic response than
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a closed-loop technique and also the open-loop scheme
can be easily customized for different grid scenarios,
like highly imbalanced and distorted grid conditions.
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