
https://research.tue.nl/en/publications/00af7dc4-abcc-4a2d-b666-2bb915178b40

Automating Data-driven Modelling of Dynamical
Systems

An Evolutionary Computation Approach

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen op

Woensdag 4 maart 2020 om 11:00 uur

door

Dhruv Khandelwal

geboren te Kolkata, India

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommisie is als volgt:

voorzitter: prof. dr. K. A. Williams
1e promotor: dr. ir. R. Tóth
copromotor(en): dr. ir. M. Schoukens
leden: prof. dr. K. Worden (The University of She�eld)

prof. dr. ir. X. Bombois (CNRS, France)
prof. dr. M. Pechenizkiy
dr. ir. M. Mazo Espinosa (Technische Universiteit Delft)
prof. dr. ir. P. M. J. Van den Hof

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

This research is supported by the Dutch Organization for Scienti�c Research (NWO,
domain TTW, grant: 13852) which is partly funded by the Ministry of Economic
A�airs.

This dissertation has been completed in ful�lment of the requirements of the Dutch
Institute of Systems and Control (DISC) for graduate study.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-4991-7

This thesis was prepared with the LATEX documentation system.

Cover design: Dhruv Khandelwal, Nino Rurua and Sambhav Khandelwal, inspired by the
artwork of Manfred Mohr.

Print: Ridderprint | www.ridderprint.nl

Copyright c 2020 by Dhruv Khandelwal.

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilised in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the copyright owner.

Summary

Modelling of dynamical systems is a necessary preparatory step for many engi-
neering applications, such as controlling the roll, pitch and yaw of an aircraft,
assessing the structural integrity of a bridge and load scheduling for management
of electricity grids. In each of these applications, a dynamical model is derived
or estimated for a particular model-based method: designing model-based con-
trol schemes, performing system analysis or making predictions. A model of a
dynamical system can be derived from �rst principles, by applying physical laws
that govern the dynamics of the system. However, as engineering systems become
increasingly complex, a �rst principles approach to modelling dynamical systems
becomes cumbersome and time-consuming. An alternate approach to modelling of
dynamical systems is to estimate (a part of) the model from data inferred from
the dynamical system. More than �ve decades of research has resulted in a variety
of data-driven modelling techniques. Most of these techniques require an expert
user to make some well-informed decisions and assumptions. The quality of the
identi�ed model, and consequently the performance of the model-based method in
the corresponding application, may be signi�cantly in�uenced by these decisions.
Hence, for inexperienced users, obtaining the desired model quality with respect to
the use-case of the model can be a demanding task with many pitfalls.

In this thesis, we address the problem of automating the data-driven modelling pro-
cess from a user's perspective. In particular, we look at the challenges involved in
(i) exploring various model structures and model complexities, (ii) optimizing mod-
els for user-speci�ed performance measures relevant to the use-case of the model,
and (iii) model selection and validation.

To enable exploration across various classes of dynamical systems, model struc-
tures and complexities, a more generalized notion for the �model set� is developed
based on Tree Adjoining Grammar (TAG), a concept originating from the �eld of
computational linguistics. In TAG, we �nd a framework that allows us to describe
and decompose the structure of various classes of dynamical models in terms of
more fundamental entities, called elementary trees. These elementary trees can
subsequently be combined to generate dynamical models of arbitrary complexities
that are �grammatically correct�, i.e., they are guaranteed to possess the desired
structure that is encoded in the TAG. Based on this concept, in this dissertation
we develop a TAG-based approach to describe the structural composition of para-
metric model representations such as input-output models and state-space models.
Such TAG-based representations span the classes of linear and non-linear dynam-
ical systems, thereby broadening the scope of the model set in an identi�cation
context.

v

The TAG-based representation of dynamical systems plays a vital role in the iden-
ti�cation framework developed in this dissertation, since it allows us to formulate
the problem of model structure determination over a model set that is much larger
than what is currently used in parametric identi�cation methods. Furthermore,
prior information and user-preference can also be incorporated within a chosen
TAG, thereby allowing the user to reduce the scope of the model set.

A generalized notion of model set, which may span multiple classes of dynamical
systems, makes it challenging to compare, in a meaningful way, the performance of
estimated models based on a single performance measure. Hence, a multi-objective
framework based on Pareto-dominance and ordering is adopted for assessing the
quality of models. While multi-objective optimization has been well-studied in the
optimization community, the relevant concepts have not been su�ciently utilized
in the system identi�cation literature, where the interplay between objectives such
as model accuracy and model complexity is well-recognized. As user-speci�ed per-
formance measures can be easily incorporated in the multi-objective framework,
we focus only on using the most common performance measures that capture the
following information related to a model: (i) one-step-ahead prediction error, (ii)
simulation error, (iii) complexity in terms of number of parameters, and (iv) com-
plexity of the dynamics of the model.

The TAG based model set speci�cation and the multiple-objective framework adopted
in this work allow us to pose the problem of automated system identi�cation as a
multi-criteria bi-level optimization problem:

� The upper-level of the optimization problem relates to the model-structure
determination problem. Expressing model structures in terms of TAG el-
ements allows us to e�ciently reformulate the model structure determina-
tion problem to a combinatorial optimization problem. Exploration of model
structures in the resulting combinatorial landscape is performed using evolu-
tionary algorithms.

� The lower-level of the optimization problem relates to the problem of model
parameter estimation. For each model structure proposed in the evolution-
ary algorithm, numerical optimization techniques are used to estimate model
parameters. Global optimization techniques can be used for arbitrary perfor-
mance measures at the cost of additional computational load. Alternatively,
more e�cient local optimization techniques tuned to the chosen TAG based
model set and the user-speci�ed performance measures can be used.

The combination of evolutionary algorithms and numerical optimization techniques
provides a solution concept for the challenging multi-criteria system identi�cation
problem. The result obtained is a set of estimated Pareto-optimal models that
inform the user of the trade-o� that can be achieved between the multiple per-
formance criteria. This gives the user the ability to perform model selectiona
posteriori, which is a much simpler task than a priori model structure selection
which is customary for classical parametric identi�cation techniques.

While the scope of this thesis is restricted to single-input single-output discrete-time
parametric models (especially input-output models), it is, in principle, possible to

generalize the proposed concepts to other types of parametric models and to multi-
input multi-output systems.

The ideas presented here are illustrated on a number of academic, real-world and
benchmark applications. It is demonstrated that, with minimal user-interaction or
adaptation of the algorithm, the proposed method can estimate a Pareto-front, and
the corresponding models, based on the proposed performance measures. When
�rst-principles understanding of the true system is available, we also verify that the
models estimated by the proposed identi�cation methodology reveal the nature of
the true system. Furthermore, in the case of multiple non-linear benchmark case-
studies, the proposed identi�cation framework achieved model accuracy that was
comparable to results obtained from other non-linear identi�cation techniques that
were tuned for the speci�c benchmark system under study.

A Dutch translation of the summary is included on page 249.1

1 �Een Nederlandse vertaling van de samenvatting is toegevoegd op pagina 249.�

viii

Contents

Summary v

List of Abbreviations . xiii

List of Symbols . xvii

1 Introduction 1

1.1 Mathematical Models . 2

1.2 Models of Dynamical Systems . 4

1.3 System Identi�cation . 11

1.4 Goal of the Research . 18

1.5 Structure of the Thesis . 22

2 System Identi�cation: The State-of-the-art 25

2.1 Introduction . 26

2.2 Classes of Dynamical Systems . 26

2.3 Characterizations of Model Representations 27

2.4 Identi�cation Methodologies . 35

2.5 Discussion . 50

3 Preliminaries - Evolutionary Algorithms 53

3.1 Introduction . 54

3.2 Genetic Programming . 59

3.3 Challenges and Extensions . 65

4 Tree Adjoining Grammar 69

4.1 Introduction . 70

4.2 Formal Grammars and TAG . 71

4.3 TAG Representation of IO Models 78

4.4 TAG Representation of Non-linear State-space Models 88

ix

x Contents

4.5 Introducing Prior Knowledge and User Preferences 92

4.6 Discussion . 93

5 Performance measures 95

5.1 Introduction . 96

5.2 The Multiobjective Framework . 97

5.3 Proposed Multi-objective Criteria . 100

5.4 Computation of A Simulation Model 104

5.5 Conclusions . 113

6 Evolutionary Multi-criteria System Identi�cation 115

6.1 Setup of the Identi�cation Problem 116

6.2 The Proposed Algorithm . 120

6.3 Parameter Estimation for Grammar GN 139

6.4 Analysis of the Algorithm . 148

6.5 Discussion . 157

7 Experimental results 161

7.1 Introduction . 162

7.2 Academic Example . 166

7.3 Experimental Case Studies . 176

7.4 Benchmark Examples . 187

7.5 Empirical Perspectives on the Proposed Modelling Approach 196

8 Conclusions 201

8.1 Summary . 202

8.2 Main Contributions . 205

8.3 Recommendations . 206

A Mathematical Preliminaries 209

A.1 Mathematical preliminaries for chapter 5 210

B Mathematical Proofs 213

B.1 Proofs for Chapter 5 . 214

B.2 Proofs for Chapter 6 . 214

Contents xi

C Experimental Results and Veri�cation 217

C.1 Simulation Examples for Chapter 5 218

C.2 Simulation Results for Chapter 7 . 220

Bibliography 246

List of Publications 247

Samenvatting 249

Acknowledgement 253

About the Author 255

xii Contents

List of Abbreviations xiii

List of Abbreviations

a.k.a also known as
AIC Akaike information criterion
ARMA Auto-regressive moving-average (model)
ARMAX Auto-regressive moving-average (model) with ex-

ogenous inputs
ARX Auto-regressive (model) with exogenous inputs
BFR Best �t ratio
BIC Bayesian information criterion
BJ Box-Jenkins (model)
CMA-ES Covariance matrix adaptation evolutionary

strategies
CNN Convolutional neural network
CT Continuous-time
CVA Canonical variate analysis
DE Di�erential evolution
DFT Discrete-time Fourier transform
DGS Data generating system
DT Discrete-time
EA Evolutionary algorithms
EC Evolutionary computing
ETFE Empirical transfer-function estimate
FIR Finite impulse response (model)
FRF Frequency response function
GA Genetic algorithm
GFRF Generalized frequency response function
GP Genetic programming
i.i.d Independent and identically-distributed
ILS Iterative least squares
IO Input-output (representation)
IV Instrumental variables
LFR Linear fractional representation
LPV Linear parameter-varying (representation)
LS Least squares
LSTM Long short-term memory
LTI Linear time-invariant (system)
LTV Linear time-varying (system)
MA Memetic algorithms
MAP Maximum a-posteriori
MC Monte-Carlo (simulations)
MCMC Markov chain Monte-Carlo
MIMO Multiple-input multiple-output (system or model)

xiv List of Abbreviations

ML Maximum likelihood
MOEA Multi-objective evolutionary algorithms
MOEA/D MOEA based on decomposition
MOESP Multivariable output-error state-space (method)
MOO Multi-objective optimization
MPC Model predictive control
MSE Mean squared error
MSP Multi-step prediction
N4SID Numerical algorithms for subspace state-space

system identi�cation
NARMA Non-linear auto-regressive moving-average

(model)
NARMAX Non-linear auto-regressive moving-average

(model) with exogenous inputs
NARX Non-linear auto-regressive (model) with exoge-

nous inputs
NBJ Non-linear Box-Jenkins (model)
NFIR Non-linear �nite impulse response (model)
NIIR Non-linear in�nite impulse response (model)
NL Non-linear (system or model)
NLTI Non-linear time-invariant (system)
NN Neural network
NOE Non-linear output error (model)
NSGA-II Non-dominated sorting genetic algorithm II
ODE Ordinary di�erential equation
OE Output error (model)
P-NARMAX Polynomial non-linear auto-regressive moving-

average (model) with exogenous inputs
P-NARX Polynomial non-linear auto-regressive (model)

with exogenous inputs
PAES Pareto archived evolution strategy
PDE Partial di�erential equation
PEM Prediction error minimization
PID Proportional-integral-derivative
PNLSS Polynomial non-linear state-space (model)
POI Point-of-interest
PPEM Parametric prediction error minimization
PSO Particle swarm optimization
PWA Piece-wise a�ne
RBF Radial basis functions
RHS Right-hand-side
RKHS Reproducing-kernel Hilbert space

List of Abbreviations xv

RMS Root mean squared
RNN Recurrent neural network
SI System identi�cation
SISO Single-input single-output (system or model)
SL Switched-linear (system)
SNR Signal-to-noise ratio
SPEA Strength Pareto evolutionary algorithm
SPEA2 Strength Pareto evolutionary algorithm 2
SR Symbolic regression
SS State-space (representation)
SVD Singular value decomposition
TAG Tree adjoining grammar
TLS Total least squares
w.p. with probability
w.r.t with respect to

xvi List of Abbreviations

List of Symbols xvii

List of Symbols

Constants, coe�cients and parameters

� p ; �̂ p Predictor model parameter vector, and its esti-
mate

� s;l ; �̂ s;l l -approximate simulation model parameter vec-
tor, and its estimate

nobj Number of identi�cation criteria

Datasets

Dest ; Nest Estimation dataset, and its length
DN ; N Measurement dataset, and its lengthN
Dtest ; N test Test dataset, and its length
Dval ; Nval Validation dataset, and its length
np Number of periods in a periodic excitation signal

Evolutionary algorithms

� Crossover operator
� j

i Derivation tree representation of individual i in
generation j of an Evolutionary Algorithm (EA)

� j
i Derived tree representation of individual i in gen-

eration j of an EA
� Mutation operator
PJ The Pareto front
D (j) Derived tree representation of population in iter-

ation j of an EA
� j

i ; � j
i Derivation tree and derived tree representation of

individual i in iteration j
L Number of iterations (generations) in an EA
M (j) Population of models (phenotype) in iteration j

of an EA
ns population size in an EA
ma Maximum archive size
md Maximum depth hyper-parameter
mid Maximum depth of a tree during initialization
P; Pc; Pm Transition matrices of Genetic Programming

(GP), crossover and mutation, respectively
� (j) Markov chain probability distribution correspond-

ing to the GP population in iteration j

xviii List of Symbols

pc Probability of crossover
pm Probability of mutation
ps Probability of selection
& Selection operator
~X (j) Proposed population of models (genotype) in it-

eration j of an EA
X (j) Population of models (genotype) in iteration j of

an EA
x j

i Individual i in generation j of an EA

Formal and linguistic grammars

� A derived tree
� A derivation tree
A Set of auxiliary trees associated with a TAG
� An auxiliary tree associated with a TAG
�J�; �K Adjunction operation
� G (�) Mapping from derivation tree to derived tree

based on grammarG
E Set of edges of a �nite tree
e An edge in a �nite tree
f Foot node of an auxiliary tree
G A grammar
I Set of initial trees associated with a TAG
� An initial tree associated with a TAG
l(�); g(�) Labelling function for vertices and edges of a tree,

respectively
E(�) E�cient set of a grammar-based model set
M (�) Grammar-based model set speci�cation
L D (�) Set of valid derivation trees of a grammar
GNBJ Polynomial NBJ grammar
GN Polynomial NARMAX grammar
GSS State space grammar
L(�) String language of a grammar
L T (�) Tree language of a grammar
N Set of non-terminal node labels
pG (�;) Gorn address of node� in tree
� f Model expression (in string form) of a symbolic

model f
r Root node of a �nite tree
S Set of terminal and non-terminal node labels
S Start node label associated with GP or a grammar

List of Symbols xix

�[�; �] Substitution operation
T Set of terminal node labels
 A �nite tree
V Set of vertices of a �nite tree
� A vertex (node) in a �nite tree

Functions and operators

b�c Floor operator
�(�) Genotype-phenotype mapping
� p ; ' p;k Regressor matrix for 1-step-ahead, and itskth

row, respectively
� � ; ' � (k) Regressor matrix for � -step-ahead outputs, and

its kth row, respectively
dt (�) Depth of a tree
E � [�] Expectation operator w.r.t. the distribution of �
J Objective function
�(�) Operator that maps a tree to its leaves
MSE(�) Mean squared error
ne(�;) Number of edges between vertex� and root node

of tree
q� 1 Discrete-time backward shift
r c(�) Crowding-distance based rank of a model
rND (�) Non-domination based rank of a model
rms(�) Root mean square

Sets, sequences, relations and ordering

� sel Selection ordering relations
� ; � Partial and strict partial Pareto ordering in ob-

jective space, respectively
Ub

a (k) Set of input terms ranging from u(k � a) to
u(k � b)

� b
a(k) Set of noise terms ranging from� (k � a) to � (k � b)

Y b
a (k); Ys;l

b
a(k) Set of output y and simulated output ys terms,

respectively, ranging from time k � a to k � b

Signals, systems and related variables

 i A subset of terms in the i th term of a polynomial
NARMAX model

xx List of Symbols

A; B; C; D; F Polynomial functions associated to IO representa-
tions of systems

As; Bs; Cs; D s Matrices associated to SS representations of sys-
tems

a; b; c; d Model coe�cients associated with parametric
Input-Output (IO) model structures

b� ;� ; a� ;� ; d� ;� Exponents of the input, output and noise terms
in a NARMAX model, respectively

�di Exponents of the noise term� (k � i)
"p ; " s One-step-ahead prediction error and simulation

error, respectively
~f (�) Hermite polynomial based representation of func-

tion f
f l (�) l -step-ahead recursive formulation off
f p (�) ; f s (�) Non-linear prediction function and non-linear

simulation function, respectively. Typically asso-
ciated with IO structure

f (�) ; g (�) Non-linear functions, typically associated with IO
structure

	 �;k Row k of the Jacobian of the� -step-ahead predic-
tion output

G; H Rational functions associated to IO representa-
tions of systems

M Model Set
M; M (�) A dynamical model and its parameterized form,

respectively
nu Maximum time-lags in input terms
nl Maximum time-lags in all terms of a discrete-time

model
nv Maximum time-lags in (�ltered) noise terms
n� Maximum time-lags in noise terms
ny Maximum time-lags in output terms
p Number of terms in a NARMAX model
S The true data-generating-system
� � Standard deviation of noise�
� Time steps for multi-step-ahead prediction
u Input
v Noise or disturbance, typically assumed to be �l-

tered
x; x i Latent variable (or state) vector and its i th com-

ponent, respectively

List of Symbols xxi

� Noise or disturbance
um ; ym Measured input and output, respectively
y0 Disturbance free output
Ŷ ;Ŷ� Vector of one-step-ahead and� -step-ahead pre-

dicted outputs, respectively
ŷ; ys One-step-ahead predicted output and simulation

output, respectively
ys;l l � approximate simulation output
�ys Empirical simulation output
y Output

Spaces and �elds

BR Borel � � algebra onR
H A Hilbert space
R; R> 0; R� 0 The �eld of reals, positive reals and non-negative

reals, respectively
�(M) Parameter space determined by the structure of

model M
Z; Z> 0; Z � 0 The set of integers, positive integers and non-

negative integers, respectively

xxii List of Symbols

Science is a bit like the joke about the drunk who is
looking under a lamppost for a key that he has lost on
the other side of the street, because that's where the
light is. It has no other choice.

Noam Chomsky

1
Introduction

M athematical models form an indispensable tool for science and tech-
nology in the modern world. The use of mathematical models has

revolutionized virtually every industry in the 20th and 21st centuries, and
plays an increasingly vital role in modern society. Accurate models of phys-
ical phenomena have been used to, for instance, transform the music indus-
try by making available entire suites of virtual instruments in hand-held
computers, save thousands of lives by predicting devastating storms days
in advance and save millions of dollars by enabling accurately-controlled
vertical landing of �rst stage systems of rockets for eventual re-use.

To enable scientists and industries to build such transformative technolo-
gies, we need tools and methodologies to build accurate models. To this
extent, a wide variety of modelling techniques have been developed, rang-
ing from �rst-principles modelling on one end of the spectrum, toblack-box
modelling techniques on the other. As engineering systems and correspond-
ing performance speci�cations become more complex, severaldata-driven
modelling approaches have been developed to cope with the increased mod-
elling challenges in the context ofdynamical systems. This has resulted in
a complex landscape between the (i) nature of dynamics of systems being
modelled, (ii) the mathematical representations used to describe the sys-
tem, and (iii) the available modelling techniques that are suitable for the
corresponding choices in items (i) and (ii). From a user's perspective, it
can be challenging and cumbersome to navigate this complex landscape.
This motivates the main research theme adopted in this thesis: How can
we automate the task of data-driven modelling from the user's perspective?

1

2 Chapter 1. Introduction

1.1 Mathematical Models

1.1.1 Introduction

Since the very nascent stages of civilized society, human beings have attempted
to understand the physical world around them. Long before the era of scienti�c
inquiry, explanations of various real-life phenomena were considered to be the do-
minion of mythology and mysticism. In the subsequent centuries, the development
of a number of organized human activities, including art, religion and scienti�c
discovery, have been attributed, in part, to our desire to make sense of the world
around us (Harari, 2014; Zaidel, 2014; Goel, 2014).

In the era of scienti�c inquiry, the quest to understand the intricate mechanisms
of the physical world emerged as the search for objective truth, to supplement the
realm of subjective truth, as in art or religion. In the age of the scienti�c method,
the approach to scienti�c discovery was based on the development of rigorous the-
ories which had to be validated(or invalidated) by experimentally establishing the
truth of inferences obtained from the theory. Application of the scienti�c inquiry to
various domains of the physical world around us lead to the development of various
formal science and mathematics. In mathematics, we found a universal language
to objectively and succinctly describe physical and abstract phenomena, enabling
scientists to developmathematical models. These mathematical models elucidate
the relationship between quantities, physical or conceptual, that eventually give
rise to the phenomena under study. For example, rigorous analysis of empirical ob-
servations led Isaac Newton to the formulation of the law of universal gravitation
and Johannes Kepler to the laws of planetary motion.

1.1.2 Utility of Mathematical Models

In the words of celebrated physicist Richard Feynman, �mathematics isnot just
another language. Mathematics is a language plus reasoning; it is a language
plus logic. Mathematics is a tool for reasoning,� (Feynman, 1965, p. 40). In-
deed, equipped with a suitable mathematical model, one can perform a number of
logical deductions, predictions or actions. For instance, one can predict eventual-
ities that are yet-to-be-observed, but nonetheless, captured by the mathematical
relations of the model. Continuing with the previous example, while empirical ev-
idence was used to develop the law of universal gravitation, the disagreement of
the mathematical model with the observations of the orbit of Uranus led the as-
tronomer Urbain Le Verrier to postulate the existence of the planet Neptune, only
to be later con�rmed by physical observations. More recently, the �rst empirical
evidence of a black hole, a prediction derived from Einstein's theory of general
relativity in early twentieth century, was obtained almost a century later (Abbott
et al., 2016; Akiyama et al., 2019). Besides prediction, one can also leverage the
understanding of laws that govern the behaviour of real-world systems in order to
expertly manipulate them. For example, a keen understanding of aerodynamics
and stability allowed Wright brothers to develop e�ective wing control mechanisms
in order to achieve sustained engine-powered �ight.

1.1 Mathematical Models 3

(a) Heat propagation in a metal bar. (b) Rotational motion of a metal bar.

Figure 1.1: An example of distributed and lumped dynamics in a system.

In modern times, a mathematical model may serve several purposes - predict data
inferred from real-world systems, understand a given system to improve its de-
sign, understand consumer behaviour and emerging trends, predict the variations
in stock markets and commodity prices, predict weather, control and optimize e�-
ciency, and so on. As the variety in these examples suggests, mathematical models
are relevant for multiple scienti�c domains and research communities - econometry
(Samuelson and Scott, 1967), machine learning (Huang et al., 2008), systems and
control (Ljung, 1998), computational biology (Leach, 2001) and metrology (Lynch,
2008), to name a few. In each of these scienti�c domains, mathematical models are
used to solve a plethora of problems.

1.1.3 Reality vs. Abstraction

The behaviour of physical objects can be in�nitely complex. The physical reality
can be seen as a manifestation of interactions between countless objects and actions
across scales ranging from microscopic to macroscopic. Capturing such complex
behaviour would not just be impossible, but also undesirable. A mathematical
model is typically built by simplifying reality upto a desired level of resolution
and by isolating the object being modelled from its surrounding elements that are
irrelevant for the intended study. This approach to modelling is referred to as the
systemsapproach (see Willems (2007) for a detailed treatment).

In the systems approach, the object being modelled, also known as (a.k.a) the
system, can be extracted from its environment, and can be seen as an entity that
interacts with its environment. This procedure is known as abstraction. Further-
more, a complex system can also be further decomposed into sub-systems that
interact with each other, with evident cause-and-e�ect relationships. At this level,
it becomes easier to formulate the mathematical equations that describe the re-
lationship between the variables (or the physical quantities) of each sub-system.
Once the sub-systems have been described to a su�cient level of detail, they can be
inter-connected via sharing of variables, thereby resulting in a model of the overall
system. Willems (2007) describes this modelling process as thetearing, zooming
and linking approach to modelling systems.

To illustrate the concept of abstraction, consider the example of heat propagating
through a metal bar given in Fig. 1.1a. The temperature pro�le of a metal bar

4 Chapter 1. Introduction

may depend on a number of factors such as ambient temperature, initial tempera-
ture pro�le, exposure to heating sources and electro-magnetic radiation, the shape
and material properties of the object, and so on. Furthermore, to truly capture
the causal forces resulting in heat propagation, inter-molecular and intra-molecular
forces that give rise to conduction, convection and radiation must be taken into ac-
count. However, in order to study the propagation of heat in the system, the e�ects
of various external and internal aspects can be either ignored due the insigni�cance
of their in�uence, or simpli�ed in order to describe their e�ects at the desired level
of detail and accuracy. This process of ignoring, abstracting and simplifying leads
to Fourier's heat propagation equation

@T
@t

= �
�

@2T
@x2

+
@2T
@y2

+
@2T
@z2

�
; (1.1)

where, T(x; y; z; t) is the temperature at point (x; y; z) and time t, and � is the
di�usivity constant of the material. Equation 1.1 reveals that the rate of change
of temperature at a point, denoted by @T

@t, is a function of the temperature of the
neighbouring points (described by the higher order spatial derivatives of the tem-
perature). In order to derive (1.1), physical phenomena such as radiation losses
are ignored since conduction is the predominant phenomenon of heat propagation
in metals. Furthermore, the system is considered to be anabstract collection of
in�nitesimally small points, distributed in continuous space, with each point asso-
ciated with its temperature. In doing so, the physical notion of molecules sharing
heat energy through vibrations and collisions issimpli�ed in order to highlight the
physical phenomenon under study - heat propagation.

1.2 Models of Dynamical Systems

In this section, we introduce the concept of dynamical systems, illustrate some
of the common utilization scenarios of models of dynamical systems and give an
overview of some of the commonly used approaches for deriving such models.

1.2.1 Dynamical Systems

A dynamical system is a system in which the relationship between the variables
depend not only on their values at a given point in time, but also on their values
in the past, i.e., it is a system with memory. Conceptually, one may consider the
variables to follow certain trajectories over a given time horizon, and consequently,
the mathematical description of the dynamical system describes the relationship
between the trajectories of the variables of the system and the external environ-
ment. The variables of a system can be in�uenced by the external environment via
exogenous excitations calledinputs, denoted asu. The dynamical system may also
in�uence the external environment via output signals, denoted asy. This concept
can be illustrated in a block-diagram representation as depicted in Fig. 1.2.

Dynamical systems may be categorized in several ways, as will be discussed in
more details in Sec. 2.2 (also see (Close et al., 2002, chap. 1)). For the purpose of

1.2 Models of Dynamical Systems 5

Figure 1.2: Block-diagram representation of a system.

introducing the research direction adopted in this dissertation, we present a char-
acterization of dynamical systems based on spatial characteristics of the system.
Such a characterization de�nes two types of dynamical systems - distributed or
lumped dynamical systems.

A distributed system is a dynamical system in which the variable are functions
of not only time, but also space. In other words, the variable of a distributed
system can be conceptualized as trajectories over temporal and spatial dimensions.
Typically, such dynamical systems are described using partial di�erential equations.
The heat propagation model of a metal bar in (1.1) is an example of a distributed
dynamical system as it describes the evolution of temperature over time and space
(see Fig. 1.1a).

In contrast, a lumped dynamical system is a dynamical system in which the vari-
ables are functions of time alone. Realistically, all physical systems are distributed
systems. However, in many cases, the spatial dynamics of a system can e�ectively
be lumped at a single or a �nite collection of points. For example, the metal bar in
Fig. 1.1a can be abstracted as an interconnection of several smaller metal bar seg-
ments. For each bar segment, spatial dependency of the thermal dynamics can be
lumped to a single variable by integrating the temperature pro�le over the length
of the segment. As the bar segments get smaller, the approximation error decreases
and the abstraction becomes closer to reality. As an alternate example of lumped
dynamics, consider the rotational dynamics of the same metal bar, hinged on one
end as depicted in Fig. 1.1b. Under the assumption that the bar is rigid, the rota-
tional motion of the bar would be equivalent to the rotation of an imaginary point
located at the center of gravity of the metal bar with a mass equal to that of the
metal bar. Hence, the rotational motion of the metal bar can be described as a
lumped dynamical system.

1.2.2 Applications of Dynamical Models

Models of dynamical systems are used in many domains of science and engineering.
In each of these domains, dynamical models are used to solve a variety of challenging
problems. We illustrate here some of the common utilization scenarios of dynamical
models. Note that this is by no means an exhaustive list of applications.

Prediction and Forecasting

A dynamical model M can be used to derive a prediction modelM p that maps
input u and output y measured in the past to predicted output dataŷ in the future.

6 Chapter 1. Introduction

Figure 1.3: A block-diagram representation of prediction.

A prediction model M p can be used to obtain prediction of the output or a variable
of a given systemS. This is visualized in the block scheme in Fig. 1.3.

Industrial applications developed around predictions based on dynamical mod-
els are ubiquitous. Forecasting (Brockwell and Davis, 2016), prediction of �nan-
cial trends (Treyz, 2013), power generation and load scheduling for power grids
(Koutsopoulos and Tassiulas, 2011) and dynamic pricing strategy of services and
commodities (Gallego and Van Ryzin, 1994) are some example applications that
extensively employ dynamic models to make predictions.

Model-based Analysis and Design

Models of dynamical systems have enabled us to develop a plethora of analytical
tools to interpret and describe the behaviour of a system. Model-based concepts
such as Lyapunov's stability, controllability and observability are considered to be
fundamental to modern systems and control theory (Franklin et al., 1994). In civil
engineering, models are used to analyse integrity of complex structures (Hibbeler
and Kiang, 2015), optimize material utilization and perform non-destructive testing
(Zou et al., 2000). In bio-informatics and molecular biology, models developed
for biological systems are used to derive inferences (Hood et al., 2004). Model-
based engineering has been crucial in developing and optimizing the structure and
function of modern aeroplanes. In many �elds of engineering and design, models
have been widely used for virtual prototyping, enabling engineers and designers to
test designs before building a physical prototype, leading to enormous savings in
time and cost (Boschert and Rosen, 2016).

Control

Control can be described as the manipulation of the behaviour of a system, by
interconnecting it with another system (the controller), such that the variables of
the system (or a subset thereof) follow a desired trajectory (Willems and Pold-
erman, 2013). Model-based control methods have enhanced safety, e�ciency and
reliability of machines signi�cantly. An entire range of control design methods have
been proposed over the past few decades. Based on a model, a user can design a
controller for a dynamical system that is optimal with respect to a given perfor-
mance measure, or robust against pre-speci�ed uncertainties in the model (Zhou
et al., 1996), or adaptive in order to deal with time-changing phenomena, or even
predictive in order to satisfy constraints imposed on the interconnected system
(Allgöwer and Zheng, 2012).

