Resonant photoemission at the Ni 2p core level as a probe of electron correlation effects in nickel

Citation for published version (APA):

DOI:
10.1103/PhysRevB.46.9336

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Resonant photoemission at the Ni 2p core level as a probe of electron correlation effects in nickel

G. van der Laan
Soft X-ray Science and Technology, SERC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

M. Surman
Surface Science, SERC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

M. A. Hoyland
Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom

C. F. J. Flipse
Solid State Physics, Technical University, 5600 MB Eindhoven, The Netherlands

B. T. Thole
Materials Science Center, University of Groningen, 9747 AG Groningen, The Netherlands

Y. Seino and H. Ogasawara
Department of Physics, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980, Japan

A. Kotani
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
(Received 1 May 1992)

The observed enhancement in the 3d, 3p, and 3s photoemission structures at resonance with the 2p absorption edge of nickel is analyzed using a cluster calculation including multiplet structure. The result strongly supports the view of a localized electronic structure for nickel metal. It is found that the peak splitting in the 3s photoemission is due to d mixing, whereas the 3p photoemission shows the influence of both d mixing and electrostatic interaction.

I. INTRODUCTION

The satellite structure in the core-level and valence-band photoemission spectra of nickel has been the subject of intensive studies. These structures, which originate from the narrow-band properties of the 3d metal, emphasize the importance of electron correlation effects. The satellite at 6 eV below the Fermi level in the valence-band photoemission of nickel is due to a localized two-hole state, which is split from the one-hole band by the large on-site Coulomb interaction in the final state. The satellite intensity is low, but increases in resonant photoemission by the super-Coster-Kronig decay after the photoabsorption of a core electron at an absorption edge. At the 3p absorption resonance the two-hole final state is enhanced due to a decay $3d^9 \rightarrow 3p^3 3d^{10} \rightarrow 3d^9 k$ (k denotes a photoelectron), whereas the one-hole final state shows no enhancement. Unfortunately, the analysis of the resonant spectrum is hampered by the large interference term between the 3p deexcitation and the 3d photoemission, which are of comparable magnitude. Recently, Tjeng et al. observed a giant enhancement of the valence-band photoemission in CuO at resonance with the Cu 2p absorption edge. At such a deep edge, the ratio of the cross section for the resonant to direct photoemission is considerably larger than at the 3p absorption edge. The interference term is then negligible, and a straightforward interpretation of the resonant spectrum is possible.

In this paper we use the 2p core-level resonance decay to study the 3s and 3p photoemission. Although the nature of the satellite structure of the valence-band photoemission is well established, the peak splitting in the 3s photoemission of 3d transition-metal compounds and alloys has not been assigned unambiguously. The splitting has been ascribed to both d mixing and exchange interaction. Van Acker *et al.* have studied a large number of iron compounds, but found no simple relation between the magnetic moment of the iron and the 3s peak splitting and intensity ratio. In this paper, we analyze the 3d, 3s, and 3p direct and resonant photoemission spectra of nickel metal by comparing experimental results with a cluster calculation including multiplet structure. The resonance enhancement allows us to give clear assignments of the peak structures in the photoemission spectra.

II. EXPERIMENTAL RESULTS

The experiments were performed on a Ni(110) single crystal which was cleaned by repeated cycles of Ar sputtering and annealing. A variable photon energy with a resolution of 1.5 eV was obtained using the spherical grating monochromator of beamline 1.1 at the Synchrot-
ron Radiation Source (SRS) in Daresbury. The photoelectrons were collected by a hemispherical analyzer with multichannel detection. The intensity was corrected for variations in the incident flux.

