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Abstract

When the tidal 
ow enters an estuary through a gap or channel, two counter rotating vortices
(a dipole) are formed due to 
ow separation during the �rst half of the tidal period. In the second
half of the tidal period this dipole is sucked back towards the gap it originated from. It can either
be sucked through or not. This depends on the Strouhal number a=U0T where a is the width of the
gap in [m], U0 the maximum 
ow velocity in the gap in [m/s] and T the tidal period in [s]. The
critical Strouhal number - the Strouhal number for which the dipole barely escapes - was found: it
lies between 0.08749 and 0.08750, which is lower than what was found by Wells and van Heijst [6]
(between 0.1296 and 0.1297). The di�erence was that a line sink is used in this case instead of a
point sink.

After the conditions for which a dipole remains inside the estuary are known, the interaction
between two and three dipoles on a common axis was investigated. Love[3] found a condition for
the initial setup for which two dipoles start leapfrogging (leapfrogging is visualized in �gure 10).
In Love’s setup the dipoles start with the same x-coordinate. When the ratio of their sizes is large
enough, they do not start leapfrogging. When it is small enough they do. Whether this theory
applies to three dipoles as well is investigated. It was found that instead of two di�erent cases for
two dipoles (leapfrogging or no leapfrogging) there are four di�erent cases for three dipoles (the
two outer or inner dipoles start leapfrogging without the other, all three dipoles leapfrog together
or no leapfrogging at all).

When the dipoles are placed on a common axis with equal size and y-coordinates they will
always interact with each other. But where two horizontally spaced dipoles leapfrog with a constant
frequency (for which a formula was found), three horizontally spaced dipoles interact chaotically.
Both for the case of two and three dipoles a frequency can be found analytically in the limit that the
dipoles are extremely close together. This frequency is indeed approached in this limit (for three
dipoles this analytically found value approaches the dominant frequency in the fourier spectrum).

Dipoles that subsequently enter an estuary they exhibit leapfrogging. Due to the sink 
ow
pulling the dipoles back towards the gap two patches of vortices are formed. It is suspected and
proven here that the size of this cloud depends the Strouhal number; a larger Strouhal number
results in a smaller cloud and vice versa. The Strouhal number only has a small in
uence on the
cloud size. The bottom friction in
uences the cloud size much more.

It was also discovered that the cloud of dipoles consists of an inner and outer region. This is
the result of leapfrogging. The inner region consists of either the even or uneven dipoles whilst the
outer region consist of the other ones. When the properties of the water in the ocean vary for every
other dipole (e.g. temperature due to night and day) this means that the cloud in the estuary is
not only divided two regions with either even or uneven dipoles, but also in, say, temperature.
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1 Introduction

Due to tidal motion in and out of an estuary there can be a net exchange of 
uid between the estuary
and the ocean due to the asymmetry between the in- and out
ow of the estuary[2]. During the in
ow
two counter rotating vortices are created as a result of 
ow separation. In the second half of the
tidal period the in
ow becomes an out
ow, under the in
uence of which these vortices can either
remain inside the estuary or be pulled back. When they remain inside they will interact with the
following pair of vortices. The interaction between these counter rotating vortex pairs, or dipoles, will
be investigated in this paper by means of simulations with point vortices.

Point vortices are an ideal representation of real vortex structures. They are easy to model, which
makes them useful for exploratory simulations to investigate 
ows containing vorticity.

First, an analytical approximation of a dipole’s path during the �rst tidal period is given. It is
investigated in which cases the dipole can escape into the estuary, and in which cases it can’t. Next,
linear bottom damping is included and its in
uence on the escaping criterion is investigated.

Secondly, the core of the simulation code is described. This includes the equations of motion and
the fourth order Runge-Kutta (RK4) integration scheme. The simulations are done with MATLAB.

As an introduction to the interactions between dipoles that subsequently enter an estuary, the
interaction of up to three dipoles with a common axis is investigated. Two dipoles on a common
axis can start leapfrogging: the pursuing dipole slips in-between the leading dipole and becomes the
leading dipole, after the which the now pursuing dipole slips through the leading dipole again, and so
on. This behaviour has been studied for the case of three dipoles.

Finally, the interaction between dipoles that enter an estuary is investigated. The dipoles form
a cloud next to the gap. The size of this cloud is of importance when investigating exchange of for
example suspended particles. It is also important to know what the cloud size depends on because it
can be bene�cial to be able to approximate the size of the cloud, or even to control it by changing for
example the properties of the bottom or the gap.
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2 Analytical model for the evaluation of a single dipolar vortex

The motion of a vortex dipole into (and out of) an estuary as a result of tidal motion can be described
by considering two situations: the �rst and second half of the tidal period. In the �rst half the 
uid

ows into the estuary. This 
ow causes the boundary layers inside the channel to grow due to the
no-slip boundary condition [6]. These boundary layers contain vorticity. At the end of the channel
these boundary layers detach, forming vortices on both sides. These two vortices form a dipole which
moves away from the gap. A schematic of this is shown in �gure 1. The black blocks represent the
walls of the channel. U is the magnitude of the tidal 
ow.

U 
�w 

x 

y 

Figure 1: A schematic illustrating the detachment of the boundary layers and the formation of two
vortices with opposite vorticity. U is magnitude of the incoming tidal
ow and � the thickness of
the boundary layer. The thickness of the boundary layer increases along the gap. The black blocks
represent the walls of the gap.

In this study, the vortices are represented as point vortices to simplify the calculations. The dipole
velocity can be found using the circulation (��) of the point vortices that constitute the dipole:

Vdipole =
�

2�a
; (2.1)

with Vdipole the dipole velocity in [m � s�1] and a the distance in [m] between the two vortices that
make up the dipole. In this model (�gure 1)[4] a viscous boundary layer of thickness � grows along
the walls of the gap. The vorticity ! in these layers scales as ! = U=� with U the tidal 
ow velocity.
The average velocity in the gap will scale as U=2. The circulation � (in [m2 � s�1]) can be found by
integrating the tidal 
ow U(t):

�(t) =
ZZ

! � n dA �
ZZ

U(�)
�

dxdy =
Z t

0

U (�)
�

�
U (�)

2
d� =

1
2

Z t

0
(U (�))2 d�; (2.2)

with � the thickness of the boundary layer (see �gure 1). Integration over y results in the factor �.
Integration over x results in Ut=2, but in the case that U depends on the the time t the time integral
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is necessary. The tidal 
ow U (t) is being modelled as:

U (t) = U0 sin
�

2�t
T

�
; (2.3)

with T the tidal period in [s]. This is taken to be the velocity of the 
ow through the gap. This
derivation to �nd the strengths of the vortices holds for a ratio of the gap length to width L=W > 1:5,
so for a gap that is at least 1.5 times as long than it is wide [4].

The strength of a point vortex equals its circulation. From now on the strength of a single vortex
will be called 
. The strength of the vortices can be written as follows:


(t) = �

8
<

:

1
4U

2
0

�
t� sin( 4�t

T )
4�=T

�
for 0 < t < T=2

1
8U

2
0T for T=2 < t

: (2.4)

This derivation can be found in appendix A.
A damping term was included to simulate the slowing down of the dipole due to decreasing dipole

strength as a result of bottom friction. A linear damping term is used for this analytical approach
and for the dipole simulations as well. So the decrease in velocity is linearly related to the velocity:

@v
@t

= ��v: (2.5)

With � the damping coe�cient in [s-1]. This di�erential equation has the following solution:

v = v0 � e��t; (2.6)

hence, a linear damping term results in an exponential decay of the dipole strength and thus velocity.


 = �

8
<

:

1
4U

2
0

�
t� sin( 4�t

T )
4�=T

�
� e��t for 0 < t < T=2

1
8U

2
0T � e��t for T=2 < t

: (2.7)

This is shown for thee values of bottom friction in �gure 2.
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Figure 2: 
=
0 as a function of time with 
0 = 1
8U

2
0T . At t=t0 = 0 the dipole starts to grow due to the

boundary layers detaching and rolling up into vortices. At t=t0 = 1=2 (indicated with the thin vertical
line) the tidal 
ow turns into a sink 
ow, pulling the vortices back, and the vorticity stops growing.
The vorticity as a funtion of time is shown for the cases that the bottom friction is �T = 0 (red), 1=2,
(blue) and 1 (black).

With this (equations 2.1 and 2.7) the velocity of the dipole in the x-direction can be given for the
�rst tidal period:

Vdip =

8
<

:

U2
0

8�a

�
t� sin( 4�t

T )
4�=T

�
� e��t for 0 < t < T=2

U2
0T

16�a � e
��t for T=2 < t

: (2.8)

During the second half of the tidal period, the 
ow is reversed (the second half of the sine wave
from (equation 2.3); the dipole is slowed down or even drawn back towards the gap. The 
ow in the
estuary can now be described as a potential sink 
ow[6]. The sink 
ow can be described by assuming
a point sink or a line sink. The point sink 
ow was used by Wells and van Heijst [6], here the line
sink 
ow will be used since it is thought to be more realistic because this takes the size of the channel
into account.

To �nd the velocity �eld due to a line sink, a series of point sinks is placed on a line and integrated.
This is done with the stream function of a point sink 
ow �, which can then be di�erentiated to �nd
the x- and y-components of the velocity �eld:

(u; v) =
�
@�
@x
;
@�
@y

�
: (2.9)

The stream potential for a point sink is:

�(x; y) =
Q
2�

ln
h
(x� xsink)2 + (y � ysink)2

i
: (2.10)
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with Q the strength of the sink in [m2/s](or source, depending on the sign of Q, for Q > 0 a source
and for Q < 0 a sink) and (xsink; ysink) the location of the sink.. Integrating this expression from
(0,-W=2) to (0,W=2) gives the velocity �eld due to a line sink of size W :

�
u
v

�
=

Q
4�

�
2 � atan

�y+
x
�
� 2 � atan

�y�
x
�

ln
�
x2 + y2

+
�
� ln

�
x2 + y2

�
�
�

(2.11)

with y� = y � W=2. Note that this sink strength Q is in [m/s] instead of [m2/s] because it is the
strength of a line sink and not of a point; it can be interpreted as the point sink density on a line,
the amount of point sinks per unit length. The derivation can be seen in appendix B. This equation
is non-dimensionalized:

�
u�

v�

�
=

Q
4�

 
T
x0
T
y0

!0

@
2 � atan

h
y0y�+1=2
x0x�

i
� 2 � atan

h
y0y��1=2
x0x�

i

ln
h
(x0x�)2 + (y0y� + 1=2)2

i
� ln

h
(x0x�)2 + (y0y� � 1=2)2

i

1

A ; (2.12)

with x� = x=x0, y� = y=y0 and t� = t=t0. Time is made dimensionless with the tidal period: t0 = T , the
y-coordinate with the gap width: y0 = a and the x-coordinate with the distance the dipole moves in
one tidal period with its maximum strength:

x0 =
Z T

0



2�a

dt =

T
2�a

=
U2

0T
8 T
2�a

: (2.13)

The streamlines and the velocity �eld due to a line sink are shown in �gure 3

0 0.2 0.4 0.6 0.8

x

-1

-0.5

0

0.5

1

y

Figure 3: Streamlines and the velocity �eld of the line sink. The line sink has has a length of 1 (from
�1=2 to 1=2).