1.2 Models of Dynamical Systems 7

Data-assimilation

Yet another common use of dynamical models is in the scope of data-assimilation,
where a model is used in conjunction with measurements obtained from a physical
system, to obtain improved estimates of relevant system variables. Variations of
such applications include, for, example, soft-sensing and fault diagnosis.

Rapid detection and diagnosis of faults is vital for engineering systems that must
maintain a high production rate to remain economically feasible, or for systems
that are safety-critical. Examples of such applications include aeronautical and
automotive systems, process industries, power grids and industrial robotics. Be-
sides fault detection, mathematical models are also used for predictive maintenance
to enhance the lifetime of systems.

Other applications of data-assimilation include systems that rely on data and mod-
els in order to make critical decisions. For example, medical robots must rely on
data from multiple cameras and sensors in order to perform a certain task, e.g. see
Ren et al. (2011). A similar problem arises in the �eld of autonomous vehicles,
where the path of the vehicle must be optimized based on information obtained
from multiple sensors.

1.2.3 Model Representations of Dynamical Systems

As discussed in Sec. 1.2.2, models of dynamical systems are used in a wide array
of applications. Depending on the properties of the system, the dynamics may be
captured using a variety of mathematical representations. For the purpose of illus-
tration, in this section, we introduce some basic mathematical representations of
dynamical systems, with the focus restricted to Single-Input Single-Output (SISO)
lumped dynamical systems that are time-invariant (i.e., systems for which the gov-
erning mathematical equations do not explicitly depend on time). A more general
overview of a number of commonly-used model representations will be provided in
Sec. 2.3.

In continuous-time (CT), i.e., when time t resides in a continuous domainT � R,
an IO representation describes the input-output trajectories that are compatible
with the system, and can be expressed as solutions of ODEs. In general, this
relationship can be expressed as the following implicit ODE

g
�

dn y y(t)
dtn y

;
dn y � 1y(t)

dtn y � 1 ; : : : ; y(t);
dn u u(t)

dtn u
;

dn u � 1u(t)
dtn u � 1 ; : : : ; u(t)

�
= 0 ; (1.2)

where u(t) 2 U � R is the input, y(t) 2 Y � R is the output and g(�) is a function
that governs the relationship between input and output, and their higher order
derivatives. Signalsu and y are ordinary solutions with left compact support. The
system representation in (1.2) is typically quite challenging to interpret. In many
cases, the system can also be represented by a set of �rst order ODEs, resulting in
a so-called State-Space (SS) representation, as follows

_x(t) = f (x(t); u(t)); (1.3a)

y(t) = h(x(t); u(t)) ; (1.3b)

8 Chapter 1. Introduction

where x(t) 2 X � Rn is the state vector, f : X � U ! X is a function that governs
the time-evolution of the states, and h : X � U ! Y is a function that maps the
input and state to the output. Signals u, x and y are ordinary solutions with left
compact support.

In many applications, model-based tools are developed in order to be ultimately
implemented in computers or embedded systems that are governed by a discrete
clock cycle. Consequently, discrete-time (DT) equivalents of model representations
in (1.2, 1.3) have also been developed. Under suitable conditions on signal sampling
and reconstruction, and assuming that the model representation in (1.2) can be
made explicit, a DT IO representation of a dynamical system can be expressed as
the following di�erence equation

y(k) = gd (y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)) ; (1.4)

where k 2 Z is a time index related to the continuous time t as t = kTs for some
sampling time Ts > 0, gd : Un u +1 � Y n y ! Y is a function that maps past input
and output values to the output y(k), and nu and ny now represent the maximum
number of time-lags in the input and output signals, respectively. Similarly, the
DT SS model can be expressed as a set of di�erence equations

x(k + 1) = f d (x(k); u(k)); (1.5a)

y(k) = hd (x(k); u(k)) : (1.5b)

The system representations in Eqns. (1.2)�(1.5) are fairly general, and can be used
to represent large classes of dynamical systems.

1.2.4 Obtaining Models of Dynamical Systems

As discussed in Sec. 1.2.2, model-based tools play a vital role in many �elds of
research and in the industry. Furthermore, as demonstrated in Sec. 1.2.3, a dynam-
ical system may be represented in many di�erent mathematical forms. Depending
on the intended application, some model representations may be more favourable
than others. This naturally leads to the following challenge: for a given dynamical
system, how can we derive or estimate a model that is su�ciently accurate, and
furthermore, has structural properties suitable for the intended application?

Over the years, many modelling approaches have been developed to address this
challenge. In terms of the usage of prior understanding of the system to-be-
modelled, these methods lie in a spectrum of possible modelling approaches, rang-
ing from techniques based on usage of underlying physical laws alone, to those
that attempt to construct a model solely based on data measured from the sys-
tem. Roughly, these methods can be classi�ed into three paradigms as depicted
in Fig. 1.4: �rst principles modelling, black-box modelling and gray-box modelling
(Nelles, 2002). It should be noted that there exists a large overlap at the borders
of these approaches, for instance, Ljung (2010) describes a �ner characterization of
the spectrum of modelling approaches.

1.2 Models of Dynamical Systems 9

Figure 1.4: Modelling approaches can be roughly categorized into three types.
First principles modelling predominantly relies on the use of existing scienti�c laws,
black-boxmodelling predominantly uses measured data obtained from the system,
and gray-box modellinguses existing scienti�c laws to construct a partial structure
of the model, and used measured data to �ne-tune the model to match the given
system (Constituent icons made by Freepik from www.�aticon.com).

First Principle Modelling

The most traditional approach involves making use of prior scienti�c knowledge in
order to build a model of the system. For instance, mechanical motion systems are
often modelled using Newton's laws of motion or via the Langrangian equation,
and Kircho�'s circuit laws can be used to model simple electronic circuits. This
approach to building models is known as�rst principles modelling and results
in symbolic or parametric models. The most signi�cant advantage of the �rst
principles modelling approach is that the resulting model is transparent, i.e., each
function and parameter in the model can be attributed to a speci�c component of
the dynamical system, making it easier to validate a model, analyse its properties,
and employ the model for various applications. On the other hand, modelling
complex dynamical systems using �rst-principles knowledge can be a cumbersome
task for the following reasons:

� lack of knowledge of the underlying physical laws,

� inability to extrapolate (interpolate) the known physical laws to a macro-
scopic (microscopic) level,

10 Chapter 1. Introduction

� the complexity arising due to interaction of multiple variables within the
system,

� the increased reliability on expert's knowledge resulting in increased costs.

These challenges make �rst-principles modelling a di�cult and time-consuming
task, even for an expert practitioner. Deriving a �rst-principles model for a com-
plex dynamical system can sometimes take several months, or even years, thereby
diverting the user's attention from the eventual use-case of the model to the deriva-
tion of the model itself.

Black-box Modelling

Black-box modelling techniques were developed as an alternative modelling ap-
proach that addresses some of the challenges experienced in �rst-principles mod-
elling. In black-box modelling, the objective is to estimate a model based only on
input-output data measured from the system to-be-modelled. Typically, the user,
based on experience and insight gathered from measured data, chooses a model
structure that is appropriate for the system to-be-modelled, and subsequently uses
data to estimate parameters in the chosen model structure. This alleviates the
need to apply scienti�c knowledge rigorously to build a model. However, choosing
an appropriate model structure is not a trivial task, and requires an experienced
user to make well-reasoned choices and assumptions that ultimately in�uence the
quality of the estimated model. The challenge of model structure selection will be
examined in more details in Chap. 2 for several data-driven modelling approaches.
Furthermore, the resulting models are typically not transparent, since it is not
possible to relate the estimated parameters to actual physical parameters of the
system. As a result, the resulting estimated models are often referred to asblack-box
models.

Gray-box Modelling

An intermediate approach between �rst principles modelling and data-driven mod-
elling is the so-calledgray-box modellingapproach. In this approach, a user relies
on physical laws to determine a model form, or a part thereof, that is suitable to
describe the system to-be-modelled. Unlike �rst-principles models, gray-box mod-
els contain unknown quantities or components, e.g., physical parameters speci�c
to the system or unmodelled dynamics such as friction or backlash. Subsequently,
measured data obtained from the system is used to estimate the unknown param-
eters or components of the model. In practice, gray-box modelling techniques are
widely used in many industries since (i) the models are structured in a form that
is easy to interpret, (ii) the models are formulated in terms of physical quantities
that may be of interest to the user, and (iii) a gray-box model can be tuned to
describe the behaviour of a given system taking into account properties that are
speci�c to that system, e.g., taking into account manufacturing errors speci�c to
the system.

1.3 System Identi�cation 11

Figure 1.5: A general schematic of the SI problem.

1.3 System Identi�cation

System Identi�cation (SI) refers to the task of data-driven modelling of dynamical
system. It is an umbrella term that covers a number of di�erent approaches for
modelling dynamical systems, ranging from black-box modelling approaches where
the model is estimated solely from data, to �rst principles modelling approaches
where certain physical parameters are estimated from measured data. In this sec-
tion, we introduce the general SI problem and the common steps involved in solving
it. In Sec. 1.3.3, we brie�y discuss some of the challenges in each of the steps in
the identi�cation procedure.

1.3.1 Problem Description

The problem of SI can be informally described as follows. There exists a dynamical
system S that can be excited by exogenous input signalsu(k) 2 Rm , and output
signals y(k) 2 Rq can be measured from the system, see Fig. 1.5. Furthermore,
there exists an unmeasured exogenous ornoise signal � (k) that may a�ect the
measured response of the system. The unmeasured signal� may be caused by
unmeasured excitations from the environment, or by measurement noise introduced
by the measuring instrument used. The objective is to construct a modelM of the
system S based on measured dataDN = f um (k); ym (k)gN

k=1 obtained from the
system, such that the modelM satis�es a set of speci�cations given by the user.

At this point, the problem is not yet formalized mathematically, and there exists
a number of open questions. What should be the form or structure of modelM ?
What performance measures should be used to quantify the degree of �correctness�
of an estimated model. Should there be any conditions imposed on the measured
dataset in order to ensure good estimation properties? In order to formulate the
SI problem concretely, the user must make a number of assumptions and informed
decision during the identi�cation procedure. This procedure is referred to as the

12 Chapter 1. Introduction

Figure 1.6: The typical identi�cation cycle (solid and dotted lines indicate �ow
of information, dashed lines are due to the �cycle�) (see (Ljung, 1999, Chap. 1)).

identi�cation cycle, in which the user iteratively updates the assumptions and de-
cisions made during the identi�cation procedure based on the estimated models.
The identi�cation cycle can be roughly categorized into 5 steps (Ljung, 1999, Chap.
1): (i) experiment design, (ii) model structure and complexity selection, (iii) per-
formance measure speci�cation, (iv) model optimization, and (v) model validation.
These are described in the following section.

1.3.2 The Typical Identi�cation Cycle

A typical identi�cation cycle is depicted in Fig. 1.6. The steps involved in the
procedure are described below.

1. Experiment design: Any identi�cation procedure typically begins with ex-
periment design. This includes setting the con�guration of the experiment,
usually open-loop or closed-loop1 (see Fig. 1.7), and designing the input ex-
citation signal. The choice of the input signal is in�uenced by the nature of
dynamics to-be-modelled and also by choices yet-to-be-made by the user in
the subsequent steps, especially the choice of model structure and complexity.

1A closed-loop experiment con�guration becomes necessary when the system S is unstable.

1.3 System Identi�cation 13

(a) Block-structure repre-
sentation of an open-loop
experiment con�guration.

(b) Block-structure representation of a closed-loop exper-
iment con�guration, where r is a desired reference trajec-
tory, e is the error between r and y, and K is a stabilizing
controller.

Figure 1.7: Open- and closed-loop con�gurations for a system identi�cation ex-
periment.

2. Model structure and complexity selection: One of the more involved choices to
be made is the choice of themodel set, i.e., the set of models to be considered
during the identi�cation task. In particular, the user must make decisions
related to the following aspects:

� the structure of the dynamical model - based on experience or experi-
ments, the user must choose a structure for the modelM . At this stage,
the user may also incorporate considerations from the eventual use-case
of the model. In addition, the user must also choose a noise model struc-
ture. This includes, among others, the location at which noise enters
the experimental setup con�guration, i.e., position of noise� entering in
the block scheme shown in Fig. 1.5, and the statistical and dynamical
properties of the noise process. The combined choices of model struc-
ture and noise properties leads to the choice of the so-called model class
associated with the identi�cation cycle.

� the complexity of the dynamical model - even when the model class is
selected, there exists several degrees-of-freedom within the model class
that determines the complexity of a model in the model class. A user
must typically also select the degrees-of-freedom or the number of free
parameters in the model. This choice is crucial since, if the model struc-
ture does not have su�cient degrees-of-freedom, some of the dynamics
may remain un-modelled, and conversely, if the model contains too many
free parameters, the estimated model may over-�t the data, capturing
the e�ects of noise in the particular dataset which do not generalize to
the overall dynamic behaviour of the system. Typically, the choice of
model complexity leads to a model structureM that is parameterized
by model parameters� that belong to some parameter space� . Hence,
the choice of model class and model complexity determine the set of
all models that will be considered during the identi�cation procedure,
a.k.a, the model set, given by M := f M (�)j� 2 � g.

3. Identi�cation criterion speci�cation - After hypothesizing the model struc-
ture, the user must de�ne an identi�cation criterion, i.e., the criterion that
should be optimized during the estimation of the free parameters of the model.
The choice of identi�cation criterion is often determined by the use-case of the

14 Chapter 1. Introduction

model, e.g, short-term prediction, simulation, etc. At this stage, the identi-
�cation problem has been mathematically de�ned. Denote the identi�cation
criterion as J : Rn ! R, a function that depends on the model parameters
� 2 Rn and the measured dataDN . The identi�cation problem is then to
estimate a modelM (�) 2 M that minimizes the cost function J (� ; DN).

4. Optimization - The formulation of the identi�cation problem results in the
following mathematical optimization problem

� � = arg min
�

J (� ; DN): (1.6)

Solving the optimization problem in (1.6) yields the identi�ed model M (� �).
The optimization problem can be solved by using an appropriate optimization
technique. In some cases, the problem in (1.6) can be reformulated as a
convex optimization problem. In the more general setting, however, more
sophisticated non-linear optimization techniques must be employed.

5. Model validation - The quality of the estimated model M (� �) is in�uenced by
the choices and assumptions made during the identi�cation cycle, e.g., choice
of model structure and complexity. Hence, before accepting the estimated
model, the decisions made during the identi�cation cycle must be veri�ed.
This is commonly done via hypothesis testing on the basis on inferences de-
rived from the model for a given dataset. A dataset used for model validation
should be independent of the data that was used in Step 4 of the identi�-
cation cycle. If the hypothesis is invalidated, then the choices made in Step
1-3 must be re-visited. On the other hand, if the hypothesis cannot be inval-
idated, then the choices made during the identi�cation cycle are deemed to
be correct and the estimated modelM (� �) can be accepted as the identi�ed
model. In addition to hypothesis testing, in the model validation step, one
may also check if the estimated model is suitable for it's eventual use-case,
for example, for design of control schemes or simulators.

Many SI approaches have been proposed in the literature, most of which �t within
the basic identi�cation cycle described in this section. The diversity in SI methods
is primarily due to (i) the diversity of the dynamics to-be-modelled and (ii) the
diversity in the intended model structures. For example, the class of Linear Time-
Invariant (LTI) models may be represented using Frequency Response Functions
(FRFs), IO models as in (1.4), or SS models as in (1.5), and can be modelled us-
ing the corresponding data-driven methods presented in (Pintelon and Schoukens,
2012), (Ljung, 1999) and (Van Overschee and De Moor, 1994), respectively. Fur-
thermore, each of these methods have been extended to richer classes of dynamical
systems such as Linear Time-Varying (LTV) systems, Linear Parameter-Varying
(LPV) systems and Non-Linear (NL) systems, resulting in a vast landscape of meth-
ods. A more detailed review of various identi�cation methodologies is reserved for
Chap. 2.

1.3 System Identi�cation 15

1.3.3 Challenges in System Identi�cation: A User's Perspec-
tive

A typical identi�cation task involves a number of steps, as laid out in the identi�-
cation cycle discussed in Sec. 1.3.2. Depending on the identi�cation methodology
employed, these steps may require the user to make a number of decisions and
assumptions (this will be reviewed in detail in Chap. 2). While the speci�c nature
of user-interaction depends on the identi�cation methodology used, these choices
are crucial as they ultimately in�uence the quality of the identi�ed model. This
makes SI a challenging task for an inexperienced user.

Following the identi�cation cycle described in Sec. 1.3.2, some of the challenges for
the user are described below.

1. Input design - When designing an input signal for an identi�cation exper-
iment, the user must be cognizant of a number of aspects. Firstly, in an
ideal scenario, it is desirable to design an input sequence that ispersistently
exciting with respect to (w.r.t) the chosen model set, i.e., based on the input
excitation used, it should be possible to distinguish between any two models
in the model set w.r.t the chosen performance measure. Furthermore, for
LTI systems, estimating a good model based on a persistently exciting input
ensures that the model is accurate even under extrapolation (assuming that
the true system belongs to the chosen model set). This is due to the principle
of linearity. However, if the given system behaves non-linearly, the user must
also take care to design an excitation signal that closely resembles the typical
input excitation used for the given system, to ensure model quality in that
region of the solution space. If there is no structural error in the chosen model
structure, the estimated model will also be valid for a larger class of inputs.
However, no such guarantee can be derived when there is a systematic error
in the chosen model structure, due to the non-linearity of the system. To
determine the nature of dynamics of the system, a user must rely on past
experience or knowledge of the system. Alternatively, the user can perform
some preliminary experiments in order to develop a better understanding of
the dynamics (Pintelon and Schoukens, 2012).

The choice of input excitation used during the identi�cation experiment also
directly a�ects the variance of the parameter estimates of the model. This
knowledge has been used in order to develop input signals that minimize
the variance of parameter estimates. Conversely, a poorly designed input se-
quence can also result in poor variance properties of the parameter estimates.

2. Model structure and complexity selection - The choice of model structure
and complexity is primarily motivated by the nature of the dynamics of the
system, and the model representation used to describe the dynamics. The
class of dynamics of the true system along with the plethora of model repre-
sentations that can be used to describe the system forms a complex landscape
that can be di�cult to navigate. A general overview of this landscape would
be too extensive to present here, and hence, is reserved for Chap. 2. Here,

16 Chapter 1. Introduction

we provide some examples to merely illustrate the nature of user-intervention
required in this step of the identi�cation cycle.

The �rst step, from the user's perspective, is to determine the class of dynam-
ics of the system being modelled. In order to obtain insight into the nature
of dynamics of the system, a user may

(a) perform informative experiments that reveal the nature of the dynamics
of the system after appropriate analysis (see Pintelon and Schoukens
(2012)), or

(b) rely of experience or a general understanding of the physical laws that
govern the system.

In both cases, determining the dynamic class of the system is a non-trivial
task. An overview of classes of dynamical systems, relevant in the context of
this dissertation, is presented in Sec. 2.2.

After determining the dynamic class of the system, the user must also choose
an appropriate model representation. This choice is often motivated by (i)
the ultimate use-case of the model, or (ii) the identi�cation methodology
preferred by the user, see Sec. 2.4 for an overview. For example, for the class
of LTI systems, the user may choose:

� Parametric model representations such as linear IO models or linear
SS models. These may be further structured in terms of the process
dynamics and noise properties, e.g., linear IO model structures include,
among others, Finite Impulse Response (FIR), Auto-Regressive models
with eXogenous inputs (ARX) and Box-Jenkins (BJ) structures.

� Non-parametric model representations2 such as FRFs or Gaussian Pro-
cess models.

The choice of a particular model representation comes with its own merits and
demerits. For example, the advantage of using non-parametric models is that
the problem of model structure and complexity selection becomes simpli�ed
for the user3. On the other hand, non-parametric models are not suitable
for many model-based methods such as optimal control design and stability
analysis and would require an additional modelling or interpolation step.
Ultimately, it becomes the user's responsibility to align the choice of model
structure and complexity not only with the dynamics of the true system, but
also the ultimate use-case of the model.

Finally, based on the inferred dynamic class of the system and the chosen
model representation, the user must choose the appropriate model structure
and complexity, which is, again, a non-trivial task.

2These models are called non-parametric since they do not make use of an explicit �nite-
dimensional parameter vector to describe the dynamics of the system. This does not imply that
non-parametric models do not contain parameters to be estimated. In fact, for non-parametric
models like FRFs, the possible number of parameters to be estimated grows with the amount of
data available for its estimation.

3Nonetheless, the user is still required to specify certain hyper-parameters that e�ectively
results in model structure and/or complexity selection in a more abstract sense.

1.3 System Identi�cation 17

Remark 1.1. For the class of LTI systems, there exist several robust guide-
lines for a user to follow in order to choose the appropriate model structure
and complexity, e.g., see Ljung (1979), Pintelon and Schoukens (2012) or
automated software packages such as Gentil et al. (1990) and Haest et al.
(1990). However, for more complex systems such as NL systems, the choice
of the model structure becomes far more involved.

3. Identi�cation criterion - In most real-life applications, the identi�ed model
is required to satisfy not one but multiple speci�cations. For example, when
estimating a model for the dynamics of the suspension of a vehicle for the pur-
pose of Model Predictive Control (MPC) design, the estimated model should
have high accuracy and low run-time complexity, simultaneously. This implies
that the performance measureJ (� ; DN) should be a vector-valued function
rather than a real-valued function. In general, optimization of a vector-valued
objective function does not yield a single optimal solution, but an entire set
of optimal solutions, also called thePareto-front . Hence, optimizing for mul-
tiple identi�cation criteria inherently involves making a trade-o� between the
measures being optimized.

Most identi�cation methods proposed in the literature formulate the identi�-
cation problem as a single-objective optimization problem. This necessitates
the conversion of a multi-objective optimization problem to a single-objective
problem. There are essentially three ways in which this can be done. In the
�rst approach, the single performance measure is taken to be a linear combi-
nation of the multiple performance measures, weighted by so-calledtrade-o�
parameters. A user must a-priori select trade-o� parameters. If the resulting
model does not satisfy all the performance speci�cations, the identi�cation
cycle must be repeated. In the second approach, the trade-o� parameters
are seen as hyper-parameters that can be optimized to determine the best
trade-o� value. In the third approach, one of the performance measures is
selected as the primary modelling objective, while the other objectives are
converted to �reasonable constraints� imposed on the single-objective opti-
mization problem. The user must determine what constitutes as reasonable
constraints for the resulting optimization problem.

4. Optimization method - As illustrated in Fig. 1.6, the optimization step in
the identi�cation cycle is determined by the choices made in design of exper-
iment, selection of an identi�cation criterion and speci�cation of the model
set. A user must take care to ensure that the chosen optimization technique is
appropriate for the chosen identi�cation criterion and the structure imposed
on the model. An incorrect choice of optimization technique may result in
bias (i.e., structural errors) in the model estimates, or high variability in the
model estimate.

5. Model validation - This is a crucial step in the identi�cation cycle, as the
user must validate (or invalidate) the hypothesis made in the previous steps
of the identi�cation cycle. As discussed in Sec. 1.3.2 there are a number of
tools available for the user at this step, including correlation analysis and
cross-validation. However, the user must be aware of technical details that

18 Chapter 1. Introduction

underpin these techniques, for example, a linear correlations analysis may
not be suitable to analyse the properties of residual signals in a non-linear
setting.

The user may also employ information metrics such as Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC), to assess the e�ect
of introducing extra degrees-of-freedom (or complexity) to the model. In
the linear setting, this can be useful to select an appropriate complexity of
the model, since the number of ways in which complexity can be added to
the model is restricted. On the other hand, in the non-linear setting, as
the complexity of the model increases, the number of ways in which more
degrees-of-freedom can be added to the model increases rapidly. This makes
it di�cult to use information metrics to choose appropriate model complexity
in the non-linear setting.

1.4 Goal of the Research

In Sec. 1.3.3, we gave a glimpse of the challenges a user must encounter when
applying one of the standard SI approaches available in the literature. For an
inexperienced user, these challenges can be daunting. Hence, there is a need to
develop an identi�cation framework that simpli�es or, whenever possible, eradi-
cates the need for user-interaction during the identi�cation cycle. An identi�cation
framework in which the work�ow is streamlined and partially automated for the
user enables the user to focus on the utilization purpose of the model rather than
developing the model itself. This motivates the research direction adopted in this
dissertation.

Research Objective

Develop a framework for system identi�cation that, for a given set of mea-
sured data and performance measures set by the user, automates the task
of model estimation.

The conceptualized identi�cation framework is illustrated in Fig. 1.8. The research
objective, as formulated here, is fairly general and ambitious. In the sequel, we
make a number of assumptions to narrow down the scope of research presented
in this dissertation. Subsequently, we translate the research objective into action-
able research questions. These research questions are motivated by the typical
challenges experienced by a user during the identi�cation cycle, as discussed in
Sec. 1.3.3. These research questions will be positioned w.r.t existing identi�ca-
tion methodologies in Chap. 2, where we provide a broad overview of the system
identi�cation literature.

Remark 1.2. The identi�cation cycle begins with the design of experiment and
collection of data. As mentioned in Sec. 1.3.2, the design of an input signal is
in�uenced by the properties of the system and the utilization purpose of the model.
Moreover, diverse application domains dictate a diverse set of constraints on in-
put excitation signals, e.g., constraints on the amplitude, power, spectral content,

1.4 Goal of the Research 19

Figure 1.8: An illustration of the conceptualized identi�cation framework, rep-
resented in this �gure as `automated model synthesis'. The desired identi�cation
framework automatically estimates models based on performance speci�cations and
measured experimental data provided by the user.

length, sign and resolution of the excitation signal. In some application domains,
the excitation signal may not be a design variable available to the user, for instance,
when modelling stress deformations of mechanical structures due to environmental
agents, or when modelling the interaction between biological agents in an organ-
ism. Due to this variability in the experiment setting, we begin conceptualizing the
desired framework at the point where measured data is already available. This im-
plies that input design is excluded from the scope of research for the purpose of this
dissertation. This is done to avoid making application-speci�c assumptions.

Research scope

In reality, most physical systems exhibit distributed dynamics, i.e., dynamics w.r.t
the spatial domain. However, in terms of measurements obtained at point loca-
tions in space, the dynamics of the system are e�ectively integrated over the spatial
domain. Hence, in this dissertation, we consider models of lumped dynamical sys-
tems. Furthermore, the primary focus of the research presented in this dissertation
will be limited to DT IO representations of SISO dynamical systems. Nevertheless,
the identi�cation framework developed in this dissertation is based on general con-
cepts that can be extended to other model representations. Some of the possible
extensions will be discussed in Chap. 8.

The objective of �automated system identi�cation� has received a lot of attention
in SI literature. In the context of non-parametric system identi�cation, several
methodologies have been developed that seek to minimize the number of decisions
made by the user, e.g., see Rasmussen and Williams (2017) and Ljung et al. (2019).
These developments are made possible due to the use of (i) non-parametric model
representations like Gaussian Processes, that can be used to describe a large va-
riety of dynamics, and (ii) complex optimization techniques that can be used to

20 Chapter 1. Introduction

automatically estimate the �optimal� complexity of the model. A more detailed
overview of such methodologies is reserved for Chap. 2. However, in the setting
of parametric models, the research objective of automating system identi�cation
remains a relevant challenge. Although some methods have been developed to
automate the selection of model terms within a �xed model structure, these ap-
proached do not typically extend to other model structures (see Sec. 2.4.2 for an
overview). Hence, the scope of this dissertation is restricted to parametric model
representations.

Model Structure and Complexity Selection

In Sec. 1.3.3, we discussed the challenges in determining an appropriate model
structure and complexity for the identi�cation task. In order to automate this task
for the user, the conceptualized identi�cation framework should be able to function
across a variety of model structures and complexities. This leads us to the following
research question.

Research Question 1

How can we automate the task of model structure and complexity selection
in the parametric setting?

Recall that speci�cation of the model set leads to a reformulation of the identi�ca-
tion problem as a parameter estimation problem as described in (1.6). Hence, in
order to develop a framework where model structure and complexity can be auto-
matically determined, the notion of a model set must be generalized across multi-
ple model structures and varying levels of complexity. While a generalized model
set would enhance the general applicability of the desired identi�cation frame-
work, in many use-cases, the user might possess prior knowledge of the system, or
application-speci�c constraints on the model set. These two somewhat contrasting
ideas lead to the following two sub-problems.

Research Question 1.1

How can we generalize the notion of model set to span across multiple model
structures and model complexities?

Research Question 1.2

How can we introduce meaningful restrictions or prior knowledge to the
generalized model set?

Research questions 1.1 and 1.2 are related to the problem of generalizing the model
set and adding prior information. However, the problem of selecting the appropri-
ate model structure and complexity remains. This is essentially an optimization
problem, and hence, is deferred to Step 4 of the conceptualized identi�cation cycle.

1.4 Goal of the Research 21

Performance Measure(s)

As discussed in Sec. 1.3.3, a given identi�cation task may involve multiple mod-
elling objectives speci�ed by the user. For an automated identi�cation approach, we
cannot rely on a user to reformulate the multiple modelling objectives into a single
identi�cation criterion that can be treated with existing identi�cation methodolo-
gies (see discussion in Sec. 1.3.3). This motivates the following research question.

Research Question 2

How can we incorporate multiple user-speci�ed performance measures in
the identi�cation framework?

There are two key aspects related to this question:

1. In the case of a single modelling criterion, the notion of `optimality' is well
understood. However, in a multi-objective setting, the notion of `optimality'
must be adapted to be able to deal with situations in which the modelling
objectives contradict each other, resulting in not one but a multitude of `op-
timal performance values'. While the notion of optimality in a multi-criteria
setting has been studied in the �eld of optimization theory, these concepts
have been rarely utilized in the system identi�cation literature.

2. In an automated setting where the model set includes a variety of model struc-
tures, there is a greater chance of the conceptualized identi�cation method-
ology to explore model structures that are not appropriate to describe the
dynamics of the true system. However, most of the classical identi�cation
methodologies use identi�cation criteria that are predicated on the assump-
tion that the true system can be described the the chosen model structure
(this will be discussed in greater details in Sec. 2.4.2). Hence, in the desired
automated setting, we must re-examine the assumptions that are commonly
made in traditional identi�cation methodologies.

Remark 1.3. Note that, in classical system identi�cation, the notion of identi�-
cation criterion, i.e., the cost function to-be-optimized, may di�er from the notion
of performance measures, which relate to the modelling speci�cations that an esti-
mated model is required to satisfy. Typically, the identi�cation criterion is a scalar
function that measures the �goodness� of a model, and is primarily motivated by
the statistical interpretations of the resulting model estimate, while performance
measures (or speci�cations) are used to verify the utility of the estimated model for
the intended use-case. However, in this dissertation, we aim to make use of mul-
tiple identi�cation criteria, including ones that are typically used as performance
measures in classical system identi�cation methods. Hence, in this thesis, we use
the terms `performance measures' and `identi�cation criteria' interchangeably.

Optimization

The next step in the identi�cation cycle is the optimization step. The generalized
problem setting conceptualized by Research Questions 1 and 2 lead naturally to

22 Chapter 1. Introduction

following question.

Research Question 3

How can we optimize model estimates across multiple model structures and
multiple identi�cation criteria?

