The role of intermixing in all-optical switching of synthetic-ferrimagnetic multilayers

Citation for published version (APA):

DOI:
10.1063/1.5129892

Document status and date:
Published: 23/12/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Apr. 2020
The role of intermixing in all-optical switching of synthetic-ferrimagnetic multilayers

Cite as: AIP Advances 9, 125133 (2019); https://doi.org/10.1063/1.5129892
Submitted: 02 October 2019 . Accepted: 05 November 2019 . Published Online: 23 December 2019

M. Beens, M. L. M. Lalieu, R. A. Duine, and B. Koopmans

COLLECTIONS

Paper published as part of the special topic on 64th Annual Conference on Magnetism and Magnetic Materials
Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.

ARTICLES YOU MAY BE INTERESTED IN

Ultrafast double magnetization switching in GdFeCo with two picosecond-delayed femtosecond pump pulses
Applied Physics Letters 113, 062402 (2018); https://doi.org/10.1063/1.5044272

Integration of Tb/Co multilayers within optically switchable perpendicular magnetic tunnel junctions
AIP Advances 9, 125328 (2019); https://doi.org/10.1063/1.5129821

Perspective: Ultrafast magnetism and THz spintronics
Journal of Applied Physics 120, 140901 (2016); https://doi.org/10.1063/1.4958846
The role of intermixing in all-optical switching of synthetic-ferrimagnetic multilayers

M. Beens, M. L. M. Lalieu, R. A. Duine, and B. Koopmans

AFFILIATIONS
1 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.

Corresponding author: m.beens@tue.nl

ABSTRACT

We present a theoretical study of single-pulse all-optical switching (AOS) in synthetic-ferrimagnetic multilayers. Specifically, we investigate the role of interface intermixing in switching Co/Gd bilayers. We model the laser-induced magnetization dynamics in Co/Gd bilayers using the microscopic three-temperature model for layered magnetic systems. Exchange scattering is included, which mediates angular momentum transfer between the magnetic sublattices. In this work, each layer is represented by one atomic monolayer of a GdCo alloy with an arbitrary Co concentration, allowing Co/Gd bilayers with an intermixed interface to be modelled. Our results indicate that within the model intermixing of the Co/Gd interface reduces the threshold fluence for AOS significantly. We show that intermixing does not qualitatively affect the switching mechanism and leads to an increase of the propagation speed of the switching front.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5129892

All-optical switching (AOS) refers to switching magnetization by femtosecond laser pulses and was first observed in ferrimagnetic GdFeCo alloys. Single-pulse AOS has gained extensive attention due to the intriguing underlying physics and its potential for ultrafast data writing technologies. Recently, it was demonstrated that not only alloys, but also Pt/Co/Gd stacks can be switched by the use of a single linearly polarized laser pulse. This synthetic-ferrimagnetic multilayer has proven to be an ideal candidate for the integration of AOS in future magnetic memory devices. Moreover, it has been shown that AOS in Pt/FM/Gd is very robust and can be achieved for a relatively large ferromagnetic (FM) layer thickness, i.e., the switching mechanism in synthetic-ferrimagnetic multilayers is independent of magnetization compensation.

The key ingredient of single-pulse AOS is that the material system contains multiple magnetic sublattices, coupled by an antiferromagnetic exchange interaction. The exchange coupling drives the magnetization reversal by transferring angular momentum between the sublattices. This insight was corroborated by simulations using the atomistic Landau-Lifshitz-Gilbert equation. An alternative approach was derived by extending the microscopic three-temperature model (M3TM) to multilattice magnets. The latter includes exchange scattering as the mechanism for angular momentum transfer between the sublattices. Very recently, we extended this model to describe single-pulse AOS in Co/Gd bilayers. Based on the simulations, it was concluded that the robustness of AOS in Pt/FM/Gd is caused by the non-local character of the switching mechanism. For example, the mechanism in Co/Gd bilayers can be understood as a front of reversed Co magnetization that, after laser-pulse excitation, nucleates at the Co/Gd interface and propagates through the Co layer driven by exchange scattering. An important question is to what extent the properties of the Co/Gd interface, e.g., the amount of intermixing, affect the switching mechanism within the model.