The velocity on the line y = 0 is the component that ’pulls back’ the dipole towards the gap. This
is an assumption that is also made by Wells and van Heijst [6]. This velocity is

�
u (x; y = 0)
v (x; y = 0)

�
=

Q
4�

0

@
2 � atan

�
W=2
x

�
� 2 � atan

�
�W=2
x

�

ln
�
x2 + (W=2)2

�
� ln

�
x2 + (�W=2)2

�

1

A =
Q
4�

 
4 � atan

�
W=2
x

�

0

!

: (2.14)

For x goes to zero this expression simpli�es to
�
u (x! 0; y = 0)
v (x! 0; y = 0)

�
=

Q
4�

0

@4 lim
x!0

atan
�
W=2

x

�

0

1

A =
Q
4�

�
4 � ��

2
0

�
=
�
Q=2

0

�
; (2.15)
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With these expressions (eqn. (2.8) and eqn. (2.14)), the velocity of the dipole during the �rst tidal
period can be described as

dxdip
dt

=

8
><

>:

U2
0

8�a

�
t� sin( 4�t

T )
4�=T

�
for 0 < t < T=2

U2
0T

16�a + Q
� atan

�
W=2
xdip

�
for T=2 < t < T

; (2.16)

with xdip the position of the dipole (the x-coordinate of both vortices constituting the dipole) and
Q < 0. Here the second row is only true for T=2 < t < T because at t = T a new dipole enters the
domain. Since the line sink 
ow has a �nite 
ow velocity in (x; y) = (0; 0) (see eqn. (2.15)), Q can be
linked to U (t):

Q
2

= U0sin
�

2�t
T

�
: (2.17)

Note the plus sign because the sine itself is negative for T=2 < t < T .
This gives the dimensionless equation:

@x�dip
@t�

=

8
><

>:

2
�
t� � sin(4�t�)

4�

�
for 0 < t < T=2

1 + a
U0T � 32 � sin(2�t�)atan

��
a

U0T

�2 8�
x�
dip

�
for T=2 < t < T

(2.18)

It is assumed here that the dipole size is equal to the channel width: a = W .
A dimensionless number that can describe the behaviour of the dipoles is the Strouhal number.

Depending on the Strouhal number

St =
W
U0T

(2.19)

the dipole will continue to move on, remain in place or move back towards the gap during T=2 < t < T .
The critical Strouhal number is that for which the dipole only just escapes, so that at t = T its x-
coordinate is positive and its velocity @xdip

@t � 0, which can be determined numerically by solving eqn.
(2.18). This has been done with MATLAB. Several trajectories of a dipole entering an estuary are
depicted in �gure 4. The y-coordinates of the vortices do not change during the �rst period, so the
x-coordinate su�ces to depict the trajectory of the dipole. The equation for the x-coordinate of the
dipole is eqn. (2.18), the answer(s) of which are depicted in this �gure. The answers are calculated
for di�erent values of the Strouhal number. The Strouhal number only �gures in the second part of
the equation, so until t� = 1=2 all answers are the same. After t� = 1=2 the in
uence of the Strouhal
number on the trajectory can be observed. The trajectories for 8 di�erent Strouhal numbers are
shown in �gure 4. The trajctory with the steepest decline belongs to the highest Strouhal number.
For a decrease in the Strouhal number the steepness of the decline lessens and can even become an
incline for a Strouhal number that is low enough. When the x-coordinate of the dipole decreases the
dipole moves back towards the gap and when the x-coordinate becomes negative the dipole has been
sucked through the gap. In the case that the x-coordinate of the dipole remains positive during the
�rst period and its velocity at t� = 1 is equal to or larger than zero the dipole is not sucked back but
remains in the estuary. The Strouhal number for which the dipole only just remains in the estuary is
the critical Strouhal number.
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Figure 4: The dipole trajcetories for di�erent Strouhal numbers. It can be seen that the critical
Strouhal number lies between 0.08749 and 0.08750. The trajectories for both of these Strouhall numbers
are included; the one for 0.08749 only just escapes while that of 0.08750 does not. They are nearly
on top of each other, so it may be di�cult to distinguish them.

According to these calculations the critical Strouhal number lies between 0.08749 and 0.08750
(purple and green line respectively in �gure 6), which is lower than the critical Strouhal number
found by Wells and van Heijst [6]; between 0.1296 and 0.1297. The di�erence between the critical
Strouhal number found by Wells and van Heijst and the result found here can be attributed to the
di�erence in the sink 
ow. Wells and van Heijst used a point sink whereas a line sink is used here.
Both go to zero for x ! 1, but a point sink behaves as 1=x and the line sink as atan (1=x). So the
line sink has a �nite velocity at x = 0 where a point sink’s velocity is in�nitely large here. Both are
shown in �gure 5.
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Figure 5: The di�erence in experienced velocity on the x-axis between the point sink and line sink.
The line sink (blue line) is represented by 2U0

� atan (a=2x) (eqn. (3)) and the point sink (red line) is
represented by U0a

4�x (from [6]). Both a and U0 are set to 1.

Wells and Heijst’s results show that a higher Strouhal number is needed for an escape, this means
a slower dipole (compared to the velocity in the channel). An acceptable explanation is that the point
sink 
ow is weaker in the largest part of the domain (as indicated in �gure 5).

The critical Strouhal number decreases for increasing bottom damping. The dimensionless equa-
tion for the motion of the dipole with bottom damping included is:

@x�dip
@t�

=

8
><

>:

2
�
t� � sin(4�t�)

4�

�
� e(��Tt�) for 0 < t� < 1=2

1 � e(��Tt�) + 32W
U0T � sin(2�t�)atan

��
W
U0T

�2 8�
x�
dip

�
for 1=2 < t� < 1

; (2.20)

With this damping included the script is run again and the critical Strouhal number with damping is
found.

9



0 0.2 0.4 0.6 0.8 1

t*

0

0.05

0.1

0.15

0.2

0.25
x*

Dipole trajectories for 6T=1

Str  = 0.059
Str  = 0.060
Str  = 0.061
Str  = 0.06182
Str  = 0.06183
Str  = 0.063
Str  = 0.063
Str  = 0.064

Figure 6: The dipole trajectories for di�erent Strouhal numbers with damping �T = 1. The critical
Strouhal number is between 0.06182 and 0.06183. The trajectories for both of these Strouhall numbers
are included; the one for 0.06182 only just escapes while that of 0.06183 doesn’t. They are nearly on
top of each other, so it may be di�cult to distinguish them. The other trajctories are added to show
that the dipole escapes for a lower Strouhal number and is sucked back for a higher one.

By �nding the critical Strouhal number for di�erent strenghts of bottom friction, the relation
between the critical Strouhal number and the damping can be plotted. This can be seen in �gure 7
(the code can be found in appendix D).
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Figure 7: The relation between the critical Strouhal number and bottom friction. For increasingly
strong bottom friction the critical Strouhal number decreases.

It can be seen that for increasingly strong bottom damping the critical Strouhal number decreases.
Hence, for stronger bottom damping the dipole needs to be smaller (and thus faster) to escape (eqn.
(2.19)). The critical Strouhal number has also been calculated with the dipole simulation (which will
be described in the following section). The result of this is shown in �gure 35.

Note that in these calculations the assumption was made that the dipole experiences the line-sink

ow on y = 0, but this does not agree with the assumption of point vortices; the two point vortices
building up the dipole lie above and below the x-axis, so they both experience the y-component of
the line-sink 
ow (which is zero on the x-axis). This component points towards the x-axis, so while
the dipole is exposed to the line-sink 
ow the distance a between the vortices decreases, leading to
an increase in the vortex velocity 
=2�a. This increase can overcome the line-sink 
ow which results
in the dipole going in the positive x-direction again while the line-sink 
ow is still active. The same
simulation is done, now with the strength of the sink 
ow in the x-direction taken at y = �1=2. The
y-component of the sink 
ow at y = �1=2 is set to 0 to avoid the compression of the vortices. This
will be discussed further in section 6.1. The result of this simulation is shown in �gure 8.
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Figure 8: The relation between �T and the critical Strouhal number. The blue line is that where the
sink
ow at y= 0 is used. The red line is that for which the sink 
ow strength at y= 1=2 is used.

The critical Strouhal number is higher in this case, which is to be expected because the strength of
the sink 
ow is lower. At �T = 0 the critical Strouhal number lies between 0.1082 and 0.1083, which
is still lower than what Wells and Van Heijst found. For increasing strength of bottom damping both
lines approach each other; the distance the dipole travels is so small that the di�erence in sink 
ow
strength is not as relevant as for weaker bottom damping.
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3 Potential dipolar vortex model

A potential dipolar vortex model was made to simulate the 
ow in the estuary due to the dipoles
and sink 
ow that are generated by the tidal motion through the gap. A fourth order Runge-Kutta
method is used to solve the di�erential equations describing the motion of the vortices.

The stream function of the potential 
ow due to a single point vortex in (0; 0) is:

 = �


2�

ln
�
x2 + y2� : (3.1)

The potential velocity �eld induced by this vortex can be calculated via:

�
vx
vy

�
=

 
@ 
@y
�@ 
@x :

!

(3.2)

with 
 the strength of the vortex in [m2 � s�1], vx the 
ow speed in the x-direction in [m�s�1] and vy
the 
ow speed in the y-direction, also in [m�s�1]. This becomes:

�
vx
vy

�
=

0

@
� 


2�
p
x2+y2

dyp
x2+y2



2�
p
x2+y2

dxp
x2+y2

1

A ; (3.3)

So the velocity of a vortex k due to a vortex i is:

�
vk; x
vk; y

�
=

0

@
� 


2�
p
dx2+dy2

dyp
dx2+dy2



2�
p
dx2+dy2

dxp
dx2+dy2

1

A ; (3.4)

with vx; vy; dx and dy as indicated in �gure 9.
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Figure 9: A schematic showing the x-and y-components of the velocity of a vortex k induced by
another vortex i

By expanding this to a cloud of N vortices, the x-and y-velocity components for a vortex k can
be written as a summation:

�
vk;x
vk;y

�
=

1
2�

0

BBB@

NP

i=1;i 6=k

�
i(yi�yk)
((xi�xk)2+(yi�yk)2)

NP

i=1;i 6=k


i(xi�xk)
((xi�xk)2+(yi�yk)2)

1

CCCA
: (3.5)

These are the di�erential equations that need to be solved to calculate the position of every vortex.
There are two equations for every vortex (x-and y-direction). This is done with a fourth order Runge-
Kutta (RK4) method. RK4 works for equations of the following form:

@x
@t

= f (x; y; t) ; x(tinitial) = xinitial (3.6a)

@y
@t

= g (x; y; t) ; y(tinitial) = yinitial: (3.6b)

Eqn. (3.5) is of this form and can hence be solved with this method. The boundary conditions are
known and they depend on the initial con�guration. The solution is found via iteration:

xt+dt = xdt +
dt
6

(kn;1 + 2kn;2 + 2kn;3 + kn;4) (3.7a)

yt+dt = ydt +
dt
6

(ln;1 + 2ln;2 + 2ln;3 + ln;4) ; (3.7b)
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with dt the time step and:

kn;1 = f(xt; yt; t) (3.8a)
ln;1 = g(xt; yt; t) (3.8b)

kn;2 = f(xt +
dt
2
kn;1; yt +

dt
2
ln;1; t+

dt
2

) (3.8c)

ln;2 = g(xt +
dt
2
kn;1; yt +

dt
2
ln;1; t+

dt
2

) (3.8d)

kn;3 = f(xt +
dt
2
kn;2; yt +

dt
2
ln;2; t+

dt
2

) (3.8e)

ln;3 = g(xt +
dt
2
kn;2; yt +

dt
2
ln;2; t+

dt
2

) (3.8f)

kn;4 = f(xt + dt � kn;3; yt + dt � ln;3; t+ dt) (3.8g)
ln;4 = f(xt + dt � kn;3; yt + dt � ln;3; t+ dt): (3.8h)

