In vitro and in vivo datasets of topically applied ketorolac tromethamine in aqueous humor using Raman spectroscopy

Citation for published version (APA):

Document license:
CC BY

DOI:
10.1016/j.dib.2019.104694

Document status and date:
Published: 01/12/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Jan. 2020
Data Article

In vitro and **in vivo** datasets of topically applied ketorolac tromethamine in aqueous humor using Raman spectroscopy

Shuo Zhang a, b, 1, Christian J.F. Bertens a, b, c, *, 1, Roel J. Erckens a, d, Frank J.H.M. van den Biggelaar a, b, c, Tos T.J.M. Berendschot a, b, Carroll A.B. Webers a, b, Rudy M.M.A. Nuijts a, b, c, d, Marlies Gij a, b, c

a University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, the Netherlands
b Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
c Chemelot Institute for Science and Technology (InSciTe), Urmonderbaan 20F, 6167, RD, Geleen, the Netherlands
d Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands

A R T I C L E I N F O

Article history:
Received 23 August 2019
Received in revised form 14 October 2019
Accepted 15 October 2019
Available online 22 October 2019

Keywords:
Raman spectroscopy
Ophthalmology
Ketorolac tromethamine
Rabbits
Aqueous humor
Pig eyes

A B S T R A C T

This article includes datasets acquired by Raman spectroscopy from **in vivo** and **in vitro** ocular samples collected from the dataset from Bertens and Zhang et al., "Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in **in vitro** and **in vivo**" (Bertens and Zhang et al.). Detection of ketorolac tromethamine in pig eyes was performed **in vitro** and rabbit eyes **in vivo**. Extracted aqueous humor samples from pig and rabbit eyes were measured **in vitro** using a cuvette. This manuscript shows the spectral Raman data without pre-treatment or analysis from ocular tissues and provides further information towards aqueous humor research via alternative data processing methods. Furthermore, the raw data would be available for further experiments and analysis.

DOI of original article: https://doi.org/10.1016/j.ijpharm.2019.118641.

* Corresponding author. University Eye Clinic Maastricht, Maastricht University Medical Center+, P.O. Box 5800, 6202, AZ, Maastricht, the Netherlands.
E-mail address: Christian.Bertens@mumc.nl (C.J.F. Bertens).

1 Equally contributing.
1. Data

The data contains unanalyzed Raman spectra obtained from pig eyes (in vitro) (1.1, see supplementary files folder ‘in vitro pig eyes’ and ‘in vitro cuvettes, aqueous humor from pig eyes’), rabbit eyes (in vivo) (1.2, see supplementary files folder ‘in vivo rabbit eyes’), and aqueous humor samples (in vitro, see supplementary files folder ‘in vitro cuvettes, aqueous humor from rabbit eyes’) (1.3). Based on the differences of the samples, three types of set-ups were used on each dataset. For pig eye measurements in vitro, a long-working-distance microscope objective lens (Jena lens alone or a Gonio lens combined with an f60 lens) was utilized (see supplementary files ‘in vitro pig eyes’ folder ‘jena lens’ or ‘gonio’). For the rabbit eyes measurements in vivo, a Gonio lens combine with a f60 lens was used. For cuvettes measurements, an f80 lens was used when the sample was measured in a Brand® cuvette [2]. For each experimental set-up, the fingerprint-wavenumber region (patterns specific for a drug-molecule, ranging from 350 cm⁻¹ to 1800 cm⁻¹) and the high-wavenumber region (higher energy shifted, ranging from 2500 cm⁻¹ to 4000 cm⁻¹) were included. The fingerprint spectra enclosed may be used for future aqueous humor investigations and pharmaceutical research.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
dataset was used for detection of intraocular ketorolac tromethamine as described in the article of Bertens and Zhang et al. [1]. Several peaks could be identified in the fingerprint region spectrum of a ketorolac tromethamine sample (Fig. 1a). Only major peaks specific for ketorolac tromethamine were selected. Those peaks are assigned to certain chemical bonds or vibration modes. The assignment of the ketorolac related peaks is presented in Table 1 [1]. Due to the spectrometer’s spectral resolution (2 cm$^{-1}$), the peak observed at 1586 cm$^{-1}$ is assigned to NH$_2$ deformation [3]. The peak of 1524 cm$^{-1}$ is assigned to in-plane vibrations of the conjugated –C=C–. The observed peak at 1472 cm$^{-1}$ is assigned to C=N stretching and the peak at 1282 cm$^{-1}$ is assigned to CH$_2$ wagging vibrations. Because Raman spectrum of the cornea, aqueous humor, and lens show different patterns in the high-wavenumber region, spectra from this region could be used as guide for location determination in the ocular tissue (Fig. 1b) [4–6].