Figure 1(b) shows the direct photoemission of the 3d, 3p, and 3s levels at a photon energy of 6 eV below the Ni 2p_{3/2} absorption edge. These x-ray photoemission spectra (XPS) agree with earlier measurements. The high photon energy results in a low intensity, but we only need the position of the direct photoemission contribution in the resonance spectrum. Figure 1(a) shows the resonant photoemission at 852 eV, which is the maximum of the Ni 2p_{3/2} absorption edge. The strong increase of the 3d, 3p, and 3s photoemission is due to the 2p3d3d (L3M4_5M4_5), 2p3p3d (L3M2_3M4_5), and 2p3s3d (L3M1M4_5) decay, respectively, where, e.g., 2p3d3d means that the 2p hole created by the original absorption is filled by a 3d electron while another 3d electron escapes. The structure around 140 eV is due to the 2p3p3p (L3M2_3M2_3) decay.

III. CALCULATIONAL DETAILS

The electronic structure of nickel can be described as a mixture of several 3d configurations. The hybridization in the initial, intermediate, and final state is calculated using a cluster model, where the Hamiltonian H_0 is written as

$$H_{0} = H_{\text{local}} + H_{\text{bulk}} + H_{\text{mix}} + H_{\text{mol. field}} + H_{\text{pes}},$$

where

$$H_{\text{local}} = \sum_{\nu} E_{\nu} d_{\nu}^\dagger d_{\nu} + \sum_{\nu} E_{c_{\nu}} c_{\nu}^\dagger c_{\nu} + \sum_{\nu} \langle \nu | 1.5 | \nu \rangle d_{\nu}^\dagger d_{\nu} + \sum_{\nu} \langle \nu | 1.5 | \nu \rangle c_{\nu}^\dagger c_{\nu},$$

$$H_{\text{bulk}} = \sum_{\nu} V_{\nu} (d_{\nu}^\dagger L_{\nu} + L_{\nu}^\dagger d_{\nu}),$$

$$H_{\text{mix}} = \sum_{\nu} V_{\nu} (d_{\nu}^\dagger L_{\nu} + L_{\nu}^\dagger d_{\nu}),$$

$$H_{\text{mol. field}} = -\mu_{B} H \sum_{\nu} \langle \nu | S_{\nu} \rangle (d_{\nu}^\dagger d_{\nu} + L_{\nu}^\dagger L_{\nu}),$$

$$H_{\text{pes}} = E_{k} k^\dagger k,$$

where d^\dagger, c^\dagger, L^\dagger, and k^\dagger are the creation operators for a valence, core, bulk, and continuum hole with energy E_{d}, E_{c}, E_{L}, and E_{k}, respectively. The index ν labels all orbital and spin quantum numbers. The Hamiltonian H_{local} describes the localized states, which are split by spin-orbit interactions 1.5 with parameters ξ_d and ξ_c, and electrostatic interactions with matrix elements Q_{cd} given by the Slater integrals F^0, F^2, G^1, and G^3, and U_{cd} given by the Slater integrals F^0, F^2, and F^4. The Hartree-Fock values for the Slater integrals and spin-orbit constants, which were obtained from Cowan's code, are given in Table I. In the cluster calculations the Slater integrals were reduced to 80% to include intra-atomic correlation effects. The Hamiltonian H_{bulk} describes the states formed by a combination of appropriate symmetry of orbitals on the adjacent sites, which are hybridized with the d states on the central site. This hybridization is described by H_{mix}. In the cubic symmetry of the face-centered-cubic metal the transfer or mixing integral is given by the parameters $V(e)$ and $V(t_2)$. The Hamiltonian $H_{\text{mol. field}}$ describes the molecular field, which can be treated as a magnetic field acting on the spin only. The Hamiltonian H_{pes} describes the photoemission state.

The initial state i_{ν} is given as

$$|i_{\nu}\rangle = \alpha_{\nu}|3d^8(v)\rangle + \beta_{\nu}|3d^9L_{\nu}(v)\rangle + \gamma_{\nu}|3d^{10}L_{\nu}^2(v)\rangle.$$
energy E_g. The final-state configurations d^7k, d^9Lk, and d^9L^2k of the valence-band photoemission have energies 0, $-2U$, and $-3U$, respectively. The final-state configurations cd^8k, cd^9Lk, and $cd^{10}L^2k$ of the core-level photoemission have energies 0, $-U-Q$, and $-3U-2Q$, respectively, where Q is the effective Coulomb interaction.