With these equations the position of every individual vortex can be determined in every subsequent
time step, and so the paths of the vortices can be calculated because the velocity �eld is known. The
size of the time step is chosen by calculating the Hamiltonian for di�erent time step sizes (appendix
E)

The equations of motion can be non-dimensionalized. This is done with x� = x=x0, y� = y=y0

and t = t=t0. x0, y0 and t0 are di�erent depending on the case that is being studied (the non-
dimensionalization has been doen slightly di�erent for the dipole cloud (section 6) and leapfrogging
dipoles (sections 4.1, 4.2, 5.1 and 5.2)). The non-dimensionalized equations of motion are:

dx�

dt�
=

1
2�

NX

i=1;i 6=k

�
t0
x0


iy0 (y�i � y
�
k)�

x2
0
�
x�i � x

�
k
�2 + y2

0
�
y�i � y

�
k
�2
� (3.9a)

dy�

dt�
=

1
2�

NX

i=1;i 6=k

t0
y0


ix0 (x�i � x
�
k)�

x2
0
�
x�i � x

�
k
�2 + y2

0
�
y�i � y

�
k
�2
� : (3.9b)

These, together with the Runge-Kutta equations (3.8), form the core of the potential vortex model.
Matlab is chosen as a the program to solve these equations but they could also have been solved in
for example C or Python. The Matlab �le can be found in appendix F.
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4 Vertically spaced dipoles

Two potential dipoles with a common axis1 in a domain in
uence each other; one can slow down
or speed up the other. When the two dipoles are close enough to each other, their interaction can
be more pronounced; they can slip through each other, changing position (leading vs. pursuing).
When this keeps on happening it is called leapfrogging. This depends on the relative velocity (which
depends on the vorticity and width of the dipole) of the pursuing dipole and on the distance between
the two. The pursuing dipole does not necessarily need to have a higher velocity, as the leading dipole
pushes both vortices of the pursuing dipole together, increasing its velocity. In turn, the pursuing
dipole slows the leading dipole down because it increases the distance between the vortices it consists
of (�gure 10b and 10c). When the pursuing dipole gets close enough to the leading dipole, it slips
through (between �gures 10c and 10d) and becomes the leading dipole (�gure 10f). The same thing
can now happen again, leading to the leapfrogging behaviour. The leapfrogging motion is visualized
through several snapshots in the panel below.
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Figure 10: Six snapshots of one slip-through. Two dipoles (blue and pink) of equal strength and
size start on the same axis. The pursuing dipole (blue) slips-through the leading dipole (pink) between
snapshot (c) and (d). In snapshot (f) the dipole have switched positions in regard to snapshot (a).

To investigate the interactive behaviour of a large amount of dipoles with a common axis it is wise
to start with investigating the behaviour of two dipoles and than expand the investigation. Because
the interaction between the dipoles is key to the resulting 
ow structure in the estuary, so if and when
dipoles leapfrog is looked into �rst. In any case, in every situation here the dipoles are coaxial. This
is done because the dipoles entering the estuary are coaxial as well and will remain coaxial due to the
symmetry of the situation.

1A dipole has two (symmetry) axes: one in the direction of motion and one tangential to it. For a dipole with its
vortices at x = 0; y = �1=2 this are the x-and y-axis. The common axis that is referred to here is the one in the direction
of motion.
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4.1 Two vertically spaced coaxial dipoles

Two dipoles of equal strength and size with a common axis do not always start leapfrogging. One can
escape the pull of the other if it is fast enough. In an article by Love [3] the interaction between two
dipolar vortices is investigated analytically. He investigates whether dipoles will or will not exhibit
leapfrogging behaviour depending on their initial position. Love’s initial vortex con�guration (�gure
11) is a vertical one (see �gure 21), which is di�erent from the way the dipoles enter the estuary;
the dipoles all start from the y-axis, so their initial x-coordinates are equal. He derives a limit for a
ratio of the width of the smaller (�) to the larger (�, so � < �) dipole for which leapfrogging does or
doesn’t occur:

� =
�
�

= 3� 2
p

2 = 0:1716; (4.1)

or �
� = 3 + 2

p
2 = 5:8284. In the case that � > 3 � 2

p
2 the dipoles start leapfrogging. In the case

that � < 3� 2
p

2 they do not. Both will move away from their initial positions but the outer dipole
will not catch up to inner dipole other; the inner dipole moves away faster than it speeds up the outer
dipole by compressing it.

x 

y 

�Œ 
�• 

�P�4 
L
�é�6

�Û
 

�T�4 
L �é 
�U�4 
L �é 

Figure 11: The initial con�guration of Love’s problem. � and � are the dipole’s breadth’s, with �
the size of the inner dipole and � the size of the outer dipole; � > �.

.

Both the x-and y-direction are non-dimensionalized with the initial width of the dipoles �. Time
is made dimensionless with the initial width of the smallest dipole the and strength of the vortices:
t0 = �2=
.

The paths of the dipoles for four di�erent ratios of � are shown in �gure 12. It is clear that for
� < 3� 2

p
2 (�gure 12a and 12b) the dipoles do not leapfrog, while they do for � > 3� 2

p
2 (�gure

12c and 12d).
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(a) (b)

(c) (d)

Figure 12: The paths of the vortices starting as indicated in 11. (a) � = 1=8 < 3 � 2
p

2. (b):
� = 1=6 < 3�2

p
2. (c): � = 1=3 > 3�2

p
2. (d): � = 1=2 > 3�2

p
2. So in (a) and (b) the dipoles do

not leapfrog
�
� < 3� 2

p
2
�

and in (c) and (d) they do
�
� > 3� 2

p
2
�
. All four of these simulations

have 1:5 � 105 time steps of 10��3.

The amplitude of the leapfrogging motion remains constant (see �gure 12c and 12d) and it equals
the di�erence in initial size divided by two: (� � �) =2. This means that the maximum amplitude of
the leapfrogging motion is:

� = �
�

3 + 2
p

2
�
)

� � �
2

=
�
3 + 2

p
2
�
�� �

2
=
�

1 +
p

2
�
� � 2:414�: (4.2)

In the case that � = 3� 2
p

2 the largest dipole follows the smaller dipole, getting closer but not
really catching up; it will eventually catchup after an in�nite amount of time. An indication of this
is given in �gure 13, where 5 � 106 simulation steps of 1 � 10�3 were taken and the pursuing dipole is
getting closer but still hasn’t caught up.
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Figure 13: A simulation with � = 3� 2
p

2, so the ratio of widths is exactly the limit given by Love.
The paths of the dipoles are shown. The outer dipole approaches the inner dipole but does not catch
up yet. 5 � 106 simulation steps of 1 � 10�3 were taken.

The outer dipole does not catch up with inner dipole, but it keeps getting closer. As a comparison,
the same simulation has been done with � = 1 and � =

�
1:05 � (3 + 2

p
2
�

and
�
0:95 � (3 + 2

p
2
�

respectively, so for � just above and just below the critical ratio. For � =
�
1:05 � (3 + 2

p
2
�

the
dipoles will not leapfrog, while for � =

�
0:95 � (3 + 2

p
2
�

they will. The di�erence is clear in as �gure
14a the distance between the dipoles is much larger than in �gure 13 and in �gure 14b the dipoles
have their �rst slip-through already at x� � 25.
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(a) (b)

Figure 14: The same simulation as in �gure 13, but with a slightly larger (5%) outer dipole (top)
and a slightly (5%) smaller outer dipole (bottom). (a): the paths of the dipoles starting with � = 1 and
� =

�
1:05 � (3 + 2

p
2
�
, so � is just below the critical ratio, which means there will be no leapfrogging.

And indeed the outer dipole does not approach the inner dipole as much as in �gure 13. (b): the
paths of the dipoles starting with � = 1 and � =

�
0:95 � (3 + 2

p
2
�
, so � is just above the critical ratio,

which means there will be leapfrogging. This is indeed the case. 5 � 106 simulation steps of 1 � 10�3

were taken.

In �gure 12c and 12d it can be seen that the vortices make a loop at their maximum amplitude
(at ��=2). This loop increases in size for an increasing �. They do not always make a loop: for a low
� there is no loop (�gure 14b). The path of the vortex on the inside (at ��) also change: for a low �
there is a bend in the path; the second derivative changes sign between a maximum and a minimum.
For higher � the second derivative does not change sign between a maximum and a minimum (always
positive for the vortices above the x-axis and negative for those below).

Love’s critical value is also reproduced with the code, as is shown in �gure 15. Instead of measuring
the time it takes for the dipoles to catch up, the time it takes until both dipole have the same breadth
is measured, as two dipoles with the same size on the same axis will always catch up (Appendix C
and explanation at the end of this section). This is simply faster than simulating and measuring until
they actually do catch up.
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Figure 15: A graph of the time it takes for the larger dipole to get a smaller breadth than the inner
dipole against the ratio of their initial breadths. As the ratio of their initial breadths approaches the
critical value found by Love (3� 2

p
2, the dotted line), the time it takes to catch up increases. Time

steps of 1 � 10�3 were used, with a maximum of 1 � 105 timesteps.

In the graph it is clear that when approaching the critical ratio of breadths, the time to catch
up increases very quickly. From the �gure it is not directly clear that the dotted line is indeed the
asymptote of the graph. More and longer simulations are necessary to show that the dotted line is
the correct asymptote. The blue line descends in a step-like manner because the

From the derivation of Love’s limit for leapfrogging a similar statement can be derived that applies
to horizontally spaced dipoles. Following the same calculations Love did, it can be proven that two
dipoles of the same size (the same breadth), placed behind each other will leapfrog, independent of
the horizontal distance between them. This is shown in Appendix C. This to be expected, because
the pursuing dipole will always be compressed by the leading dipole. So directly after they have
started moving, the pursuing dipole is already of smaller breadth than the leading one and thus
faster, making leapfrogging inevitable. So as long as dipoles are not sucked back by the sink 
ow they
start leapfrogging.

4.2 Three vertically spaced coaxial dipoles

Because Love found a limit for which two vertically spaced coaxial dipoles will or won’t start leapfrog-
ging, the applicability of this limit on three vertically spaced coaxial dipoles was investigated. So
which dipoles leapfrog under which circumstances is investigated. The initial setup is shown in �gure
16. This setup is the same as the one used for two dipoles (�gure 11), but with one dipole added.
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Figure 16: The initial position of the dipoles for Love’s con�guration with three dipoles. It is exactly
the same as the original (�gure 11), only with a third dipole added. The small and middle sized dipole
are of the sizes � and � respectively, the largest dipole has size � .

The dipoles have the sizes �; � and � from smallest to largest; � > � > �.
To �nd criteria for the leapfrogging of the dipoles the same derivation was followed as that for two

dipoles. The x-and y-velocity of the �rst vortex can be written as (using eqn. (3.5)):

dx�1
dt�

=


�

"
1

2y�1
+

y�1 + y�2
(x�1 � x�2)2 + (y�1 + y�2)2 �

y�1 � y�2
(x�1 � x�2)2 + (y�1 � y�2)2

+
y�1 + y�3

(x�1 � x�3)2 + (y�1 + y�3)2 �
y�1 � y�3

(x�1 � x�3)2 + (y�1 � y�3)2

# (4.3a)

dy�1
dt�

=


�

"

�
x�1 � x�2

(x�1 � x�2)2 + (y�1 + y�2)2 +
x�1 � x�2

(x�1 � x�2)2 + (y�1 � y�2)2

�
x�1 � x�3

(x�1 � x�3)2 + (y�1 + y�2)2 +
x�1 � x�3

(x�1 � x�3)2 + (y�1 � y�2)2

#; (4.3b)

which can be also be found for the vortices 2-6. The vortices and their coordinates are shown in �gure
17.
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Figure 17: Three dipoles with their coordinates and the vortex numbers.