Since the identi�cation problem is formulated across multiple model structures, the
optimization method adopted must be capable of robustly solving the model struc-
ture selection problem. However, model structure selection is only a part of the
identi�cation problem, as any model structure will also contain unknown parame-
ters that must be estimated based on measured data. Finally, the optimization for
model structure and parameters must be performed in a multi-objective setting.

1.5 Structure of the Thesis

In the previous section, we formulated a number of research questions motivated
by the challenges experienced by a user in a typical identi�cation cycle. We further
discuss the relevance of these research questions in the context of existing system
identi�cation methodologies in Chap. 2, where we present a general overview of a
number of SI methodologies that have been developed in the last few decades. The
literature review presented in Chap. 2 is supported by a preliminary discussion on
the classes of dynamical systems and some commonly used model representations.

The identi�cation framework developed in this dissertation is built upon three key
ingredients: Evolutionary Computing (EC) , Tree Adjoining Grammar (TAG) and
the multi-objective optimization framework.

� In Chap. 3, we introduce the preliminaries of EC, which forms the computa-
tional basis of the identi�cation framework developed in this thesis, speci�-
cally addressing the model structure and complexity selection problem.

� In Chap. 4 we introduce the concept of TAG, a grammar formalism originat-
ing in computational linguistics, and develop a generalized notion of a model
set based on TAG. The proposed TAG-based method for specifying a model
set addresses Research Questions 1.1 and 1.2 proposed in Sec. 1.4.

� In Chap. 5 we introduce the the multi-objective framework that will be used
to de�ne an ordering on the candidate models based on multiple performance
measures. Additionally, we also propose a set of four identi�cation criteria
that will be used in the analysis and experimental veri�cation of the proposed
identi�cation methodology. Related computational details are also discussed.
The ideas presented in Chap. 5 address Research Question 2 proposed in Sec.
1.4.

After introducing the three key ingredients, in Chap. 6 we assemble these ideas
together to develop the conceptualized framework for automated identi�cation.

1.5 Structure of the Thesis 23

The proposed methodology is discussed in detail, and the asymptotic behaviour
and computational complexity of the method is analysed. The proposed EC-based
identi�cation framework is able to explore models in the generalized model set
(based on TAG) and optimize models for multiple identi�cation criteria, thereby
addressing Research Question 3, and also the overall research objective.

In Chap. 7, the performance of the proposed identi�cation framework is experimen-
tally evaluated on a collection of identi�cation problems. An academic example is
used to empirically study the performance of the proposed framework. Subse-
quently, a collection of physical case-studies and benchmark problems are used to
evaluate the proposed methodology.

Finally, in Chap. 8, we summarize the main contributions of this thesis and re�ect
on the degree to which the proposed identi�cation framework achieves the research
objective set at the beginning of this thesis in Sec. 1.4. We also discuss a number
of possible extensions that can be made in order to broaden the scope of the
identi�cation concept developed in this thesis.

24 Chapter 1. Introduction

An original idea? That can't be too hard. The library
must be full of them.

Steven Fry

2
System Identi�cation: The State-of-the-art

C hapter 1 culminated in the formulation of the research objective pur-
sued in this dissertation: to develop a identi�cation methodology that

automates the task of system identi�cation form the user's perspective.
The research objective was also dissected into more speci�c, actionable
research questions. The research objective, and the related research ques-
tion, proposed in Chap. 1 were motivated by the challenges experienced
by a user in the typical identi�cation cycle.

In this chapter, we seek to position the proposed research objective, and the
constituent research questions, with respect to existing system identi�ca-
tion methodologies. In order to achieve this, we provide a general overview
of the system identi�cation literature, focusing on some of the commonly-
used and well-studied identi�cation methodologies that have been devel-
oped over the past decades. The objective is not to provide an exhaustive
review, but to shed light on the basic concepts of each of these identi�ca-
tion frameworks. This will allow us to understand the nature of decisions
a user must make within the context of each of identi�cation frameworks
described, and the consequent impact on the quality of estimated models.

25

26 Chapter 2. System Identi�cation: The State-of-the-art

2.1 Introduction

The SI problem has been a subject of active research for more than �ve decades.
Many approaches have been developed over the years to address the SI problem.
In this chapter, we provide a global overview of the research landscape of SI. The
overview presented here is by no means complete. The objective, instead, is to
paint a general picture illustrating the various directions in which research in SI
has proceeded in the past years. Such a general overview will enable us to position
the research direction adopted in this thesis in the context of the SI literature.

In the context of the research direction adopted in this thesis, two fundamental
questions underpin the methodology of any identi�cation technique:

1. What class(es) of dynamical systemsis the methodology developed for?

2. What model representation(s) is the identi�cation technique developed for?

In order to aid the discussion of various identi�cation methods, we �rst introduce,
in Sec. 2.2, a number of ways in which various classes of dynamical systems can be
characterized. Subsequently, in Sec. 2.3, we introduce a number of ways in which
model structures or representations may be classi�ed. Based on these characteriza-
tions, we discuss a number of identi�cation techniques presented in the literature in
Sec. 2.4. In Sec. 2.5 we summarize some of the key observations from the presented
overview, and connect these with the research questions formulated in Sec. 1.4.

2.2 Classes of Dynamical Systems

The essential challenge of SI is to capture the behaviour of a dynamical system in
the form of a mathematical model. Dynamical systems may exhibit a wide range of
properties. In this section, we introduce a selection of these properties, restricting
our scope to lumped dynamical systems. In order to illustrate these properties, let
us assume that a dynamical system can be described as

y(t) = f (u(t); t); (2.1)

where u(t) 2 U � R in the input, y(t) 2 Y � R is the output, f is a dynamic
operator and time t is in some domainT .

1. Linearity - The system is said to be linear if the following holds

f (u1(t) + u2(t); t) = f (u1(t); t) + f (u2(t); t); (2.2)

and
f (�u 1(t); t) = �f (u1(t); t); (2.3)

for any u1(t); u2(t) 2 U and � 2 R. All systems that do not satisfy this
property are said to be non-linear.

2.3 Characterizations of Model Representations 27

2. Time-invariance - a system is said to be time-invariant if a �nite time-shift
� 2 T in the input corresponds to an identical delay in the output. i.e., if
y1(t) = f (u1(t); t), then

y1(t + �) = f (u1(t + �); t) (2.4)

is true. If the system is time-invariant, then the explicit dependency of (2.1)
on time t can be dropped. A system that does not satisfy this property is
said to be time-varying.

3. Nature of time-domain - Most physical systems exhibit dynamics that evolve
in continuous time, i.e., T � R. In contrast, dynamics of digital systems
typically evolve in discrete time, which implies T � Z. Additionally, hybrid
systems exhibit dynamics that evolve in both continuous-time and discrete-
time. This may include, for example, dynamics that switch from one mode
to another based on time, input excitation or states of the system, or systems
in which a physical component interacts with a digital component.

4. Randomness of the cause-e�ect relationship - When a system is governed
by deterministic cause-and-e�ect relationships between system variables, the
system is said to be deterministic. On the other hand, systems may also
possess inherent randomness in the cause-and-e�ect relationships between
system variables. Such systems are said to be stochastic.

The behaviour of a given dynamical system may be described by combinations of
the properties discussed above. For example, perhaps the most widely studied class
of systems are systems that are Linear time-invariant (system). Systems that are
linear, but exhibit time-varying phenomena belong to the class of LTV systems.
The class of Non-Linear Time-Invariant (NLTI) systems are far more involved than
LTI systems, and may exhibit complex dynamics such as bifurcations, limit cycles
and chaos (Hirsch et al., 2012). Switched-Linear (SL) systems, hybrid systems that
switch between a collection of LTI systems, may also exhibit unexpected dynamical
properties. For example, it is well-known that SL systems can be unstable even
when all constituent LTI models are stable (Goebel et al., 2009).

2.3 Characterizations of Model Representations

In order to express various combinations of properties of dynamical systems dis-
cussed in the previous section, many model representations have been developed.
Model representations can be characterized based on a number of features. In this
section, we introduce some of these characterizations of model representations, and
examples of model structures therein. The overview is depicted schematically in
Fig. 2.3.

2.3.1 Deterministic of Probabilistic

In Sec. 2.2, we introduced stochastic and deterministic relationship between input
and output as a characterization of the dynamics of the systems. However, in

28 Chapter 2. System Identi�cation: The State-of-the-art

Figure 2.1: The characterization of model classes based on properties presented
in Sec. 2.2.

Figure 2.2: The characterization of model representations presented in Sec. 2.3.

2.3 Characterizations of Model Representations 29

system identi�cation, this is often seen as a choice of �noise modelling framework�,
and hence, is relevant in the discussion of model characteristics as well.

Probabilistic models assume that the relationship between the various signals are
probabilistic in nature, and probability distributions are required to completely
characterize the model. On the other extreme,deterministic models assume that
the outputs y of a system can be determined completely based on the inputsu given
to the system, and do not take into consideration the presence of noise or distur-
bances. An intermediate approach is to considerdeterministic-stochastic models
that describe the output y as a deterministic consequence of the inputu, but
a�ected by stochastic disturbances or noise� .

2.3.2 Signal Domain

Models that map input signals to output signals in the time-domain are said to
be time-domain representations of the system. However, models can also be con-
structed to map inputs to outputs in transformed domains. A commonly used
transformation is the Fourier transform, resulting in frequency-domainmodels.

2.3.3 Parametric or Non-parametric

Non-parametric model setstypically use a large number of parameters, and often,
the number of parameters depend on the amount of data available. Due to this
�exibility, non-parametric representations of model sets can be used to describe a
wide range of dynamics within a particular system class. In contrast, inparametric
model sets, the dynamics of the system can be mapped to a relatively compact set
of model parameters that do not scale with the amount of data measured. As a
consequence, for a set of parametric models, the complexity must be tuned w.r.t
the dynamics of the system being modelled.

2.3.4 Role of Latent Model Variables

In order to describe the dynamics of any system, the model must, in some way,
capture `the past' of the system. Many model representations have been developed
that capture the past of the system with or without using hidden variables. The
common model structures include

� IO models - These models describe the past directly based on inputs and
outputs, and their higher order derivatives (in continuous time) or time-lags
(in discrete time).

� SSmodels - The history of the system can also be captured in terms of states
of the system. An SS model describes the dynamics of a system using �rst
order derivatives (in continuous time) or a single time-lag (in discrete time)
acting on the input and state of the system.

30 Chapter 2. System Identi�cation: The State-of-the-art

Figure 2.3: Some examples of structures that can be exposed on models, discussed
in Sec. 2.3.5.

� Linear Fractional Representation (LFR) models - These model representa-
tions make use of latent variables to separate distinct types of dynamics
being described by the model. For example, latent variables can be used to
separate the linear part of the model from the non-linear part, see Zhou et al.
(1996) for more details.

2.3.5 Examples of Model Structures

In order to accurately describe the dynamics of a system, model representations
may be suitably restricted by imposing ana-priori structure on the representation.
For example, a speci�c structure may be imposed on the model representation in
order to re�ect dynamical properties of the system-to-be-modelled, or to re�ect
the nature of disturbances entering the system and/or measurements. Imposing a
meaningful structure on the chosen model representation is an important step in
the identi�cation cycle (see discussion in Sec. 1.3.2).

While the imposition of structure is usually associated with parametric models,
certain choices made by the user for non-parametric models have a similar e�ect
of imposing desired dynamical properties. In this section we cover some of the
commonly used model structures for both parametric and non-parametric models
in the SI context.

2.3 Characterizations of Model Representations 31

(a) The errors-in-variables noise setting. (b) The equation error noise setting.

Figure 2.4: Commonly adopted noise settings.

Parametric models

Broadly speaking, in parametric models, disturbances or noise may be structured in
two ways. In the �rst case, depicted in Fig. 2.4a, noise does not a�ect the operation
of system S directly; noise � u and � y are introduced by the instruments used to
measure inputu and output y, respectively. This con�guration of the identi�cation
setup is known aserrors-in-variables setting and the disturbances are termed as
measurement noise. More commonly, it is assumed that input u is known exactly,
and noise is introduced only in the measurement of outputy. This is called the
output-error case1. The second con�guration is when disturbances directly a�ect
the dynamics of systemS, as depicted in Fig. 2.4b. This is usually due to an
unknown or unmeasured exogenous excitation. This con�guration is termed as the
equation error setting, and the disturbances are also termed asprocess noise.

Based on this discussion, we introduce a number of commonly used parametric
model structures that di�er in terms of the dynamics and the noise structure. The
material is listed in terms of the intended class of dynamical systems.

1. LTI model structures - For the class of LTI systems, one of the more
general model structures for an IO representation with equation error is the
Auto-Regressive Moving-Average model with eXogenous inputs (ARMAX)
structure:

y(k)+ a1y(k� 1)+ � � �+ an y y(k� ny) = b0u(k)+ b1u(k� 1)+ � � �+ bn u u(k� nu)+

� (k) + c1� k � 1 + � � � + cn � � (k � n�); (2.5)

where ai ; bj and ck are real coe�cients, and nu ; ny and n� are the maximum
lags of the input, output and noise terms respectively, and� (k) is a noise
process, typically assumed to be an independent and identically-distributed
(i.i.d) random variable distributed as N (0; � �). Introducing the discrete-time
shift operator q� 1u(k) := u(k � 1), the coe�cients in (2.5) can be collected
in polynomials A(q� 1) = 1 + a1q� 1 + : : : an y q� n y , B (q� 1) = 1 + b1q� 1 +
: : : bn u q� n u and C(q� 1) = 1 + c1q� 1 + : : : cn � q� n � , yielding the short-hand

1Note that, in the case of linear systems, the errors-in-variables setting reduces to an output-
error noise setting, due to the linearity of the system. However, in that case, the noise is correlated
with the input, which must be taken into account to accurately estimate a model.

32 Chapter 2. System Identi�cation: The State-of-the-art

ARMAX representation

y(k) =
B (q� 1)
A(q� 1)

u(k) +
C(q� 1)
A(q� 1)

� (k): (2.6)

The ARMAX model structure can be simpli�ed in order to capture simpler
system dynamics with equation error. SettingC(q� 1) = 1 in (2.6) yields the
ARX structure. Furthermore, setting A(q� 1) = 1 yields the FIR structure.

A general LTI model structure with additive noise on the output is the BJ
model

y0(k) =
B (q� 1)
F (q� 1)

u(k);

� y (k) =
C(q� 1)
D (q� 1)

� (k);

y(k) = y0(k) + � y (k); (2.7)

where � y (k) is a �ltered noise process. The BJ model structure is fairly
general (in the LTI setting) and includes the models classes of FIR, ARX
and ARMAX. The BJ model can also be simpli�ed by setting C(q� 1) = 1
and D(q� 1) = 1 , yielding the Output Error (OE) model.

A linear SS representation with linear structure is given by

x(k � 1) = ASx(k) + BSu(k) + w(k);

y(k) = CSx(k) + DSu(k) + v(k); (2.8)

where u(k) 2 Rm , y(k) 2 Rl and x(k) 2 Rn are the input, output and state
vectors, respectively,w(k) 2 Rn and v(k) 2 Rl are the process and measure-
ment noise, andAS; BS; CS; DS are the SS matrices of suitable dimensions.

2. NL model structures - The class of NL systems is far more general than
that of LTI systems. Determining the appropriate structure for NL models
is, as a consequence, a far more involved process.

In this thesis, we make use of parametric IO model structures like Non-linear
Auto-Regressive Moving-Average models with eXogenous inputs (NARMAX)
or Non-linear Output Error (NOE), that are extensions of their linear counter-
parts. The NARMAX model is given by

y(k) = f
�
y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu); � (k � 1); : : : ;

� (k � n�)
�

+ � (k); (2.9)

wheref is a non-linear function. The Non-linear Auto-Regressive models with
eXogenous inputs (NARX) model structure is a special case of the model in
(2.9), where the stochastic variables� (k � 1); : : : ; � (k � n�) do not in�uence
the function f . Similarly, the NOE model structure is given by

y0(k) = g(y0(k � 1); : : : ; y0(k � ny); u(k); : : : ; u(k � nu)) ;

y(k) = y0(k) + � (k); (2.10)

2.3 Characterizations of Model Representations 33

where g is a non-linear function. In order to align the model representation
to the dynamics of the system, more structure can be imposed on (2.9) and
(2.10) by suitably restricting non-linear functions f and g. In the non-linear
setting, the Non-linear Box-Jenkins (NBJ) model class, as an extension of
NOE, is not well-established.

Non-linear systems can also be described by the NL SS representation

x(k � 1) = f S(x(k); u(k); w(k)) ;

y(k) = gS(x(k); u(k); v(k)) ; (2.11)

where f S and gS are suitable non-linear functions. Again, more structure can
be introduced in the SS representation by imposing suitable restrictions on
functions f S and gS.

An alternate approach to impose structure in NL models is to use block-
oriented models. Block-oriented models are structured interconnections of
sub-systems, each of which are described by either LTI models or non-linear
functions with or without memory. The sub-systems may be inter-connected
in a cascaded, parallel or feedback structure, or combinations thereof. The
structure of the interconnection may be inspired from physical interpretation
of the system being modelled. For example, a Wiener model can be used to
describe an LTI system being measured by an instrument with a non-linear
response. See Giri and Bai (2010) or Schoukens and Tiels (2017) for a more
detailed treatment of block-oriented model structures.

3. Pseudo-linear model structures - In a number of application domains
such as control design and systems analysis, a number of tools have been
developed for the class of linear systems that do not extend to the class of
non-linear systems. Nevertheless, most real physical systems demonstrate
non-linear behaviour. As a result, a number of model structures have been
developed to extend modelling capabilities beyond the class of linear systems,
while still retaining properties of linear systems, in some sense. This permits
the extension of linear techniques to non-linear systems that can be described
by these �proxy-linear� model structures. Some commonly used proxy-linear
model structures are introduced below.

� LTV and LPV models - LTV models describe the dynamics of linear sys-
tems with time-varying behaviour, see Sec. 2.2. However, LTV models
can also be used to describe non-linear dynamical systems, e.g., (Kui-
jstermans, 2004, Chapters 6-8) used LTV models to analyse and design
non-linear circuits. Several model forms have been used for the iden-
ti�cation of LTV models, including frequency-domain representations
(Lataire et al., 2012), SS representations (Verhaegen and Yu, 1995) and
IO representations (Li et al., 2010).
In LPV models, the dynamics (between input and output) are assumed
to be linear but dependent on an exogenous signal called the �scheduling
signal�. LPV models can be considered as extensions to LTV models,
and can be used to model non-linear systems, for example, see Balas
(2002). LPV techniques have been used widely in control design, see

34 Chapter 2. System Identi�cation: The State-of-the-art

Mohammadpour and Scherer (2012) for an overview. Many identi�ca-
tion techniques have been proposed for LPV models, see Tóth (2010)
and Cox (2018) for an overview. Furthermore, existing NL models can
also be realized as LPV models, see Schoukens and Tóth (2018).

� Piece-Wise A�ne (PWA), SL and fuzzy models - Certain classes of non-
linear dynamical systems can be described by a collection of linear (or
a�ne) models. PWA models describe the dynamics of a system as linear
(or a�ne) models in a partitioned input and state domain (for SS repre-
sentations) or input and output domain (for IO representation). PWA
models are commonly used for design of control schemes and analysis of
system properties such as stability.

SL models are extensions of PWA models, where the (linear) dynamics
of the system is dependent on �switching signals�. The switching signal
may switch from one mode to the other based on input, state or output
values, time, or the past values of the switching signal itself.

Similar to PWA and SL models, fuzzy dynamic models describe non-
linear dynamics by partitioning the input, state or output spaces, and
using linear models in each partition to describe the dynamics of the
system. In the case of fuzzy systems, the partitioning is done based on
a set of if-then rules.

A survey of identi�cation methods for PWA and SL systems can be
found in Garulli et al. (2012). Identi�cation techniques for dynamic
fuzzy models, and several applications, can be found in Nelles (2002).

Non-parametric structures

For parametric model representations, structure can be explicitly imposed on the
functional relationship described by the model. In the case on non-parametric
representations, structure is imposed on the model in a more implicit way. Some
examples for the LTI and NLTI cases are listed below.

1. LTI model structures - In the non-parametric setting, LTI systems can
be described byMarkov parameters (in the time-domain) or FRFs (in the
frequency-domain). In a system identi�cation context, the complexity of
the model (i.e., number of Markov parameters or the resolution of the FRF
estimate) is determined by the experiment design settings, such as sampling
properties and length of the dataset.

2. NL model structures - Non-linear dynamics of a system can also be de-
scribed using non-parametric representations, for example, joint probability
distributions of the measured outputs of a system, or so-called kernel-based
representations of the underlying function. Again, while such descriptions of
the system are very �exible, for use in system identi�cation, some structure
is imposed on the nature of relationship between the measured signals. These
will be discussed in more details in Sec. 2.4.4.

2.4 Identi�cation Methodologies 35

Figure 2.5: The identi�cation frameworks presented in Sec. 2.4.

2.4 Identi�cation Methodologies

The SI problem has been studied under various lenses, including statistical in-
ference, systems and control and machine learning. A number of identi�cation
methodologies have been developed to infer dynamical models from data. These
methodologies are typically developed for a speci�c class of systems, as discussed
in Sec. 2.2, and for a speci�c model structure representation, as discussed in Sec.
2.3. For a given class of dynamical systems, a number of model representations
and structures can be used to describe the system. Invariably, the user determines
the model structure or representation that is suitable for his or her intended use-
case. Alternatively, the user may choose a familiar identi�cation methodology, that
ultimately leads to a choice of model structure representation.

In this section, we introduce some of the main identi�cation methodologies that
have been proposed in the literature over the past decades (see Fig. 2.5), and
connect them to the system properties and model structures introduced in Sec.
2.2 and 2.3, respectively. The primary purpose of this review is to highlight the
various decisions and well-reasoned assumptions a user must make within existing
identi�cation methodologies, and the corresponding impact on the resulting model
estimates.

2.4.1 Frequency-Domain Methods

Frequency-domain methods were some of the �rst approaches developed for SI,
and are widely applied in many engineering problems such as modal analysis and
vibration analysis in structural engineering and acoustics. Frequency-domain meth-
ods are used by experienced engineers to gain insight into the system behaviour
since they reveal invariant properties of the system such as resonance properties.
Frequency-domain insights are also used by control engineers to design simple yet
e�ective Proportional-Integral-Derivative (PID) controllers via loop-shaping for a
wide range of applications.

System class and model types

Frequency-domain identi�cation was initially developed for LTI class of systems,
and are used to estimate non-parametric input-output models. Consider the true

36 Chapter 2. System Identi�cation: The State-of-the-art

system to be given by.

Y (z) = G0(z)U(z) + �(z); (2.12)

where U(z); Y (z) and �(z) are the z-transforms of the input, output and additive
measurement noise, andG0(z) is the z-transform of the impulse response of the
system. Based on measurementsDN , one can describe the system in terms of its
Empirical Transfer-Function Estimate (ETFE), computed as

Ĝ(ej! k) =
Y (ej! k)
U(ej! k)

; (2.13)

where Y(�) (U(�)) is the Discrete-time Fourier Transform (DFT) of the measured
output (input), and ! k is a discrete point on the frequency grid determined by
experimental conditions (sampling rate and length of the dataset).

Frequency-domain methods have been extended to more general noise structure as-
sumptions such as the errors-in-variables setting (Pintelon and Schoukens, 2012).
Beyond the class of LTI systems, frequency-domain analysis can also be used to
detect `non-linear distortions' or time-varying dynamics present in the data (Pin-
telon and Schoukens, 2012; Lataire et al., 2012). In terms of describing non-linear
or time-varying dynamics, frequency-domain methods have been extended to es-
timate non-parametric proxy-linear model structures such as LTV (Lataire et al.,
2012) and LPV models (de Rozario and Oomen, 2018), and non-parametric non-
linear model structures like Generalized Frequency Response Functions (GFRFs)
(Stoddard and Birpoutsoukis, 2017). Frequency-domain methods are also used to
initialize parametric identi�cation methods, for example, in Paduart et al. (2010).

Identi�cation Criterion and Optimization

The choice of the identi�cation criteria used is typically based on the assumed noise
properties of the system and a statistical interpretation of the resulting estimates.
For a system with zero-mean additive measurement noise on the output, a linear-
least squares estimator� LS provides unbiased estimates for the least-squares cost
function

J (�; DN) =
1
N

X

!

�
Y (!) � Ŷ (!; �)

� 2
; (2.14)

where Ŷ (!; �) is the model output. Furthermore, if the additive noise is i.i.d
Gaussian random variable, the least-squares estimate corresponds to the Maximum
Likelihood (ML) estimate, see Pintelon and Schoukens (2012) for more details.
Based on the noise properties, the identi�cation criteria can also be adapted by
including a weighting factor W (!) over the frequency range. For a noise process
with a known covariance matrix, the uncertainty in parameter estimates can be
reduced by choosing a suitable weighting factor for the weighted least squares cost
function.

When both inputs and outputs are measured with additive Gaussian noise, the
least-squares estimator no longer corresponds to the ML estimate. In this case,

2.4 Identi�cation Methodologies 37

more complex estimators such as Total Least Squares (LS) of Instrumental Vari-
ables (IV) estimator must be used to obtain unbiased estimates, see Pintelon and
Schoukens (2012) for a more detailed overview.

Discussion

Recall that the purpose of the review presented in this chapter is to highlight the
role of the user within the identi�cation methodology. Hence, in this section , we
discuss some of the important decisions a user must make in the frequency-domain
identi�cation framework. Note that the user-made decisions discussed here are not
necessarily speci�c only to this method.

In order to choose a suitable model structure, a user must be aware of the nature of
dynamics being modelled and the properties of the noise process. Certain dynamic
properties of the system may be revealed through specially designed experiments.
Analysis of measurements obtained from such experiment can allow an experi-
enced user to determine the dynamic properties of the system, and hence, select an
appropriate model structure. However, spectral analysis of data inferred from a dy-
namical system can be sensitive to the experimental conditions. A poorly designed
experiment (or pre-processing of the resulting data) can introduce artefacts such
as spectral leakage and errors due to transients. Furthermore, improper choice of
sampling frequency and experiment length a�ects the resolution and bandwidth
of the resulting estimated model. Finally, since most systems are measured in
discrete-time, the user must also be cognizant of implicit assumptions made on the
inter-sample behaviour of the dynamical system. Hence, the choices made by the
user during experiment design, and the subsequent analysis of measurements play a
crucial role in determining a suitable model structure for the system. As discussed
earlier, an improper choice of model and noise structure may lead to biased model
estimates.

2.4.2 Parametric Prediction Error Minimization

Parametric Prediction Error Minimization (PPEM) method, often referred to as
Prediction Error Minimization (PEM) method, came into the foray in the 1960s
and 1970s. The need for PEM methods originated from industrial applications orig-
inating from engineering domains such as process industries and electro-mechanical
production systems (Åström and Eykho�, 1971). While frequency-domain analysis
was enabling design of simple control architectures in these application domains,
there was an emerging need forparametric methods for more complex control
schemes. Initially, several parametric identi�cation methods were developed for
various application cases. These methods were subsequently collected under a
unifying framework, called PEM method (Åström and Eykho�, 1971). Since the
origins of PEM methods are closely related to the need for parametric models, the
term `PEM' is often implicitly linked with parametric model structures. To avoid
confusion, we refer to these as PPEM methods.

38 Chapter 2. System Identi�cation: The State-of-the-art

System class and model types

PPEM methods have been developed for many classes of dynamical systems, in-
cluding LTI systems, NL systems and hybrid systems. PPEM methods typically
make use of parametric IO model structures. In general, the choice of model struc-
ture, and its complexity (i.e. degrees of freedom), is treated as a hypothesis made
by the user. Hence, in Step 2 of the identi�cation cycle, based on expert knowledge,
experience, and informative experiments, the user must choose a suitable structure
and complexity of the dynamical and noise properties of the system. This choice
leads to the choice of a model setM parameterized by a parameter vector� . Sub-
sequently, in Step 5 of the identi�cation cycle, the user must validate the model
structure hypotheses made in the earlier step. At this stage, a number of tools
can be used to validate the hypothesis or determine the generalizability of the es-
timated model, e.g., cross validation using an independent dataset, information
metrics such as AIC or BIC to estimate the generalization error of the model, and
correlation analysis of residual signals. For more details, see Ljung (1999).

For the case of LTI systems, users may impose equation-error type model structures,
such as ARX or ARMAX (see (2.6)), or output-error type model structures, such
as OE or BJ (see (2.7)). More complex LTI systems may be described as a network
of simpler LTI systems (Van den Hof et al., 2013).

For the case of NL systems, the user may employ non-linear extensions of paramet-
ric models structures such as NARMAX in (2.9) or NOE in (2.10). To estimate
such models, the user must prescribe the structure and complexity of non-linear
functions f and g, which is a non-trivial task. A common approach is to restrict
functions f and g to speci�c classes of non-linear functions such as polynomial or
wavelet functions Billings (2013). Polynomial NARMAX models have been widely
used in the literature due to their favourable approximation properties for contin-
uous functions over closed domains.

Alternatively, for NL systems, structure can also be imposed in the form of block-
oriented models (Giri and Bai, 2010). The primary advantage of block-oriented
models is its transparency; the structure of the interconnection may be inspired
from physical interpretation of the system being modelled.

Choosing a suitable model structure can be a daunting task for an inexperienced
user. In the case of LTI systems, there exist some robust guidelines for user, e.g.,
see Ljung (1999). However, for more complex classes of dynamics, the task of model
structure and complexity selection is far more involved, and no general guidelines
exist.

Identi�cation Criterion and Optimization

As the name suggests, PPEM methods use prediction error to de�ne an optimiza-
tion criterion. The model structures presented in the previous section can be used
to infer a parametric prediction model, i.e., a model that computes a prediction of
the output of the system, based on past measured data and given model parame-

2.4 Identi�cation Methodologies 39

ters. Assume that the prediction model is de�ned as

ŷ(k j �) = f p (k; Dk � 1; u(k) j �); (2.15)

where ŷ(k) is the predicted output at time-instant k, Dk � 1 is the measured data
upto time-instant k � 1, � is a vector containing the unknown parameters of the
model, and f p is the prediction model. More speci�cally, the model in (2.15) is
called a one-step-ahead prediction model since, based on data measured uptok � 1
time samples and inputu(k), the model predicts the output at time sample k. This
notion can be generalized to multi-step-ahead prediction models. Prediction error
" is de�ned as the di�erence between the measured and the predicted output, i.e.

" (k) = y(k) � ŷ(k j �): (2.16)

A general prediction error identi�cation criterion takes the form

J (�; DN) =
NX

k=1

l (y(k) � ŷ(k j �)) ; (2.17)

where thel(�) is a positive real-valued function, called theloss function. A common
choice for the loss function is the mean squared loss function.

Using the mean squared one-step-ahead prediction error to determine the quality
of the model has been widely popular in the identi�cation community. This can be
attributed to two reasons. Firstly, under the assumption that the underlying noise
process is zero-mean and i.i.d Gaussian process, and that the true system can be
described by the chosen model structure, the least-squares estimate corresponds to
the ML estimate of the parameters. Secondly, for several classes of systems such as
ARX, ARMAX and polynomial NARMAX, relatively simple and reliable numerical
optimization techniques such as (linear) Least Squares (LS) and Iterative Least
Squares (ILS) can be used to compute the optimal model parameters e�ciently.
For more complex parameterization, a gradient-descent method is typically used
to estimate model parameters.