In this work, we show that intermixing reduces the threshold fluence for AOS in Co/Gd bilayers and leads to faster propagation of the switching front. We perform simulations of AOS in Co/Gd bilayers including an intermixed interface. In order to do this, we define each atomic monolayer in the Co/Gd bilayer as a GdCo alloy with an arbitrary Co concentration for each monolayer, a Co/Gd bilayer including an intermixed (alloyed) interface is modelled. We use the M3TM including exchange scattering to describe the magnetization dynamics of the
We present phase diagrams that show the reduced threshold fluence. Finally, we analyse the role of intermixing on the propagating switching mechanism by calculating the switching times for the individual atomic monolayers.

To describe the system of interest, we introduce multiple spin subsystems that are all coupled to a single electron and phonon system. We consider the same approximations as the basic MSTM, where the electrons are described as a spinless free electron gas and the phonons are treated within the Debye model. The electron and phonon system are internally thermalized and the electron temperature T_e and phonon temperature T_P are homogeneous. The spin specific heat is neglected. The electron system contains an energy source term which represents the laser pulse. Heat diffusion to the substrate is included in the phonon system as an energy dissipation term. The spin subsystems are treated within a Weiss mean field approach and all compose a magnetic sublattice with at each lattice site $D_0 = \mu_B/2S$ spins, where μ_B is the atomic magnetic moment (in units of the Bohr magneton μ_B) and S is the spin quantum number.

We consider a system of N atomic monolayers. Each layer i corresponds to a two-dimensional Gd$_{1-x}$Co$_x$ alloy with Co concentration x_i. Hence, all the layers consist of two magnetic sublattices, one for each compound. We define $m_{Co,i}$ and $m_{Gd,i}$ as the normalized magnetization of a specific magnetic sublattice in layer i ($i \in [1,N]$). In the following, we only take into account nearest neighbour interactions. First, we introduce the bulk exchange splitting for a Gd$_{1-x}$Co$_x$ alloy with Co concentration x:

$$\Delta_{Co,i}^{bulk} = x_i y_{Co-Co} m_{Co,i} + (1 - x_i) y_{Co-Gd} m_{Gd,i},$$

and

$$\Delta_{Gd,i}^{bulk} = x_i y_{Gd-Co} m_{Co,i} + (1 - x_i) y_{Gd-Gd} m_{Gd,i},$$

where we defined $y_{ij} = j_{ij}^G D_0 S_i^z (k, l \in \{Co, Gd\})$ in terms of the (intra- or intersublattice) exchange coupling constant j_{ij} and the number of nearest neighbours z.

To express the exchange splitting in the N layers of Gd$_{1-x}$Co$_x$, we assume that the separate layers lie in the (111) plane of an fcc lattice. In that case, each atom has 6 nearest neighbours in the same layer and 3 nearest neighbours in each adjacent layer. The exchange splitting for a specific compound in layer i is

$$\Delta_{Co,i} = \frac{1}{4} \Delta_{Co,i}^{bulk} + \frac{1}{2} \Delta_{Co,i-1}^{bulk} + \frac{1}{4} \Delta_{Co,i+1}^{bulk},$$

and

$$\Delta_{Gd,i} = \frac{1}{4} \Delta_{Gd,i}^{bulk} + \frac{1}{2} \Delta_{Gd,i-1}^{bulk} + \frac{1}{4} \Delta_{Gd,i+1}^{bulk}.$$
FIG. 1. Phase diagrams for AOS as a function of the laser pulse energy P_0 and the number of Co monolayers N_{Co} in a Co/Gd bilayer. Figure (a) shows the phase diagram for an ideal Co/Gd bilayer, without intermixing at the Co/Gd interface (see inset Fig. (a)). Figure (b) shows the phase diagram for Co/Gd bilayers including intermixing, modelled by replacing the two layers adjacent to the interface by two layers of Gd$_{0.5}$Co$_{0.5}$ (see inset Fig. (b)). Figure (c) shows a similar phase diagram, but now the intermixing region is extended to four layers (see inset Fig. (c)). The blue regions indicate a switch in the final state and the white regions indicates no switch. Grey indicates that the phonon temperature T_p exceeds the Curie temperature T_C. The insets in (a)-(c) schematically show the modelled system. Figure (d) and (e) show the normalized magnetization of the Co an Gd layer as a function of time, in case of switching (d) and no switching (e).