The equations describing vx and vy for the other �ve vortices can be found by interchanging the
vortex numbers, resulting in six equations2. The case with two dipoles gives four di�erential equations
(eqn. (C.1)), while the case with three dipoles gives six. These can be combined and written as:

dx�1
@�
@y�

1

=
dy�1
� @�
@x�

2

=
dx�2
@�
@y�

2

=
dy�2
� @�
@x�

2

=
dx�3
@�
@y�

3

=
dy�3
� @�
@x�

3

= dt�; (4.4)

with x�1; x�2; x�3; y�1; y�2 and y�3 the non-dimensionalized x-and y-coordinates of the top vortices of the
three dipoles and � being:

� =


2�

ln

 

y�1y
�
2y
�
3

(x�1 � x�2)2 + (y�1 + y�2)2

(x�1 � x�2)2 + (y�1 � y�2)2 �
(x�1 � x�3)2 + (y�1 + y�3)2

(x�1 � x�3)2 + (y�1 � y�3)2 �
(x�2 � x�3)2 + (y�2 + y�3)2

(x�2 � x�3)2 + (y�2 � y�3)2

!

;

(4.5)
which satis�es the di�erential equations in (4.4). � is not the Hamiltonian (see eqn. (E.1) and the
comparison between eqn. (C.2) and (C.3)), but it can be interpretted as representing the constancy
of the energy of the 
uid motion in the same half-plane[3]. Furthermore, the sum of the y-coordinates
also remains constant (like eqn. (C.4) for two dipoles). A derivation of this is not shown but made
acceptable by recording and plotting the sum of the y-coordinates. This is shown in �gure 18. The
dipole paths for the initial situation � = 1=4, �=� = � = 2=3 is shown along with the sum of the three
y-coordinates over time. The former is discussed further on in this section. The latter is and remains
constant. Taking this into account, it is considered proven that:

y1 + y2 + y3 = constant (4.6)
2Six equations for the three top vortices. The six equations for the three bottom vortices can be found by adapting

the two equation for the corresponding top vortex: vx;k;top = vx;k;bottom, vy;k;top = �vy;k;bottom
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Figure 18: Top: the paths of the three dipoles for the case �=� = � = 1=4, �=� = � = 2=3. Bottom: the
sum of the y-coordinates of the three top vortices.

Where the case with two dipoles has four di�erential equations describing the motion of the vortices
(C.1, one for x0; y0; x1 and y1 each), the case with three dipoles has six di�erential equations (eqn.
(4.4)) describing the vortices’ motion. In the case of two dipoles one ratio is derived that describes
the behaviour of the dipoles (leapfrogging or not). It is therefore expected that there are two limits
that can be derived from the six di�erential equations characterizing the motion of the three dipoles.

The limit that applies to two dipoles is now applied to three dipoles. Similar to the case with two
dipoles; if both � > 3� 2

p
2 and � > 3� 2

p
2, the dipoles start leapfrogging. Also, for � < 3� 2

p
2

and � < 3�2
p

2, the dipoles do not leapfrog with each other. Figures for these four possible scenario’s
are shown in �gure 19.
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(a) (b)

(c) (d)

Figure 19: Four possible scenario’s for Love’s problem with three dipoles. (a): � = 1=4 > 3� 2
p

2,
� = 2=3 > 3�2

p
2. (b) � = 1=4 > 3�2

p
2, � = 1=6 < 3�2

p
2. (c) � = 1=7 < 3�2

p
2, � = 7=9 > 3�2

p
2.

(d): � = 1=6 < 3� 2
p

2, � = 1=6 < 3� 2
p

2.

In the �rst scenario (�gure 19a), both � = 1=4 > 3� 2
p

2 and � = 2=3 > 3� 2
p

2, meaning that the
smallest dipole (blue) will leapfrog with the middle dipole (magenta) and that the middle dipole will
leapfrog with the largest dipole (green). This is also visible in the �gure; all three dipoles leapfrog
with each other.

In the second scenario (�gure 19b) � = 1=4 > 3 � 2
p

2 and � = 1=6 < 3 � 2
p

2. So the smallest
dipole will leapfrog with the middle dipole and the middle dipole will not leapfrog with the largest
dipole. This is also visible in the �gure; only the smallest dipole leapfrogs with the middle dipole and
together they leapfrog away from the largest dipole.

In the third scenario (�gure 19c) � = 1=7 < 3 � 2
p

2 and � = 7=9 > 3 � 2
p

2. So the middle and
largest dipole leapfrog with each other whilst the smallest dipole should not leapfrog with the others.
This is not the case, as the smallest dipole does leapfrog with the other dipoles.

The fourth scenario (�gure 19d) is not as interesting as the previous ones: both � = 1=6 < 3�2
p

2
and � = 1=6 < 3� 2

p
2. So the dipoles do not leapfrog. This is also evident from the �gure.

All scenario’s except the third one are expected. The third one however shows di�erent behaviour;
even though the outer dipoles should not leapfrog with the inner dipole (at least, according to Love’s
theory for two dipoles, which was discussed in section 4.1), they do. So it is indeed likely that there
is another statement the outer pair has to satisfy for which the outer pair does not leapfrog with the
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inner dipole.
The second statement was not found due to the complexity of the equations. To show the existence

of this second statement - or rather, to make its existence plausible - two simulations are shown,
illustrating that it is possible that the two outer dipoles will not leapfrog with the inner dipole, and
that they can. In both of these cases � < 3 � 2

p
2 and even more so the ratio �=� < 3 � 2

p
2. The

simulation results are shown in �gure 20. In the bottom simulation the expected behaviour is shown;
the two outer dipoles form an oscillating pair and the inner dipole moves away from this pair without
leapfrogging with it. In the top simulation the outer dipoles form an oscillating pair as well, but this
pair leapfrogs with the inner dipole, which is unexpected because � < 3� 2

p
2 and �=� < 3� 2

p
2. In

the bottom simulation only the two outer dipoles leapfrog with each other.

(a) (b)

Figure 20: Two simulations where the initial setup satis�es both � < 3�2
p

2 and � > 3�2
p

2. The
di�erence between both panels is that in the left panel both outer dipoles eventually do leapfrog with
the inner dipole, where as they do not in the right pannel. (a): The paths of three vertically spaced
coaxial dipoles with � = 1=8 < 3� 2

p
2 and � = 8=10 > 3� 2

p
2. So even though � < 3� 2

p
2, the two

outer dipoles start leapfrogging with the inner dipole (similar to the bottom �gures in �gure 12). (b):
The paths of three vertically space coaxial dipoles with � = 1=50 < 3 � 2

p
2 and � = 50=60 > 3 � 2

p
2.

So both outer dipoles should not leapfrog with the inner dipole, and indeed they don’t (similar to the
top panels in �gure 12)

As the simulation for the dipole cloud contains more dipoles than three, Love’s theory can be
expanded to suit this simulation. Expanding this theory to N dipoles gives the expressions

NX

i=0

yi = constant (4.7a)

NX

i=0

ln (yi) +
NX

i=0

NX

k 6=i

ln

"
1
2

(xi � xk)2 + (yi + yk)2

(xi � xk)2 + (yi � yk)2

#

= constant; (4.7b)

with N the number of dipoles and the summation being done over the vortices in the �rst quadrant
(x > 0; y > 0). The factor 1=2 accounts for the double terms. Note that both constants are not
equal to each other. These expressions are valid for N dipoles of equal strength and without bottom
damping. They are a convenient way to check the accuracy of the simulation because they can be
adapted to a simulation with any number of dipoles.
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5 Horizontally spaced dipoles

After discussing Love’s theory on dipole interactions and that two equally sized horizontally spaced
dipoles will always start leapfrogging, the behaviour of horizontally spaced dipoles is investigated.
This con�guration resembles that of the cloud more than Love’s con�guration.

5.1 Two horizontally spaced coaxial dipoles

Two horizontally spaced dipoles are bound to start leapfrogging when they are of equal size and
strength. This was proven in appendix C by following Love’s derivation for dipole interaction. Because
of this, the focus of these simulations is on the manner in which the dipoles interact instead of whether
they start leapfrogging. The initial positions of the dipoles in this situation is shown in �gure 21.

Figure 21: The initial positions of the dipoles for the simulation used to investigate the catching up.
The initial breadth of the dipoles is a (the x- and y-direction are made dimensionles with a so the
initial breadth of the dipoles is always 1.) b is the initial horizontal distance between both dipoles. All
four vortices are of equal strength 
. The ratio a=b is called �.

The paths the vortices would take when released as shown in �gure 21, are shown in �gure 22a.
Two slip-throughs are shown; the blue dipole is pursuing initially, then leading and �nally pursuing
again. The y-coordinates and velocities of the vortices are shown in �gure 22b. As the y-coordinate
increases, the dipole slows down, so the smaller dipole always moves faster.
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(a) (b)

Figure 22: (a): paths of two dipoles starting horizontally spaced with � =0.25. To visualize the
velocity of the vortices, crosses are used instead of dots to indicate equal time intervals. The vortices
go faster on the inside (the valleys for the top vortices and the peaks for the bottom vortices) and slow
down in the other extremes: they slow down as they grow and speed up when they shrink (see �gure
22b). (b): The y-coordinates of the top vortices of the pursuing (blue) and leading (magenta) dipoles
(top) and their velocities (bottom). The velocity of the larger dipole (highest y-coordinate) is always
lowest. At the moment the pursuing dipole catches up with the leading dipole and passes it, it has the
highest velocity and the leading dipole has its lowest velocity. The timestep was 0.001.

Decreasing � decreases the amount of slip-throughs per units of time and distance, and vice versa,
because for low �, the dipoles are relatively far apart. Hence, the time it takes for the pursuing one to
catch up to the leading one is longer than when they are closer together. The paths for � = 3=4; 1; 4=3

and 3=2 are shown in �gure 23.
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(a) (b)

(c) (d)

Figure 23: The paths of the dipoles for the situations � = 3=4; 1; 4=3 and 3=2, all in the same timespan
(i.e. all four simulations had an equal amount of equal-sized timesteps). It can be seen that for a
higher �, the amount of slip-throughs per units of time and distance increases. The timestep was 0.001

In this �gure the paths of the vortices are similar to each other; only the frequency of the leapfrog-
ging is di�erent for di�erent � but the shape of the paths and the amplitude remains similar. To
show that the amplitude and the shape of the paths also changes for di�erent �, the paths are plotted
again, now for a larger range of �. To make sure the paths can still be distinguished, the amount of
time steps is not the same in the panels, the time step size is.
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(a) (b)

(c) (d)

Figure 24: The paths of the dipoles for the situations � = 1=10; 1; 5 and 10.

This �gure shows both the paths as well as the change in amplitude as well. The amplitude of
the leapfrogging motion decreases for an increasing �. The paths change from consisting out of sharp
peaks and sharp minima (top left) to sharp peaks with round minima (top right) to loops (bottom).
The amplitude of the loops decreases for an increasing �. For an in�nitely large � the dipoles would
start on top of each other, leading to a single dipole that would move in a straight line.

