Spectral Element Method Modeling of eddy current losses in conductive materials

Citation for published version (APA):

Document status and date:
Unpublished: 01/10/2018

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Spectral Element Method Modeling of Eddy Current Losses in Conductive Materials

K. Bastiaens, M. Curti, D.C.J. Krop, S. Jumayev, and E.A. Lomonova

Introduction

• High-frequency wireless power transfer systems impose challenges in the electromagnetic modeling.
• The skin depth is several orders of magnitude smaller in comparison to the object dimensions.
• Meshing problems arise in the widely applied Finite Element Method (FEM).
• As an alternative, higher order methods, such as the Spectral Element Method (SEM) can be applied.
• In this work, the advantages of the SEM in terms of computational effort and accuracy w.r.t. the FEM are shown.

Benchmark System & Modeling

• The benchmark system consists of a C-shaped transformer operated at 1 MHz, and a conductive plate positioned in the fringing-flux path parallel to the air gap, as shown in Fig. 1.
• The meshing requirements are reduced by only considering a plate width equal to three times the skin depth, which introduces a discrepancy of less than 0.1%, as shown in Fig. 2.
• The SEM discretizes the domain into rectangular elements and uses Legendre polynomials to approximate the solution.
• In the FEM model, rectangular and triangular mesh elements are used in the conductive and non-conductive regions, respectively.
• The FEM requires at least two mesh layers per skin depth.

Table I

<table>
<thead>
<tr>
<th>Physical quantities and material properties.</th>
<th>Frequency</th>
<th>Conductivity</th>
<th>Relative permeability</th>
<th>Skin depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.0 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>8.41·10^{4} S/m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative permeability</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin depth</td>
<td>17.4 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1a: Overview of the investigated domain.

Convergence Analysis & Results

• The results indicate that a higher accuracy per degree of freedom (d.o.f.) is obtained by applying the SEM, as shown in Fig. 2.
• At the converged solution, the SEM reduces the number of d.o.f. and computation time by 84.7% and 94.8%, respectively.
• The Pareto optimum is evaluated, defined as the weighted sum of the normalized number of d.o.f. (f_{n}) and discrepancy (f_{d})

$$
\text{minimize} \quad F(x) = w_1 f_n(x) + w_2 f_d(x) \\
\text{subject to} \quad w_1 + w_2 = 1
$$

where: \{w_1, w_2\} \in (0, 1)

Conclusions

• The SEM provides a highly accurate estimation of the eddy current losses, while significantly reducing the number of d.o.f. and computation time w.r.t. the FEM.
• The SEM has proven to be particularly useful in problems where the skin depth is several orders of magnitude smaller in comparison to the object dimensions.