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Abstract. We present a summary of competition results in the multi-
shell diffusion MRI harmonisation and enhancement challenge (MUSHAC).
MUSHAC is an open competition intended to stimulate the development
of computational methods that reduce scanner- and protocol-related
variabilities in multi-shell diffusion MRI data across multi-site studies.
Twelve different methods from seven research groups have been tested in
this challenge. The results show that cross-vendor harmonization and en-
hancement can be performed by using suitable computational algorithms
such as deep convolutional neural networks. Moreover, parametric models
for multi-shell diffusion MRI signals also provide reliable performances.

Keywords: Diffusion MRI · Harmonisation · Spherical harmonics · Deep
learning · Parametric model.

1 Introduction

Multi-center clinical studies on mental disorders usually need to combine diffu-
sion magnetic resonance imaging (dMRI) data acquired from different scanners
to increase the statistical power and sensitivity of studies. But inter-scanner
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variability and different acquisition protocols could introduce inherent variabil-
ity in dMRI data which is a major limitation in multi-center dMRI studies [1–3].
Therefore, there is a pressing need for reliable approaches to harmonise scanner-
and/or protocol-related variability in dMRI data [4–8].

As a continuation of the single-shell diffusion MRI harmonisation challenge
[9, 10], the multi-shell diffusion MRI harmonisation and enhancement challenge
(MUSHAC) is an open competition that provides datasets from different scan-
ners to enable the development new harmonisation algorithms for multi-shell
dMRI data. It evaluates the performances of different algorithms using a test
dataset from the same scanners based on several dMRI measures that are rel-
evant in clinical studies. This work reports the preliminary evaluation results
from MUSHAC.

Data: The datasets are a subset of the benchmark database in [9, 10]. MUSHAC
uses the data of 15 healthy volunteers who were scanned on a 3T Siemens Prisma
and 3T Siemens Connectom Scanner. On both scanners, dMRI images were
acquired with a ‘standard’ (ST) protocol and a ‘state-of-the-art’ (SA) protocol.
The ST data from both scanners have an isotropic resolution of 2.4 mm, TE =
89 ms and TR=7.2 s. Both ST dMRI data have 30 directions at b=1200, 3000
s/mm2. On the other hand, the Prisma-SA data has a higher isotropic resolution
of 1.5mm, TE=80 ms, TR = 7.1s and 60 directions at the same b-values while the
Connectom-SA data has an even higher resolution of 1.2 mm with TE=68 ms,
TR=5.4 s and 60 directions. Additional b=0 s/mm2 images were also acquired
with matched TE and TR across scanners. Moreover, structural MPRAGEs (e.g.
T1-weighted anatomical MRI scans) were acquired on both scanners. The data
from 10 randomly selected subjects were used as training data and the remaining
5 subjects were used for testing.

Preprocessing: The b0 volumes were corrected for EPI distortions by apply-
ing FSL TOPUP on reversed phase-encoding pairs [11]. The data was corrected
for eddy current induced distortions, subject motion, EPI distortions [12], and
gradient-nonlinearity distortions [13] with FSL TOPUP/eddy and in-house soft-
ware kindly provided by Massachusetts General Hospital (MGH). Spatiotempo-
rally varying b-vectors and b-values due to gradient nonlinearities of the Con-
nectom scanner were made available [14–16]. All data were affinely registered
to Prisma-ST using the corresponding fractional anisotropy (FA) maps with
appropriate b-matrix rotation.

Tasks: This competition included two tasks on multi-shell dMRI data harmon-
isation . Specifically, Task 1 is to predict Connectom-ST data using Prisma-ST
data where both datasets have matching TE, TR and angular and spatial res-
olution. The second task includes the prediction of Prisma-SA data (Task 2a)
and Connectom-SA data (Task 2b) given Prisma-ST data.
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Evaluation: For the test datasets, fractional anisotropy (FA) and mean dif-
fusivity (MD) were obtained by fitting the diffusion tensor model to the low
b-shell dMRI signals using the weighted least squares algorithm. The zeroth and
second order rotationally invariant spherical harmonic (RISH) features [6], i.e.
L0 and L2, were computed for both b-shells. Moreover, two multi-shell dMRI
measures, including mean kurtosis (MK) [17] and the return-to-origin probabil-
ity (RTOP) measure [18], were also computed using the DIPY [19] toolbox. All
measures were computed from the predicted data of each subject and compared
to the ground-truth measures derived from the acquired data, which were not
released to the participants. The performances were evaluated in brain regions
specified by brain masks excluding the cerebellum, obtained with the Geodesic
Information Flow (GIF) algorithm [20]. Then, the percentage error (PE) and the
absolute-value of PE (APE) were computed globally in a brain mask excluding
cerebellum and regionally based on FreeSurfer regions excluding the cerebellum.
The reference values for PE and APE in Task 1 were computed by comparing
the dMRI measures from Connectom-ST and Prisma-ST data.