Discussion

Despite the variety of LTI model structures available, there exists e�ective and
robust guidelines enabling users to choose appropriate model structures for their
identi�cation task (Ljung, 1998). These guidelines also provide reliable heuristics
to choose the appropriate model complexity, i.e., degrees of theA(q� 1), B (q� 1),
C(q� 1), D (q� 1) and F (q� 1) polynomials in (2.6, 2.7). Most commonly, frequency-
domain analysis is used to guide the user in this selection process. Using non-
parametric analysis, a user can determine the number of poles in the system,
or equivalently, the order of polynomial A(q� 1) (or F (q� 1)) in (2.6) (or (2.7)).
Moreover, with specially designed experiments, the same non-parametric analy-
sis can be extended to determine the complexity of the noise model. Details on
non-parametric modelling and analysis techniques can be found in Pintelon and
Schoukens (2012). While there exist many tools to validate (or invalidate) the

40 Chapter 2. System Identi�cation: The State-of-the-art

model structure hypothesized, e.g., via residual analysis, they can only be applied
a-posteriori, i.e., after having estimated the model.

Unlike in the LTI case, there are not many robust guidelines for the user to select
appropriate structure and complexity for NARMAX models. Instead, the com-
mon approach is to restrict functions f and g in (2.9, 2.10) to a speci�c class of
non-linear functions, and use numerical algorithms that essentially solve a combi-
natorial optimization problem using greedy search techniques (Chen et al., 1989),
l1 regularization or shrinkage methods (Rojas et al., 2014). In general, the result-
ing models may not be immediately interpretable for a user. However, research
e�orts have been directed to developing non-parametric analysis techniques based
on identi�ed NARMAX models, making the models more open to human inter-
pretation. More details on the `NARMAX philosophy' and related numerical and
analysis techniques can be found in Billings (2013).

For block-oriented modelling, some guiding principles have been developed to dis-
criminate between some simple block-oriented structures. These principles are
based on non-parametric analysis of data generated from the system using spe-
cialized experiments, see Schoukens et al. (2015) for details. However, for more
complex block-oriented models, there is no general guiding framework for the user.
Furthermore, determining the appropriate complexity of each of the sub-systems
in a given block-oriented model can be a challenging task for the user. Instead,
similar to the case of NARMAX models, the complexity is determined by numerical
algorithms that essentially solve a combinatorial optimization problem.

2.4.3 Subspace Methods

PPEM methods discussed in Sec. 2.4.2 are primarily developed for IO represen-
tations, as in (2.5)-(2.10). In the subjects of �ltering and control, a number of
techniques were developed for SS representations of systems. In the case of SISO
LTI systems, realization theory can be utilized to infer a canonical SS realization
from an identi�ed input-output model. However, for MIMO systems, still in the
LTI setting, conversion to SS form can be challenging. Hence, there was a need to
estimate SS models directly and e�ciently from data. This lead to the development
of subspace methods for SI. Seminal works that introduced subspace methods to
SI include Larimore (1990), Verhaegen and Dewilde (1992) and Van Overschee and
De Moor (1994).

A second motivation that lead to the development of subspace identi�cation is
the need for robust numerical techniques. PPEM methods must often rely on
non-linear optimization techniques that lead to locally optimal solutions that may
possibly be far away from the global optima. Subspace techniques utilize numerical
linear algebra techniques such as QR factorization and Singular Value Decompo-
sition (SVD) that are more robust than, for example, gradient-based algorithms
for optimization. In fact, in state-of-the-art implementations of PPEM methods,
subspace identi�cation is often used to derive an initial LTI estimate of the model.

2.4 Identi�cation Methodologies 41

Model structures

Subspace methods for SI were originally developed for the class of LTI systems to
be described by SS models. The typical DT LTI SS form is given by

x(k � 1) = ASx(k) + BSu(k) + w(k);

y(k) = CSx(k) + DSu(k) + v(k); (2.18)

where u(k) 2 Rm , y(k) 2 Rl and x(k) 2 Rn are the input, output and state
vectors, respectively,w(k) 2 Rn and v(k) 2 Rl are the process and measurement
noise, andAS; BS; CS; DS are the SS matrices of suitable dimensions. Typically, the
process and measurement noise are assumed to be zero-mean, with positive-de�nite
covariance

cov(w(k); v(k)) =
�

Q S
S> R

�
; (2.19)

where matricesQ; S; R have appropriate dimensions.

Algorithms have been developed for identi�cation of deterministic models (matri-
ces AS; BS; CS; DS) (e.g. Moonen and Ramos (1993); Markovsky et al. (2005)),
stochastic models (matricesAS; CS; Q; S; R) (e.g. Bauer et al. (1999)), and com-
bined stochastic-deterministic models (e.g. Larimore (1990); Van Overschee and
De Moor (1994); Picci and Katayama (1996)).

Due to the nature of computations involved (to be discussed in the sequel), exten-
sion of subspace techniques to non-linear model structures is typically not straight-
forward. However, these methods have been successfully extended to speci�c classes
on non-linear and proxy-linear model structures, such as bilinear systems (Favoreel
et al., 1999), Wiener systems (Westwick and Verhaegen, 1996), Hammerstein sys-
tems (Verhaegen and Westwick, 1996) and LPV systems (Van Wingerden and Ver-
haegen, 2009). In a deterministic setting, Noël and Kerschen (2013) extended
subspace methods to estimate non-linear mechanical systems.

Numerical methods

Unlike frequency-domain or PPEM methods, subspace methods do not optimize
for models based on a given identi�cation criterion. Instead, subspace methods
rely on linear algebra techniques and realization theory. The three commonly used
subspace identi�cation methods are N4SID (numerical algorithms for subspace
state-space system identi�cation), MOESP (multivariable output-error state-space)
and CVA (canonical variate analysis). Van Overschee and De Moor (1995) proved
that, under certain conditions, the three algorithms can be uni�ed in a single
framework and are similar to each other upto two weighting matrices. The key
assumptions for this result include (but not limited to) (i) in�nitely long dataset
(for asymptotic statistical analysis), and (ii) statistical independence of input u(k)
with process noisewk and measurement noisev(k). However, the insight that
led to the development of these three algorithms di�er, and so do the underlying
numerical techniques. Hence, when any of the assumptions in Van Overschee and
De Moor (1995) is not satis�ed, the results may vary signi�cantly.

42 Chapter 2. System Identi�cation: The State-of-the-art

Figure 2.6: The typical subspace identi�cation work�ow (Van Overschee and
De Moor, 1995). Dashed lines indicate alternate routes, depending on the algo-
rithm.

The typical sequence of operations in subspace methods is illustrated in Fig 2.6.
Here, we provide a brief description of the steps involved in the N4SID algorithm,
computational details can be found in, e.g., Van Overschee and De Moor (2012).
The subspace approach is set up by �rst splitting the dataset in two parts - a
past dataset, denoted by(Up; Yp), and future dataset, denoted by(Uf ; Yf). Then,
using linear projections of the future output Yf onto the past data (Up; Yp) and
future inputs Uf , one can compute an estimate of the extended observability matrix
�̂ i := (C; CA; : : : ; CA i � 1), and state vector estimates, denoted byX̂ i , where i
(greater than n, the dimension of the system) is determined by the partitioning
of the data. Subsequently, the SVD of�̂ i is used to determine a suitable model
order selection2 - the number of `dominant' singular values is chosen as the order
n of the model. For �nite datasets, all singular values are expected to be non-
zero, making this a non-trivial choice for the user. Based on this choice, the state
vector estimatesX̂ n can be computed. Finally, the system matrices in (2.18) and
covariance matrices in (2.19) can be computed based on̂� i and X̂ n .

Discussion

From the user's perspective, subspace methods require little interaction with the
user. An implicit assumption here is that the user is interested in obtaining an
LTI 3 SS model (deterministic or stochastic) for the given system. Perhaps the
most crucial choice made by the user is the dimensionality of the state vector.
Depending on the particular algorithm used, the user may be required to choose
the dimensionality of the state vector based on, for example, singular values of
certain matrices or variance of certain residual signals estimated from data (Bauer,

2Pre- and post-multiplication of �̂ i with suitable weighting matrices W1 and W2 yield MOESP
or CVA algorithms under suitable assumptions. See details in Van Overschee and De Moor (1995).

3As mentioned earlier, while subspace methods can be extended to speci�c classes of non-
linear systems, the extension is usually more involved and require a specially designed numerical
methods.

2.4 Identi�cation Methodologies 43

2001). When the dataset is �nite and noisy, or when the data-generating system
does not satisfy assumptions made on system propoerties (such a linearity), the
estimate of state dimensionality may be inaccurate. Furthermore, the estimation
of the system order typically requires the partition of measured data into a past
and future dataset. Bauer (2001) demonstrated that order estimation in �nite
datasets can be sensitive to a number of user-speci�ed parameters, including the
partitioning of the datasets. Dahlén et al. (1998) demonstrated experimentally
that, when certain underlying assumptions on the data-generating system are not
satis�ed, stochastic subspace methods can fail drastically.

2.4.4 Kernel Methods and related approaches

Kernel methods were proposed in the study of solutions of integral equations (e.g.,
see Mercer (1909)), and also in the study of general classes of functions, e.g., in
Bergman and Schi�er (1948). A general theory of Kernel functions and regulariza-
tion in the related function spaces can be found in Aronszajn (1950). For ease of
illustration, we consider a static data generating system governed by the following
equation

y = f 0(u) + �; (2.20)

where, u 2 U � R and y 2 R and � is a random variable in R. The basic idea of
kernel-based methods is to estimate a continuous functionf in some generalized
space of functionsH that minimizes some regularized optimization criterion for-
mulated on the basis of sampled data obtained from (2.20). More details will be
provided in the sequel. The main advantages of Kernel methods are:

� When the space of functionsH is carefully chosen, continuous functions can
be arbitrarily well approximated.

� The de�nition of the function space H automatically provides a suitable reg-
ularization term that allows to tune the complexity of the function estimates
in a smooth manner while ensuring well-posedness of the solution.

� Since this is a non-parametric approach, the user must not pre-determine a
suitable model structure and complexity.

An alternate perspective for function estimation from sampled data is provided
by the framework of Bayesian estimation of stochastic processes. In this setting, a
prior probability distribution is postulated for function f (�), and is denoted byp(f).
Additionally, a probability distribution p(�) is assumed for the noise. The objective
is to compute the posterior distribution of the function p(f j YN) conditioned on
the sampled data YN = (y1 � � � yn)> . A common approach in Bayesian inference
is to assume that the noise in (2.20) is a i.i.d Gaussian random variable and that
the prior distribution on f is a Gaussian process45. In this setting, Kimeldorf and

4A Gaussian Process is a generalization of the Gaussian distribution over functions with a
continuous domain, see Rasmussen and Williams (2017) for details.

5These assumptions provide signi�cant computational advantage, as will be discussed in the
sequel.

44 Chapter 2. System Identi�cation: The State-of-the-art

Wahba (1970) pointed out a correspondence between statistical inference using
kernels and Bayesian estimation of Gaussian Processes. This correspondence will
be highlighted in the sequel.

While Kernel methods and Gaussian processes became popular in the machine
learning community to estimate (distributions over) functions from sampled data,
these methods have been suitably adapted for identi�cation of dynamical systems
(see Pillonetto and De Nicolao (2010), Pillonetto et al. (2011) and Pillonetto et al.
(2014)).

Function space

Unlike PPEM method, the Kernel method does not require the user to specify a
model structure and complexity. However, the user must specify the space of func-
tions H . In particular, Kernel-based methods utilize the so-called Reproducing-
Kernel Hilbert Space (RKHS) of functions. An RKHS H is a possibly in�nite-
dimensional Hilbert space of functions de�ned over some domainU with the
associated inner-product hf; g i de�ned for all f; g 2 H and the induced norm
kf kH := hf; f i . Additionally, an RKHS is associated with a positive-de�nite sym-
metric kernel function K : U � U ! R that satis�es the property that for any
u 2 U the kernel satis�es

hK (u; �); f i = f (u); 8f 2 H : (2.21)

For any �xed u 2 U the kernel function K (u; �) 2 H is a linear functional in terms
of the second argument and is called the Kernel sectionK u (�) centred at u.

There are a number of ways in which a user can choose or construct an RKHS, or
the corresponding kernel functionK (�; �), see (Schölkopf et al., 2002, Chapter 2)
for a detailed discussion. Examples of commonly used Kernel functions include the
homogeneous polynomial kernel

K p (x1; x2) = (u>
1 u2)d; (2.22)

for u1; u2 2 X � Rn and d 2 N, the Gaussian kernel

K G (u1; u2) = exp
�

�
u1 � u2

2

2� 2

�
; (2.23)

for � 2 R> 0, and cubic spline kernels

K CS =

(
u 2

1
2

�
u2 � u 1

3

�
; u1 � u2

u 2
2

2

�
u1 � u 2

3

�
; u2 < u 1:

(2.24)

For the purpose of system identi�cation, Pillonetto et al. (2014) illustrated the
importance of introducing suitable constraints such as stability in the kernel func-
tions. As a consequence, Pillonetto and De Nicolao (2010) introduced the stable
spline kernel

K SS(u1; u2; �) = K CS
�
e� �u 1 ; e� �u 2

�
; (2.25)

2.4 Identi�cation Methodologies 45

where � 2 R> 0 is a hyper-parameter.

In the Bayesian setting for inference over Gaussian processes, the user must specify
the prior distribution p(f). A common choice of priorp(f) is a zero-mean Gaussian
process with a covariance functionK COV = E(f (u1); f (u2)) , which is taken as
the Kernel function. The choice of covariance functionK COV can bear a strong
in�uence on the result of the inference (Rasmussen and Williams, 2017, Chapter 5).

Kernel methods and Gaussian process have been proposed in the literature for
modelling of FIR models (Pillonetto and De Nicolao, 2010), Volterra series models
(Birpoutsoukis et al., 2017), Wiener systems (Lindsten et al., 2013), state space
models (Frigola et al., 2013), and many other model types and structures. A recent
review can be found in Chiuso and Pillonetto (2019).

Identi�cation criterion

An advantage of using Kernel methods is the automatic selection of model com-
plexity that achieves an optimal trade-o� between bias an variance of the estimate.
This is achieved through a regularization term in the optimization problem. Regu-
larization was popularized by Tikhonov and Arsenin (1977) to solve inverse prob-
lems that are ill-posed. A typical regularized function estimation criterion with a
sum-of-squares loss function can be written as

VN (f) =
NX

i =1

(yi � f (ui))2 + � kf k2
H ; � 2 R; (2.26)

where f (ui ; yi)gN
i =1 are sampled data obtained from (2.20) andf 2 H . The regu-

larization term kf k2
H penalizes the complexity of the function f , as measured in

the induced norm of the RKHS H . The hyper-parameter � achieves a trade-o�
between the quality of �t (measured in terms of the the sum of squared errors in
(2.26)) and the complexity of the function. Besides the squared-error loss function
used in (2.26), a user may choose other loss functions such as 0-1 misclassi�cation,
absolute error or logistic error loss function (see Schölkopf et al. (2002)), depending
on the ultimate use-case of the estimated model.

In contrast to Kernel methods, where the objective is to estimate a functionf 2
H , the objective in the Bayesian setting is to provide a complete probabilistic
description of the estimated function, denoted by p(f j UN ; YN), where UN =
(u1 � � � un)> and YN = (y1 � � � yn)> are the sampled data points. The celebrated
Bayes' rule establishes the following relationship

p(f j UN ; YN) =
p(YN j UN ; f)p(f)

p(YN j UN)
; (2.27)

where p(YN j f) is the likelihood function and p(YN) is the marginal likelihood,
a normalizing constant that does not depend onf . The posterior p(f j UN ; YN)
e�ectively combines the prior information encoded in p(f) along with the evidence
provided in the measurements, encoded in the likelihood functionp(YN j UN ; f).

46 Chapter 2. System Identi�cation: The State-of-the-art

Often, the prior over functions is parameterized in terms of some parameter vector
� . In this case, the Bayes' rule can be written as

p(f ; � j UN ; YN) =
p(YN j UN ; f ; �)p(f ; �)

p(YN j UN)
; (2.28)

where p(f ; �) denotes the probability distribution of function f parameterized by
vector � .

Optimization

Solving the optimization problem in (2.26) in a possibly in�nite-dimensional space
H is made possible by the acclaimed Representer Theorem (Kimeldorf and Wahba,
1971), which states that any minimizer of (2.26) in H can be expressed in the
following form

f̂ (u) =
NX

i =1

�̂ i K (ui ; u); �̂ i 2 R: (2.29)

The implication of the Representer theorem is that while H might be an in�nite-
dimensional space, the optimizer of (2.26) can be expressed as combination of
kernel sections centered at each data-pointx1. The Representer theorem has been
extended to other loss functions and regularization terms, see Schölkopf et al.
(2002). For the criterion in (2.26) and for a known � , an estimate of the coe�cients
�̂ = (�̂ 1; : : : ; �̂ N)> can be computed algebraically as

�̂ =
�

K̂ + �I N

� � 1
YN ; (2.30)

whereK̂ is a matrix with elements K̂ ij = K (ui ; uj). The results in (2.29) and (2.30)
have been extended to system identi�cation, e.g. in Pillonetto and De Nicolao
(2010) for estimating FIR models.

Surprisingly, Bayesian solution to the inference problem using Gaussian processes
leads to the same solution as in (2.29) and (2.30), under some conditions. It
can be shown that, if the hyper-parameters (i.e., noise variance� 2

�) is known, the
posterior distribution p(f j YN ; UN ; �) is distributed as N (mp ; � p), where mp is
the posterior mean function and� p is the posterior covariance function (details can
be found in (Rasmussen and Williams, 2017, Chapter 2)). Sincep(f j YN ; UN ; �) is
Gaussian,mp is also the maximuma-posteriori (MAP) estimate of p(f j YN ; UN ; �).
Kimeldorf and Wahba (1970) demonstrated that when � = � 2

� and K = K COV in
(2.29) and (2.30), the kernel solution coincides with the MAP estimate obtained by
Bayesian estimation. More details of this comparison can be found in (Rasmussen
and Williams, 2017, chapter 6).

Discussion

When the kernel function is carefully chosen and for relatively short data-sets,
Chen et al. (2012) demonstrated that kernel methods can out-performed PPEM

2.4 Identi�cation Methodologies 47

methods in well-studied identi�cation problems such as estimation of FIR models.
However, Chen et al. (2012) also demonstrated that the results obtained using
kernel methods signi�cantly depend on how well the kernel function is adapted to
the estimation problem at hand. Similar to kernel methods, the performance of
Bayesian inference for a given �nite dataset depends on the selection and tuning of
the prior's covariance function (Rasmussen and Williams, 2017, Chapter 5). Hence,
for the Bayesian or kernel-based identi�cation approaches, the primary challenge
for the user is to select an appropriate prior or kernel function. This choice, in an
abstract sense, is akin to the choice of model structure or complexity in the PPEM
framework.

In terms of computations, the solutions presented here can be computed analyti-
cally when (i) the hyper-parameters (noise variance� 2

� , parameter related to kernel
speci�cation � and regularization parameter �) are known to the user, (ii) the noise
scenario is assumed to be additive white Gaussian, and (iii) there are no hidden
variables such as state variables. However, this is usually not the case. The prob-
lem of selecting hyper-parameters in Bayesian or kernel methods have been likened
to the problem of selecting model structures in PPEM method (Pillonetto et al.,
2014). When the hyper-parameters are unknown, the problem must be solved via
the optimization of the marginal likelihood. In a simple noise setting (i.e., additive
white Gaussian noise on the output) and in the absence of hidden variables, this can
be solved analytically. In other cases, more complex optimization approaches must
be employed by the user, e.g., the Markov Chain Monte-Carlo (MCMC) algorithm
(Ninness and Henriksen, 2010). Hence, while Gaussian processes or kernel meth-
ods appear to circumvent the problem of model structure and complexity selection,
from the user's perspective, the challenge is diverted to the design of the kernel and
hyper-parameter selection. Although the Bayesian setting o�ers a new paradigm
for optimizing hyper-parameters via the marginal likelihood, it is, in general, not
necessarily an easier problem for the user to solve.

2.4.5 Neural Networks

Rapid improvement in computational techniques (such as backpropagation-based
gradient-descent) and computing capabilities has led to the meteoric rise in popu-
larity of Neural Networks (NNs). Development of NN-based techniques have rev-
olutionized several research �elds such as computer vision, speech recognition, by
out-competing existing techniques overwhelmingly. The initial success of NNs at-
tracted widespread research interest, and several NN architectures were developed,
for examples, Recurrent Neural Network (RNN) and Convolutional Neural Network
(CNN). Development of scalable and numerically e�cient stochastic gradient-based
optimization techniques, e.g., see Kingma and Ba (2014), led to scaling up of NN
architectures, resulting in the paradigm of deep learning (LeCun et al., 2015).

In the domain of system identi�cation, NN-based methodologies have also been
developed for identifying dynamical systems from data. Initially, NN-based iden-
ti�cation techniques made use of NNs as an alternate approach to approximate
non-linearities, and e�ectively combined NNs with existing identi�cation frame-
works such as PPEM. A review of such approaches can be found in Sjöberg et al.

48 Chapter 2. System Identi�cation: The State-of-the-art

(1994), Narendra and Parthasarathy (1990) and Suykens et al. (2012).

With the advent of deep learning, several deep architectures have been developed
for the purpose of identi�cation of non-linear dynamical systems. The use of deep
learning in non-linear system identi�cation is currently a subject of active research,
and cannot be said to constitute a general framework for non-linear system identi-
�cation yet. In the following, we discuss some of the methodologies that have been
recently proposed in the literature. It should be noted that this is by no means an
exhaustive review.

One of the deep NN architectures that have received signi�cant attention in SI
literature is auto-encoders (see Goodfellow et al. (2016) for details). Masti and
Bemporad (2018) developed a deep auto-encoder-based approach to estimate (i) a
mapping from high-dimensional past input (and possibly output) data to a low-
dimensional vector that serves as a state estimate of the system, (ii) a mapping from
the low-dimensional state estimate to the output at the next time step, and (iii) a
mapping from the current state estimate and input to the state at the next time
step. In order to estimate the three mappings simultaneously, the authors propose
a multi-objective optimization problem which is converted to a single-objective
optimization problem by introducing trade-o� parameters. Auto-encoders have
also been used to estimateKoopman eigen-function representations of non-linear
systems, for example, in Lusch et al. (2018), Mardt et al. (2018) and Otto and
Rowley (2019). Koopman eigen-functions serve as non-linear co-ordinates that
enable the description of the dynamics of the system using linear functions, which
makes it possible to study various system-theoretic properties of non-linear systems,
such as stability and limit cycles. While these methods use NN to describe a
di�erent representation of a non-linear system, the underlying concept is similar to
that in Masti and Bemporad (2018).

Other NN architectures that have been used for SI include Long Short-Term Mem-
ory (LSTM) (Wang, 2017) and temporal CNN (Andersson et al., 2019). In Anders-
son et al. (2019), the authors discussed similarities, in representational capabilities,
between NN architectures, such as LSTMs and temporal CNN, on one hand, and
traditional non-linear system representations, such as Volterra series and cascaded
parallel Wiener models, on the other, thereby establishing the relevance of such
NN architectures in context of SI.

Discussion

In order to use auto-encoder-based learning methods, the user must choose several
hyper-parameters of the algorithm including the number of hidden layers of the
architecture, the activation functions, and crucially, the number of states (i.e.,
number of neurons in the central layer of the auto-encoder). These choices are
similar, in e�ect, to choices related to model structure and complexity in other
identi�cation methodologies such as subspace and PPEM methods. Similar hyper-
parameter selection must also be done for other NN architectures. Due to the
abstract nature of these hyper-parameters, and lack of general guidelines, selecting
the speci�cations of the NN architecture is a non-trivial task for a user.

2.4 Identi�cation Methodologies 49

These methods also require relatively large sizes of training data to learn the dy-
namics of the system (except temporal CNN, see Andersson et al. (2019)). Finally,
while NN-based techniques can be used to describe complex non-linear dynamics,
the interpretability and generalizability of the models is, in general, lacking. While,
in recent years, research focus has been directed towards learning interpretable and
generalizable NN, much work is yet to be done (Zhang et al., 2017).

2.4.6 Evolutionary Algorithms

EAs are a class of global optimization techniques that make use of biologically-
inspired heuristics to solve complex non-linear optimization problems. Due to the
�exible nature of these optimization techniques, they have been successfully used in
a large number of application domains, for example, see Lehman et al. (2018) and
references therein. In the context of system identi�cation, EAs have been primarily
used in two capacities: (i) in estimation of parameters of a �xed model structure
for a given, typically non-convex, identi�cation criteria, and (ii) in determining a
suitable model structure and complexity in a combinatorial landscape of possible
model structures. Evolutionary algorithms-based SI approaches do not form a
general SI methodology unique from the other SI frameworks described in this
chapter. Instead, EAs are typically used as powerful optimization approaches to
solve challenging problems occurring in existing methodologies, such as the PPEM
method.

EAs play a prominent role in the identi�cation approach developed in this thesis.
Hence, a more detailed discussion of EAs, especially in the context of SI, is deferred
to Chap. 3.

2.4.7 Set-based methods

The set-membership approach to system identi�cation distinguishes itself from
other traditional system identi�cation methodologies such as PPEM or frequency-
domain methods based on the treatment of disturbances in the system or mea-
sured data. Traditional SI methods treat disturbances in a statistical framework,
and results such as uncertainty bounds on parameter estimates are dependent on
assumptions made on the statistical properties of the noise process (e.g., see Ljung
(1999)). Such results are no longer valid when the underlying assumptions are vio-
lated, for example, in the scenario of approximate modelling, the residuals signals
may be correlated with the input, which violates one of the standard assumptions
in the PPEM framework. On the other hand, in set-membership method for SI, dis-
turbances are assumed to be unknown but bounded in some signal norm, typically
L 1, L 2 or L 1 , and no statistical properties of the noise process is assumed. This
allows the development of estimators that provide theoretical uncertainty bounds
on parameter (or state) estimates obtained from �nite data, without any statis-
tical assumption of noise properties, e.g., see Witsenhausen (1968) and review in
Walter and Piet-Lahanier (1990). Furthermore, set-theoretic methods do not esti-
mate a singleoptimal model, but a feasible setof models (or parameters) that have

50 Chapter 2. System Identi�cation: The State-of-the-art

not been invalidated by the measured data. The estimated feasible set essentially
consists of models that could have produced the measured data given the bounds
considered on the disturbances, see Milanese and Vicino (1991).

Set-membership methods typically consider parametric models a�ected by additive
disturbances, such that tight uncertainty bounds (or approximations thereof) can
be computed. Such techniques have been developed for linear systems, for example,
in Kacewicz (1996), Belforte and Tay (1992) and Gutman et al. (1994), non-linear
systems, for example in Milanese and Novara (2004), and time-varying systems, for
example, for linear dynamics in Kuntsevich (1996). A review of set-membership
techniques for system identi�cation can be found in Milanese and Vicino (1991)
and Milanese et al. (2013).

Set-membership identi�cation techniques, have been used in several applications,
most notable in the design of robust controllers, see Van den Boom et al. (1991)
and Kosut (1988), and in fault detection and diagnosis (Puig, 2010).

Similar to traditional methods like PPEM and subspace methods, set-membership
identi�cation method also requires the user to postulate a model structure for the
system, however, in this case, model structure does not include speci�cation of
the statistical properties of the noise. Furthermore, in cases where the uncertainty
bound on parameter or state estimates cannot be exactly computed, or relies on
computationally burdensome computations, the user must make use of approxima-
tion techniques. The conservativeness of the approximation techniques can have an
adverse e�ect on the utility of the model in its ultimate utilization scenario, e.g.,
robust control. Although several approximation techniques have been proposed in
the literature, e.g., in Arruda and Favier (1992) and Milanese and Taragna (2002),
choosing a suitable approximation technique for the identi�cation task is not a
trivial task for the user.

2.5 Discussion

In this chapter, we reviewed some of the essential features of a number of iden-
ti�cation methodologies that have been developed over the past decades. The
methodologies discussed here di�er in terms of

(i) the class of dynamical systems that can be considered,

(ii) the model representations used,

(iii) the identi�cation criteria adopted, and

(iv) the optimization technique they use.

In Sec. 2.4 we discussed, for each of these identi�cation frameworks, the choices a
user must make during the identi�cation cycle. Some of the key observations are
summarized here.

2.5 Discussion 51

� Many of the identi�cation frameworks have been extended to address a wide
variety of dynamical classes (see Sec. 2.2 for a discussion on classes of dy-
namical systems). This is primarily achieved by adopting various model rep-
resentations that are suitable to describe the dynamics of the system, and
by adopting various numerical optimization techniques that are suitable for
the corresponding model representations. Form the user's perspective, the
challenge is to be able to navigate the variety of model representations and
optimization techniques available within an identi�cation framework, while
having little or no insight into the nature of dynamics of the true system.

� One of the main challenges for a user is to choose a suitable model structure
(and complexity). For some frameworks this choice must be made explicitly,
e.g., choosing a parameterized model structure in PPEM method. For oth-
ers, this choice is made on a more abstract level, e.g., choosing the network
architecture in a neural-network-based method or a kernel. In both cases, the
choices made by the user a crucial as they ultimately determine the quality
of the model estimate.

� Most identi�cation methodologies estimate models for a single identi�cation
criterion. The choice of the identi�cation criterion is typically motivated by
statistical arguments based on the chosen model structure, or is based on the
capability of the optimization technique being used. On the other hand, in
many engineering applications, model estimates must satisfy multiple perfor-
mance requirements.

Based on the observations listed above, we can distil the features required to achieve
automated system identi�cation:

� The identi�cation methodology to-be-developed should be able to function
across multiple classes of dynamical systems. This is necessary to ensure
that the conceptualized identi�cation framework can be applied to a variety
of application with minimal changes.

� Instead of requiring the user to make decisions related to model structure
and complexity, the desired identi�cation methodology should be able to
infer the appropriate structure required in the model based on measured
data obtained from the system-to-be-modelled. The ability to automatically
determine appropriate model structures from a generalized model set makes
it possible to minimize the number of crucial decisions made by the user
during the identi�cation cycle.

� In many applications, it is possible that the user has a prior understanding
of the dynamics of the system, or a preference for the desired model repre-
sentation or structure. In such a scenario, it should be possible to suitably
restrict the scope of the conceptualized identi�cation algorithm based on this
information. This will not only make the estimated models better suited for
the ultimate use-case, but also make the desired identi�cation algorithm more
e�cient.

52 Chapter 2. System Identi�cation: The State-of-the-art

� It should be possible to incorporate multiple user-speci�ed identi�cation cri-
teria, such that models are optimized for performance measures that are
relevant to the ultimate use-case of the model.

The list of features suggest a diverse range of speci�cations for the desired iden-
ti�cation framework. In Chap. 3, 4 and 5, we introduce a number of concepts
that serve as the basic ingredients required to develop a recipe for an identi�cation
framework that possesses the list of features presented here. As hinted in Sec. 2.4.6,
the �rst of these ingredients is evolutionary algorithms.

I have called this principle, by which each slight vari-
ation, if useful, is preserved, by the term of Natural
Selection

Charles Darwin

3
Preliminaries - Evolutionary Algorithms

I n Chap. 2, we presented, based on a general overview of the system
identi�cation literature, a set of desired features for the identi�cation

framework conceptualized in this thesis. To aid the development of the
conceptualized framework, we must �rst introduce several concepts that
will be ultimately fused together to realize the research objective stated in
Chap. 1.

In this chapter, we introduce evolutionary algorithms - one of the concepts
that will play a vital role in addressing the problem of automated selec-
tion of model structure and complexity (see Research Question 3 proposed
in Chap. 1). Evolutionary algorithms are a class of global optimization
techniques that make use of heuristics inspired by Darwin's Theory of
Evolution. In this chapter, we pay special attention to genetic program-
ming, which is one of the optimization methodologies that belongs to the
class of evolutionary algorithms.