The direct photoemission intensity is determined by the fractional parentage of the ground state to the final states. The photoabsorption decay is governed by the Auger matrix elements. By exciting an electron from a 2p core level into the 3d valence band, the resonance process creates the excited states $2p^2d^3L^2$ and $2p^3d^9$ with an energy separation of $\Delta - Q$. The $2p^3d^9L^2$ excited state decays by Auger transitions to the two-hole final states d^7Lk, $3p^5d^7Lk$, $3s^2d^8Lk$, and $3p^4d^{10}Lk$. The $2p^2d^3L^2$ excited state decays to the three-hole final states d^5k, $3p^5d^4k$, $3s^4d^6k$, and $3p^4d^6k$. These two- and three-hole configurations are the final states of the 3d, 3p, and 3s photoemission and the configuration interaction satellite of the 3s photoemission, respectively. The one-hole final states d^7L^2k, $3p^5d^7L^2k$, and $3s^2d^{10}L^2k$ are only accessible by direct photoemission. Thus, the core-hole decay spectrum displays a resonance enhancement of the two- and three-hole states, but not of the one-hole final states.

The spectra were calculated by taking into account radiative transitions to first order and Auger transitions to infinite order, as has been described in detail in Ref. 27. The direct photoemission has dipole matrix elements $\langle l||r||k \rangle$ with $k=\pm 1$. The $l_1l_2l_3$ decay has Auger matrix elements $R(l_1,l_2,l_3,k)$ with $k=0,2,\ldots k_n$ for even and $k=1,3,\ldots k_n$ for odd, where $k_n=l_1+l_2+l_3$. The Hartree-Fock values for the dipole transitions and Auger matrix elements, which were obtained from Cowan's code, are given in Table II. The decay rate is proportional to the square of the Auger matrix elements.

The valence-band photoemission was calculated using the parameters $\Delta = -0.75$, $U(3d,3d)=1.50$, $Q(2p,3d)=2.5$, $V(e)=1.6$, $V(t_2)=0.8$, $g\mu_B H = -0.5$ eV, which produced a ground state with 16% d^3, 49% d^5, and 35% d^{10} character. The Fermi level was taken at the binding energy of the lowest photoemission state.

| TABLE I. Hartree-Fock values (eV) of the Slater and spin-orbit parameters for the initial, excited, and final state in the Ni 2p resonant photoemission process, obtained by Cowan's code (Ref. 23). |
|----------|----------|----------|----------|----------|----------|----------|
| Configuration | F^2 | F^4 | $\xi(p)$ | $\xi(3d)$ | G^2 | G^3 |
| Ni 3d7 | 13.278 | 8.294 | 0.091 |
| Ni 3d9 | 12.234 | 7.597 | 0.083 |
| Ni 3d10 | 0.074 |
| Ni 2p23d9 | 11.507 | 0.102 | 7.721 | 5.787 | 3.291 |
| Ni 2p23d10 | 11.509 |
| Ni 3p33d9 | 13.317 | 8.319 | 1.397 | 0.092 | 14.333 | 17.717 | 10.798 |
| Ni 3p33d10 | 1.345 |
| Ni 3p33d8 | 16.136 | 1.408 | 0.093 | 13.372 | 17.750 | 10.824 |
| Ni 3p33d10 | 15.910 | 1.378 |
| Ni 3s23d4 | 13.387 | 8.364 | 0.093 | 13.562 |
| Ni 3s33d9 | 0.085 | 12.880 |