1.1. In vitro, dataset

Pig eyes (enucleated) were immersed in the dark at 4 °C for 24 hours in vitro in different concentrations of ketorolac solutions (0.05%–5.0%) before the measurements (see supplementary files folder ‘in vitro pig eyes’). For each concentration, three eyes were measured by Raman spectroscopy. An example spectrum obtained from a pig eye is shown in Fig. 2. The location in the eye was determined using the high-wavenumber spectra (Fig. 2b).

1.2. In vivo dataset

New-Zealand white rabbits received 50 μL Acular® three times a day in their right eye. At the same time, they received a drop of buffered saline solution (BSS) in their left eye as a control (see supplementary files folder ‘in vivo rabbit eyes’). The measurement parameters of the Raman system were optimized using the first four rabbits. Different integration times (10, 15, or 30 seconds) were measured to acquire the optimum Raman signal. The following measurements were performed using an integration time of 30 seconds. During these measurements, hardware influences were observed. Further optimization of the processing method can be seen in Bertens and Zhang et al. [2]. The difference of the variant integration times can be found in Fig. 3, for example, the spectrum intensity at 400 cm$^{-1}$ is from 74 A.U. with 10 second integration time (Fig. 3a), 127 A.U. with 15 second integration time (Fig. 3b) and 333 A.U. with 30 second integration time (Fig. 3c). Rabbits were measured according to the schedule in Table 2.

![Fig. 1](image-url) (a) Fingerprint spectra of Ketorolac powder. (b) Determination of the location in the eye using high-wavenumber Raman spectra. Spectra are from pig eyes, 3 frames of 10 seconds averaged measured using a Jena lens.
1.3. In vitro, cuvettes dataset

Immediately after intra-ocular Raman measurements (both in vitro & in vivo), 100 µL–150 µL of aqueous humor was drawn from the pig eyes, and 50 µL was drawn from the right eye of each rabbit. The aqueous humor samples were frozen on dry ice and stored in a −80 °C freezer until use. When used, the location of focus was determined with the high wavenumber spectra, as shown in Fig. 4.

Fingerprint spectra were collected to determine ketorolac concentrations in the aqueous humor. Spectrum examples of pig and rabbit aqueous humor are shown in Fig. 5a and Fig. 5b, respectively (see supplementary files folder ‘in vitro cuvettes’). Further background subtraction needs to be applied for analyses.

2. Experimental design, materials, and methods

2.1. Raman spectroscopy system

Two diode lasers were utilized as an excitation light source for Raman spectroscopy: a 26 mW 785 nm laser (Innovative Photonic Solutions SM 785 nm, Monmouth Junction, NJ, US) or a 14 mW 671 nm laser (Laser Quantum Ignis 671 and SMD 6000, Konstanz, Germany). A high-performance Raman spectrometer module (model 2500, River Diagnostics®, Rotterdam, the Netherlands) was utilized for Raman spectra recordings [8]. A 25 µm diameter pinhole was integrated within the spectrometer for the confocal Ramans spectroscopy detection. An air-cooled charge-coupled device (CCD) camera with