In the �eld of evolutionary algorithms, the problem of estimating models,
of unknown structure and complexity, from measured data is often referred
to as the symbolic regressionproblem. Although the symbolic regression
problem is similar, in concept, to the system identi�cation problem, there
are crucial di�erences in the types of systems and models considered in
the two �elds. Nonetheless, a number of developments proposed in the
evolutionary algorithm literature to address symbolic regression are also
relevant in the system identi�cation context. Hence, these developments
are also discussed in this chapter.

53

54 Chapter 3. Preliminaries - Evolutionary Algorithms

3.1 Introduction

We discussed in Sec. 2.5 that the conceptualized methodology for automatic system
identi�cation should be able to determine suitable model structures that capture
the functional relationship realized in the inputs and output measurements ob-
tained from the system. In order to achieve this, we need an optimization method-
ology that can explore a variety of model structures from some abstract model set,
and subsequently converge to an �optimal� model structure, where the optimality
is determined by the chosen identi�cation criteria. The Evolutionary Computing
(EC) community has studied this problem, known as the so-calledSymbolic Regres-
sion (SR) problem, and many Evolutionary Algorithms (EAs) have been developed
for this purpose. In this chapter, we introduce the preliminaries of EC, and more
speci�cally, Genetic Programming (GP), which is one of the key ingredients of the
identi�cation methodology that will be developed in the course of this dissertation.

This chapter is structured as follows. We introduce the concept of EC in Sec. 3.1.1.
In Sec. 3.1.2, we introduce the problem of SR, which originates in the EC literature,
and shed light on the link between SR and system identi�cation. A number of EA-
based identi�cation methodologies have been proposed in the literature, and will be
reviewed in Sec. 3.1.3. In Sec. 3.2.2, we introduce a speci�c variant of EA known
as genetic programming, and describe the basic GP algorithm. Finally, in Sec.
3.3, we discuss some of the challenges commonly encountered in solving the SR
problem using EAs, and the corresponding solutions that have been proposed in
the literature.

3.1.1 Evolutionary Computing and Algorithms

EC is a global optimization technique inspired from biological theories and obser-
vations, more speci�cally, Darwin's Theory of Evolution. EC attempts to replicate
the process ofevolving a populationof species vianatural selection in order to solve
optimization problems. The basic tenets of natural evolution that are replicated in
EC are the following:

1. A population, consisting of a number ofindividuals, exists in anenvironment.

2. The �tness of an individual is determined by its environment.

3. Individuals with higher �tness are likelier to survive and reproduce.

4. New individuals, or o�springs , can be produced via reproduction from exist-
ing individuals, or parents. An o�spring inherits traits from its parents.

Following these basic principles, a population evolves over time, through the pro-
cesses of reproduction and mutation, and since the �ttest individuals are likelier to
survive, the population as a whole, on average, improves in �tness.

In EC, these principles are replicated in the following way. Theoptimization prob-
lem forms the environment, and a candidate solution is treated as an individual.
A collection of such candidate solutions forms the population, and reproduction is

3.1 Introduction 55

replicated as mathematical operations that generate new candidate solutions based
on existing ones. Selection and propagation of �t candidate solutions, where the
�tness is determined by the problem speci�cation, ensures survival of the �ttest.
On average, the �tness of the candidate solutions increase w.r.t the optimization
problem.

EC is computationally implemented as EAs, a class of meta-heuristic search algo-
rithms. Some examples of EAs are Genetic Algorithms (Holland, 1975), Evolution-
ary Programming (Fogel et al., 1966), Evolutioanary strategies (Rechenberg, 1971),
Genetic Programming (Koza, 1992) and Gene Expression Programming (Ferreira,
2001). These algorithms chie�y di�er in terms of biological inspirations they are
derived from, the data structures used, and the evolutionary reproduction oper-
ators applied. EAs are relatively domain independent, as can be seen from the
broad range of successful applications (To and Vohradsky, 2007; Li et al., 1996;
Frowd, 2002; Hill et al., 2005).

At the core of EC is the idea to solve problems by utilizing agenerate-and-evaluate
strategy, i.e., candidate solutions are �rst generated using heuristic operations, and
subsequently evaluated for their ability to solve the given problem. This makes EC
an ine�cient optimization tool for problems that are relatively simple to solve, and
for which e�cient algorithms already exist. However, for challenging combinatorial
or multi-modal optimization problems for which no e�cient solution techniques
are known (e.g., the class of NP problems), EC can be used as a generic global
optimization technique to obtain `useful' solutions. Additionally, the generate-
and-validate strategy often yields solutions that are unconventional with respect to
standard solution techniques (for example see Hornby et al. (2011)), or even simply
surprising, as demonstrated by the collection of anecdotes in Lehman et al. (2018).

3.1.2 Symbolic Regression

Symbolic regression refers to the problem of inferring a symbolic mathematical
function, of unknown form, from data generated by the function. While in typical
regression techniques, the (parametric) form of the function is determined by the
user, in SR, the objective is to infer the structure of the function from fundamental
mathematical entities (like operators and operands) using computational methods.

The formulation of the SR problem originates in the EC literature. Koza (1992)
was the �rst to employ EA, more speci�cally GP, to solve the SR problem. The
basic idea of the GP approach to SR is depicted in Fig. 3.1. The problem is set up
by collecting data from the function to be estimated, and providing a set of modular
`lego' blocks that can be combined to form a mathematical function. For example,
the set of blocks may consist of operations such as addition, multiplication and
exponential, and operands (e.g.,x; y in Fig. 3.1). Based on the given set of modular
blocks, the GP is initialized with a randomly generated set of candidate solutions.
The solutions can be compared to measured data using a user-speci�ed criterion,
e.g., the Euclidian norm. Individuals with higher comparative �tness are likelier to
reproduce and survive during the iterations of GP. The evolution of the population
of candidate solutions continues until some stopping criterion is satis�ed, typically

56 Chapter 3. Preliminaries - Evolutionary Algorithms

Figure 3.1: An illustration of EC approach applied to a static SR. Some con-
stituent images were obtained from Wikipedia Commons.

the maximum number of iterations. Finally, the candidate solution, built from the
modular modelling blocks, that achieves the best performance is returned as the
function estimate. An illustration of the GP iterations is depicted in Fig. 3.2. More
details on GP is provided in Sec. 3.2.2.

On the surface, the SR problem is closely related to SI. Both problems involve
estimating models from measured data. However, most SR techniques do not
consider

� dynamic dependencies between inputs and outputs, and

� disturbances acting on the system, or noisy measurements,

which are crucial considerations for any SI method.

Since Koza (1992), many EA-based techniques have been developed for SR - Kei-
jzer (2003); Ferreira (2003); Peng et al. (2014); Smits and Kotanchek (2005); Uy
et al. (2011); Vladislavleva et al. (2008); Hoai et al. (2002); Zelinka et al. (2005);
McConaghy (2011) to name a few. However, most techniques for SR havenot
been developed for the considerations listed above. On the other hand, in the SI
literature, some EA-based techniques have been proposed for estimating non-linear
models from noisy data. These will be reviewed in Sec. 3.1.3.

3.1.3 Evolutionary computing in System identi�cation: An
Overview

In this Section, we provide an overview of some of the EC-based SI methodologies
proposed in the literature. In the context of SI, EC have primarily been used in
two capacities:

3.1 Introduction 57

Figure 3.2: Illustration of GP iterations for an SR problem.

1. For the estimation of model parameters for a known (and parameterized)
model structure, for example, see Worden and Manson (2012), where the au-
thors used EAs to estimate model parameters for complex non-linear bench-
mark problems, or Arias-Montano et al. (2012), for a review of the use of
EAs in estimating model and design parameters in aerospace applications.

2. To determine appropriate model structures, possibly in conjunction with esti-
mating model parameters, for example, see Fonseca and Fleming (1993) and
Gray et al. (1998).

The �rst mode of usage of EA in the SI context is not of signi�cantly relevance for
this dissertation (since EA is used merely as a numerical optimization tool), and
hence, is not treated in this review. Interested readers are referred to Abd Samad
(2014) for a review. The second scenario, in which EAs are used to determine
appropriate model structures, bears a closer resemblance to the SR setting, and is
more relevant in the context of automated system identi�cation. Hence, we focus
our review on the second scenario.

Evolutionary computing-based SI approaches, in which EAs are used for model-
structure determination, can be categorized as follows:

i) approaches that choose a �xed class of dynamical system (and its representa-
tion) and use EC to determine the appropriate model complexity (or model
terms), and

ii) approaches that use EC to explore model structure and model complexity.

In the �rst category of EA-based approaches, the basic building blocks of an EA
are chosen such that only models with a speci�c model structure can be gener-
ated, leaving model complexity as the remaining degree of freedom. Typically,

58 Chapter 3. Preliminaries - Evolutionary Algorithms

these approaches cannot be extended to other model structures without signi�-
cant modi�cations. This approach can be found in Fonseca and Fleming (1996);
Rodriguez-Vazquez et al. (2004); Rodríguez-Vázquez and Fleming (2000), where
the authors use EAs to perform term selection within a chosen model structure.
This approach is also used in Kristinsson and Dumont (1992), where the authors use
Genetic Algorithms (GAs) to estimate pole-zero locations for ARMAX models, and
in Ha�z et al. (2019), where authors used a variant of Particle swarm optimization
(PSO) to select model terms in a polynomial Non-linear Auto-Regressive models
with eXogenous inputs (P-NARX) structure. In a similar vein, Naitali and Giri
(2016) used EC to estimate dynamical models with a �xed Wiener-Hammerstein
structure.

In the second category of EA-based approaches, the role of EC is similar to that
in an SR setting. Generic set of building blocks are used in the EA, allowing the
generation of models with arbitrary model structures. In this case, EAs are used
to determine not just the appropriate complexity of the model, but also the appro-
priate model structure (e.g., in terms of the non-linear functions to be included in
the model). In general, there are two drawbacks for such EC-based identi�cation
methodologies:

� Unrestrained generation of arbitrary model structures using EA may result
in models that are not well-posed, e.g., models with discontinuities, non-
causality, or �nite escape-time. Typically, these problems are avoided by
using arbitrary ad-hoc solutions, e.g, setting all discontinuities to 0.

� Prior knowledge of the dynamical system or user-preference for desired model
structures cannot be incorporated systematically in the identi�cation proce-
dure.

In Madár et al. (2005), the authors use GP to identify NARMAX models that
may contain arbitrary non-linearities. While the authors are interested in models
that are linear-in-the-parameters, GP may return models that do not belong to
that class. Consequently, the authors use an ad-hoc solution to ensure that the
candidate model structures generated by GP are linearly parameterized. In Gray
et al. (1998), the authors used GP to construct linear or non-linear models from
basic elements like SIMULINK blocks and static non-linearities. The combination
of various SIMULINK blocks cannot be systematically structured to avoid ill-posed
models, or to incorporate prior knowledge or user-preference. In La Cava et al.
(2016), the authors used a stack-based GA, to obtain compact dynamical models
of wind turbines. The proposed stack-based GA always produces syntactically
correct models, however, this is achieved by ignoring part of the genotype of the
candidate model, which may lead to undesirable behaviour of the search algorithm.
Furthermore, there exists no systematic way to introduce prior knowledge.

Besides the methodologies described above, a number of SR techniques have also
been extended and applied to identify dynamical systems, such as Quade et al.
(2016) and Schmidt and Lipson (2009). While these approaches are capable of de-
termining complex dynamical model structures starting from basic building blocks

3.2 Genetic Programming 59

using measured data, they typically (i) do not take into account stochastic prop-
erties of systems or measured data, and (ii) implicitly assume that measurements
of all the relevant variables of the system are available. In realistic identi�cation
applications, both of these aspects play an important role and must be taken into
consideration.

3.2 Genetic Programming

Genetic programming is a variant of EA proposed by Koza (1992). GP encodes
candidate solutions in the form of tree structures. GP forms an integral part of the
identi�cation methodology presented in this thesis, and hence, is introduced in this
section. In Sec. 3.2.1, we introduce some preliminary notions, and in Sec. 3.2.2, we
introduce the standard GP algorithm and discuss each step of the algorithm. Over
the years, many extensions have been proposed to the standard GP algorithm,
depending on the problem being solved. Some of these extensions, relevant for the
SR problem, are discussed in Sec. 3.3.

3.2.1 GP Preliminaries

A candidate solution in GP can be generated from elements of two sets - aset of
functions N and a set of terminals T. The combined setS = N [T can be viewed
as a dictionary of building blocks, provided by the user, that determine the set
of all possible solutions that can be generated by GP. Regardless of the problem
domain, a candidate solution in GP is encoded as a �nite labelled tree, de�ned as
follows.

De�nition 3.1 (Finite tree, Kallmeyer (2009)) . A �nite tree is a directed graph,
denoted by = hV; E; r i , where, V is the set of vertices,E is the set of edges, and
r 2 V is the root node, such that

- contains no cycles,

- r 2 V has in-degree (number of incoming edges) 0,

- All � 2 V n f r g have in-degree 1,

- Every � 2 V is accessible fromr ,

- A vertex with out-degree (i.e., number of outgoing edges) 0 is a leaf.

De�nition 3.2 (Labelling) . Let A1; A2 be a set of disjoint alphabets. Thelabelling
of vertices and edges of a graph = hV; Ei over (A1; A2) is given by the mappings
l : V ! A1 and g : E ! A2, respectively.

Let �() denote the set of all leaves in a �nite tree . The depth of a �nite-tree is
de�ned as follows.

60 Chapter 3. Preliminaries - Evolutionary Algorithms

Figure 3.3: Expression tree forx1 + x2x3 + exp(� x1).

De�nition 3.3 (Tree-depth). The tree-depth dt () of a �nite tree = hV; E; r i is
de�ned as

dt (x) := max
� 2 �()

ne(�;) + 1 ; (3.1)

where ne(�;) is the number of edges between a node� and the root r of tree .

In GP the �nite-tree representation of a solution is often referred to as thegenotype
of the individual. The solution itself may have a di�erent case-dependent form, for
example, a computer code or a mathematical expression. The �nal form of the
solution is said to be part of the phenotypeof the individual.

Let md be the maximum tree-depth to be explored in GP. For the given set of
functions N and terminals T, the set of candidate solution genotypesL T (S) is
de�ned as follows.

De�nition 3.4. The set of candidate solution genotypesL T (S) consists of all
�nite labelled trees = hV; E; r i that satisfy

- l (�) 2 N for all � 2 V n �(),

- l (�) 2 T for all � 2 �(),

- dt () < m d

For notational convenience, the argument in L T (S) will be dropped, unless it
leads to ambiguities. Let � denote the mapping from the tree-representation of
the individual to the �nal form of the candidate solution. The mapping � is usually
evident from the choice of encoding used for the solutions. The set of all candidate
solutions M can then be de�ned asM := f �() j 2 L T g.

In the context of SR, the sets N and T consist of mathematical operations and
operands, respectively, that are chosen for the SR problem. In this setting, the
genotype is represented as an expression tree, for example, see Fig. 3.3.

3.2.2 The Genetic Programming Algorithm

The standard GP, as proposed by Koza (1992), is an iterative search algorithm,
with at most L iterations or generations. The search scheme is initialized with

3.2 Genetic Programming 61

a population of ns randomly generated candidate solutionsX (0) = f x0
i gn s

i =1 . Each
individual in a generation of solutions is denoted asx j

i , wherei 2 [1; ns] is the index
of the individual in a generation, and j 2 [0; L] is the index of the generation. A
maximum tree-depth of md is imposed on the individuals.

In each iteration, variation operators are used to propose new candidate solutions,
that are subsequently evaluated using the given performance measure. These-
lection operator is used to select the solutions that are propagated to the next
iteration.

The basic GP algorithm described in Koza (1992) is presented in Alg. 1. Each step
in the algorithm is described in the following.

Algorithm 1 Genetic Programming

Require: population size ns > 0, number of iterations L > 0, set of functions N
and terminals T, crossover ratepc, mutation rate pm , maximum tree-depth md

1: Initialize population X (0) , l = 0
2: Evaluate �tness of models in X (l)

3: repeat
4: Propose new population ~X (l +1) using variation operations
5: Evaluate �tness of population ~X (l +1)

6: Select population X (l +1)

7: l l + 1
8: until l � L + 1 return X (L)

Initialization

The population X (0) is initialized in Step 1 of Alg. 1 as a set of randomly generated
trees f x0

i 2 L T (S)gn s
i =1 . Koza (1992) proposed three approaches to generate the

initial population X (0) - grow, full and ramped half-and-half. The `grow' approach
is described1 in Alg. 2. The `grow' initialization results in trees with arbitrary shape
and depth in the range of[2; md]. In contrast, the `full' initialization results in trees
that are full, i.e., all leaves are at maximum depth md . The `full' initialization
follows the same steps as the `grow' initialization in Alg. 2 with a modi�cation in
Step 9: the labels for the newly added nodes are selected fromN (instead of N [T)
randomly with uniform distribution.

The ramped half-and-half initialization is a combination of the `grow' and `full'
initializations. The population X (0) is divided into md � 1 groups, each with
a corresponding maximum tree-depth of2; 3; : : : md . In each group, half of the
individuals are initialized using the `grow' initialization, and the other half using
the `full' initialization.

1 It is assumed that each function in N has arity (i.e., number of arguments) 2. Alg. 2 can
easily be extended to the case where each function in N has an arbitrary but known arity.

62 Chapter 3. Preliminaries - Evolutionary Algorithms

Algorithm 2 The `grow' initialization

Require: set of functions N and terminals T, maximum tree-depth md

1: Initialize x h V; E; r i , where V = f r g, E = � , and l(r) 2 N is randomly
selected with uniform distribution.

2: � F f � 2 �(x) j l (�) 2 Ng . Set of leaves with labels that belong toN
3: d 1 . depth of the tree
4: i 1
5: while d � md do . Grow tree until maximum depth md

6: while � F 6= � do . Visit each leaf in � F , and add new nodes
7: Select any� 2 � F

8: if d < m d then
9: V V [f � i +1 ; � i +2 g, where l(� i +1); l (� i +2) 2 (N [T) is randomly

selected with uniform distribution
10: else
11: V V [f � i +1 ; � i +2 g, wherel(� i +1); l (� i +2) 2 T is randomly selected

with uniform distribution
12: E E [fh �; � i +1 i ; h�; � i +2 ig ,
13: � F � F n f � g
14: i i + 2
15: x h V; E; r i
16: � F f � 2 �(x) j l (�) 2 Ng
17: d d + 1
18: return hV; E; r i

Fitness evaluation

A candidate solution x can be evaluated based on its phenotype�(x). Let f :
M ! R be the user-speci�ed performance criterion that assigns an individual its
�tness value. Unless speci�ed, we will assume that the performance criterion is to
be minimized. The given performance measure is used to compute the �tness of
each individual in the population (see Steps 2, 5 of Alg. 1).

In order to evaluate the �tness of an individual, it is crucial that each genotype
x 2 L T is mapped to a phenotype�(x) that is a `valid' candidate solution, where
the validity is determined by the problem domain. For example, if the phenotype of
an individual is a computer program, then the program must not contain syntactic
or semantic errors. This is referred to as theclosureproperty. When the tree-based
encoding of the individuals does not possess the closure property, one must use ad-
hoc strategies to `�x' the individual such that it can be evaluated. Alternatively,
more advanced tree-based encodings can be used, for example, strongly-type GP
(Montana, 1995) or grammar-based GP (Whigham et al., 1995).

Typically, �tness evaluation of individuals is the most time-consuming step in Alg.
2. However, computing the �tness of individuals in a population can usually be
parallelized, thereby making the step scalable to larger population sizes.

3.2 Genetic Programming 63

Variation operators

In each iteration of GP, variation operators such ascrossover and mutation are
used to propose a new generation of solutions from the existing generation (see
Step 4 of Alg. 1). These operators are described below:

� The crossover operator, denoted as� : L T � L T ! L T � L T , exchanges sub-
trees of two individuals x j

i 1
and x j

i 2
to create two new individuals ~x j +1

i 1
and

~x j +1
i 2

, for some i 1; i 2 2 [1; ns] and somej 2 [0; L � 1]. Many crossover op-
erators have been proposed and studied in the literature, e.g., in Poli and
Langdon (1998). Perhaps the most common one, proposed in Koza (1992) is
the standard sub-tree crossover. The standard sub-tree crossover, depicted in
Fig. 3.4, involves the following steps:

1. Two individuals x j
i 1

; x j
i 2

are selected randomly from the populationX (j) .
The probability distribution for the random selection may be dependent
on the relative �tness of the individuals w.r.t the population (as proposed
in Koza (1992)). However, many other strategies have been proposed in
the literature, e.g., see review in Larranaga et al. (1999). Crossover is
applied to the selected pair with a probability of pc.

2. Two nodes� 1; � 2 are selected randomly from individualsx j
i 1

; x j
i 2

, respec-
tively, with uniform distribution 2.

3. The two sub-trees inx j
i 1

; x j
i 2

rooted at � 1; � 2, respectively, are swapped.
This results in two new candidate solutions ~x j +1

i 1
; ~x j +1

i 2
.

� The mutation operator, denote as � : L T ! L T , modi�es a sub-tree of an
individual x j

i to create x j +1
i . The standard sub-tree crossover, depicted in

Fig. 3.5, involves the following steps:

1. An individual x j
i is selected randomly from the population with a proba-

bility determined by the relative �tness of the individual. The individual
is mutated with probability pm .

2. A node � in x j
i is selected randomly with uniform distribution. The

sub-tree rooted at � is swapped with a newly generated tree (using the
same techniques as in the initialization step).

While only the standard crossover and mutation operators have been introduced
here, there exist a large number of proposed strategies for crossover and mutation,
for example, in Poli and Langdon (1998); Langdon (1999); D'haeseleer (1994) and
(Poli et al., 2008, Chapter 5).

Selection

In Koza (1992), no clear distinction was made between the variation operators
of crossover and mutation, and the selection operator. In its original form, the

2 It is common to select nodes for crossover with a uniform distribution over all nodes except
leaves of the tree.

64 Chapter 3. Preliminaries - Evolutionary Algorithms

Figure 3.4: Standard crossover operator illustrated.

Figure 3.5: Standard mutation operator illustrated.

selection operator, denoted as& : L T ! L T simply copies an individual x j
i to

the next generation as~x j +1
i with a probability of ps. The individual x j

i is selected
randomly from the population with a probability that is determined by the relative
�tness of the individual w.r.t the population. In this setting, the new population for
the next iteration X (j +1) is the same as the proposed set of individualsf ~x j +1

i gn s
i =1

obtained from the crossover, mutation and selection operators.

In most recent approaches for GP, it is far more common to separate the roles of
the variation operators and the selection operator. In this setting, the variation
operators are used to propose a new set of solutions, and the selection operator is
used to select individuals from the current population X (j) and the proposed set
of solutions f ~x j +1

i gn s
i =1 to form the new population X (j +1) . Many strategies have

been proposed, such as crowding-based selection (Mengshoel and Goldberg, 2008),
rank-based selection and tournament selection (Goldberg and Deb, 1991).

3.3 Challenges and Extensions 65

3.3 Genetic Programming for Symbolic Regres-
sion - Challenges and Extensions

Genetic programming, and other EAs, have been applied to a number of SR prob-
lems over the years. Depending on the challenges posed by the SR test problems,
a number of shortcomings have been identi�ed in standard GP. Correspondingly, a
number of extensions have also been proposed to enable better performing EAs for
SR. Due to the similarity between SR and SI, the challenges posed by the SR prob-
lem, and the corresponding extensions of GP, are also relevant in the context of SI.
Hence, in this Section, we discuss some of the commonly identi�ed challenges and
the corresponding possible GP extensions. For detailed reviews, refer to O'Neill
et al. (2010); Dabhi and Chaudhary (2015), (Poli et al., 2008, Part 2) and (Eiben
and Smith, 2003, Part 2).

Estimation of numerical constants

Symbolic regression is inherently a two-part problem: (i) the search for an appropri-
ate model structure, and (ii) the estimation of model coe�cients. The search for an
appropriate model structure is a combinatorial optimization problem since, in EC,
the model is built from fundamental building blocks (see Fig. 3.1). The estimation
of model coe�cients is usually a continuous optimization problem, the complexity
of which is dependent on the problem domain. The estimation of model coe�cients
is a challenging task for the standard GP algorithm (Ryan and Keijzer, 2003). This
stems from the fact that standard GP typically resorts to combining various nu-
merical constants, that were present in the initial set of solutions, to propose a new
constant (Koza, 1992). This is a very slow process with no guarantees of �nding
the correct model coe�cients. The inability of GP to �nd apt numerical constants
has a more severe e�ect on the combinatorial part of the SR problem. Consider,
for example, the true data-generating function to be f 0(x) = sin(x) + 1000. For
this example, a candidate solutionf 1(x) = sin(x) + 1 would have a very low �tness
score, even though the solution is structurally similar to the true function. Thus
the candidate solution f 1(x) is highly likely to be dropped out of the current gener-
ation of solutions. While the GP algorithm could potentially re-introduce the sine
function at a later stage of the search, the inability to �nd appropriate numerical
constants makes GP highly ine�cient for searching in continuous domains.

This ine�ciency has often been observed in scienti�c literature (Dabhi and Chaud-
hary, 2015), and several extensions to GP have been proposed. A commonly used
approach is to hybridize the GP algorithm with a local searchtechnique that esti-
mates model coe�cients more e�ciently. Examples of such local search techniques
include gradient-descent (Topchy and Punch, 2001; Kommenda et al., 2013), ran-
domized algorithms and the Nelder-Mead simplex method (Molina et al., 2010),
and other evolutionary algorithms (Howard and D'Angelo, 1995). Such hybrid al-
gorithms are commonly referred to as Memetic Algorithms (EAs) (Moscato, 1999).
Ferreira (2003) proposed an approach, based on an alternate representation, to
estimate model coe�cients during the evolutionary search.

66 Chapter 3. Preliminaries - Evolutionary Algorithms

Over-�tting and bloating

A common �aw in standard GP is that, as the number of iterations increase, the
individuals in the population tend to grow in complexity (e.g., in terms of size of the
tree), without any signi�cant improvement in the �tness of the individuals. This
is a symptom of the evolution of candidate solutions that over-�t a �nite amount
of measured data. In EC terminology, this is referred to asbloating.

A variety of techniques have been proposed in the literature to avoid bloating. One
approach to controlling bloat is to modify the variation or selection operators, such
that the operations function on individuals of similar complexities, for example
crowding-based selection (Mengshoel and Goldberg, 2008) and size-fair crossover
(Crawford-Marks and Spector, 2002). A second approach to deal with over-�tting is
to cross-validate the candidate models using an independent dataset in the selection
step (Gagné et al., 2006). Perhaps the most direct approach to control bloating
is to use complexity as an additional performance measure in a Multi-Objective
Evolutionary Algorithm (MOEA), for example, Fonseca and Fleming (1993); Deb
et al. (2002); Zitzler et al. (2001).

E�ciency of the algorithm

EAs are often required to search for solutions in combinatorial search landscapes,
which can be challenging task (Colorni et al., 1996; Ho�man et al., 1986). Analysis
into the performance of EAs via the schemata theory(Holland, 1975) only pro-
vides a partial description of why EAs work, and has been criticized for being too
simplistic (Altenberg, 1995). On the other hand, convergence analysis for EAs are
often established in an asymptotic computational time setting (Rudolph, 1994).
While analysing the limit behaviour of the algorithm provides relevant insights, it
does not reveal the non-asymptotic performance of the search.

In order to improve the e�ciency of EAs, developments have been made in several
directions, some of which are listed below.

� Solution space and representations : In the EC community, it is well
known that the performance of EAs can be improved by incorporating domain-
speci�c prior knowledge into the algorithm (Wolpert et al., 1997; Radcli�e and
Surry, 1995). One way to incorporate domain-speci�c knowledge is to restrict
the solution space or modify the representation of solutions based on prior
knowledge. Grammar-based approaches have been widely used to restrict
search spaces in a declarative sense, see Mckay et al. (2010), or adaptively,
see Wong and Mun (2005). Many authors have used solution representations
specially catered to the problem domain, a good illustration of this idea can
be found in Ashlock et al. (2012). In this paper, the authors also illustrate
how the choice of representation may in�uence the �tness landscape by intro-
ducing or removing local optima. EAs have also been extended to multiple-
gene representations for combinatorial problems (Ferreira, 2002), continuous
optimization problems (Ferreira, 2003), and graph-based representations for
network-based applications (Poli et al., 1997).

3.3 Challenges and Extensions 67

� Modi�ed variation operators : Schemata theory implicitly assumes that
individuals with relatively high �tness produce o�springs with relatively high
�tness (Altenberg, 1995). This is in general not true for standard crossover
and mutation operators, and is dependent on the nature of the �tness land-
scape. Modi�ed variational operators have been proposed to improve the �t-
ness of o�springs, for examples see Ferreira (2002); Poli and Langdon (1998);
D'haeseleer (1994); Pawlak et al. (2014)

� Modi�ed selection operator : Similar to variation operators, selection op-
erators have also been modi�ed to introduce favourable traits in EAs, see
Goldberg and Deb (1991) for a comparative analysis of some commonly-used
selection mechanisms. The importance of selection operation with regards to
the global convergence proposerties of the search algorithm was pointed out
in Rudolph (1994). Crowding-based selection, see Mengshoel and Goldberg
(2008), provide a selection mechanism that trades-o� performance vs. com-
plexity of individuals, and has been used in MOEAs (Deb et al., 2002) to
maintain diversity in the population and prevent early convergence.

� Fitness evaluation : Evaluating the �tness of individuals is most often the
most time-consuming step of any EA. E�orts have been made to reduce
time-complexity of the �tness evaluation step by predicting the �tness of
individuals (Schmidt and Lipson, 2008) or by active control of the length of
the data-set (Zhang and Cho, 1998).

68 Chapter 3. Preliminaries - Evolutionary Algorithms

What I cannot create, I do not understand.

Richard Feynman

4
Tree Adjoining Grammar

I n Chap. 3, we introduced the preliminaries of GP, a generic optimiza-
tion tool that can generate and search for optimal solutions in a general

solution space. GP is the �rst key ingredient that will be used to realize the
conceptualized identi�cation methodology. Recall that in the context of
automated SI, the desired solution space would consist of all model struc-
tures (with varying degrees of model complexity) that are relevant for the
identi�cation task at hand. Furthermore, when the user has prior knowl-
edge of, or preference for the desired model structure, it should be possible
to suitably adapt the search space of the desired automated SI method.
These ideas connect to Research Sub-questions 1.1 and 1.2 proposed in
Chap. 1.

In this chapter, we introduce the concept of TAG, a grammar formalism
for generating trees with desired structures. Although TAG was developed
to describe syntactic structures in linguistic sentences, we demonstrate in
this chapter that the same concept can be applied to describe structure in
dynamical models. Based on this idea, we generalize the notion of a model
set, which ultimately enables us to shape the solution space explored by
GP. We formalize these concepts by developing a TAG to describe the
structure of a class of IO models, speci�cally the P-NARMAX model class,
and demonstrate that the proposed grammar also describes a number of
other model structures such as ARMAX and truncated Volterra series. We
also demonstrate that the proposed concept can be extended to a larger
class of IO models, and to other model representations such as state-space
models.