The frequency of the leapfrogging as a function � has been determined and put into a graph. This
has been done by counting the amount of slip-throughs and the amount of time steps they occur in,
in a simulation. One slip-through is taken to be the return of the dipoles to their initial position
relative to each other (e.g. in �gure 23, top left: 1.75 slip-throughs, bottom left: 6 slip-throughs. So
when they have the same size again). A 2nd order polynomial plot with a �xed intercept at 0 has
been made (at �=0 the distance between the dipoles is in�nite, leading to a slip-through frequency of
0, hence the �xed intercept at 0.):

f� = a � � + b � �2: (5.1)

A second order polynomial has been used because the frequency of leapfrogging in the case that
b << a, so in the case that the dipoles are very close to each other, can be determined analytically.
When the two dipoles are very close to each other, the in
uence of the bottom vortices on the top
vortices can be neglected (and vice versa). Two point vortices rotate around each other. When they
are of equal strength, they move in a circle with a radius equal to half the distance between the
vortices and the center halfway between the vortices. The frequency of this circular motion can be
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calculated by combining the velocity of the vortices with the circumference of their spherical path:

T =
circumference

velocity
=

�b

=2�b

) T � =


a2

2�2b2



= 2�2

�
b
a

�2
; (5.2)

and so the frequency of the leapfrogging motion is:

f� =
1

2�2

�a
b

�2
=

1
2�2 �

2; (5.3)

which depends on �2, hence the second order polynomial. As this is an approximation for the case
that b << a, the �rst order term is also used. However, for very large � the relation should approach
that of eqn. (5.3). The �t is shown in �gure 25.

Figure 25: The relation between � and the frequency of the slip-throughs. A second order polynomial
�t has been made (the red line) with a �xed intercept at 0.

The values for a and b are: a = 0:0206�0:0008 and b = 0:0487�0:0001. The value for b is close to
1

2�2 � 0:0507. The built-in polynomial �tting function from Origin (2015) was used. From this graph
the time until the pursuing dipole catches up to the leading dipole can be determined as a function
of �. They catch up at half an oscillation time, so at 1

2
1
f� = 1

2f� . This relation is only applicable on
dipoles with equal size, e.g. the �rst two dipoles of the dipole cloud.

5.2 Three horizontally spaced coaxial dipoles

Two dipoles near each other exhibit leapfrogging behaviour, this was shown in the previous section.
Three dipoles near each other exhibit a similar but more complicated behaviour. The system is non-
dimensionalized the same way as the simulation wit two dipoles: x0 = a, y0 = a and t0 = a2=
.
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Damping is not introduced in this system. The dimensionless parameter that governs this system is:

� =
a
b
; (5.4)

with a (in [m]) the distance between the two vortices in a dipole and b the distance between two
dipoles. The initial position of the dipoles can be seen in �gure 26.

Figure 26: A schematic of the three leapfrogging dipoles setup. The initial distance between the
dipoles is b and the distance between the two vortices in a dipole is a. The dimensionless parameter
governing the system is also shown: � = a

b

The distance between the �rst and second and between the second and third dipole is always kept
the same initially. Changing this can lead to two dipoles forming a pair and moving away from the
other dipole due to their higher velocity. This is not investigated further here. Because the x- and
y-direction are non-dimensionalized with a, the only way to change � is to change b. So there is but
one parameter the system depends on. Like with two dipoles, increasing � increases the amount of
slip-throughs between the three dipoles. The di�erence with three dipoles is that two dipoles can
form a couple, which then leapfrogs with the third dipole. The third dipole can exchange places with
one of the dipoles in the couple. An example of this is shown in �gure 27a.
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(a) (b)

Figure 27: (a): Paths of three dipoles starting horizontally spaced with �=1. To visualize the velocity
of the vortices, crosses are used instead of dots to indicate equal time intervals. The vortices go faster
on the inside (the valleys for the top vortices and the peaks for the bottom vortices) and slow down
in the other extremes: they slow down as they grow and speed up when they shrink (see �gure 27b).
(b): The y-coordinates of the top vortices of the pursuing (blue) middle (magenta) and leading (green)
dipoles (top) and their velocities (bottom). The velocity of the largest dipole (highest y-coordinate) is
always lowest.

In �gure 27a it can be seen that initially the middle (magenta) and leading (green) dipole form
a couple and that around x�=12 the blue and green dipole form a new couple: green has changed
partner. The paths for di�erent � are shown in �gure 28. In the simulation with � = 4=3 (bottom left
in �gure 28) this partner exchange can be seen multiple times; �rst magenta and green, then green
and blue, next blue and magenta etc.
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(a) (b)

(c) (d)

Figure 28: The paths of the three dipoles (pursuing: blue, middle: magenta, leading: green) for four
di�erent values of �, namely � = 3=4; 1; 4=3 and 3=2. It is clear again that for a higher � the amount of
slip-throughs increases. The time step in these simulations was 1 � 10�3.

The fact that two dipoles can form a couple is also seen in the Fourier transformation of the
y-coordinates. The couple and the third dipole have one frequency in common. The dipoles from
the couple have another frequency in common with each other. This frequency is not shared by the
third dipole. An example of this is shown in �gure 29. The main common frequency is 0.7 and the
frequencies of the couple lie between 2.1 and 2.5. There are three smaller peaks here. This is because
the couple (the blue and green dipole) do not simply circle around each other; the make a more
complex movement.
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Figure 29: Top: the paths for �=5. Bottom: the fourier transformation of the y-coordinates. The
blue and green dipole form a couple that leapfrogs with the magenta dipole. All three dipoles have a
frequency in common around 0.75. Around 2.3 blue and green also have a common frequency. This is
the frequency with which they revolve around each other, whilst revolving around the magenta dipole.

The di�erence with the simulations with two horizontally space dipoles is that with three dipoles
there is no sign of periodicity, at least not within the range that was investigated here. The three
dipoles behave chaotically. So by adding one dipole the stable behaviour of three dipoles changes to
chaotic behaviour.

Similar to the frequency for the leapfrogging of two dipoles (eqn. (5.3)), the same can be done
for three dipoles. When b << a the in
uence of the bottom three vortices on the top three vortices
can be neglected (and vice versa) and an analytical expression for the leapfrogging frequency can be
found. The center vortex will move in a straight line while the other two circle around it with a
frequency f�. This frequency is:

T =
circumference

velocity
=

2�b



2�2b + 

2�b

=
8�2b2

3

) T � =



a2

8�2b2

3

) f� =

3
8�2

�a
b

�2
=

3
8�2 �

2: (5.5)

This frequency can also be found. Two examples are given to indicate that for three leapfrogging
dipoles in the case that b << a the main frequency of their interaction lies around 3

8�2 �2. The
examples are show in �gure 30 and 30. In these �gures it can also be seen that two top (or bottom)
vortices circle the third one. This third one is not always the one that starts in the middle. The three
vortices take turn in being the center vortex. This is the result of the in
uence of the other three
vortices.

37



Figure 30: Top: The y-coordinates of the top three vortices and the Fourier transformation of the
y-coordinates for the case � = 900. The time step in this simulation was 1 � 10�7.

Figure 31: Top: The y-coordinates of the top three vortices and the Fourier transformation of the
y-coordinates for the case � = 500. The time step in this simulation was 1 � 10�6.

Because the dipoles are start so close together, the time step has to be smaller than that in the
other simulations. For the case � = 900 the expected dominant frequency is 3

8�2 � 9002 � 3:08 � 104

which is close to the dominant frequency in �gure 30. For the case � = 500 the expected dominant
frequency is 3

8�2 � 5002 � 9:50 � 103 which is close to the dominant frequency in �gure 31.
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5.3 Velocity of a dipolar vortex pair

A pair of dipoles moves at a di�erent speed than a single dipole. Even though both dipoles speed up
ans slow down during the leapfrogging, their average speed is greater than that of a single dipole. To
visualize this, two dipoles have been placed next to each other, like in �gure 21 and their x-coordinates
are recorded. From these x-coordinates the average velocity of the dipole pair can be determined. It
is evident from �gure 32 that the closer together the dipoles start, the higher their average velocity.

Figure 32: the x-coordinates of the two top vortices of both dipoles (vortex i = 1 and 3) plotted
against time. The bottom black line is that of the x-coordinate of a single dipole, the top black line is
that of a single dipole with double the strength the others have.

The average velocity of two leapfrogging dipoles is shown in �gure 33. Th relation between � and
vaverage goes to 1=� for � ! 1 and it is 1=2� for � = 0. This is so because with � ! 1 the dipoles
are on top of each other (b = 0) so their average velocity should be that of a single dipole with twice
the vorticity of one dipole: 1=�. Also, for � = 0 the dipoles are so far away from each other that their
in
uence on each other is negligible. Hence, their velocity should be that of a single dipole, which is
1=2�. In �gure 32 it can be seen that for � = 2 the velocity of the dipole pair is already very close to
that of a single dipole with double the strength. This can also be seen in �gure 33.
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Figure 33: The average velocity of two leapfrogging dipoles. For � ! 1; vaverage ! 1
� and � = 0 !

vaverage = 1
2� .

This higher velocity does not increase the critical Strouhal number, even though the dipole pair
has a higher average velocity making escape easier. This is a paradox. The critical Strouhal number
cannot be higher because for a dipole to escape with a higher Strouhal number there has to be a
dipole already present with which it can form a pair. And this �rst dipole cannot be there because it
would have been sucked back by the sink 
ow. It is possible though that the �rst two dipoles form a
pair and escape the third one, which will form a pair with the fourth. In the next section, the dipoles
themselves will not be the focus, what they do as a group will be.
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6 Dipole Cloud

To simulate the 
ow in an estuary due to tidal motion a model is made in which dipoles (consisting
of two point vortices) are inserted every tidal period T . The initial distance between the vortices in
a dipole is a. The distance a single dipole at maximum vorticity travels in one tidal period is taken
as x0, so

x0 =

T
2�a

: (6.1)

Length in the x-direction is made dimensionless with this. Length in the y direction is made dimen-
sionless with a, so y0 = a, and time is made dimensionless with T , so t0 = T . The parameters that
in
uence the system are a, 
 and T . This means there is one dimensionless parameter that can be
altered to get di�erent outcomes of the simulation:

� =
2�a2


T
: (6.2)

The factor 2� is in there because it then also resembles the fraction

y0

x0
=

2�a2


T
= �: (6.3)

So increasing � means that x0 is decreased, either due to a lower vorticity 
 or a lower tidal period
T , or it means that y0 is increased, which means that the initial dipole velocity is lower. In short, an
increase in � means there is more leapfrogging between the dipoles.

The vorticity of the dipolar vortices is �
. In the �rst half period it increases until it reaches its
maximum, just like the red line in �gure 2. Because of this, the dipole does not reach x� = 1=2 in half
a tidal period. The constant � is linked to the tidal 
ow via the vorticity of the dipoles (eqn. (2.2)).
In the case that the tidal 
ow is taken as a sine wave, the vorticity grows to 
sine = 1

8U
2
0T at t = T=2.