| TABLE II. Hartree-Fock values of the dipole and Auger matrix elements for the Ni 2p resonant photoemission, obtained by Cowan's code (Ref. 23). |
|----------|----------|
| Transition | Reduced-matrix element |
| $2p\rightarrow 3d$ | $(2p||r||3d) = -0.17723$ a.u. |
| $2p3d3d$ decay | $(3d||r||e_p) = 0.000621$ a.u./eV$^{1/2}$ |
| $2p3d3d$ decay | $(3d||r||e_p) = -0.003525$ a.u./eV$^{1/2}$ |
| $2p3d3d$ decay | $R_{2p3d3d}(3d,e_p) = -0.05304,-0.04341$ eV$^{1/2}$ |
| $2p3p3d$ decay | $R_{2p3p3d}(3d,e_p) = 0.19125,0.11749$ eV$^{1/2}$ |
| $2p3p3d$ decay | $R_{2p3p3d}(3d,e_p) = 0.06071$ eV$^{1/2}$ |
| $2p33d$ decay | $(3p||r||e_p) = 0.001494$ a.u./eV$^{1/2}$ |
| $2p33d$ decay | $(3p||r||e_p) = -0.00567$ a.u./eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3p,3d,e_p) = -0.03059,-0.07587$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3p,3d,e_p) = 0.04775,0.03731,0.08783,0.03303$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3p,3d,e_p) = -0.8680,-0.10264$ eV$^{1/2}$ |
| $2p33d$ decay | $(3s||r||e_p) = -0.003251$ a.u./eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3s,3d,e_p) = 0.001437,-0.04867$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3s,3d,e_p) = 0.03088,0.10337$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3s,3d,e_p) = 0.07226,0.03907$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3s,3d,e_p) = 0.09629$ eV$^{1/2}$ |
| $2p33d$ decay | $R_{2p33d}(3s,3d,e_p) = 19.3468$ eV |
For the 3p and 3s photoemission calculations we had to reduce the calculation by using spherical symmetry with $V=1.8 \text{ eV}$ and $g \mu_B H=0$, resulting in somewhat different weights of 14% d^9, 48% d^8, and 38% d^{10}.

The value of Q(3p, 3d) and Q(3s, 3d) used in XPS was 4.5 eV, which is 2 eV larger than in x-ray-absorption spectroscopy (XAS), to account for the increased effective nuclear charge after electron emission.

The core-hole lifetime and apparatus broadening were included by a convolution of the calculated line spectra with a Lorentzian of $\Gamma=1.5 \text{ eV}$ and a Gaussian of $\sigma=1\text{ eV}$.

IV. RESULTS AND DISCUSSION

The calculation of the 2p absorption spectrum has been reported earlier. The spectrum is split by core-hole spin-orbit interaction into a $2p_{3/2}$ and $2p_{1/2}$ peak with an energy separation of 17.3 eV. Both peaks have a small satellite structure at 4–6 eV higher energy. The main peaks have predominantly $2p^53d^{10}4s$ character, whereas the satellite structures have mainly $2p^53d^9$ character. We will present only the decay from the main $2p_{3/2}$ peak, because the $2p_{1/2}$ core hole decays dominantly by a Coster-Kronig transition $2p_{1/2}2p_{3/2}3d$, and for the satellites the intensity is low. The direct and resonant photoemission spectrum are shown in Figs. 2 and 3, respectively, where the calculations have been compared with the experimental results from Fig. 1. The $2p_{3/2}3d^{10}L$ decay gives 38% 3d photoemission, 30% 3p photoemission, 2% 3s photoemission, and 28% goes into the $2p 3p 3p$ decay. The remaining 2% goes into the $2p 3s 3s$ and $2p 3s 3p$ decay. We will discuss the various levels separately.