69

70 Chapter 4. Tree Adjoining Grammar

4.1 Introduction

One of the primary challenges to automating the task of system identi�cation is
to address the problem of model structure determination. In most identi�cation
methodologies proposed in the literature, the user must either make an explicit
choice in terms of the structure and complexity of the model (e.g., in PEM methods,
see Sec. 2.4.2), or make a choice on a more abstract level that eventually determines
the model set (e.g., in Bayesian identi�cation, see Sec. 2.4.4). In order to alleviate
the dependence on a user's choice, the conceptualized identi�cation framework
must be able to function across multiple model structures and complexities. This
argument led to the formulation of Research Question 1: "How can we automate
the task of model structure and complexity selection in the parametric setting?",
and Sub-questions 1.1 and 1.2. These questions will be addressed in this chapter.

In Chap. 3 we introduced EC, and discussed how algorithms such as GP may be
used to solve the problem of model structure selection. In order to apply GP in a
system identi�cation context, one must ensure that

(i) The set of desired dynamical model structures can be expressed in terms
of expression trees that are generated using a set of functions and terminal
symbols, since GP uses these functions and terminals as basic building blocks
to construct candidate solutions for the given problem.

(ii) Any expression tree constructed using the set of functions and terminal sym-
bols must be a well-posed model that belongs to the set of desired model
structures. This is necessary since the GP algorithm should be able to evalu-
ate models corresponding to the expression trees generated in each iteration.
If the set of terminals and functions do not always generate a well-posed
model structure, one must make use of a number of ad-hoc correction mecha-
nisms in order to obtain a model structure that can be numerically evaluated.
By design, these ad-hoc correction mechanisms would be speci�c to the cho-
sen set of functions and terminals, thereby making it di�cult to apply the
conceptualized identi�cation methodology across di�erent model structures
or representations.

Typically, requirement (i) can be satis�ed since mathematical expressions can be
represented by expression trees. Ensuring the satisfaction of requirement (ii) can
be more involved, see discussion in Sec. 3.3. Furthermore, GP in itself does not
provide tools to impose constraints on the structure of models generated during
the evolution of candidate solutions.

In order to satisfy requirement (ii), we need to specify a set of rules that can ac-
curately describe the structure of well-posed dynamical models, more speci�cally,
parametric IO models. Surprisingly, a fundamentally similar problem arises in the
�eld of computational linguistics, where one would like to describe the structure of
words that constitute syntactically-correct sentences in a grammar. In this com-
parison, a well-posed model structure is similar to a syntactically-correct sentence,
and the desired model set is akin to the grammatical language. Continuing along

4.2 Formal Grammars and TAG 71

the lines of this analogy, we are interested in determining the grammar rules that
generate well-posed model structures.

Whigham et al. (1995) was the �rst to use generative grammars to shape the set
of candidate models explored in GP. In this chapter we explore the possibility of
using a formalism of generative grammar called TAG to generate model structures
with the desired properties. TAG was originally developed to study the structure of
sentences in natural languages. In this chapter we use TAG to generate structured
parametric dynamical models that belong to a desired model set. We also discuss
how the model set, i.e., the underlying language, can be modi�ed to incorporate
prior knowledge and constraints on the model structure.

In Sec. 4.2 we introduce generative grammars, illustrate the basic notions of TAG
on a linguistic example and formally de�ne the relevant notions. In Sec. 4.3 we
introduce the notion of a model set speci�ed by a TAG and develop a TAG that
speci�es a class of parametric IO models. We also demonstrate how prior informa-
tion can be incorporated into the model set by imposing restrictions in the TAG.
In Sec. 4.3.3 we demonstrate the use of TAG to describe other types of IO dynamic
models, and in Sec. 4.4 we develop a TAG for non-linear SS model representations.

4.2 Formal Grammars and TAG

4.2.1 Introduction to Generative Grammars

A formal grammar can be described as a set of rules for generating strings. The
resulting set of strings is called thelanguagegenerated by the grammar. Formal
grammars �nd applications in development of programming languages and parsers,
theoretical linguistics and in the study of mathematical logic (Meduna, 2014). The
most common uses for formal grammars and languages are in the context of (i)
generative grammars, which can be considered as systems of rules that generate only
the combination of words that exist in a given formal language, or (ii) recognizers,
which determine whether a given string belongs to a language.

The notion of generative grammars was introduced by Chomsky (1956). Chomsky
formulated a grammar, more speci�cally a phrase structured grammar, as a tuple
comprising

(i) an alphabet of non-terminals N,

(ii) an alphabet of terminals T,

(iii) a distinguished start symbol S in the non-terminal alphabet, and

(iv) a set of production rules P that generate (or rewrite) strings that belong to
the grammar.

Let N � denote the set of all strings that can be made using zero or more symbols
in alphabet N. Similarly, let N+ denote the set of all strings that can be made

72 Chapter 4. Tree Adjoining Grammar

Figure 4.1: Illustration of the Chomsky hierarchy.

using one or more symbols in alphabetN. A single production rule of a grammar
can take the from

� 1 ! � 2; (4.1)

where sub-strings� 1; � 2 satisfy � 1 2 (N [T)+ and � 2 2 (N [T) � . Equation (4.1)
can be interpreted as follows: if a string� , that belongs to the grammar, contains a
substring that matches � 1, the substring can be replaced with� 2 in order to obtain
a new sentence� 0 that also belongs to the grammar.

Based on the structure of � 1 and � 2 in (4.1), phrase structured grammars can
be categorized into four types - regular, context-free, context-sensitive and unre-
stricted. Regular grammars are the most structured phrase-structured grammars.
The production rules in a regular grammar can take the form of (4.1), where� 1 2 N
and � 2 2 T or � 2 = � 3� 4 with � 3 2 T and � 4 2 N. Context-free grammars are
less structured than regular grammars since� 1; � 2 in (4.1) are required to satisfy
� 1 2 N and � 2 2 (T [T) � . Similarly, context-sensitive grammars form a more
general class of grammars with� 1; � 2 in (4.1) satisfying � 1; � 2 2 (N [T)+ . As a
consequence, the four categories of phrase structured grammars form a hierarchy
since the set of regular languages are properly included in the set of context-free
languages, which in turn is properly included in the set of context-sensitive lan-
guages, and so on. This is referred to as the Chomsky hierarchy, and is depicted
in Fig. 4.1. For a more detailed discussion, see Parkes (2012).

Until 1970's, context-free grammars were commonly used to describe semantics of
natural languages. However, Shieber (1985) demonstrated that context-free gram-
mars were inappropriate to describe certain features of natural languages. On
the other hand, context-sensitive languages were generally considered as too big
a class of grammars, making the resulting algorithms, for example for parsing,
computationally complex and non-scalable (Kallmeyer, 2010). As a result, several
formulations were proposed in order to extend the class of context-free languages
such that relevant context-sensitive features of natural languages could be incor-
porated (see Kallmeyer (2010)). One of the �rst mildly context-sensitive grammar

4.2 Formal Grammars and TAG 73

Figure 4.2: A derived tree with the yield �A man saw Mary�. The tree depicts
the grammatical constructs that are evident in the structure of the sentence - a
subject (sub) and a predicate (pred), an article (art), a verb (V) and nouns (N).

formalisms was TAG developed by Joshi et al. (1975). In this dissertation, we
put forth the idea to use the generative capacity of TAG to generate stochastic
dynamical models. In Sec. 4.2.2 and 4.2.3 we introduce TAG both informally and
formally.

4.2.2 TAG - An Informal Introduction

Unlike formal grammars that generate strings, TAG describes a set of rules for
generating trees. We introduce the concept of TAG through an example derived
from Joshi and Schabes (1997).

Consider the sentence �a man saw Mary�. Simple grammatical constructs can be
used to decompose the given sentence into its basic components. For example,
the sentence consists of articles (�a�), nouns (�man�, �Mary�) and verbs (�saw�).
Other underlining structures, such as subjects and predicates, can also be observed
in the sentence. The sentence, together with the underlying grammatical structure
can be represented in a tree form as shown in Fig. 4.2. The tree depicted in Fig.
4.2 is called aderived tree. The yield of a derived tree are the labels associated
with the leaves of the tree. Hence, the yield of the derived tree in Fig. 4.2 is �A
man saw Mary�.

The given derived tree can be obtained by combining basic building blocks that
are constituents of the TAG. Fig. 4.3 depicts the set ofinitial trees I and auxiliary
trees A , collectively known as elementary trees, that can be combined in speci�c
ways to produce the derived tree in Fig. 4.2. The set of initial treesI can be
informally described as a set of non-recursive replacement rules that can be used
to generate a set of trees. The set of auxiliary treesA can be described as a set of
recursive replacement rules. Consequently, each auxiliary tree has a terminal node
with the same label as that of its root node.

The TAG framework de�nes two operations that can be used to combine trees from
sets I and A - substitution and adjunction. A substitution operation can be used
to substitute an initial tree into, for instance, another initial tree, if and only if the
latter has a leaf with a label that matches the label of the root node of the prior.
The downward arrows symbol# in Fig. 4.3 represents nodes in initial trees that are

74 Chapter 4. Tree Adjoining Grammar

(a) Set of initial trees (I). (b) Set of auxiliary trees (A).

Figure 4.3: Initial (I) and auxiliary trees (A) for the example �A man saw Mary�.
The sets I and A serve as building blocks of the tree set of a TAG.

available for substitution. Adjunction can be loosely described as the operation of
inserting an auxiliary tree into an existing tree (for example, an initial tree or a
tree generated from setsI and A using substitution and adjunction operations).
Adjunction of an auxiliary tree can take place on a non-terminal node of a tree
if and only if the node has a label that matches the label of the root node of the
auxiliary tree to be adjoined. The star symbol ? in Fig. 4.3 marks the node in
auxiliary tree � 1 that participates in an adjunction operation.

We can now construct the sentence �a man saw Mary� through the following se-
quence of operations. The initial tree� 3 is substituted in � 1 at the location of the
�sub� node. Let's denote the resulting tree as 1. The tree 1 is an example of
a syntactic tree, a tree obtained by applying an arbitrary number of substitution
and adjunction operations to a given initial tree. Next, the initial tree � 4 is sub-
stituted to the syntactic tree 1 at the location of the �pred� node. Let the result
be denoted as 2. In fact, 2 is exactly the tree structure given in the example in
Fig. 4.2, upto the last level of the derived tree, where speci�c articles, nouns and
verbs are substituted in the tree to obtain the yield �a man saw Mary�.

Substitution can be performed on a initial tree or syntactic tree for as long as there
exist nodes available for substitution, marked by #. A derived tree is a syntactic
tree in which none of the terminal nodes (leaves) are available for substitution.
The initial and auxiliary trees provide an alternative representation, the derivation
tree, as shown in Fig. 4.4a. Based on the TAG in Fig. 4.3, more complex sentences
can also be generated. For example, the auxiliary tree� 1 can be adjoined to the
root node of 2 since both root nodes have the label �sentence�. This operation
e�ectively adds an adverb before the sentence, yielding the sentence �yesterday a
man saw Mary�. The resulting derivation tree is depicted in Fig. 4.4b.

The set of all derived trees that can be obtained, by starting from a given start
symbol, say `sentence', and applying an arbitrary number of adjunctions and/or
substitutions using elementary trees is called thetree languageof the corresponding
TAG. The string yield of all trees in the tree set is called the string languageof the
corresponding TAG.

4.2 Formal Grammars and TAG 75

(a) Derivation tree for "a man saw
Mary".

(b) Derivation tree for "yesterday a man
saw Mary".

Figure 4.4: Derivation tree representation - dashed lines represent substitutions,
solid lines represent adjunction, and labels on the edges represent the Gorn ad-
dresses (a method to assign a label to a node in a tree structure, see Gorn (1965))
of the nodes participating in substitution or adjunction.

4.2.3 TAG - Formal De�nitions

The formal de�nitions of TAG and related concepts can be found in Joshi and
Schabes (1997) and Kallmeyer (2009). These de�nitions are reproduced here for
completeness. To introduce the basic notions of a TAG, assumeN and T to be
disjoint alphabets that serve as the labels of non-terminal and terminal vertices,
respectively.

De�nition 4.1 (Syntactic tree). A syntactic tree is an ordered, labelled tree
hV ; E; r i such that the label l (�) satis�es l(�) 2 N for each vertex � with out-
degree at least 1 andl(�) 2 (N [T [�) for each leaf� .

De�nition 4.2 (Auxiliary tree) . An auxiliary tree is a syntactic tree hV; E; r i such
that there is a unique leaf f , marked asfoot node, with l(f) = l(r). An auxiliary
tree is denoted ashV; E; r; f i .

De�nition 4.3 (Initial tree) . An initial tree is a non-auxiliary syntactic tree.

Remark 4.1. Recall that a syntactic tree is obtained by combining initial and
auxiliary trees using the substitution and adjunction operations, respectively. If
a syntactic tree = hV; E; r i is formed by substituting (or adjoining) initial (or
auxiliary) trees to an auxiliary tree 0 = hV 0; E 0; r; f i , then the syntactic tree also
contains the foot nodef , and is denoted as = hV; E; r; f i .

With the basic ideas de�ned, we can now de�ne TAG, and the related operations.

De�nition 4.4 (Tree Adjoining Grammar) . A TAG is a tuple G = hN; T; S; I ; Ai ,
where

- N; T are disjoint sets of non-terminals and terminals,

- S 2 N is a start symbol,

- I is a �nite set of initial trees and A is a �nite set of auxiliary trees.

The set of treesI [A is calledelementary trees. Elementary trees can be combined
using substitution and adjunction operations to generate more complex trees.

76 Chapter 4. Tree Adjoining Grammar

(a) TAG substitution operation.

(b) TAG adjunction operation.

Figure 4.5: Illustration of the TAG operations.

De�nition 4.5 (Substitution) . Let = hV; E; r i be a syntactic tree and 0 =
hV 0; E 0; r 0i be an initial tree and � 2 V . The result of substituting 0 into at
node � , denoted as [�; 0], is de�ned as follows

- If � is not a leaf or � is a foot node orl(�) 6= l(r 0), then [�; 0] is not de�ned,

- otherwise, [�; 0] = hV 00; E 00; r i with

V 00= V [V 0n f � g; (4.2)

and

E 00= (E n fh� 1; � i j � 1 2 Vg) [E 0 [fh � 1; r 0i j h� 1; � i 2 Eg: (4.3)

The substitution operation is illustrated in Fig. 4.5a.

De�nition 4.6 (Adjunction) . Let = hV; E; r i be a syntactic tree and 0 =
hV 0; E 0; r 0; f i be an auxiliary tree and � 2 V with out-degree at least 1. The result
of adjoining 0 into at node � , denoted as J�; 0K, is de�ned as follows

- if l (�) 6= l(r 0) or � is a leaf, then J�; 0Kis unde�ned,

- else J�; 0K= hV 00; E 00; r 00i with

V 00= V [V 0n f � g; (4.4)

and

E 00= (E n fh� 1; � 2i j � 1 = � or � 2 = � g) [

E 0 [fh � 1; r 0i j h� 1; � i 2 Eg [

fhf; � 2i j h�; � 2i 2 Eg: (4.5)

4.2 Formal Grammars and TAG 77

The adjunction operation is illustrated in Fig. 4.5b.

More complex trees in a TAG can be produced by combining multiple elementary
trees using substitution and adjunction operations. When combining trees using
substitution or adjunction, we make use ofinstances of elementary trees such that
any two trees used to generate a complex tree in a given TAG are pairwise disjoint
(in terms of the set of vertices and edges). Any tree generated from a TAG can
be represented in two forms - derived tree and derivation tree. A tree obtained by
performing an arbitrary number of valid substitution and adjunction operations to
an initial tree = hV; E; r i 2 I [A with l(r) = S is called a derived tree (for
example, as in Fig. 4.2). The substitution and adjunction operations performed
can be represented in a tree representation calledderivation tree (for example, as
in Fig. 4.4), where

� the vertices of the derivation tree represent the various elementary trees being
substituted or adjoined,

� edges of the derivation tree represent substitution or adjunction of the ele-
mentary tree associated to the child vertex to the elementary tree associated
with the parent vertex, and

� the edges are labelled with the Gorn address of the vertex in the elementary
tree associated with the parent node where adjunction or substitution takes
place. The Gorn addressing scheme is as follows. The root node of a tree
has address0. The n children of the root node have addresses1; : : : ; n,
respectively. For any other node in the tree with addressa, the m children
of the node have addressesa:1; : : : ; a:m, respectively.

A derived tree is said to be saturated if all leaves of the derived tree belong to
the set T and cannot be further substituted. The corresponding derivation tree is
also said to besaturated. The yield of a saturated derived tree is the string of
terminal symbols associated with the leaves of read from left to right.

De�nition 4.7 (Tree language and string language). Let G = hN; T; S; I ; Ai be a
TAG. The tree languageL T (G) of grammar G is de�ned as the set of all saturated
derived trees = hV; E; r i 2 G with l(r) = S.

The string languageL(G) of G is the set of yields of the trees inL T (G).

For a given TAG G and derivation tree � , the derived tree can be computed as
 = � G (�), where � G denotes the mapping from derivation trees to derived trees
by performing the required substitution and adjunction operations. Furthermore,
we de�ne

L D (G) := f � j � G (�) 2 L T (G)g (4.6)

as the set of all derivation trees constructed using grammarG such that the corre-
sponding derivation tree � G (�) satis�es � G (�) 2 L T (G).

78 Chapter 4. Tree Adjoining Grammar

4.3 TAG Representation of IO Models

In Sec. 4.2 we introduced the basic notion of TAG. In this section, we demonstrate
how TAG can be used to generate parametric stochastic dynamical models. In
Sec. 4.3.1 we introduce a new notion of model set based on the generative capacity
of TAG. To showcase the capability of a TAG-based approach to specifying the
structure of dynamical models, in Sec. 4.3.2 we develop a TAG for a general class of
non-linear IO models - the polynomial Non-linear Auto-Regressive Moving-Average
models with eXogenous inputs (P-NARMAX) model class. The proposed TAG
for P-NARMAX models contains, as special cases, grammars that describe more
structured model classes, such as FIR, ARX and truncated Volterra series. In
Sec. 4.3.2 we also provide illustrative examples to demonstrate the use of TAG to
generate model structures. While we make use of the P-NARMAX model class to
establish formal results and to develop illustrative examples, the scope of TAG-
based speci�cation of model sets is by no means limited to the P-NARMAX class.
In Sec. 4.3.3 we present TAG for model structures that go beyond the class of
P-NARMAX models.

4.3.1 Grammar-based Model Set Speci�cation of IO models

Consider the following DT IO representation of a non-linear dynamical model

y(k) = f (u(k); : : : ; u(k � nu); y(k � 1); : : : ; y(k � ny); � (k � 1); : : : ; � (k � n�))

+ � (k) (4.7)

where u(k); y(k) 2 R are the input and output signals at time-instant k, � (k) �
N (0; � 2

�) is a noise signal independent of inputu, constants nu ; ny and n� are the
corresponding maximum time-lags and the non-linear functionf (�) belongs to an
arbitrary set of functions M . In PPEM, the set of functions M , also known as the
model set, along with a speci�ed choice fornu ; ny and n� , is determined by a user
based on expert knowledge, prior information and informative experiments. It will
be demonstrated in Sec. 4.3.2 that TAG can be used to generate trees that yield
non-linear functions f (�) with desirable structural properties and varying choices
of arguments (time lags of the involvedu; y and � signals).

In order to formalize this concept, we introduce a function � f (u; y; �; k) that maps
from function f to the right-hand-side expression in (4.7) (in string form). We can
now de�ne a new notion of model set, based on TAG, de�ned as follows.

De�nition 4.8. For a given TAG G, the correspondingmodel setM (G) is de�ned
as the set of models in the form of (4.7) such that� f (u; y; �; k) 2 L T (G).

Remark 4.2. Recall that while standard GP, introduced in Sec. 3.2.2, makes use
of expression trees that can be parsed as mathematical expressions, in TAG, the
derived tree yields the model expression as a string. Hence, we employ mapping� f

to map from function f to the model expression.

4.3 TAG Representation of IO Models 79

Note that the notion of model set introduced in Def. 4.8 is more generalized than
that used in PPEM. In PPEM, a model set is typically determined by choosing a
�xed model structure along with a suitable parameterization (i.e. model complex-
ity). On the other hand, in this work, the choice of initial and auxiliary trees of a
TAG automatically determines the model set. The advantage of such a declaration
of a model set is that, when no prior information is available, the model set can
be chosen to span a number of commonly used model classes without a prior spec-
i�cation of the model complexity. On the other hand, when prior information on
the structure or complexity of the model is available, the grammar can be suitably
re�ned to restrict the model set. In Sec. 4.3.2 we introduce a general non-linear
IO model class - the P-NARMAX class, and in Sec. 4.3.2, we propose a TAG for
the P-NARMAX model class, and demonstrate that the resulting model set spans
a number of commonly used parametric model structures.

4.3.2 TAG Representation of P-NARMAX Models

The NARMAX model class is a �exible class on NL IO dynamical models (Leon-
taritis and Billings, 1985). The P-NARMAX model class is the set of all NARMAX
models where the non-linear relationships are of the polynomial kind. P-NARMAX
models can be used to describe a large variety of system dynamics since any con-
tinuous function on a closed space can be approximated arbitrary well using poly-
nomial functions (based on Weierstrass theorem, see Stone (1948)). Furthermore,
the family of P-NARMAX models includes, as special cases, other commonly used
model classes such as FIR and ARMAX. It will be shown that these models can
be generated by suitably restricting the TAG presented here.

P-NARMAX Models

A DT SISO P-NARMAX model can be represented as (see Billings (2013))

y(k) = � 0 +
nX

i 1 =1

� i 1 x i 1 (k) +
nX

i 1 =1

nX

i 2 = i 1

� i 1 i 2 x i 1 (k)x i 2 (k) + : : :

nX

i 1 =1

� � �
nX

i l = i l � 1

� i 1 i 2 :::i l x i 1 (k)x i 2 (k) : : : x i l (k) + � (k); (4.8)

where l is the order of the polynomial non-linearity, � i 1 i 2 :::i m are the model pa-
rameters, andx(k) = (x1(k) � � � xn y + n u + n � (k))> is a vector consisting of the past
input, output and noise regressors as follows

xm (k) =

8
><

>:

y(k � m) 1 � m � ny

u(k � (m � ny � 1)) ny + 1 � m � ny + nu + 1
� (k � (m � ny � nu � 1)) ny + nu + 2 � m � ny + nu + n� + 1 :

(4.9)

80 Chapter 4. Tree Adjoining Grammar

Figure 4.6: Initial Trees I of TAG GN .

Figure 4.7: Auxiliary Trees A of TAG GN .

We will also use the following alternative and equivalent representation for P-
NARMAX models:

y(k) =
pX

i =1

ci

n uY

j =0

ubi;j (k � j)
n �Y

q=1

� di;q (k � q)
n yY

m =1

ya i;m (k � m) + � (k); (4.10)

wherep is the number of model terms,ci are the model parameters,ai;m ; bi;j ; di;q 2
Z � 0 are the exponents for output, input and noise terms, respectively.

TAG Representation

In this section we propose a TAG for the P-NARMAX model class. The proposed
TAG captures the structural relationships in (4.10). In the sequel, the time in-
dex will be dropped in the context of the proposed TAG, asq� 1 will be used to
denote a backward time shift. For convenience, the following notation is intro-
duced. For a given model in the form of (4.10), de�neJ i := f j 2 Z � 0 j bi;j 6= 0g,
Qi := f q 2 Z � 0 j di;q 6= 0g and M i := f m 2 Z � 0 j ai;m 6= 0g, the set of indices of
input, noise and output factors, respectively, with non-zero exponents in thei th

4.3 TAG Representation of IO Models 81

model term. Furthermore, for the i th model term, the sequence of delays in the
input, noise and output factors are denoted by

�
�j (i)

n

�

n 2 J i

,
�

�q(i)
n

�

n 2 Q i

,
�

�m(i)
n

�

n 2 M i

respectively.

Theorem 4.9. Consider the TAG GN = hN; T; S; I ; Ai with

- N = f expr0; expr1; expr2; op; parg,

- T = f u; y; �; + ; c; � ; q� 1g,

- S = expr0,

- I = f � 1g, where initial tree � 1 is depicted in Fig. 4.6,

- A = f � i g7
i =1 , where the auxiliary trees� i 's are depicted in Fig. 4.7.

The model setM (GN) is equivalent to the set of all models that can be expressed
as (4.10) with �nite values of p; nu ; ny and n� .

Proof of Theorem 4.9:

For the �rst part of the proof, we show that for any P-NARMAX model in the
form of (4.10), there exists a derivation tree such that the resulting derived tree
has a yield that is equal to the right hand side (RHS) of (4.10). Alg. 3 constructs
such a derivation tree for a given P-NARMAX model. The algorithm constructs
the derivation tree by starting with the introduction of the �rst factor (u; y or �)
of each of thep model terms, and subsequently building each of the branches by
introducing the remaining factors with the corresponding delays and exponents.
The procedureDelays (; �; n) adjoins n auxiliary tree � 7 to the derivation tree
at vertex � .

For the second part of the proof, it needs to be shown that all expressions in
L(GN), i.e., yields of all possible trees generated byGN , are RHS expressions of
P-NARMAX models. This is proven by structural induction. We �rst observe that
the simplest tree in L(GN) is the initial tree � 1 with the yield � . This corresponds
to the model

y(k) = � (k); (4.11)

which belongs to the P-NARMAX class. Now, consider an arbitrary saturated
derived tree 2 L T (GN) whose yield is the RHS of a P-NARMAX model. This
implies that the yield is a causal polynomial expression in terms of the factors
u, y and � . To complete the principle of induction, it must be shown that any
possible adjunction to results in a new tree in L T (GN) whose yield is also a
causal polynomial model expression in terms of the aforementioned factors.

For convenience, the auxiliary trees are grouped based on the operators involved -
� 1; � 2; � 3 are calledadditive-typeauxiliary trees, � 4; � 5; � 6 are calledmultiplicative-
type, and � 7 is called delay-typeauxiliary tree. The following adjunctions be made
on :

82 Chapter 4. Tree Adjoining Grammar

Algorithm 3 Parse P-NARMAX model (4.10) to derivation tree.

Require: p; Ji ; Qi ; M i ;
�

�j (i)
n

�

n 2 J i

;
�

�q(i)
n

�

n 2 Q i

,
�

�m(i)
n

�

n 2 M i

1: V f � 0g; l(� 0) � 1 . initialize with start tree
2: r � 0

3: V
S p

i =1 f � i; 1g [V . Insert p vertices to begin the p summation branches
4: E

S p
i =2 fh� i � 1;1; � i; 1ig [fh � 0; � 1;1ig

5: for i 1; p do
6: if J i 6= � then . If there is an input factor in the i th term
7: l (� i; 1) � 1 . For each summation branch, assign the appropriate

label to the �rst vertex
8: hV; E; r i Delays (hV; E; r i ; � i; 1; �j (i)

1) . Adjoin delay trees
9: bi; �j (i)

1
 bi; �j (i)

1
� 1 . Reduce the corresponding exponent by 1

10: else if Qi 6= � then
11: l (� i; 1) � 3

12: hV; E; r i Delays (hV; E; r i ; � i; 1; �q(i)
1)

13: di; �q(i)
1

 di; �q(i)
1

� 1
14: else if M i 6= � then
15: l (� i; 1) � 2

16: hV; E; r i Delays (hV; E; r i ; � i; 1; �m(i)
1)

17: ai; �m (i)
1

 ai; �m (i)
1

� 1

18: cnt i 1 . Multiply remaining factors
19: for all j 2 J i do
20: V

S bi;j
n =1 f � i;cnt i + n; 1 [Vg; l(� i;cnt i + n; 1) � 4

21: E
S bi;j

n =1 fh� i;cnt i + n � 1;1; � i;cnt i + n; 1ig [E
22: for n 1; �b(i)

j do . Adjoin corresponding delays for each factor
multiplied

23: hV; E; r i Delays (hV; E; r i ; � i;cnt i + n; 1; j)

24: cnt i cnt i + �b(i)
j

25: for all q 2 Qi do
26: V

S di;q
n =1 f � i;cnt i + n; 1 [Vg; l(� i;cnt i + n; 1) � 6

27: E
S di;q

n =1 fh� i;cnt i + n � 1;1; � i;cnt i + n; 1ig [E
28: for n 1; �d(i)

q do
29: hV; E; r i Delays (hV; E; r i ; � i;cnt i + n; 1; q)

30: cnt i cnt i + �d(i)
q

31: for all m 2 M i do
32: V

S a i;m
n =1 f � i;cnt i + n; 1 [Vg; l(� i;cnt i + n; 1) � 5

33: E
S a i;m

n =1 fh� i;cnt i + n � 1;1; � i;cnt i + n; 1ig [E
34: for n 1; �a(i)

m do
35: hV; E; r i Delays (hV; E; r i ; � i;cnt i + n; 1; m)

36: cnt i cnt i + �a(i)
m

return hV; E; r i

4.3 TAG Representation of IO Models 83

� Adjunction of an additive-type tree. Such an adjuction introduces an input,
output or noise term additively in the expression while respecting the causal-
ity of the expression. Hence the resulting expression is also a polynomial.

� adjunction of a multiplicative-type tree. This simply introduces multiplica-
tive factors to an existing model term, and hence, the resulting expression is
also a polynomial. Furthermore, since the multiplicative factor introduced is
u(k); y(k � 1) or � (k � 1), the expression is also causal.

� adjunction of a delay-type tree. This operation simply adds a positive delay
to an existing monomial, and hence preserves the polynomial and causal
structure and of the expression.

Since all possible operations yield a causal polynomial expression, it can be con-
cluded that L (GN) consists of only dynamical polynomial expressions in terms of
the factors u; y and � which corresponds to a P-NARMAX model. This concludes
the proof. �

Theorem 4.9 demonstrates that structural properties of a rich class of dynamical
models can be captured within a compact set of elementary trees of a TAG. The
expansive representational capability of TAG can be used in the context of model
structure determination by shaping the search space of GP. This ensures that ill-
posed model structures are not generated during the GP algorithm, consequently
making the search algorithm more e�cient. Furthermore, Alg. 3 provides a method
to compute the derivation tree representation of a given P-NARMAX model in
terms of grammar GN . Consequently, available prior information about the model
of the system can be translated to TAG representation (or incorporated in tree
sets I ; A), thereby making the evolutionary search more e�cient. Hence, the use
of TAG enables identi�cation within a larger class of dynamical models without
requiring user-interaction, while simultaneously allowing the user to restrict the
evolutionary search e�ectively. These ideas will be assembled together in Chap. 6.

Model generation using GN

Three illustrative examples are used to demonstrate the generation of models using
GN . The models generated belong to the ARX, P-NARX and P-NARMAX model
classes. It will be demonstrated that by restricting the elementary treesI and
A to subsets of the elementary trees in the proposed TAGGN , we can generate
models that only belong to model sub-classes that are properly included in the set
of P-NARMAX models, such as FIR and truncated Volterra series.