Algorithms: Twelve different algorithms from seven research groups were eval-
uated for Task 1. Eight of these algorithms were also evaluated for Task 2a
and Task 2b. Based on the similarities of the underlying methods, these algo-
rithms can be grouped into three categories. The first category includes three
interpolation-based algorithms, where Algorithm 1 uses spherical harmonic (SH)
functions to interpolate signals along angular directions and Algorithms 2 and
3 interpolate the multi-shell dMRI signals using a parametric model for multi-
shell dMRI signals. The second type of algorithms is based on regressions. In
particular, Algorithm 4 uses linear regression based on RISH features, and Al-
gorithms 5 and 6 are based on regression forest. The third type of algorithms
use either deep convolutional neural networks (CNN), including Algorithms 7,
8, 10, 11, 12, or a fully connected feed-forward network, including Algorithm 9,
to learn mappings between dMRI signals using SH representations. The twelve
algorithms include but are not limited to the methods proposed in [21, 8, 22].

2 Results

2.1 Scanner-to-scanner harmonisation (Task 1)

Most algorithms could significantly reduce inter-scanner variabilities in the dMRI
measures. All deep-CNN based approaches had similar performances in this task
and are in general better than the other two types of algorithms. In particular,
Figure 1a and Figure 1b illustrate the APE for the zero-order (L0) RISH features
at the high b-shell and MK, respectively. The blue and red markers represent
the median and mean values in global evaluations and the vertical bars represent
the 20-80 percentiles of the distributions. The 80-percentile bars go beyond the
displayed range of the plots. The two dashed horizontal lines show the reference
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median and mean values obtained by comparing the ground-truth measures from
acquired data.

Figure 2a illustrates the reference distribution of the PE in different brain
regions between the acquired dMRI data. The frontal lobe and occipital lobe
consistently have higher errors than other brain regions, which may be caused
by stronger susceptibility distortions in these regions. On the other hand, Figure
2b illustrates the region-wise PE corresponding to the output of Algorithm 12
which significantly reduced the errors in these ROI.
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(a) Task 1: APE of high-b-value L0
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(b) Task 1: APE of MK

Fig. 1: Scanner-to-scanner harmonisation results. The red square, blue circle and solid
black lines show the mean, median and 20-80 percentile of the the absolute percentage
error (APE) of a) the high-b-value L0 RISH feature, and b) the MK measure. The
algorithms with mean APE lower than the reference are highlighted using bold font.

2.2 Spatial- and angular resolution enhancement (Tasks 2a and 2b)

Figures 3a and 3b show the APE of the L0 RISH features for the b=3000 s/mm2

signals and the MK measure, respectively, for Task 2a. Figures 3c and 3d show
the corresponding results for Task 2b. In this case, no reference lines are plotted
since there is no ground-truth due to different spatial resolutions. It is inter-
esting to note that the interpolation-based Algorithm 3 has consistently good
performances in these tasks.

3 Discussion and Conclusion

We present preliminary results on a comparison of the performance of several
harmonisation algorithms that estimate mappings between multi-shell dMRI
data acquired using different scanners and/or protocols. These algorithms in-
clude interpolation-based approaches, regression-based approaches and deep-
learning based methods. Our results show that harmonisation algorithms could
significantly reduce scanner- or protocol-related differences in dMRI data. These
algorithms generally have lower accuracy for the spatial- and angular-resolution
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(a) Region-wise PE of RTOP (Reference)

(b) Region-wise PE of RTOP (Algorithm 12)

Fig. 2: Scanner-to-scanner harmonisation results. a) Region-wise percentage error (PE)
of RTOP between the acquired data. b) Region-wise PE of RTOP from the output of
Algorithm 12.
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(a) Task 2a: APE of high-b-value L0
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(b) Task 2a: APE of MK
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(c) Task 2b: APE of high-b-value L0
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(d) Task 2b: APE of MK

Fig. 3: Spatial- and angular-resolution enhancement results. a) APE of high-b-value
L0 RISH feature in Task 2a, b) APE of MK in Task 2a, c) APE of high-b-value L0
RISH feature in Task 2b, and d) APE of MK in Task 2b.
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enhancement tasks than the harmonisation task. But the approach based on
parametric modeling of multi-shell signals has consistently good performance
over tasks.

Regarding potential limitations, susceptibility distortions may contribute
more to voxel or region-wise inter-protocol residuals than protocol-related vari-
abilities, leading to reduced performances for most algorithms in some ROIs.
Different preprocessing methods could be explored to reduce systematic errors
in these regions. Alternatively, the errors in these regions can also be reduced
using suitable harmonisation algorithms as shown in Figure 2b.
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