The phase diagram for the Co/Gd bilayers including intermixing shows the same qualitative behaviour, as is depicted in Fig. 1(b). Interestingly, for relatively thin Co layers ($N_{Co} = 3$-5), the threshold fluence is reduced by $\sim 25\%$ compared to the system without intermixing. The reduction of the threshold fluence can be understood by (i) in case of intermixing there is effectively more angular momentum transfer between Co and Gd sublattices and (ii) a decrease of the Curie temperature T_C. Note that the observed value for the threshold fluence is now comparable to the value found in the simulations for the alloys.

Figure 1(c) shows that increasing the size of the intermixing region leads to a further reduction of the threshold fluence. However, no switching is observed for $N_{Co} = 3$. This can be understood from the fact that this particular system is very similar to a homogeneous Gd$_{0.5}$Co$_{0.5}$ alloy, which can not be switched because the total magnetic moment is not close to compensation.

Following the analysis of the phase diagrams, the question that arises is to what extent the intermixing of the Co/Gd interface influences the properties of the propagating switching mechanism. Figure 2(a) shows a detailed analysis of the switching mechanism in a system of 10 Co and 5 Gd layers. It displays the time at which each individual Co layer is reversed as a function of the layer index. The Co layers are labeled from 1 to 10, where the index 1 represents the layer adjacent to the Co/Gd interface. We consider the same three systems as in the phase diagrams (with $N_{Co} = 10$), which are schematically presented in Fig. 2(b)–(d). Note that the layer indices are unchanged despite the addition of an intermixing region. In Fig. 2(a), the red dots represent an ideal Co/Gd bilayer, without intermixing (see Fig. 2(b)). The blue and yellow dots represent a Co/Gd bilayer with an intermixing region of two and four layers respectively (see Fig. 2(c)–(d)). Figure 2(a) shows that in all three systems the layers are switched consecutively starting with the layers near the interface, which defines the propagating switching mechanism. However, in case of an ideal Co/Gd interface, the layer adjacent to the interface acts differently. This is, in the approximation of only nearest-neighbour interactions, caused by the exchange field resulting from the slowly demagnetizing Gd layer.

This field slows down the demagnetization and reversal process of the inner Co layer due to the antiferromagnetic exchange coupling between Co and Gd. In the presence of intermixing, this effect is shifted to the unlabelled layers. Importantly, the blue and yellow dots clearly show that the propagating characteristics of the switching mechanism are maintained after including intermixing within the model.
To analyse the propagation speed of the switching front, we focus on the region from layer 3 to layer 10, which consists entirely of Co in all three systems (Fig. 2(b)–(d)). The propagation speed can be approximated from the interval between the switching times of layer 3 and 10 and the corresponding distance the switching front has travelled. Here, we take 0.2 nm for the thickness of one atomic monolayer of Co. The propagation speed is then given by approximately 2.1 km/s. For the systems including intermixing, we find a propagation speed of 3.9 km/s (Fig. 2(c)) and 6.6 km/s (Fig. 2(d)) respectively. Hence, intermixing of the Co/Gd interface increases the propagation speed of the switching front significantly. As noted before, intermixing leads to effectively more angular momentum transfer between the Co and Gd sublattices near the interface, increasing the magnetization gradient in the Co layer. This leads to a larger propagation speed of the switching front, because the speed is related to the magnitude of the magnetization gradient.

To conclude, within the model we considered in this paper, intermixing leads to a significant reduction of the threshold fluence for AOS compared to the ideal Co/Gd interface. Furthermore, intermixing does not affect the qualitative properties of the switching mechanism in Co/Gd bilayers. Quantitatively, intermixing increases the speed of propagation. Hence, previously reported statements about the switching mechanism in ideal Co/Gd bilayers can be generalized to bilayers including an intermixed Co/Gd interface.

This work was part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

REFERENCES