ARX example

ARX models can be described by the equation

y(k) =
n uX

i =0

bi u(k � i) +
n yX

j =1

aj y(k � j) + � (k); (4.12)

84 Chapter 4. Tree Adjoining Grammar

Figure 4.8: Example 1 - derivation tree (A), derived tree (B) and the correspond-
ing symbolic model.

where aj ; bi 2 R are coe�cients. The grammar GN can be used to generate ARX
models by restricting the auxiliary tree set A as

A 0 = f � 1; � 2; � 7g � A : (4.13)

Consider the example depicted in Fig. 4.8. Tree (A) is a derivation tree with initial
tree � 1 at the root node, and auxiliary trees � 1 and � 2 in subsequent vertices. The
edges are labelled with Gorn addresses of vertices in the auxilliary trees at which
adjunctions take place. Performing the adjunctions results in derived tree (B) in
Fig. 4.8. The RHS of the resulting model appears at the leaves of the derived tree,
and the corresponding model is

yk = c1y(k � 1) + c2u(k) + � (k): (4.14)

NARX example

P-NARX models can be described by the equation

y(k) =
pX

i =1

ci

n uY

j =0

ubi;j (k � j)
n yY

m =1

ya i;m (k � m) + � (k): (4.15)

By restricting auxiliary trees to the set

A 00= f � 1; � 2; � 4; � 5; � 7g � A (4.16)

we can restrict the proposed grammar to generate P-NARX models only. Consider
the example derivation tree (A) in Fig. 4.9, which is an extension of the previous
example. The derivation tree consists of the initial tree � 1, and auxiliary trees
� 2; � 3 and � 4. Performing the adjunctions described by the derivation tree results
in the derived tree (B) in Fig. 4.9. The corresponding symbolic model is

y(k) = c1y2(k � 1) + c2u(k) + � (k): (4.17)

4.3 TAG Representation of IO Models 85

Figure 4.9: Example 2 - derivation tree (A), derived tree (B) and the correspond-
ing symbolic model.

Figure 4.10: Example 3 - derivation tree (A), derived tree (B) and symbolic
model.

P-NARMAX example

This example builds on the previous example by adjoining trees� 3; � 6 and � 7 to
the tree � 2. The new derivation tree and derived tree are depicted in Fig. 4.10.
The corresponding model,

y(k) = c1y2(k � 1) + c2u(k) + c3� (k � 1)� (k � 2)� (k) + � (k); (4.18)

is a P-NARMAX model.

86 Chapter 4. Tree Adjoining Grammar

4.3.3 Beyond the P-NARMAX Class

In Sec. 4.3.2, we developed a TAG to generate IO models that belong to the P-
NARMAX class, and also demonstrated that the proposed grammar can be scaled
down to restrict the generative capacity to more specialized model structures such
as linear ARX models. In this section, we demonstrate that the concept of TAG-
based speci�cation of model set can be extended beyond the class of P-NARMAX
models.

The P-NARMAX class of models can be used to describe a large variety of dy-
namical systems. However, for certain applications, it is desirable to look beyond
the P-NARMAX class. In this section, we proposed two extensions to grammar
GN . The �rst extension is towards general NARMAX models, where the func-
tional relationship between input, output and noise variables are not restricted
to polynomials. The second extension is towards an independently parameterized
output-error noise structure, leading to the NBJ model structure.

General NARMAX models

In some applications, a general understanding of the dynamics of the system may
provide insights into the nature of functional relationships that exist between the
input, output and noise variables of the system. For example, a system that ex-
hibits rotational dynamics should require trigonometric non-linearities to describe
the relationship between inputs and outputs. Such knowledge can easily be in-
corporated into the TAG, thereby extending the model set to include the relevant
non-linear models.

A relatively straight-forward extension to TAG GN can be made by including non-
linear transformations of the input, output and noise variables in the grammar.
Fig. 4.11 depicts the initial and auxiliary trees for TAG GAT

1, which extends
grammar GN by including trigonometric (sin and cos) and absolute-value transfor-
mations of input, output and noise variables. These extensions are encoded in the
additional initial trees f � i g4

i =2 and auxiliary tree � 8.

TAG GAT illustrates one of the many ways in which the proposed grammar can be
extended to the general NARMAX class. Depending on the insight on the nature
of dynamics being modelled, other extensions to the proposed grammar can also
be made.

NBJ Models

In the case of linear systems, a BJ model structure is an extension of the OE
model structure, where the error is modelled as an Auto-Regressive Moving-Average
models (NARMA) process (Ljung, 1999). The BJ class also includes, as special
cases, other linear model structures such as ARMAX and OE. In the same spirit,

1The superscript NA in auxiliary tree � 8 refers to a null adjunction constraint on the root
node, which prohibits the adjunction of any auxiliary tree at that location. See Joshi and Schabes
(1997) for details.

4.3 TAG Representation of IO Models 87

Figure 4.11: Initial trees f � i g4
i =1 and auxiliary trees f � j g8

j =1 of TAG GAT

NBJ model structure can be expressed as a NOE model where the noise process
is subsequently modelled as a Non-linear Auto-Regressive Moving-Average models
(NARMA) process. The NBJ model structure is given by the following equations

y0(k) = f (y0(k � 1); : : : ; y0(k � ny); u(k); : : : ; u(k � ny)) ;

v(k) = g(v(k � 1); : : : ; v(k � nv); u(k); :::; u(k � nu); � (k � 1); : : : ; � (k � n�)) +
� (k);

y(k) = y0(k) + v(k); (4.19)

where f (�) and g(�) are polynomial functions in terms of their arguments, and
function g satis�es

g(0; : : : ; 0; u(k); : : : ; u(k � nu); 0; : : : ; 0) = 0 (4.20)

for any input sequence. Notice that the RHS expressions of the equations describing
the process and noise dynamics have the same structure that was studied in Sec.
4.3.2 for P-NARMAX models (see (4.10)). Hence, the TAGGN can be extended
to generate NBJ models. Fig. 4.12 depicts the initial and auxiliary trees of TAG
GNBJ for NBJ model structures. The structure of the initial tree � 1 ensures that
all elements in L(GNBJ) contain two expressions, separated by a comma, that
represent the functions f (�) and g(�) respectively. Each of these expressions can
be expanded by adjoining auxiliary trees that ensure that the polynomial structure
is maintained. Furthermore, it is ensured that input terms can only be introduced
multiplicatively (and not additively) in noise model g (�), thereby ensuring that the
condition in (4.20) is satis�ed.

88 Chapter 4. Tree Adjoining Grammar

Figure 4.12: Initial and auxiliary trees (I and A) of TAG GNBJ

4.4 TAG Representation of Non-linear State-space
Models

In Sec. 4.3, we developed a technique to describe the structure of parametric IO
models using TAG. The concept of encoding model structures using the TAG frame-
work is fairly general, and can be extended to parametric model representations
other than IO models. To illustrate the generality of this concept, in this section,
we propose a TAG for NL SS representations.

Consider a SS models withn states, p inputs and q outputs, described by the

4.4 TAG Representation of Non-linear State-space Models 89

following equations

x1(k + 1) = f 1(x1(k); : : : ; xn (k); u1(k); : : : ; up(k)) ;

...

xn (k + 1) = f n (x1(k); : : : ; xn (k); u1(k); : : : ; up(k)) ;

y1(k) = g1(x1(k); : : : ; xn (k); u1(k); : : : ; up(k)) ;

...

yq(k) = gp(x1(k); : : : ; xn (k); u1(k); : : : ; up(k)) ; (4.21)

wheref 1; : : : ; f n are the state equations governing the dynamics of statesx1; : : : ; xn ,
respectively, and g1; : : : ; gp are the output equations that map inputs and states
to outputs y1; : : : ; yq, respectively. For ease of illustration, we do not consider a
noise process in the SS model. However, just like the case of IO models, a noise
model can be included in the SS model structure. For the purpose of illustration,
we consider the state and output equations to be linear or polynomial non-linear
functions of the inputs and states. Furthermore, trigonometric transformations
(sin and cos) of input and state variables are also considered in this illustration.

TAG representation

The state-space grammarGSS(n; p; q) is given by the tuple GSS = hN; T; S; I ; Ai
with

- N =
S n

i =1 f sei g
S q

l =1 f oel g
S

f model; param; op; expr1; st; ipg,

- T =
S n

i =1 f xi g
S p

j =1 f uj g
S

f c; + ;�g ,

- S = model,

- I = f � i g13
i =1 , where initial trees � i 's are depicted in Fig. 4.13,

- A = f � i g16
i =1 , where the auxiliary trees � i 's are depicted in Fig. 4.13.

Observe that the initial and auxiliary trees in Fig. 4.13 are de�ned based on vari-
ables i; j and l, which serve as index variables for states, inputs and outputs,
respectively, and take up valuesi 2 [1; n], j 2 [1; p] and l 2 [1; q]. The role of each
of the initial and auxiliary trees in TAG GSS is discussed below.

� The initial tree � 1 sets the structure of the SS model, withn state equations,
with labels sei , and q output equations, with labels oel , each separated by
commas.

� Initial trees � 2(i), � 3(i), � 4(i) and � 5(i) introduce a state, input or non-
linear transformations of the state or input terms to the i th state equations.
Similarly, initial trees � 6(l), � 7(l), � 8(l) and � 9(l) perform similar operations
on the l th output equation.

90 Chapter 4. Tree Adjoining Grammar

Figure 4.13: Initial and auxiliary trees (I and A) of TAG GSS

� Initial trees � 10(i) and � 11(j) introduce state x i and input uj , respectively.

� Initial trees � 12 and � 13 introduce a sin(�) and a cos(�) transformation, re-
spectively.

� Auxiliary trees � 1(i), � 2(i), � 3(i) and � 4(i) introduce additive-type terms
(state, input or non-linear transformations of the same) to the existing i th

state equation. Similarly, auxiliary trees � 5(l), � 6(l), � 7(l) and � 8(l) intro-
duce additive-type terms to the existing l th output equation.

4.4 TAG Representation of Non-linear State-space Models 91

Figure 4.14: An example of a state-space model structure generated from TAG
GSS. The Figure depicts the derivation tree and derived tree representation of
(4.22)

� Auxiliary trees � 9(i), � 10(i), � 11(i) and � 12(i) introduce multiplicative-type
terms (state, input or non-linear transformations of the same) to the existing
i th state equation. Similarly, auxiliary trees � 13(l), � 14(l), � 15(l) and � 16(l)
introduce multiplicative-type terms to the existing l th output equation.

Just like in the IO case, TAG GSS can be expanded to include other non-linearities
in the model set, based on insights into the nature of dynamics of the system to
be modelled. The grammar can also be scaled down to restrict the scope of the
model set speci�cation, for example, to generate only linear SS models. However,
unlike in the IO case, the order of the SS model, in terms of the number of states,
produced by TAG GSS(n; p; q) is �xed to n.

92 Chapter 4. Tree Adjoining Grammar

Model generations using TAG GSS

Consider the example depicted in Fig. 4.14. The Figure illustrates the derivation
tree representation and the derived tree representation of the following state-space
model with n = 3 states, p = 2 inputs and q = 2 outputs:

x1(k + 1) = c1x2(k) + c2u2(k);

x2(k + 1) = c3x1(k)x3(k);

x3(k + 1) = c4u1(k);

y1(k) = c5x1(k);

y2(k) = c6x2(k) + c7x3

(4.22)

The derived tree representation in Fig. 4.14 depicts the structure of (4.22), with
three state-expressions and two output-expressions, each separated by commas.
The derivation tree representation of the model depicts the initial and auxiliary
trees of TAG GSS used to generate the model. In the derivation tree representa-
tion, dashed lines denote substitution operations and solid lines denote adjunction
operations.

4.5 Introducing Prior Knowledge and User Pref-
erences

It is widely accepted in SI literature (e.g., see (Ljung, 1999, part (iii))) that any
prior information regarding the underlying system should be incorporated into the
identi�cation framework in order to improve the quality of the estimated model.
Similarly, in the EC community, it is generally accepted (e.g., see (Eiben and Smith,
2003, chap. 10)) that suitably modifying an EA (e.g., by modifying the solution
representation or variation operators) based on problem-speci�c information typi-
cally improves the e�ciency of the search for solving a given problem. Thus, it is
vital that the identi�cation approach developed in this thesis is capable of incorpo-
rating prior domain knowledge or user preferences. In this section, we discuss two
mechanisms, based on TAG formulations, for introducing prior knowledge -model
seedingand speci�cations on the genotype.

Assume an identi�cation scenario in which an initial model estimate for the data
generating system (DGS) is known and the identi�cation problem is to infer a model
of higher quality compared to the initial model estimate (in terms of user-speci�ed
performance criteria) from measured data. In this setting, a derivation tree repre-
sentation of the low quality model can be computed (for e.g., using Alg. 3 if the
model belongs to the P-NARMAX class), and included in the initial population of
GP. This is referred to as model seeding. Model seeding can be used to bias the
evolutionary search towards a speci�c region in the search space. However, since
the initial model estimate is bound to be better than the other randomly gener-
ated models in the initial population, the GP algorithm may converge to the initial
model within a few iterations, leading to degeneracy of the population. Hence, care
must be taken to ensure diversity in the population when using model seeding.

4.6 Discussion 93

We can also consider a second scenario in which the dynamic class of the DGS is
known. This information may be known due to domain knowledge of the user, user-
preference or informative experiments conducted on the system. Prior knowledge of
the dynamic class can be incorporated as speci�cations on the genotype by suitably
modifying the grammar being used. For example, in Sec. 4.3.2, grammarGN was
scaled down to restrict the model set to speci�c sub-classes of the P-NARMAX
class. Similarly, the grammar can also be modi�ed to extend the model set, as was
demonstrated in Sec. 4.3.3. TAG can also to treat di�erent model representations,
e.g. SS models, as illustrated in Sec. 4.4.

The two mechanisms for introducing prior knowledge discussed here do not treat
scenarios in which the knowledge is in terms ofspeci�cation on the phenotype.
These may include, for e.g., constraints on the model complexity, stability require-
ments, and so on. Such speci�cations can be treated as user-speci�ed performance
measures, and will be treated in Chap. 5.

4.6 Discussion

In this chapter, we introduced TAG, a tree generating grammar originally used to
describe structural relationships between words in a linguistic sentence. Inspired
by Hoai and McKay (2001), we demonstrated that TAG can also be used to de-
scribe the structural relationship between variables of a dynamical model. Based
on this concept, we introduced a TAG-based speci�cation of a model set. In the
context of data-driven modelling, a TAG-based model set speci�cation provides
a foundation to develop an identi�cation framework in which the user is not re-
quired to pre-specify model structure or complexity. Instead, the conceptualized
identi�cation framework would be required to explore models of varying structures
and complexities that can be generated by the speci�ed TAG. In this sense, the
TAG-based model set speci�cation addresses Research Question 1.1 described in
Chap. 1, and brings us one step closer to the goal of achieveing automated system
identi�cation.

We also illustrated, in this chapter, the generality of TAG in terms of representing
the structure of dynamical models. We showed that the proposed grammarGN

for P-NARMAX models can be (i) used to generate model structures that belong
to sub-classes of the P-NARMAX class, and (ii) used to generate multiple levels
of model complexity within the same model class, and (iii) scaled up to describe
models with more complex non-linearities. Furthermore, we also demonstrated
that TAG can be used to generate alternate model representations, speci�cally, SS
models. While the scope of this dissertation is restricted to IO models, the gener-
ality of TAG-based model generation concept ensures the possibility of extending
the identi�cation framework developed in this dissertation beyond the class of IO
models.

Besides serving as a tool to generate models with varying structure, complexity and
representation, TAG can also be used to introduce prior information or user pref-
erence in terms of desired model structure or representation. This can be achieved
by scaling down the grammar, as discussed in Sec. 4.5, expanding the grammar,

94 Chapter 4. Tree Adjoining Grammar

discussed in Sec. 4.3.3, or developing a TAG for the desired alternative repre-
sentation, e.g., state-space representations, discussed in Sec. 4.4. This addresses
Research Question 1.2 proposed in Chap. 1.

Finally, the �exibility of TAG-based model set speci�cation comes at a cost. In
order to automate the task of system identi�cation, the conceptualized identi�-
cation framework must address the problem of model structure determination in
a search space that grows combinatorially w.r.t the depth of the derivation tree
representation of the model. This is a challenging problem to solve. Nonetheless,
EAs such as GP, introduced in Chap. 3, are promising approaches that can be used
to tackle the challenging problem of model structure determination. This will be
the subject of Chap. 6.

I didn't have time to write a short letter, so I wrote a
long one instead.

Mark Twain

5
Performance Measures

I n Chap. 3 and 4, we introduced two concepts relevant for automating
the task of system identi�cation � GP and TAG. GP can be used to

explore a generalized model set, spanning across multiple model structures
and complexities, speci�ed by the chosen TAG. These ideas help us to
address Research Questions 1 and 3 laid out in Chap. 1. This leads us
to the next question, i.e. Research Question 2: How can we incorporate
multiple user-speci�ed performance measures in the desired identi�cation
framework, and what is the appropriate notion of optimality in a multi-
objective setting?

In this chapter, we introduce a multi-objective framework for ordering
candidate solutions in the solution set based on the notion ofPareto-
dominance, and discuss some EC-based approaches for multi-objective
optimization. Subsequently, we propose and motivate four performance
measures for the conceptualized identi�cation framework - mean-squared
one-step-prediction and simulation error, parametric complexity and dy-
namic complexity of the model, and discuss some computation aspects
relevant in the context of system identi�cation.

95

96 Chapter 5. Performance measures

5.1 Introduction

As discussed in Sec. 1.3.3, the choice of an identi�cation criterion should ideally be
in�uenced by the ultimate use-case of the model by user-preferences. For applica-
tions such as weather forecasting and fault detection, models must be well-tuned
to make accurate short-term predictions, while in applications such as optimal
control design for mechatronic systems or stability analysis of structural dynamics,
the model must be accurate over longer time-horizons. A typical identi�cation task
may also involve multiple modelling objectives for which a model should be opti-
mized. For example, for use in a MPC design problem, the desired model should
have low run-time complexity while also having su�ciently good multi-step-ahead
prediction accuracy. In realistic scenarios, modelling objectives oppose each other,
thereby necessitating the need of a trade-o� between objectives. For example,
a more complex model may achieve high prediction accuracy, however a simpler
model with slightly worse accuracy might be more suitable for systems analysis
and control design. Again, the �right choice of trade-o�� typically depends on the
application and on user-preferences.

When modelling objectives contradict each other, there may not exist a single
solution that is optimal for all performance measures. This makes solving multi-
objective problems more involved than single-objective problems. Many optimiza-
tion techniques have been developed to solve multi-objective problems, see Ehrgott
(2005); Miettinen (2012). A commonly used approach involves converting a multi-
objective problem to a single-objective problem, for example, by taking a linear
combination of the criterion. The coe�cients of the linear combination play the
role of trade-o� parameters between the various performance measures, and are
typically chosen a priori by the user or treated as a hyper-parameter to be opti-
mized, for example using grid-search. A second approach relies on a more direct
approach of optimizing models simultaneously for multiple objectives. Such meth-
ods rely on a new notion of optimality based on partial ordering w.r.t the feasible
set of decision variables and the performance measures. Multi-Objective Optimiza-
tion (MOO) may yield a (possibly in�nite) set of solutions that are Pareto optimal,
i.e., solutions for which no single performance measure can be further improved
without worsening any of the other performance measures. The Pareto optimal set
of solutions reveal trade-o�s that can be made by the usera posteriori, thereby
enabling the user to make informed multi-criteria-based selection.

SI approaches discussed in Sec. 2.4 typically estimate models for a single perfor-
mance measure. Hence, optimizing for multiple performance measures with these
approaches is typically handled in the following ways:

� Using the �rst solution approach discussed in the prequel, i.e., via trade-o�
parameters forming linear combinations of the performance measures.

� Reformulating all but one of the performance measures as constraints to be
satis�ed in a single-objective optimization problem. The user is required to
formulate reasonable constraints for the other performance measures.

� Using prior-knowledge and user-preferences to restrict the model set based on
some of the modelling objectives. For example, in PPEM typical modelling

5.2 The Multiobjective Framework 97

objectives include the one-step-ahead prediction error and model complex-
ity. User experience and prior knowledge is used to restrict the model set
to a speci�c model complexity such that the identi�cation problem can be
formulated in terms of prediction error alone.

In contrast, EC-based methods provide an opportunity to estimate a set of models
that lie along the Pareto-front of a MOO problem without having to convert the
given problem to a single-objective problem. This is due to the fact that:

(i) By default, EAs work with a set of candidate models, making it possible to
estimate a set of models that lie on the Pareto front in a single run of the
algorithm.

(ii) In each iteration of EC, candidate solution structures are �rst generated,
based on the solutions obtained in the previous iteration, and subsequently
evaluated. This generate-and-validatefeature of EC makes it possible to
evaluate candidate models on multiple performance measures.

In the �eld of SI, the idea of EC-based MOO was �rst explored by Fonseca and
Fleming (1993). The authors demonstrated that the estimate of the Pareto front,
obtained using GA, clearly illustrated the e�ect of optimizing for con�icting objec-
tives. This makes the Pareto front a valuable tool for the user to make an informed
selection of the identi�ed model, such that it is better suited for the eventual use-
case.

In Sec. 5.2, we introduce the notions of partial ordering, non-dominance of solutions
and the Pareto front, and discuss how notions can be used to design MOEAs. For
system identi�cation, when the model set is speci�ed using TAG (as introduced in
Chap. 4), the candidate models may vary in terms of their dynamical properties and
their complexities. To meaningfully evaluate models in such a general setting, we
propose several performance measures in Sec. 5.3, along with related computational
aspects.

5.2 The Multiobjective Framework

5.2.1 Ordering and Dominance in Sets

In the following, we introduce the notions of ordering and dominance of solutions.
This requires the introduction of some relevant mathematical preliminaries, which
can be found in detail in textbooks and tutorials such as Ehrgott (2005) and Em-
merich and Deutz (2018). For completeness, we include the relevant notions here.

De�nition 5.1 (Binary relations and its properties). A binary relation on a given
set M is a setR � M � M . The binary relation R is said to be

- re�exive, if and only if 8x 2 M : (x; x) 2 R,

- irre�exive, if and only if 8x 2 M : (x; x) =2 R,

98 Chapter 5. Performance measures

- symmetric, if and only if 8x 2 M : 8y 2 M : (x; y) 2 R , (y; x) 2 R,

- asymmetric, if and only if 8x 2 M : 8y 2 M : (x; y) 2 R , (y; x) =2 R,

- antisymmetric, if and only if 8x 2 M : 8y 2 M : (x; y) 2 R ^ (y; x) 2 R)
x = y,

- transitive, if and only if 8x 2 M : 8y 2 M : 8z 2 M : (x; y) 2 R ^
(y; z) 2 R) (x; z) 2 R.

A pair (x; y) 2 R can also be denoted asxRy .

De�nition 5.2 (Pre-order, partial order, strict partial order) . A binary relation
R is said to be a

- pre-order, if and only if it is transitive and re�exive,

- partial order, if and only if it is an antisymmetric pre-order,

- strict partial order, if and only if it is irre�exive and transitive.

De�nition 5.3 (Partially ordered set) . Let M be a set and let R be a partial
order on M . The pair (M ; R) is a partially ordered set.

Denote the set � = f (x; x) j x 2 Mg as the diagonal ofM . Note that if R is a
partial order on M , then (R n �) is a strict partial order on M .

De�nition 5.4 (Minimal element) . An element x 2 M is said to be a minimal
element of the partially ordered set (M ; R) if there exists no x0 2 M such that
x0Rx and x0 6= x.

Based on these notions, we introduce the concepts of Pareto-dominance in the
context of multi-criteria system identi�cation. Let the set of models be denoted
by M (G), where G is the speci�ed TAG. It is assumed that any model structure
M 2 M (G) can be parameterized asM (�), where the dimension of the parameter
vector � depends on the structure ofM . Let the user-speci�ed multiple perfor-
mance measures be denoted byf J i (M; �; DN)gm

i =1 , and let the vector-valued func-
tion J (M; �; DN) = (J1(M; �; DN); : : : ; Jm (M; �; DN))> map from M (G) to Rm .
In MOO literature, the set of models M (G) and the space of vector-valued perfor-
mance vectors are referred to as thedecision spaceand objective space, respectively.

De�nition 5.5 (Pareto-dominance in objective space). Let z; z0 2 Rm be two
vectors in the objective space. The objective vectorz is said to Pareto-dominate
the objective vector z0 if and only if

1. zi � z0
i for all i 2 f 1; : : : ; mg, and

2. 9j 2 f 1; : : : ; mg such that zj < z 0
j

5.2 The Multiobjective Framework 99

The Pareto order on the objective space is a strict partial operator, and is de-
noted as � . Hence, an objective vectorz 2 Rm that Pareto dominates (in short,
dominates) an objective vectorz0 2 Rm is denoted asz � z0. Based on the strict
partial ordering � , we can de�ne the binary relation � = (� [�) which is a par-
tial order allowing for equality between vectors in the objective space that do not
Pareto-dominate each other.

We have so far de�ned the notion of Pareto dominance in terms of vectors in the
objective space. This idea can be extended to solutions in the decision space, i.e.,
the model setM (G), as follows.

De�nition 5.6 (Pareto dominance in decision space). Let M (�) 2 M (G) and
M 0(� 0) 2 M (G) be two candidate solutions in the model set, where� and � 0 are the
corresponding parameter vectors. The solutionM (�) Pareto dominates the solution
M 0(� 0), denoted by M (�) � J M 0(� 0), if and only if J (M; �; DN) � J (M 0; � 0; DN).

The binary relation � J on M (G) is a strict partial order.

De�nition 5.7 (E�cient set and Pareto front) . The minimal elements of the
strict partial order � J on M (G) are called e�cient points. The set of all e�cient
points in M (G) is called e�cient set, denoted by E(G; � J). The corresponding
set of objective vectorsPJ (G; �) := f J (M; �; DN) j M (�) 2 E(G)g is called the
non-dominated or Pareto-optimal objective vectors, a.k.a the Pareto front.

De�nitions 5.5, 5.6 and 5.7 give the relevant notions of optimality in a multiob-
jective problem setting. In this setting, we are interested in estimating the set of
candidate models that lie in the e�cient set E(M (G); � J) that achieve objective
values that lie on the Pareto front PJ (M (G); �). Note that since the model set
M (G) spans a continuous space (the parameters� lie in a continuous domain), the
e�cient set E(M (G); � J) may possibly contain in�nitely many e�cient solutions.
Thus, in reality, we can only estimate a subset of the e�cient set E(M (G); � J).

5.2.2 Handling multiple criteria in EC

Multiple objectives can be incorporated in an EA is several ways. Two common
paradigms include Pareto-based algorithms and decomposition based algorithms,
described below.

1. Pareto-based algorithms - These algorithms directly utilize the notion of
Pareto dominance in order to perform selection in each iteration of the EA.
The basic idea is as follows. Once a new population~X (j) is proposed using
variation operators in iteration j , the population can be evaluated based on
m performance measures speci�ed by the user. The candidate solutions can
then be combined with other solutions evolved by the EA, for example, solu-
tions from the previous iterations X (j � 1) , or an archive of e�cient solutions
E(f X (l) gj

l =1 ; � J) found upto iteration j (see Laumanns et al. (2002)). Sub-
sequently, the e�cient subset of the combined set of solutions can be selected
and propagated to the next iteration. In accordance with the heuristics of EA,

100 Chapter 5. Performance measures

by introducing variations to candidate solutions closer to the current Pareto
front estimate, we expect to obtain new solutions that are also close to the
estimated Pareto front with some probability. As the number of iterations
increases, more models in the model set are explored, and as a consequence,
the estimated Pareto-front approaches the true Pareto-frontPJ (G; �).

2. Decomposition-based algorithms - These algorithms decompose the objective
space into several regions using a scalarization technique. Subsequently, in-
dividuals in the population are partitioned and each subset of individuals are
evolved for a speci�c scalarization of the objective function. As the EA itera-
tions proceed, the various subsets of individuals approach the corresponding
regions of the Pareto front, ensuring a good distribution of solutions along
the front.

A number of MOEAs have been proposed in the literature. Some of the popular
algorithms include Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2002), Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al.,
2001) and MOEA based on Decomposition (MOEA/D) (Zhang and Li, 2007). A
comparison of some of the MOEAs can be found in Zitzler et al. (2000). In the
identi�cation methodology developed in this dissertation, we will make use of the
non-dominated sorting algorithm proposed in Deb et al. (2002). However, in prin-
ciple, any of the other approaches can also be used.

5.3 Proposed Multi-objective Criteria

For the proposed identi�cation framework, a user can specify any desired per-
formance measures. However, in this dissertation we will be making use of the
following identi�cation criteria: one-step-ahead prediction error, simulation error,
parametric complexity and dynamic complexity. The proposed criteria, and the un-
derlying motivation is described in the sequel. To assist the discussion, we assume
that the model set is generated by grammarGN . In other words, the model set
is restricted the class of models that can be represented as a P-NARMAX model,
see (4.8) and (4.10). For convenience, we recall the equivalent representations as
follows:

y(k) = f (u(k); : : : ; u(k � nu); y(k � 1); : : : ; y(k � ny); � (k � 1); : : : ; � (k � n�))

+ � (k); (5.1)

where f (�) is a polynomial non-linear function, and

y(k) =
pX

i =1

ci

n uY

j =0

ubi;j (k � j)
n �Y

l =1

� di;l (k � l)
n yY

m =1

ya i;m (k � m) + � (k): (5.2)

5.3 Proposed Multi-objective Criteria 101

5.3.1 One-step-ahead Prediction Error

The one-step-ahead predicted output at time instant k, denoted by ŷ(k j k � 1), of
a P-NARMAX model is given by the conditional expectation

ŷ(k j k � 1) := E � [y(k) j Dk � 1; um (k)]; (5.3)

where,E � [�] is the expectation operator with respect to the probability distribution
of noise � . For a P-NARMAX model in the form of (5.1), the one-step-ahead
predictor can be formulated as the following non-linear �lter (see (Billings, 2013,
Chap. 2))

ŷ(k j k � 1) = f (um (k); : : : ; um (k � nu); ym (k � 1); : : : ; ym (k � ny);

"p (k � 1); : : : ; "p (k � n�)) ; (5.4)

where "p (k) is the one-step-ahead prediction error de�ned as

"p (k) := ym (k) � ŷ(k j k � 1): (5.5)

Hence, if the initial conditions of the one-step-ahead predictor in (5.4) are known,
the predicted output f ŷ(k j k � 1)gN

i = n l +1 , where nl := max f nu ; ny ; n� g, can be
computed recursively. If the initial conditions must be estimated and if the predic-
tor model (5.4) is asymptotically stable, then any transient errors introduced will
asymptotically reduce to 0.

We propose the �rst performance measure to be the sum-of-squares of the one-
step-ahead prediction error. For a given modelM (�), this can be computed as

J1(M; �; DN) =
1

N � nl

NX

k= n l +1

(ym (k) � ŷ(k j k � 1))2 : (5.6)

In principle, any other signal norm can be used in (5.6) to quantify the one-step-
ahead prediction error. The identi�cation criterion J1 based on the 2-norm has
been widely used in the identi�cation literature for many decades. its popularity
is primarily due to the ease of use and the maximum-likelihood interpretation of
the identi�cation criterion under certain conditions (Astrom, 1979) (see Sec. 2.4.2
for discussion).

5.3.2 Simulation Error

Motivation

The use of grammars, introduced in Chap. 4, allows us to describe general model
sets that may encompass multiple classes of dynamical system. However, such gen-
eral model sets present a challenge to the use of one-step-ahead prediction error
as the sole identi�cation criterion to measure the performance of a given model.
One of the assumptions under which the statistical interpretation of identi�cation
criterion J1 in (5.6) holds true, is that the true data-generating system can be

102 Chapter 5. Performance measures

represented by the chosen model set. However, model structures generated from
grammars provide no such guarantee, even when using a grammar that may gen-
erate model structures suitable to describe the DGS. This is due to two factors:

� A grammar capable of generating model structures that are complex enough
to represent the DGS can also generate simpler model structures.

� The complexity of a model generated by the grammar is not pre-speci�ed.
Hence, it is possible to obtain model structures that are signi�cantly under-
parameterized (or over-parameterized) in comparison with the DGS.