In the case that the tidal 
ow is a simple square wave it grows to 
square = 1
4U

2
0T at t = T=2, which

is twice as much as 
sine. The sine wave is used in all cloud calculations. And because 
 is taken as
a constant, the maximum tidal 
ow strength is:

U0 =
r

8

T
; (6.4)

leading to a sink 
ow strength of (via eqn. (2.17))

Q = 2
r

8

T
: (6.5)


 and T are kept constant, so a is the only variable that is varied to change �. � can be linked to the
Strouhal number:

� =
2�a2


T
=

16�a2

U2
0T 2 = 16�Str2: (6.6)

6.1 Damping and sink flow

Bottom friction reduces the dipoles’ strength. This has been implemented as linear damping. So
instead of a constant strength of 
 = 
0 = U2

0T=8, it reduces over time according to:


 = 
0e��t; (6.7)

where t is the time since the dipole’s insertion into the system and � is the coe�cient of linear bottom
friction in [s�1]. Adding bottom friction means there is an additional dimensionless parameter that
can be tuned to in
uence the system, namely:

� = �T: (6.8)
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Increasing � means the time between dipole insertions is increased or that the dipoles’ vorticity has
decreased more due to damping when they encounter the previous dipole. So an increase of � means
dipoles have relatively less vorticity when they come near the previously inserted dipole, leading to a
weaker interaction. Because T is kept constant, � can only be varied by changing �. So a and � are
the two parameters that are controlled to change the behaviour of the dipoles in the system.

Furthermore, the vorticity initially increases, as is also stated in eqn. (2.7). This is also imple-
mented in the code, where the vorticity increases and decreases (only for non-zero bottom friction)
as in �gure 2.

A schematic overview of this model is shown in �gure 34. The gap has always length 1 due to
non-dimensionalization with y0. When there is no bottom friction, the vortices reach their maximum
vorticity at t� = 1=2. The top vortex is of positive vorticity and the bottom vortex has equal but
negative vorticity.

Figure 34: A schematic of the dipole cloud setup. The dimensionless parameters governing the
system are shown on the right hand side.

A new dipole enters the system every tidal period, so at t = n � T; n 2 f0; 1; 2; 3; 4; :::g. In the
code, the number of dipoles that is going to be simulated is de�ned beforehand, and all are present at
x� = 0 at t� = 0, but their strength is zero until they are meant to enter the estuary. The equations
of motion are only solved for the vortices with a strength larger than 0. Furthermore, the vortices
that leave the frame (i.e. that get a negative x�-coordinate) get their strength reduced to zero; they
are switched o�.

The sink 
ow is switched on between t� = 1=2 and t� = 1, t� = 3=2 and t� = 2 and so on. The
y-component of the sink 
ow is also switched o� because it keeps on compressing the dipoles, reducing
their size and thus increasing their innate velocity (vdip � 1=a). This results not only in dipoles being
propelled away from the gap, but also in simulation errors. The y-component of the sink 
ow can
be seen as a cooperative strain 
ow [5]. According to Trieling, the distance between the two vortices
changes in time according to

a(t) = a0 � e���t; (6.9)
with a the distance between the two vortices, a0 the initial distance between the vortices and � the
rate of strain in[s�1]. This was not implemented and it is left as a recommendation for future research.
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The equations that are solved with this simulation are similar to those in eqn. (3.9), but expanded
with a sink 
ow and a time-and vortex dependent vortex strength:

�
vk;x
vk;y

�
=

0

BBB@

NP

i=1;i 6=k

�
i�H(t�niT )(yi�yk)
((xi�xk)2+(yi�yk)2) � S( tT ) � sin

�2�t
T
�
� Q4�

�
2 � atan

h
yk+a=2
xk

i
� 2 � atan

h
yk�a=2
xk

i�

NP

i=1;i 6=k


i�H(t�niT )(xi�xk)
((xi�xk)2+(yi�yk)2) ;

1

CCCA
:

(6.10)

�dx�

dt�
dy�

dt�

�
=

1
2�

0

BBB@

�
NP

i=1;i 6=k

t0
x0


iH(t��ni)y0(y�
i�y

�
k)�

x2
0(x�

i�x
�
k)

2+y2
0(y�

i�y
�
k)

2� � 2S (t�) sin (2�t�)
�

atan
h
y0y�

k+a=2

x0x�
k

i
� atan

h
y0y�

k�a=2

x0x�
k

i�

NP

i=1;i 6=k

t0
y0


iH(t��ni)x0(x�
i�x

�
k)�

x2
0(x�

i�x
�
k)

2+y2
0(y�

i�y
�
k)

2� :

1

CCCA

(6.11)
with ni the number of the period the vortex enters the estuary for the �rst time. The vortices are
numbered from 1 to N , with the uneven number belonging to the top vortices and the even numbers
to the bottom vortices. The relation between i and ni is shown in table 1.

Table 1: the numbers ni for the vortex numbers i 2 f1; 2; 3; :::g.

i ni
1 0
2 0
3 1
4 1
5 2
6 2
...

...

Furthermore H(�) a heaviside step function where

H(�) =

(
0 for � < 0
1 for � � 0

: (6.12)

Next, S (�) is a square wave function where

S(�) =

(
0 for k � � < k + 1

2
1 for k + 1

2 � � < k + 1
; (6.13)

with k 2 f0; 1; 2; 3; :::g. With the addition of the sink 
ow, the new initial con�guration and the way
of introducing vortices the dipole cloud can be investigated.

6.2 Critical Strouhal Number

First, the critical Strouhal number as a function of � was sought so the dipole model can be compared
to the analytical model. The simulation is done with a single dipole. The Strouhal number is decreased
in steps of 0.0002 as long as the dipole’s x-coordinate remain positive and its velocity is positive at
t = 1. This is done for a set bottom friction. When the critical Strouhal number is found for this
bottom friction, the bottom friction is increased by 0.1 and the process starts again. The bottom
friction was ranged from 0 to 10. The result is shown in �gure 35.
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Figure 35: The critical Strouhal number as a function of the bottom friction

The critical Strouhal number found with the dipole simulation corresponds very well to the ana-
lytical solution where the sink 
ow velocity is taken at y = 1=2. So the critical Strouhal number at
� = 0 is 1.0804 and at � = 1 it is 0.07066. A �t has been made with Origin, using the function

y =
0:10804

1 + ax+ bx2 + cx3 : (6.14)

This function is chosen because it goes to zero for x!1 and x = 0) y = 0:10804, which it should,
as the critical Strouhal number for an in�nitely high bottom damping should be zero (all dipoles are
sucked back) and in case of zero bottom damping the critical Strouhal number should be 0.010804.
The �t is shown in the �gure 36. The �tting parameters are a = 0:4633� 0:0005, b = 0:0623� 0:0003
and c = 0:00434� 0:00004, so

Strcrit =
0:10804

1 + 0:4633�T + 0:0623 (�T )2 + 0:00434 (�T )3 : (6.15)
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Figure 36: A �t of the critical Strouhal number found with the dipole simulation. The �tting function
is eqn. (6.14).

6.3 Extending the critical Strouhal number

By exposing a single dipole to more than one retracting tidal 
ow, the critical Strouhal number
decreases. This is expected because the dipoles experience the sink 
ow twice instead of once and
due to their decreasing strength they are less likely to escape the second time they are exposed to the
sink 
ow. So instead of checking whether the dipoles remains inside the domain for the entire �rst
period, the dipole should remain inside for two periods (no second dipole is added). This is shown in
�gure 37.
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Figure 37: The critical Strouhal number determined for a time of one and two periods in the domain.
The blue line is the critical Strouhal number found with the dipole simulation (the same as the yellow
line in �gure 35), the red line is the critical Strouhal number for two tidal periods.

The critical Strouhal number for two tidal periods is lower than that for one period. This means
the dipoles have to be even faster to escape the sink 
ow during two tidal periods. In the case that
there is no bottom damping the critical Strouhal number is the same for one period as for two periods:
when the dipole remains inside the domain in the �rst period, the sink 
ow is not strong enough to
pull it back, so it can not pull it back in the second period either because the dipole does not decrease
in strenght (no bottom damping). It can be seen that not only at �T = 0 but from 0 < �T < 0:4 the
critical Strouhal number is equal for one and two periods. This is due to the increasing strength of the
dipole when it is formed (see �gure 2): the average velocity of the dipole in the �rst period is lower
than that of the second period for low values of �T (for 0 < �T < 0:4). The critical Strouhal number
for two periods can never be higher than that of one period because the dipole has to ’survive’ the
�rst period to be able to reach the second. So to keep a dipole longer in the estuary, the Strouhal
needs to be lowered. This is no longer necessary when a new dipole is introduced every tidal period,
as two subsequent dipoles will pair up, leading to a higher velocity (�gure 32) which allows them to
escape the sink 
ow.

6.4 Shape and size of the dipole cloud

When multiple dipoles are inserted they do not constantly move to the right until their vorticity is
depleted. Because of the sink 
ow and the other dipoles (those previously inserted and those following
the dipole) the dipole can be sped up or slowed down by decreasing or increasing in size. Because of
this, the cloud of dipoles initially grows in size, but eventually it can stop growing. The length of this
cloud is a measure for the distance from the gap that the e�ects of the tidal 
ow can be noticed. The
size of the cloud is measured by running a simulation with many dipoles (about 40) and recording the
single largest x-coordinate of the dipoles in every time step. Near the end of the simulation this largest
x-coordinate does not change any more, which means the �nal cloud size has been reached. Sometimes
the cloud keeps growing (with weaker bottom damping) because the weakest dipoles remain in the
front of the cloud and they keep on moving further away from the gap, albeit slower and slower. In
this case, only those vortices with a vorticity larger than 1% or 5% of 
0 are taken into account. The
cloud size for three di�erent magnitudes of bottom damping are shown in �gure 38.
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Figure 38: The cloud size for � = 0:4 and �T = 1; 0:7 and 0:5 plotted against time. The �nal cloud
size is the largest for �T = 0:5, smaller for �T = 0:7 and the smallest for �T = 1.

The dipoles behave in a similar way for varying bottom damping; all three clouds reach a constant
size. The way they reach this size is di�erent though. Both �T = 0:5 and 1 overshoot where �T = 0:7
does not and �T = 0:5 takes longest by far to reach a constant size.

When an older dipole travels towards the gap on the outside of the cloud and gets close to the gap
it can be sucked back through the gap, dying, or be propelled forward, back into the estuary. This
in
uences the way in which the �nal cloud size is reached. Dipoles that return to the gap and arrive
there in the �rst half of a tidal period are likely to be propelled forward and dipoles that arrive there
in the second half of a tidal period are very likely to be sucked back by the sink 
ow.

The in
uence of the Strouhal number on the cloud size is not at all as pronounced as that of
the bottom damping. This is shown in �gure 39. The increasing cloud size for a decreasing � can
be clearly observed. It is, however, not at all as pronounced as the increase for a decreasing bottom
friction (�gure 38).
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Figure 39: A graph showing the cloudsize for �T = 1 and � = 0:025; 0:05; 0:1; 0:15; 0:2 and 0:225
against time

It is clear that the cloud size remains fairly constant for this range of Strouhal numbers (� =
16� � Str2, eqn. (6.6)); between 1.9 and 2.4. The cloud size does indeed increase for a decreasing
Strouhal number; the faster the dipoles are initially, the larger the cloud becomes.

The cloud sizes for a variation of �’s and �T ’s have been measured. They are shown in �gure 40.
It can be seen that the cloud size depends mostly on the bottom friction. The cloud size does increase
for a decreasing �, but the cloud size’s dependency on the bottom friction is much larger.
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Figure 40: Cloud sizes for di�erent � and �T. The cloud size depends mostly on the bottom friction,
not on �. The cloud size does increase for a decreasing �, but not as much as it depends on bottom
friction. For �T=1 the cloud size is just a bit larger than 2, for �T=0.7 the cloud size lies around 4
and for �T=0.5 lies between 6 and 7.