A. Valence band

The direct photoemission (Fig. 2) of the valence band shows a main peak with predominantly 3d9 character (from here on, we omit L and k in the notation). At 6 eV below the Fermi level is the two-hole satellite, which is visible as a small shoulder. In the resonance spectrum (Fig. 3) the final states with two or more d holes are enhanced. The largest increase is in the 6-eV satellite, which is broadened by the $d-d$ Coulomb interactions. To a lesser extent the main peak is also enhanced by the presence of a small amount of d^8 character. The intensity of the 3d7 final state at $\sim 15 \text{ eV}$ is small due to the low amount of $2p^53d^9$ character in the excited state and the interference with the two-hole final state.

B. 3p photoemission

The 3p direct photoemission spectrum (Fig. 2) shows a $3p^5d^{10}$ main peak with a maximum at 67.3 eV, and a high-energy tail which corresponds to the $3p^5d^9$ state. The latter state is split by the $3p-3d$ electrostatic interaction into three more or less distinct structures, viz. $1D+3F$, which is hidden under the main peak, $3P+3D$, and $1F+1P$. In the resonance spectrum (Fig. 3) the $3P+3D$ and $1F+1P$ structures are strongly enhanced. The intensity increase of the main line is due to a small amount of $3p^5d^9$ character. The weak structure at 90 eV is due to the $3p^5d^9$ final state.

Although the calculation correctly predicts the satellite structure of the 3p photoemission, the separation between the main and satellite peak is 3.5 eV larger than in the experiment. The same effect occurs in the valence-band spectrum if the molecular field is reduced to zero. A calculation which includes the magnetic exchange interaction might also give an improvement in the 3p photoemission, but is too large for the moment.

C. 3s photoemission

The 3s photoemission calculation has to include the configuration interaction with the 3p4 final states. The direct 3s photoemission spectrum (Fig. 2) shows a main peak at 111.4 eV, which has 3s$^1d^{10}$ character, and a small satellite with 3s$^1d^9$ character, which contains a $3D$ and a $1D$ state. In the resonant spectrum (Fig. 3) only the satellite is enhanced, which proves it is 3s$^1d^9$. This demonstrates that the 3s peak splitting is due to d mixing and
not to exchange interaction. The $3p^4d^{10}$ configuration is split by the $3p-3p$ electrostatic interaction into 2P, 1D, and 1S states, where the first peak is at 134.2 eV. The $3p^4d^{10}$ state can be reached by decay from the $2p^5d^{10}$ intermediate state, as well as by intra-atomic configuration interaction with the $3s^1d^9$ final state of the $3s$ photoemission. This configuration interaction has a large matrix element $[R^2(3p, 3p; 3s; 3d)]$ in Table II] which pushes the 1D peak of the $3s^1d^9$ structure toward the 3D peak and the 1D peak of the $3p^4d^{10}$ structure toward the 1S peak. This effect destroys the usefulness of the 1D-1D splitting to determine the $3s$-$3d$ exchange, because the original splitting of 3.8 eV is reduced by the configuration interaction such that in our case the peaks are no longer separable.22,33 The structure at 160 eV is the $3p^4d^9$ state.

V. CONCLUSIONS

The strong photoemission enhancements which are observed in resonance with the $2p_{3/2}$ absorption edge have been ascribed to Auger decay from an excited state with mainly $2p^23d^{10}$ character, whereas the $2p^33d^9$ contribution gives much weaker structures at ~ 20-eV higher binding energies. The excellent agreement between experiment and localized model calculations supports the idea of a correlated electronic structure for nickel metal. The resonant photoemission enables us to verify the assignments of the core-level structures. The resonant photoemission shows that the $3s$ splitting in nickel is due to d mixing instead of exchange interaction.

Similar effects as for nickel are expected for other 3d metals. Small enhancements in 3d resonant photoemission have been observed in all 3d transition-metal elements16,34-40 and from the magnitude of the reduced-matrix elements it can be derived that the enhancements at the $2p$ resonance will be orders of magnitude larger.28 This makes it possible to study the valence and core-level structure of transition-metal compounds and alloys in extreme detail.