<table>
<thead>
<tr>
<th>Peak location (wavenumber)</th>
<th>Intensity</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002 cm⁻¹</td>
<td>very strong</td>
<td>Phenylalanine or a C–C aromatic ring stretching</td>
</tr>
<tr>
<td>1282 cm⁻¹</td>
<td>medium</td>
<td>CH₂ wagging vibrations</td>
</tr>
<tr>
<td>1348 cm⁻¹</td>
<td>weak</td>
<td>An unassigned mode</td>
</tr>
<tr>
<td>1432 cm⁻¹</td>
<td>strong</td>
<td>CH bond [5]</td>
</tr>
<tr>
<td>1472 cm⁻¹</td>
<td>medium</td>
<td>C=N stretching</td>
</tr>
<tr>
<td>1524 cm⁻¹</td>
<td>medium</td>
<td>In-plane vibrations of the conjugated –C=C–</td>
</tr>
<tr>
<td>1568 cm⁻¹</td>
<td>very strong</td>
<td>COO⁻</td>
</tr>
<tr>
<td>1586 cm⁻¹</td>
<td>strong</td>
<td>NH₂ deformation [3]</td>
</tr>
<tr>
<td>1602 cm⁻¹</td>
<td>medium</td>
<td>Phenylalanine or a C–C bond.</td>
</tr>
</tbody>
</table>

Fig. 2. Raman spectrum of a pig eye soaked in a 5% ketorolac solution obtained by Jena lens. (a) Fingerprint spectrum, obtained using 60 seconds and averaged for 3 frames. (b) High-wavenumber spectrum, obtained using 60 seconds and averaged for 3 frames. No correction has been applied on the spectra.
operating temperature $-60 \, ^\circ C$ was integrated within the spectrometer for signal detection. The Raman spectrometer is capable of collecting Raman scattering wavenumber ranges in $350 \, cm^{-1} - 1800 \, cm^{-1}$ and $2500 \, cm^{-1} - 4000 \, cm^{-1}$ with $2 \, cm^{-1}$ spectral resolution. A diverged laser beam out of the spectrometer is converted to a collimation beam by a lens with focus length of $80 \, mm$. Depending on the measurement, the lens setup was adapted. The system was used in single point modus and location in the sample was determined using the high wave numbers ($671 \, nm$ laser).

2.2. In vitro measurement of enucleated pig eyes

Fresh domestic pig (*Sus Scrofa Domesticus*) eyes were obtained from a local abattoir ("Slachthuis Kerkrade Holding", Kerkrade, the Netherlands). The enucleated eyes were transported to the laboratory on ice and used within 3 hours after enucleation. Before use, the pig eyes were inspected with a stereo microscope (Olympus SZX9, Tokyo, Japan). Only eyes with clear corneas without visible corneal damage were used in the experiment. The excess tissues of the eye were removed carefully where after the eyes were washed in phosphate buffered saline (PBS) (pH of 7.4). Meanwhile, ketorolac (MSN laboratories, Telangana, India) was dissolved in PBS creating concentrations of 0.05%, 0.1%, 0.125%, 0.25%, 0.5%, 1.0%, 1.25%, 2.5%, and 5.0%. The pig eyes were submerged in 15 mL of a diluted ketorolac solution. As negative control, PBS was used, and as positive control 0.5% ketorolac ophthalmic solution (Acular®, Allergan, Dublin, Ireland) was used as submerging solution. For each concentration, three eyes were used. Before the Raman measurements, pig eyes were stored in the dark at $4 \, ^\circ C$ for 24 hours. Before measurements were taken, the eyes were inserted in a home-designed holder (Fig. 6).

A long-working-distance microscope objective lens (Jena lens, magnification $\times 25$; numerical aperture = 0.50; focal length = 10 mm; Carl Zeiss, Jena, Germany) was used as focus lens for the Raman measurements. The in vivo Raman spectrum of the right eye of a rabbit with different integration times, averaged for 2 frames, is shown in Fig. 3. Table 2 shows the integration time of the Raman measurements of the rabbits.

Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLAC</td>
<td>x</td>
<td>10 s</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>2</td>
<td>PLRT</td>
<td>10 s</td>
<td>x</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>3</td>
<td>PKXF</td>
<td>10 s</td>
<td>15 s</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>4</td>
<td>PKYJ</td>
<td>10 s</td>
<td>10 s</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>5</td>
<td>PNRS</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>6</td>
<td>PNPH</td>
<td>30 s</td>
<td>x</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>7</td>
<td>PNJ</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>8</td>
<td>NLR</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>9</td>
<td>POLI</td>
<td>30 s</td>
<td>x</td>
<td>15 s</td>
<td>15 s</td>
<td>30 s</td>
</tr>
<tr>
<td>10</td>
<td>POBS</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>11</td>
<td>PPDI</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>12</td>
<td>POHI</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
</tbody>
</table>

Integration time is shown in seconds, ‘x’ represents a failed measurement or no data. 2 frames per measurement were used.
Fig. 4. Laser focus positioning in a cuvette filled with PBS (pH 7.4) using the high wavenumber spectrum.

Fig. 5. Raman spectrum of aqueous humor samples from, (a) a 0.5% ketorolac submerged pig eye (3 frames of 60 seconds), and (b) from a rabbit eye (3 frames of 60 seconds on pkdf samples).
system (Fig. 7a). A f60 lens combined with a Gonio lens (Haag-Streit Meridian, CGA1, Kôniz, Switzerland) also been used for pig eye measurement (Fig. 7b). Methocel® 2% (OmniVision, Santa Clara, CA, US) was used to connect the Gonio lens to the cornea. The samples were exposed to 3 frames for 60 seconds. A detailed description can be found in the manuscript from Bertens and Zhang et al. [1].

2.3. In vivo measurement of the rabbit eyes

Twelve New-Zealand white rabbits (weight ranged from 2.0 kg to 2.5 kg upon arrival) were obtained from Envigo (Horst, the Netherlands). The rabbits were group housed with 6 animals per cage with males and females separated. The rabbits had ad libitum access to water and food. One week was given to acclimatize before rabbits were used in the experiments. The rabbits were treated with 50 μL Acular® in the lower conjunctival fornix of their right eye. The contralateral eyes were treated with 50 μL sterile buffered saline solution (BSS, B. Braun, Melsungen AG, Germany manufacturer). Both treatments were performed three times a day. Measurements were taken on day 0, day 7, day 14, day 21, and day 28. Four rabbits were used to optimize the system parameters as shown in Table 2.
Rabbits were measured using setup as shown in Fig. 7b. During the examinations, rabbits were anesthetized intramuscularly with ketamine (Alfasan, Woerden, the Netherlands) and midazolam (Actavis, Dublin, Ireland), 50 mg/kg and 5 mg/kg, respectively. Both eyes of the rabbit were measured by the Raman system. All measurements were performed at random, 1–3 hours after receiving the eye drops. Measurement was performed with 30 second exposure times using 2 frames. All animal procedures were conducted according to the ARVO Statement for the Use of Animals in Ophthalmic and Visual Research and the Guidelines of the Central Laboratory Animal Facility of Maastricht University. All protocols were approved by the Central Committee for Animal research and were in accordance with the European Guidelines (2010/63/EU).

2.4. In vitro measurement of the aqueous humor

For cuvette detection, 50 μL–150 μL aqueous humor was obtained from an anterior chamber paracentesis from the eyes using an insulin syringe (BD Micro-Fine™, Becton Dickinson, NJ, US). 50 μL was drawn from rabbit eyes after topical sedation (1 drop 0.4% Oxybuprocaine hydrochloride solution (Bausch & Lomb Pharma, Brussels, Belgium)), 100 μL–150 μL was drawn from the pig eyes. As a negative control, 100 μL aqueous humor was drawn from seven healthy control rabbits within 10 minutes after sacrifice, no topical treatment nor anaesthetics were used.

All aqueous humor samples were frozen on dry ice immediately after sampling and stored in a −80 °C freezer until measurements. Samples were measured using an f80 lens in front of the sample container (Fig. 8). The sample was measured for 3 frames in a disposable cuvette (#7592-00, Sigma-Aldrich, MO, US) with 60 seconds per frame.

Acknowledgments

This research was performed under the framework of the Chemelot Institute for Science and Technology (InSciTe).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104694.

References