The �rst two periods are looked at more closely in �gure 41. It is clear that in the �rst period,
the cloud size indeed resembles that of the dipole paths in graph 6. What is also evident, is the
fact that for increasing Strouhal numbers the amount of slip-throughs increases. This is particularly
evident from the red and black lines. In the second tidal period every valley in the lines stands for a
slip-through. In the red and black lines the alternating sizes of the peaks (higher-lower) shows which
dipole is the leading one: a high peak means the older dipole is leading, a lower peak means the newer
(second) dipole is leading. When the older dipole slips through the newer one it gains more speed due
to the higher strength of the newer dipole and vice versa. Furthermore, the �rst slip-through occurs
later for a decreasing Strouhal number.
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Figure 41: A highlight of �gure 39. The �rst period of this graph is shown here and it is clear that
in the �rst period, the cloud size does increase with decreasing �.

Contour plots of the average velocity in tidal period 60 for �T = 1; 0:7 and 0:5 are shown in �gure
42. Because the cloud size increases for a decreasing Strouhal number, the velocity further away from
the gap is higher for lower Strouhal numbers. This can be seen in this �gure. The sink has only a
small in
uence on the velocities in the x-direction: it decreases the velocities further away from the
gap. The main in
uence of the sink 
ow can be seen in the increased velocity above and below the
gap; the orange area extends further up and down in the �gures on the right than in those on the left.
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(a) (b)

(c) (d)

(e) (f)

Figure 42: Contour plots of the average velocity during tidal period 60 for � = 0:1 and �T = 1; 0:7
and 0:5. The �rst and second half of the tidal period are shown.

The plots show the di�erence between the clouds; the size of the cloud decreases as the bottom
friction increases, which is to be expected due to the dipoles’ shorter life time. Also, the structure
of the clouds is quite di�erent in these three cases. These structures are mostly determined by the
number of slip throughs that occur in the center path. For �T = 1 all slip throughs occur between x� =
0 and 1.5. A dipole slipping though another dipole has an increase in velocity (�gure 22b). The fact
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that the dipoles that slip through each other here are newly formed dipoles means that the velocities
measured in this area are even higher. Farther of to the right there are still dipoles leapfrogging but
they have lost most of their vorticity and thus do not contribute much more to the velocity that is
measured there. In �gure 42c and 42e the structure is more elongated. The �rst two slip-throughs
take place over a longer distance due to the slower decaying vorticity. The lobes of higher velocity
show where leapfrogging occurs, i.e. the outer dipole growing gives rise to the lobes of higher velocity
in the �gures. What gives these clouds their shape is the result of dipoles forming a pair (section
5.3) for a short time. The �rst dipole moves into the domain normally, the second slips through the
�rst one, forming the �rst pair. this pair is now too far so the third dipole can not slip through the
�rst one (the second is now the farthest from the gap). The fourth dipole however can slip through
the third one again. Next, the same thing happens: dipole number �ve cannot slip through dipole
number three (which is the closest to the gap). Dipole number six will slip through dipole number
�ve and so on. This means that overall the even and uneven dipoles each end up in a di�erent region.
This is shown in �gure 44. Either the even or the uneven dipoles form the outer rim of the cloud.
Whether the uneven or even dipoles form the outer region depends on what happens between the
�rst dipole insertion and the moment a semi-stationary state is reached. Simulation errors can also
in
uence this. This semi-stationary state is reached when the cloud size remains constant over time.
In �gure 44 this is already the case for 44c and 44e because the vortex locations are on top of each
other every period, so a stationary state has already been reached before t=T = 10. This is not the
case for e.g. 44b. Here the vortex locations are not on top of each other yet. It is shown in �gure 43
that a semi-stationary case is reached eventually. It is reached between period 10 and 20 for this case
because the vortex location are on top of each other from period 20 on.

This division into two regions in the cloud means that not only the number of the dipole (even or
uneven) is di�erent in these regions, but that the cloud can be divided in regard to other things as
well. For example, the amount of suspended particles in the even and uneven dipoles can de di�erent,
which, depending on the di�usion rate, can lead to a division in the amount of particles in the cloud.
So an outer region with more particles than the inner region. This means that the time when the
dipole is made (uneven or even dipole) can in
uence where suspended particles will end up.
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(a) (b)

(c) (d)

Figure 43: The locations of the vortices at t/T=n, where n =0,1,2,3,... . In the di�erent plots the
recording is started at a later time: at period 1, 5, 20 and 70. In (a) and (b) the vortex locations are
not on top of each other yet, which means a semi-stationary state has not yet been reached. In (c)
and (d) the location are on top of each other, which a semi-stationary state has been reached.
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(a) (b)

(c) (d)

(e) (f)

Figure 44: The vortex positions at t=T = n (with n = 1; 2; 3; :::, starting at the tenth period. The
cases for � = 0:225; 0:15 and 0:1 and �T=1 and 0.5 are shown.

6.5 Stagnation Point of the Cloud

A similar way of de�ning the area a�ected by the cloud of dipoles is to �nd the stagnation point in the

ow that is caused by the vortices. The stagnation points for the cases � = 0:225; 0:2 and 0:175 with
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�T = 1 are visualized in �gure 45 by plotting the streamlines. The stagnation point is determined for
the second half of the 40th period. There is no stagnation point in the �rst half of every tidal period
because only the sink 
ow causes a 
ow in the negative x-direction and the it only acts in the second
half of every tidal period.

(a) (b)

(c)

Figure 45: Streamlines of the average velocity �eld during the second half of tidal period 60 for
� = 0:225; 0:2 and 0:175 and �T =.

The relation between the location of the stagnation point, � and � is shown in �gure 46. It can
be seen that the di�erence is the most pronounced for lower values of �. For higher values of �
the stagnation points lie closer together. So a narrowing of the gap in
uences the location of the
stagnation point more than the bottom friction does. The stagnation point is constantly moving due
to the oscillatory nature of the sink 
ow. The strength of the sink 
ow behaves as a a sine wave (eqn.
(6.10)), so the stagnation point moves backwards and forwards during the second half of every tidal
period. What is depicted here (both in �gure 45 and 46 is the average location of the stagnation
points.
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Figure 46: The relation between the location of the stagnation point of the cloud, �T and �.
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7 Conclusion

When a tidal 
ow enters an estuary two counter rotating vortices are formed that form a dipole.
This dipole moves into the estuary and can be pulled back through the gap by the retreating tidal
motion. This does not always happen; depending on the Strouhal number the dipole can remain
inside the estuary. A critical Strouhal number (the Strouhal number for which the dipole remains
only just inside the estuary) was calculated via an analytical derivation and via a dipole simulation.
The critical Strouhal number lies between 0.1082 and 0.1083 which is di�erent from the one that was
found by Wells and van Heijst [6]; between 0.1296 and 0.1297. Here a line sink was used to simulate
the sink 
ow instead of a point sink and it is assume that the sink 
ow acts on the point vortices
themselves (so at y� = �1=2) instead of on the center of the dipole (which lies on y� = 0).

Next, the leapfrogging of two and three dipoles was investigated. First, it was investigated from
what initial setups the dipoles start leapfrogging or not. It was found that they will always start
leapfrogging when they are placed next to each other on the same axis. Two leapfrogging dipoles
oscillate with a constant frequency. This frequency increases quadratically with a=b where a is the
initial width of the dipoles and b is the initial distance between the dipoles.

Three dipoles that leapfrog with each other exhibit more complex behaviour. Two dipoles can
form a leapfrogging couple that in turn leapfrogs with the other dipole. Dipoles can exchange, so the
couple does not always consist of the same two dipoles. This results in chaotic behaviour. when the
dipoles start extremely close to each other, the three top and the three bottom vortices almost act
like three single vortices; the two on the outside rotate around the center vortex. The frequency of
this circular motion can be calculated analytically. When three coaxial dipoles start extremely close
together, the dominant frequency of their oscillation is indeed close to the analytically calculated
frequency.

When dipoles subsequently enter an estuary they start leapfrogging at �rst. Due to the sink 
ow
and bottom friction they increase in size and eventually move back towards the gap. The size of the
cloud that comes into being depends both on the bottom friction and on the Strouhal number. The
in
uence of the bottom friction is much larger than that of the Strouhal number.

When a dipole enters the estuary it forms a leapfrogging pair with the previous or the following
dipole. A leapfrogging dipole pair is faster than a single dipole. This results in a division of the
dipoles and thus in a division in the cloud. An inner and an outer region come into being, one �lled
with the even dipoles and the other with the uneven ones. This is of importance when the dipoles
that enter the estuary are not the same (e.g. due to day and night time). So not only the Strouhal
number and the bottom friction are of importance, the di�erence in properties of the dipoles is as
well.
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8 Recommendations

Based on this investigation there are several points of interest that can be expanded or investigated
further. The y-component of the sink 
ow has to looked into again. It can be seen as a cooperative
strain 
ow [5]. Also, the gap itself can be included into the model. To do this mirror images of
the vortices have to be included. The sharp corners of the gap can cause problems, they probably
need extra attention. Also, the other side of the gap can be included in the simulation, which makes
studying exchange of particles possible. The fact that dipoles are not pulled back through the gap by
the sink 
ow does not mean that suspended particles are not sucked through either.

Secondly, an asymmetric gap can be investigated. In this report a symmetric case was studied (a
horizontal line of symmetry). When the gap is pointed up or down the dipole cloud will likely also be
formed in the top or bottom half of the domain. I can be useful to know how much the location of the
cloud can be shifted up or down by changing the shape of the opening of the gap. When the cloud is
small this may not be a signi�cant shift but when the cloud is very long this may be of importance.
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Appendices

A Derivation circulation of a tidal motion induced dipole
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B Derivation of line sink

The 
ow potential due to a point sink on this line is:
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with (xsink; ysink) the location of the point sink and Q the point sink strength in [m2/s]. For the point
sinks that constitute the line sink this becomes:
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because xsink is zero. ysink ranges from �W=2 to W=2. The line sink strength here is in [m/s], as it
stands for the amount of point sinks per meter. The 
ow �eld of the line sink can be calculated:
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And now u and v can be found by di�erentiating this:
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So this gives the expression for the potential 
ow �eld due to a line sink:
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C Proof that horizontally spaced dipoles catch up

In Love’s article [3] the equations of motion are written as follows:
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with (xi; yi)3 the position of the vortices above the x-axis and
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Again, � is not the Hamiltonian (which is given in eqn. (E.1)), but something similar. The Hamilto-
nian of this system would be:
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which is similar to �, but not the same. Love than goes on to show that both

y0 + y1 = constant = 2c (C.4)

and
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and that a2 > c2 when the dipoles are leapfrogging. Combining these two equations and this require-
ment gives:

a2 > c2 ) y0y1
(x1 � x0)2 + (y1 + y0)2

(x1 � x0)2 + (y1 � y0)2 >
�
y1 + y0

2

�2
: (C.6)

And in the case of horizontal spacing y0 = y1 = y so:

y2 (x1 � x0)2 + (2y)2

(x1 � x0)2 > y2 ) 1 +
(2y)2

(x1 � x0)2 > 1; (C.7)

which leads to:
(2y)2

(x1 � x0)2 > 0; (C.8)

which is true indeed, because y is not zero, x0 6= x1 and something squared that is not zero is always
positive.

3Note that the x0 and y0 have has no relation with the x0 and y0 that are used in the report to non-dimensionalize
the x-and y-coordinates.
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D MATLAB file critical Strouhall number

1 %% Finding Strouhall numerically
2 close all; clear all;
3 St i = 0.15; %The initial Stouhall number
4 dSt = 0.0002;
5 c = 1; % =a/W: the ratio of the distance between the vortices and the
6 %gapsize. This is usually taken as 1
7 T = 1;
8

9 %% Initialize
10 St = St i;
11 test1 =-1; % used to check whether the critical Strouhall number
12 % has been found
13 %% First without damping
14 for ii = 1:101
15 lambdaT = 0.1 * (ii-1);
16 %% Solve the first part of the differential equation
17 t1 = 0:0.001:0.5;
18 % [t1,x1] = ode15s(@(t,x1) 8 * (t-sin(4 * pi * t)/(4 * pi)) * ...
19 % exp(-lambdaT * t),t1,0);
20 [t1,x1] = ode15s(@(t,x1) 2 * (t-sin(4 * pi * t)/(4 * pi)) * ...
21 exp(-lambdaT * t),t1,0);
22

23 %% Now the second part has to be solved so the critical
24 % Strouhall number can be found
25 while test1 <0
26 %% Solve thesecond part of the differential equation
27 t2 = 0.5:0.0005:1;
28 % [tt,xx] = ode15s(@(t,x2) 4 * exp(-lambdaT * t)+St * 128* c* sin(2 * pi * t) * ...
29 % atan(Stˆ2 * 32* pi/(x2)),t2,x1(end));
30 [tt,xx] = ode15s(@(t,x2) 1 * exp(-lambdaT/2)+St * 32* sin(2 * pi * t) * ...
31 atan(Stˆ2 * 8* pi/(x2)),t2,x1(end));
32

33 test1 = xx(end)-xx(end-1); % check whether the dipole has a
34 % positive veolcity at t = 1
35 St = St-dSt;
36 end
37 Strcritnum(2,ii) = St;
38 Strcritnum(1,ii) = lambdaT;
39 %% re- initialize
40 test1 = -1;
41 end
42 save(�Strcritnum�,�Strcritnum�);
43 %% Now with damping
44 St = St i;
45 test1 =-1;
46 for ii = 1:50
47 lambdaT = 0.1 * ii;
48 LL = 8 * ((-1/(2 * lambdaT)-1/lambdaTˆ2) * exp(-lambdaT/2)+1/lambdaTˆ2-1 * ...
49 (exp(-lambdaT/2)-1)/(lambdaTˆ2+16 * piˆ2));
50 %% Solve the first part of the differential equation
51 t1d = 0:0.001:0.5;
52 tic
53 [t1d,x1d] = ode15s(@(t,x1d) 8/LL * (t-sin(4 * pi * t)/(4 * pi))...
54 * exp(-lambdaT * t),t1d,0);
55 toc
56 %% Now the second part has to be solved so the
57 % critical Strouhall number can be found
58 while test1 <0
59 %% Solve the second part of the differential equation
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60 t2d = 0.5:0.0005:1;
61 [td,xd] = ode15s(@(t,x2d) 4 * exp(-lambdaT * t)/LL+St * 128* c* ...
62 sin(2 * pi * t) * atan(Stˆ2 * 32* pi/(x2d * LL))/LL,t2d,x1d(end));
63

64 test1 = xd(end)-xd(end-1); % check whether the dipole has a
65 % positive veolcity at t = 1
66 St = St-dSt;
67 end
68 Strcritnumdamp(2,ii) = St;
69 Strcritnumdamp(1,ii) = lambdaT;
70 %% re- initialize
71 test1 = -1;
72 end
73 save(�Strcritnumdamp�,�Strcritnumdamp�);
74 %% Plot
75 figure;
76 plot(Strcritnum(1,:),Strcritnum(2,:),�r�)
77 hold on
78 %plot(St crit damp(1,:),St crit damp(2,:),�c�)
79 hold off
80 xlabel(� nit fnlambda g* T�)
81 ylabel(� nit fSt crit g�)
82 title(�Critical Strouhall number nit fSt gnrm as a function of nit fnlambda * Tg�)

E Finding the right time step size

To �nd the right integration step size for the potential dipolar vortex model, the Hamiltonian is
used[1]. The Hamiltonian of the point vortex system represents the kinetic energy associated with
the relative motion of the vortices. The Hamiltonian H of a point vortex system is given by:

H = �
1

4�

NX

k=1

NX

i=1
(i 6=k)


i
kln (rik) : (E.1)

The Hamiltonian remains equal over time:

dH
dt

= 0: (E.2)

Due to simulation errors the Hamiltonian oscillates. To keep the simulation as accurate as possible,
these oscillations should be kept as small as possible. This can be done by decreasing the time step.
The relation between the time step size and the oscillations in the Hamiltonian is shown in �gure 47.
A dipole cloud simulation has been done with � = 0:1. For the �fth period the di�erence between
the maximum and minimum value of the Hamiltonian has been plotted against the time step. The
magnitude of the oscillations keeps decreasing for a decreasing time step size. A time step size of 1�3

has been chosen to keep simulation times low and to achieve a reasonably high accuracy.
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Figure 47: The relation between the oscillations in the Hamiltonian and the time step size for � = 0:1
and � = 0.

F Matlab file dipoles entering an estuary

1 %% Dipoles entering through a gap
2 clear all;close all;
3 %% Runge-Kutta dipole simulation
4 prompt = f�Number of dipoles N:�,�distance between vortices a:�,...
5 �Time step dt:�,�coefficient of linear bottom friction� g;
6 dlg title = �Input System Parameters�;
7 num lines = 1;
8 def = f�100�,�1�,�0.001�,�0� g;
9 answer = inputdlg(prompt, dlg title, num lines, def);

10 % convert to constants
11 N = 2* str2double(answer f1g); % The number of vortices
12 a = str2double(answer f2g); % The initial spacing between the poles
13 dt = str2double(answer f3g); % The time step
14 lambda = str2double(answer f4g);% The coefficient of linear bottom friction
15 % choice = menu(�plot positions or paths?�,�Positions�,�Paths�);
16 for lambda = [1 0.7 0.5]
17 for a = [sqrt(0.18) sqrt(0.16)];% sqrt(0.13) sqrt(0.12)];
18 %% Define system parameters
19 T = 500* 2* dt; % the tidal period
20 N tstep = 1 * N* T/(2 * dt); % the number of time steps
21 tmax = N tstep * dt; % maximum running time of the simulation
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22 gamma = 2* pi; % The strenght of the vortices
23 U0 = sqrt(8 * gamma/T); % The tidal velocity
24 W = a; % the gap size
25 %% Non-dimensionalisation parameters
26 x0 = gamma* T/(2 * pi * a);
27 y0 = a;
28 T0 = T;
29 Q = 2* U0; % The strength of the line sink flow
30 LL = y0/x0
31 Str = W/(U0 * T)
32 VAR = [N a dt lambda T tmax gamma Q W U0 x0 y0];
33 %% The position and vorticity matrix and its storage matrix
34 XYGS = zeros(N,3,int32(tmax/dt)+1);
35 XYGS(:,2,:) = repmat(2 * (a/(2 * y0)) * (-0.5+mod([1:N]�,2)),1,...
36 int32(tmax/dt)+1); % add the positions at t=0, dimensionless
37 START = T* kron(0:(N/2-1),[1 1]);
38 %% The vorticity
39 TT = dt * [0:(N tstep)];
40 G = exp(-lambda * (TT));
41 for tt = 1:(T/(2 * dt)+1)
42 G(tt) = 2 * (TT(tt)-sin(4 * pi * TT(tt)/T) * T/(4 * pi)) * ...
43 exp(-lambda * (TT(tt)));
44 end
45 for qq = 1:N/2
46 XYGS(2 * qq-1,3,int32((qq-1) * T/dt+1:(tmax/dt+1))) =...
47 -gamma* G(1:int32(tmax/dt+1-(qq-1) * T/dt));
48 XYGS(2 * qq,3,int32((qq-1) * T/dt+1:(tmax/dt+1))) =...
49 gamma* G(1:int32(tmax/dt+1-(qq-1) * T/dt));
50 end
51 XYG = XYGS(:,:,1); % The initial values
52 START = T* kron(0:(N/2-1),[1 1]);
53 RK KK = zeros(4,2,N);
54 tic
55 %%%%%%%%%%%%%%%%%%
56 for tt = 1:N tstep
57 t = dt * (tt)/T0; %[-]
58 FLAGS = START<=t;
59 KK = [abs(XYG S(:,3,tt)) >0]. * [1:N]�;% vector with vortex numbers
60 KK = KK(KK~=0)�;
61 %% Calculate k�s
62 % k1
63 for kk = KK
64 % This is a vector with entries i=/=k, needed for the next for-loop
65 II = KK(setdiff(1:length(KK),find(KK==kk)));
66 [RK KK(1,1,kk) RK KK(1,2,kk)] =...
67 RK func nondim(t,XYG(kk,:),XYG(II,:),VAR);
68 end
69 % k2
70 for kk = KK
71 II = KK(setdiff(1:length(KK),find(KK==kk)));
72 [RK KK(2,1,kk) RK KK(2,2,kk)] =...
73 RK func nondim(t+dt/2,XYG(kk,:)+dt * ...
74 [RK KK(1,1,kk) RK KK(1,2,kk) 0]/2,XYG(II,:)+...
75 permute(dt * [RK KK(1,1,II) RK KK(1,2,II) ...
76 zeros(1,1,size(II,2))]/2,[3 2 1]),VAR);
77 end
78 % k3
79 for kk = KK
80 II = KK(setdiff(1:length(KK),find(KK==kk)));
81 [RK KK(3,1,kk) RK KK(3,2,kk)] =...
82 RK func nondim(t+dt/2,XYG(kk,:)+dt * ...
83 [RK KK(2,1,kk) RK KK(2,2,kk) 0]/2,XYG(II,:)+...
84 permute(dt * [RK KK(2,1,II) RK KK(2,2,II) ...

66



85 zeros(1,1,size(II,2))]/2,[3 2 1]),VAR);
86 end
87 % k4
88 for kk = KK
89 II = KK(setdiff(1:length(KK),find(KK==kk)));
90 [RK KK(4,1,kk) RK KK(4,2,kk)] =...
91 RK func nondim(t+dt,XYG(kk,:)+dt * ...
92 [RK KK(3,1,kk) RK KK(3,2,kk) 0],XYG(II,:)+...
93 permute(dt * [RK KK(3,1,II) RK KK(3,2,II) ...
94 zeros(1,1,size(II,2))],[3 2 1]),VAR);
95 end
96 % calculating the new positions
97 XYGS(KK,1,tt+1) = XYG S(KK,1,tt)+dt/(6) * (permute(RK KK(1,1,KK)+...
98 2* RK KK(2,1,KK)+2 * RK KK(3,1,KK)+RK KK(4,1,KK),[3 2 1]));
99 XYGS(KK,2,tt+1) = XYG S(KK,2,tt)+dt/(6) * (permute(RK KK(1,2,KK)+...

100 2* RK KK(2,2,KK)+2 * RK KK(3,2,KK)+RK KK(4,2,KK),[3 2 1]));
101 %% Check whether a vortex has left the frame, then deactivate it
102 LeaveCheck = XYG S(:,1,tt) >=0;% smaller than zero = > a zero
103 XYGS(:,3,(tt+1):end) = XYG S(:,3,(tt+1):end). * ...
104 repmat(LeaveCheck,[1 1 (N tstep-tt+1)]);
105 XYG = XYGS(:,:,tt+1);
106 end
107 toc
108 save([�XYGS Cloud LL� num2str(LL) � N� num2str(N) � lambda� ...
109 num2str(lambda)],�XYG S�);
110 end
111 end
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