It has been observed (for example, in Piroddi and Spinelli (2003); Ljung (2001))
that the presence of an auto-regressive component in the prediction model can
allow a relatively simpler model to achieve optimistic prediction results for an
otherwise complex dynamical system. This can be problematic when the ultimate
use-case of the model is anything but one-step-ahead prediction. This issue is also
illustrated in a simple academic example in Appendix C.1. This motivates our
second performance criterion - simulation error. Simulation error is typically more
sensitive to mismatch between the model and the system structure than prediction
error (see Aguirre et al. (2010); Piroddi and Spinelli (2003)). Moreover, simulation
models can be de�ned for models that describe di�erent classes of system dynamics.
Simulation error has been used in the past for non-linear structure selection, for
example in Piroddi and Spinelli (2003).

The simulation model

A simulation model can be de�ned as the expectation of the output with respect
to the distribution of the noise conditioned on the past inputs, i.e.,

ys(k) := E � [y(k) j f u(�)gk
� =1]: (5.7)

The simulation responseys(k) in (5.7) represents the deterministic response of
model (5.2). By comparing (5.7) and (5.3), we observe that the simulation response
can also be interpreted as an in�nite-step-ahead prediction model. This e�ectively
negates the auto-regressive components of a prediction model.

We propose the second performance measure to be the sum-of-squares of the simu-
lation error " s(k) := ym (k) � ys(k). For a given modelM (�), this can be computed
as

J2(M; �; DN) =
1

N � nl

NX

k= n l +1

(ym (k) � ys(k))2 : (5.8)

Just as in the case of quantifying the one-step-ahead prediction error, any other
signal norm can be used in (5.8) to quantify the simulation error incurred by a
model. The 2-norm-based measure used in (5.8), however, provides a physical
interpretation as it quanti�es the power in the simulation error of the model.

For a given stochastic model in the form of (5.2), the computation of simulated out-
put as per (5.7) is not trivial. Details on the necessary computations are provided
in Sec. 5.4

5.3 Proposed Multi-objective Criteria 103

5.3.3 Parameter Complexity

When measuring the accuracy of models based on a �nite length datasetDN , the
size of the models generated by a given TAG may grow arbitrarily large1. More
complex models can, in general, capture a relationship that �ts the measured data
better. However, complex models may capture certain features of the datasetDN

that are speci�c to the noise realization in that dataset. Such models do not
generalize well to data that was not used to estimate the model parameters. This
is known as over�tting. In an EA, when candidate solutions in the population are
allowed to grow freely, the population as a whole may become increasingly complex
and over�tting. Consequently, the solution space corresponding to low complexity
models may remain relatively unexplored by the EA. This is known as bloating of
the population.

In a multi-objective setting, to avoid bloating of the population, we introduce a
third performance measure that describes the parametric complexity of the model.
For a given modelM (�), the parametric complexity can be measured as

J3(M; �; DN) = dim(�); (5.9)

where dim(�) is the dimension of vector� .

The motivation for using performance measureJ3 is akin to the motivation for us-
ing information theoretic statistics such as AIC or BIC to perform model selection.
Such methods typically estimate the generalization error, i.e. expectation of the
error achieved by the model on an independent dataset, by penalizing the perfor-
mance achieved on dataDN by a factor that depends on the number of parameters
dim(�) and the length of the datasetN . Unlike AIC or BIC, for which the scaling
factor of the penalizing term is �xed, in a multi-objective setting parametric com-
plexity can be treated as a separate objective, and an accuracy-complexity trade-o�
can be madea posteriori.

Remark 5.1. The notion of parametric complexity introduced in this section can
be further re�ned by separating the complexity of the deterministic and stochastic
part of the model. Although, in the P-NARMAX case, this leads to ad-hoc notions
of model complexity.

5.3.4 Dynamic Complexity

In system identi�cation, Occam's Razor principle is often used as a guiding heuristic
for model selection. A prerequisite for using this principle is that one should be able
to rank various models in terms of some complexity measure, for example using
J3. However, a model set generated by a grammar, for exampleGN , may include
models belonging to multiple dynamic classes. When measuring the complexity
of a parametric model M (�) 2 M (GN), parametric complexity J3(M; �; DN) only
provides partial information since it does not take into account the complexity of
the dynamics.

1Limited only by the maximum tree-depth md , see Sec. 3.2.1.

104 Chapter 5. Performance measures

TAG-based representations provide an opportunity to rank models that di�er in
terms of the dynamics they represent. In order to rank a model in terms of the
underlying dynamics, one must take into account the speci�c auxiliary trees used
to generate the model. Various auxiliary trees add to the complexity of a model
di�erently. For example, for grammar GN , adjunction of auxiliary tree � 3 (see Fig.
4.7) introduces a multiplicative non-linearity, while adjunction of auxiliary tree � 1

introduces a new linear term to a model. For grammarGN , the dynamic complexity
of the models can be coarsely divided into two categories - linear and non-linear
dynamics. A model M (�) 2 M (GN) is linear if the corresponding derived tree
is generated exclusively from the subset of auxiliary treesf � 1; � 2; � 3; � 7g. If the
derived tree of model M (�) contains at least one auxiliary tree from the subset
f � 4; � 5; � 6g, then the model is non-linear. Hence, based on the auxiliary trees used
to generate the model, the dynamic complexity of the model can be computed as
a ranking of the model as follows

J4(M; �; DN) =

(
0 if M is linear;
1 if M is non-linear:

(5.10)

The classi�cation of dynamics in (5.10) is fairly coarse, and can be easily cus-
tomized based on user-preferences. For example, if an a�ne input model structure
is preferable, for instance for linearizing feedback control design application, then
that preference can be incorporated in (5.10). Similarly, model structures such as
ARX, ARMAX and Non-linear Finite Impulse Response (NFIR) can also be con-
sidered. The notion of dynamic complexity can also be used to quantize the level
of non-linearity, for example, based on the degree of the polynomial expression in
(5.2).

5.4 Computation of A Simulation Model

5.4.1 Motivation

In the literature, simulation response of models, for example (5.2), are often com-
puted with noise terms � set to 0 (Ljung, 1999, ch. 5). In the case of linear systems,
it is always possible to lump the noise sources as an additive term on the output of
the deterministic response of the system. Iff in (5.1) is linear, it can be re-written
as

y(k) = g(y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu))+

h(� (k � 1); : : : ; � (k � n�)) + � (k); (5.11)

where g and h are linear functions. Using the de�nition in (5.7), the simulation
response of a model of the form (5.11) can indeed be computed by setting noise
contributions to 0, since noise� is assumed to be zero-mean (without loss of gener-
ality). However, in the non-linear setting, neglecting the process noise terms leads
to a biased simulation response (see Hagenblad et al. (2008); Giordano and Sjöberg
(2016)). For the case of P-NARMAX models, the bias can be attributed to two
factors:

5.4 Computation of A Simulation Model 105

(i) the higher order moments of the noise process, and

(ii) recursive non-linear dependencies of the output termsy on noise terms� .

Hence, in order to avoid computation of a biased simulation response of (5.2), we
need to formulate the e�ect of these factors carefully and express it in terms of a
so-called �simulation model� or deterministic part of (5.2). Here we will call the
resulting model as a simulation model of (5.2), but in fact it is the process part of
(5.2).

The two following examples demonstrate how the contributing factors in�uence the
computation of a simulation model of a non-linear model.

Example 5.2 (High order moments of noise). Consider a system described by the
following equation

y(k) = f (u; �) = u(k) + � 2(k � 1) + � (k); (5.12)

where f u(k)g and f � (k)g are i.i.d sequences distributed asN (0; 1). The simulation
model can be computed by taking the expectation of (5.12) with respect to the
noise process� ,

ys(k) = E � [y(k)] = u(k) + E � [� 2(k � 1)] + E [� (k)];

= u(k) + 1 : (5.13)

= f s(u(k)) (5.14)

Observe that if the simulation model was computed by setting the contributions of
the noise terms to 0, one would obtain the following simulation model

y0
s(k) = u(k): (5.15)

The two simulation models are o�set by a scalar factor 1.

Example 5.3 (recursive non-linear dependencies of the output on noise). Consider
a system governed by the following equation

y(k) = u(k) � 0:1y2(k � 1) + � (k); (5.16)

where, u(k) � N (� u ; � u) and � (k) � N (0; � �). By taking the expectation and
recursively replacing the y(k � 1) term in the model, we get the following set of

106 Chapter 5. Performance measures

equations

E � [y(k)] = E �
�
u(k) � 0:1y2(k � 1) + � (k)

�
;

= u(k) � 0:1E � [y2(k � 1)];

= u(k) � 0:1E �
�
(u(k � 1) � 0:1y2(k � 2) + � (k � 1))2�

;

= u(k) � 0:1u2(k � 1) � 0:1� 2
� � 0:001E � [y4(k � 2)]+

0:02u(k � 1)E � [y2(k � 2)];

= u(k) � 0:1u2(k � 1) � 0:1 � 0:001E � [y4(k � 2)]+

0:02u(k � 1)E � [(u(k � 2) � 0:1y2(k � 3) + � (k � 2))2];

= u(k) � 0:1u2(k � 1) � 0:1 � 0:001E � [y4(k � 2)]+

0:02u(k � 1)u2(k � 2) + 0 :0002u(k � 1)E � [y4(k � 3)]+

0:02u(k � 1)� 2
� � 0:004u(k � 2)E � [y2(k � 3)];

= : : :

From these equations, it can be seen that the simulation model of a relatively simple
�nite order P-NARMAX model may be described by an in�nitely long recursive
�lter. In other words, the simulation model of a �nite order P-NARMAX model
may be an Non-linear In�nite Impulse Response (NIIR) �lter, under the assumption
that the applied recursive substitution is convergent.

Examples 5.2 and 5.3 demonstrate that one must take care when computing the
simulation model of a non-linear dynamical model. In the next section, we intro-
duce techniques to compute the simulation model of a P-NARMAX model.

5.4.2 Computational aspects

In order to compute a simulation model of a P-NARMAX model, we propose an
alternate representation of the model computed via a change of basis. The noise
terms � (�) in the polynomial function in (5.1) can be reformulated as multi-linear
functions in terms of Hermite polynomial basis. Hermite polynomials, denoted
as f Hen (�)g1

n =0 , form an orthogonal basis on the real line with respect to the
standard normal distribution. Some relevant mathematical background on Hermite
polynomials can be found in Appendix A.1.

It is important to note that in order to compute simulation models as in (5.7),
higher order moments of the noise distribution must be known. Hence, in the
sequel, we assume that the noise process� (k) is i.i.d with � (k) � N (0; 1). Note
that a noise processv(k) � N (�; �), can be equivalently expressed as

v(k) = �� (k) + �; (5.17)

and hence, can be included in the model formulation in (5.2).

5.4 Computation of A Simulation Model 107

The simpli�ed case

We �rst consider the simpler problem of computing a simulation model for a sub-
class of P-NARMAX models. Consider models of the form

y(k) = f (u(k � 1); : : : ; u(k � nu); � (k � 1); : : : ; � (k � n�)) +

g(y(k � 1); : : : ; y(k � ny)) + � (k); (5.18)

where the function f is a polynomial function of the regressor variables andg
is a linear function of the past outputs. This is a speci�c class of models that
can be represented as (5.1). The model in Equation (5.18) can be reformulated by
expressing all noise polynomial terms in the model in terms of Hermite polynomials
(see (A.6) in the Appendix):

y(k) = f (u(k � 1); : : : ; u(k � nu); � (k � 1); : : : ; � (k � n�)) +
g(y(k � 1); : : : ; y(k � ny)) + � (k);

= ~f (u(k � 1); : : : ; u(k � nu); He0(� (k � 1)); : : : ; He �d1
(� (k � 1)); : : : ;

He0(� (k � n�)) ; : : : ; He �dn �
(� (k � n�))) + g(y(k � 1); : : : ; y(k � ny)) + � k ;

(5.19)

where �di is the maximum exponent of the � (k � i) term, and the function ~f is
multi-linear in terms of the Hermite polynomials Hen (�). The function ~f will be
later derived in Lemma 5.8. This results in an equivalent model that can be easily
transformed to a simulation model (see relations (A.7), (A.8) and (A.10) in the
Appendix). These derivations yield a simulation model represented as

ys(k) = E �
�
f (u(k � 1); : : : ; u(k � nu); � (k � 1); : : : ; � (k � n�)) +

g(y(k � 1); : : : ; y(k � ny)) + � (k)
�
;

= E �

h
~f
�
u(k � 1); : : : ; u(k � nu); He0(� (k � 1)); : : : ; He �d1

(� (k � 1)); : : : ;

He0(� (k � n�)) ; : : : ; He �dn �
(� (k � n�))

�
+ g(y(k � 1); : : : ; y(k � ny))

i
;

(5.20)

= f s (u(k � 1); : : : ; u(k � nu); ys(k � 1); : : : ; ys(k � ny)) ; (5.21)

wheref s(�) denotes the simulation model (i.e., the deterministic part) of the stochas-
tic model. Simulation model (5.21) is computed from (5.20) by making use of
properties of Hermite polynomials described in Equations (A.7), (A.8) and (A.10)
in Appendix A.1.

Remark 5.4. It should be noted that an equation of form(5.18) can be easily
transformed to the equivalent simulation model as in(5.21) without the use of
Hermite polynomials, since the moments of a Gaussian distribution are known.
However, the use of Hermite polynomials yields an equivalent prediction model,
as in (5.19) that o�ers a convenient representation. It turns out that, in order
to obtain a simulation model like (5.21), one must only �switch o�� a number of
Hermite polynomial terms in (5.19), as per Equations(A.7) , (A.8) and (A.10).

108 Chapter 5. Performance measures

To summarize the results of our derivation and give a computational form that
can be used readily in an EC algorithm, the following equivalent representation of
(5.18) is used

y(k) =
pX

i =1

0

@ci

n uY

j =0

ubi;j (k � j)
n �Y

l =1

� di;q (k � q)

1

A +
n yX

r =1

ar y(k � r) + � (k); (5.22)

where p 2 Z> 0 is the number of monomial terms ofu and � in the model, ci 2 R
are the coe�cients, bi;j and di;q are the exponents of theu(k � j) and � (k � q)
factors in the i th monomial term respectively andar is the linear co-e�cient of the
r th output term y(k � r).

Lemma 5.8. For a model of form (5.22), and under the assumption that� (k) �
N (0; 1) is independent of the inputu(l) for all l 2 [1; N], the simulation model,
computed in the sense of(5.7), is given by

ys(k) =
X

i 2 Pe

ci

n uY

j =1

ubi;j (k � j)
n �Y

l =1

(di;q � 1)!! +
n yX

r =1

ar ys(k � r); (5.23)

where Pe := f i 2 [1; p] j di;q is even8q 2 [1; n�]g and (n � 1)!! := n !
n
2 !2

n
2

.

Proof: See Appendix B.1. �

Note that the result in (5.23) is exact, as per the de�nition of the simulation model
in (5.7).

The general case

We now consider the full polynomial NARMAX model as shown in (5.2). Lemma
5.8 does not deal with the non-linear dependence of the output signaly on the noise
process� . Although f u(k)g is a known sequence and� (k) is distributed normally,
the random variable y(k) is typically not distributed normally. Hence, model terms
involving random variables y(k) cannot be equivalently represented in terms of
Hermite polynomials of y(k) (the inner-product in (A.4) no longer corresponds
to the expectation with respect to the distribution of y(k)). Consequently, in
order to compute the expectation of (5.2), one must recursively eliminate ally
terms, which yields a NIIR in terms of the input, as demonstrated in Example
5.3. Computing an NIIR is intractable because next to in�nite time lags, it also
contains in�nite order polynomial exponents. As a result, just like in the LTI case,
an approximation must be made in order to keep the simulation model tractable. In
the sequel, we develop an approximation scheme to compute the simulation model
of a P-NARMAX model.

Let Ub
a (k) := f u(k � i)gb

i = a be the sequence of delayed inputs with the delays
ranging from a to b with a; b 2 Z � 0 and a < b. Similarly, de�ne the sequence
notation Y b

a (k) := f y(k � i)gb
i = a and � b

a(k) := f � (k � i)gb
i = a . Additionally, de�ne

5.4 Computation of A Simulation Model 109

a set-valued discrete-time shift operatorUb
a (k) � 1 := Ub+1

a+1 (k) = f u(k � i)gb+1
i = a+1 .

With a slight abuse of notation, the model in (5.1) will be re-written as

y(k) = f
�
Un u

0 ; Y n y
1 ; � n �

1

�
+ � (k): (5.24)

For the proposed approximation scheme, we performl recursive substitutions of
the output terms y in the model expression in (5.24), as follows:

y(k) = f
�
Un u

0 (k); f y(k � 1); : : : ; y(k � ny)g; � n �
1 (k)

�
+ � (k);

= f
�
Un u

0 (k); f f
�
Un u

0 (k) � 1; Y n y
1 (k) � 1; � n �

1 (k) � 1
�

; : : : ;

f
�
Un u

0 (k) � ny ; Y n y
1 (k) � ny ; � n �

1 (k) � ny
�
g; � n �

1 (k)
�

+ � (k);

= f 1

�
Un u +1

0 (k); Y n y +1
2 (k); � n � +1

1 (k)
�

+ � (k);

...

= f l

�
Un u + l

0 (k); Y n y + l
l +1 (k); � n � + l

1 (k)
�

+ � (k): (5.25)

It should be noted that the functions f; f 1; : : : f l are not identical. However, they are
equivalent, in the sense that for given sequencesf u(k); k 2 [0; N]g and f � (k); k 2
[0; N]g, these functions produce the same output sequencef yk ; k 2 [nl + 1 ; N]g.
Moreover, sincef is a polynomial function, so are f 1; : : : ; f l . The parameterized
approximation can now be de�ned as follows.

De�nition 5.9 (l � approximate simulation). For the P-NARMAX model in (5.24),
the l � approximate simulation model is de�ned as

ys;l (k) := E �

h
f l

�
Un u + l

0 (k); Ys;l
n y + l
l +1 (k); � n � + l

1 (k)
�

+ � (k)
i

; (5.26)

where Ys;l
b
a(k) := f ys;l (k � a); : : : ; ys;l (k � b)g.

The parameter l achieves a trade-o� between the exact NIIR realization of the
simulation model and the naïve approximation of ignoring the correlation between
output y and noise� . As l approaches1 , the approximation ys;l (k) approaches the
true simulated output ys(k) = E � [y(k)]. To compute the l � approximate simulation
model, the following alternate representation of (5.25) is used

y(k) =
pX

i =1

0

@ci

n u + lY

j =0

ubi;j (k � j)
n yY

r =1

ya i;r (k � l � r)
n � + lY

q=1

� di;q (k � q)

1

A + � (k);

(5.27)
where ai;r is the exponent ofy(k � r) in the i th term.

Theorem 5.10. The l � approximate simulation model for the P-NARMAX model
in (5.2), under the assumption that� is independent ofu and that � (k) � N (0; 1),
is given by

ys;l (k) =
X

i 2 Pe

ci

n u + lY

j =0

ubi;j (k � j)
n yY

r =1

ya i;r

s;l (k � l � r)
n � + lY

q=1

(di;q � 1)!!: (5.28)

110 Chapter 5. Performance measures

Proof: The proof makes use of the representation in (5.27), the de�nition of
l � approximate simulation, and the use of Hermite polynomials of the noise process
as in the proof of Lemma 5.8. The proof follows the same line of reasoning as in
the proof of Lemma 5.8, and is thus omitted here. �

Remark 5.5. It should be noted that the proof of Lemma 5.8 rests on the assump-
tion that the noise terms in (5.2) are polynomial. While Lemma 5.8 and Theorem
5.10 are derived for models of the form(5.22) and (5.27), respectively, the input
terms u and output terms y were not explicitly required to be in a polynomial form.
Hence, the derived results can easily be extrapolated to compute simulation models
from prediction models with arbitrary non-linear functions on the input and output
terms, as long as the noise terms appear in a polynomial form.

Remark 5.6. While we assumed that� (k) � N (0; 1), the results can be extended to
a non-standard Gaussian distribution (see(5.17)). For example, a white Gaussian
noise processf v(k)gN

k=1 with v(k) � N (0; � �) can be expressed asv(k) = � � � (k).
Propagating the constant standard deviation factor� � through the expressions in
the proof of Lemma 5.8 (and, by extension, to the proof of Theorem 5.10), we
get the l � approximate simulation response with respect to the more general noise
process as

ys;l (k) =
X

i 2 Pe

ci

n u + lY

j =0

ubi;j (k � j)
n yY

r =1

ya i;r

s;l (k � l � r)
n � + lY

q=1

� di;q

� (di;q � 1)!!: (5.29)

Furthermore, the results can also be extended to any exponential family distribu-
tion by suitably changing the probability measure and the Hilbert space of random
functions in Sec. A.1.

Lemma 5.8 and Theorem 5.10 can be used to compute the exact or approximate
simulation model of a P-NARMAX model. When the simulation output must
be approximated, the second performance measure can be computed using the
l � approximate simulation output ys;l (k). For a given model M (�) and a given
approximation level l , this can be computed as

J2(M; �; DN) =
NX

k= n l

(ym (k) � ys;l (k))2 : (5.30)

5.4.3 Simulation Examples

In this section, we illustrate Lemma 5.8 and Theorem 5.10 using Examples 5.2 and
5.3, respectively.

A simulation study was carried out to illustrate the result in Lemma 5.8 based on
the system (5.12) in Example 5.2. The system in (5.12) was simulated with an input
u � 3 + N (0; 1) with length N = 3000 samples, and with noise disturbance� �
N (0; 1). In order to compute an empirical estimate of the simulation response of the
system, the input excitation was repeated periodically with number of periodsnp =

5.4 Computation of A Simulation Model 111

(a) Comparison of ys and �ys. The yellow
lines correspond to several realizations
of the measured responsey and indicate
the severity of the process noise.

(b) Distribution of �ys � ys

Figure 5.1: Example 5.2 - simulation results.

1024. Data from the �rst 5 experiments was discarded to remove any errors due
to transients. Assuming ergodicity, the ideal simulation response can be computed
empirically as the ensemble average

�ys =
1

np � 5

n pX

i =6

y(i) ; (5.31)

wherey(i) is the output corresponding to the i th period of the input. The theoretical
simulation of the model is computed using (5.14). The empirical and the theoretical
simulation response is plotted in Fig. 5.1a. Several realizations of the noisy output
are plotted in yellow. The unscaled histogram of �ys � ys is depicted in Fig. 5.1b.
The di�erence �ys � ys appears to be centered at 0. This implies that the simulation
model computed by neglecting the noise contributions (see (5.15)) would be biased
by a scalar factor of 1 (compare with (5.14)). The di�erence between the two
simulation models is also quanti�ed in terms of the root mean squared (RMS)
error in Table 5.1, where the RMS of errore(k) is computed as

rms(e) =

vu
u
t 1

N

NX

k=1

e(k)2: (5.32)

The �rst column of numbers in Tab. Table 5.1 indicate the RMS error between the
empirical mean and the proposed simulation models. The second column indicates
ensemble average of the RMS errors between the noisy response of the system
and the simulation model approximations. It can be observed that the proposed
simulation model performs signi�cantly better in approximating the noisy output
than the conventional simulation model that sets the noise contributions to 0.

A similar simulation study was carried out to illustrate the result in Theorem 5.10
using the system in (5.16) in Example 5.3. The system in (5.16) was simulated
with input u(k) � N (3; 1) of length N = 3000 samples, and noise� (k) � N (0; 1).
Again, the input excitation was repeated periodically with number of periodsnp =

112 Chapter 5. Performance measures

Table 5.1: RMS errors of simulation results - Example 5.2

rms(�ys � E [y]) avgi (rms(y(i) � E [y]))
E [y] = ys 0.0544 1.7305
E[y] � y0

s 1.0001 1.9976

1024and the simulation response was computed empirically usingp � 5 periods of
excitation.

We compare three approximation concepts, the �rst two are commonly used in
literature, while the third is the proposed l � approximate simulation.

(i) Ignore the correlation between the output y and noise� in (5.16). This yields

y(1)
s (k) = u(k) � 0:1(y(1)

s (k � 1))2; (5.33)

(ii) Truncate the NIIR after a certain number of recursive substitutions of the
y(k) terms. We get the simulation responses

y(2)
s (k) = u(k) � 0:1u2(k � 1) � 0:1; (5.34)

y(3)
s (k) = u(k) � 0:1u2(k � 1) � 0:1 + 0:02u(k � 1)(u2(k � 2) + 1) (5.35)

for one and two recursive substitutions, respectively, followed by truncation
of the NIIR.

(iii) The l � approximate simulation model for l = 1 ,

ys;1(k) = u(k) � 0:1u2(k � 1) � 0:1 � 0:001(ys;1(k � 2))4+

0:02u(k � 1)(ys;1(k � 2))2;

(5.36)

and for l = 2 ,

ys;2(k) = u(k) � 0:1u2(k � 1) � 0:1�

0:001
�
u(k � 2) � 0:1(ys;2(k � 3))2 + � (k � 2)

� 4
+

0:02u(k � 1)
�
u(k � 2) � 0:1(ys;2(k � 3))2 + � (k � 2)

� 2
:

(5.37)

The distribution of the approximation errors achieved by the simulation models in
(5.33-5.37) w.r.t the empirical simulation �ys are depicted in Fig. 5.2. Additionally,
the RMS errors are presented in Table 5.2. It can be veri�ed, both visually and
numerically, that the truncation-based approximation concepts achieve the worst
approximation errors. In comparison, the naïve approximation y(1)

s , which is also
equal to 0� approximate simulation ys;0, performs surprising;y well. The approx-
imation error further reduces for increasing values of parameterl . This is to be
expected, since for increasing values ofl . the approximation ys;l approaches the
true simulation output ys. This illustrates the result in Theorem 5.10.

5.5 Conclusions 113

Figure 5.2: Distribution of error between �ys and the various approximate simu-
lation responses.

Table 5.2: RMS errors of simulation results - Example 5.3

rms(�ys � E [y]) avgi (rms(y(i) � E [y]))
E [y] � y(1)

s (k) 0.1071 1.1566
E[y] � y(2)

s (k) 0.4223 1.2203
E[y] � y(3)

s (k) 0.3999 1.2147
E[y] � ys;1(k) 0.0683 1.1534
E[y] � ys;2(k) 0.0369 1.1521

5.5 Conclusions

In this chapter, we introduced the basic notions of partial ordering, non-dominated
solutions and the Pareto front. These notions allow us to evaluate and rank-order
candidate models based on multiple objectives. The fact that EC applies agenerate-
and-validate policy on a population of candidate solutions can be exploited to focus
the evolutionary search along the estimated Pareto front.

In Chap. 4, we demonstrated that TAGs can be used to de�ned model sets that span
across multiple classes of dynamical systems with varying degrees of complexity.
Such a general model set speci�cation makes it challenging to evaluate candidate
models in a meaningful way, since the nature of dynamics and degrees of complexity
of models should be taken into account when comparing any two models belonging
to the model set.

In this dissertation, we propose to use four performance measures that capture the
following information related to a dynamical model - (i) one-step-ahead prediction
accuracy, (ii) simulation accuracy, (iii) parametric complexity and (iv) dynamic

114 Chapter 5. Performance measures

complexity. Modelling objectives (i) and (ii) relate to di�erent notions of accuracy
of the model with respect to measured data obtained from the system, and objec-
tives (iii) and (iv) relate to two di�erent notions of complexities of the dynamical
model, and are not dependent on the measured data.

The one-step-prediction error can be used to measure short-term prediction ca-
pabilities, while long-term prediction capability is measured by simulation error.
Including these two somewhat complimentary measures for model accuracy ensures
that the estimated models are suitable for a broad range of applications. While
parametric complexity ensures that models achieving di�erent bias-variance trade-
o�s along the Pareto front can be explored, dynamic complexity allows models
with various dynamic properties to be explored. A Pareto front estimated based
on these four dimensions allows a user to select a modela posteriori based on a
better understanding of the trade-o�s that can achieved by the models belonging
to the chosen model set and with respect to the measured data. This enables the
user to easily align the selection of identi�ed model with the ultimate use-case of
the model.

Black
then
white are
all I see,
in my infancy.
Red and yellow then came to be,
reaching out to me,
lets me see.

James Maynard Keenan, Tool

6
Evolutionary Multi-criteria System

Identi�cation

I n order to realize the concept of automated identi�cation, we introduced
three key ingredients: GP, TAG- and Pareto-dominance-based multi-

objective framework. In this chapter, we fuse these ingredients to develop
an approach for automated system identi�cation. The proposed method-
ology makes use of a modi�ed GP algorithm to automatically search for
Pareto-optimal models in the model set de�ned by a user-speci�ed TAG,
based on multiple identi�cation criteria that can be aligned to the ulti-
mate use-case of the model. From the user's perspective, the identi�cation
task becomes easier, since (i) selecting a suitable TAG is a far easier task
than selecting a suitable model structure and complexity, and (ii) the set
of Pareto-e�cient models estimated by GP makes it possible for the user
to select, a posteriori, a model that achieves a desirable trade-o� between
the various performance measures used.

After introducing the proposed identi�cation approach in detail, we analyse
the asymptotic behaviour and computational complexity of the proposed
algorithm. Much of the discussion and analysis presented in this chapter
relies on concepts and notations introduced in Chap. 3, 4 and 5.

115

116 Chapter 6. Evolutionary Multi-criteria System Identi�cation

6.1 Setup of the Identi�cation Problem

6.1.1 A Brief Recap - Tree Adjoining Grammar and Pareto-
optimality

Recall that the primary research goal of the present dissertation is to automate
the task of system identi�cation from a user's perspective. In Chap. 2, based on
a review of a number of identi�cation methodologies, we proposed the following
set of desired features that the conceptualized identi�cation methodology should
possess:

� The identi�cation methodology should be applicable for multiple classes of
dynamical systems, with minimal changes to the overall approach.

� Instead of requiring intervention from the user, the identi�cation methodol-
ogy should be able to infer the appropriate model structure and complexity
based on measured data obtained from the system-to-be-modelled.

� In the presence of prior information related to the dynamic properties of the
system or desired structure of the model, it should be possible to suitably
restrict the scope of the identi�cation algorithm.

� In order to estimate models that are aligned to the ultimate utilization sce-
nario, it should be possible to incorporate multiple user-speci�ed identi�ca-
tion criterion.

In order to develop the fundamentals of an identi�cation methodology that incor-
porate some of these desired features, the following notions have been introduced:

� In Chap. 4, TAG was used to specify model sets that may span across mul-
tiple classes of dynamical systems and models with varying structures and
complexity. We also demonstrated that prior information or preference can
be utilized to restrict the model set, thereby restricting the scope of the
methodology. In the absence of prior knowledge, a general TAG can be used
in order to cast a wide net across dynamic classes and model structures, at
the cost of making the underlying optimization problem more challenging.

� In Chap. 5, we introduced the notion of partial ordering of solutions based on
multiple performance measures, leading to the notion of Pareto-optimality.
The notion of Pareto-optimality can be used to develop a multi-criterion
identi�cation methodology.

The chapter is structured as follows. Based on the concepts of TAG-based model
set and Pareto-optimality, we formalize the multi-criterion identi�cation problem
in Sec. 6.1.2. In Sec. 6.2, we proposed a novel identi�cation method, based on
GP (introduced in Chap. 3), that brings together the notions of TAG-based model
set speci�cation and Pareto-optimality, in order to solve the multi-criterion system
identi�cation problem. The proposed identi�cation method is formulated on a fairly

6.1 Setup of the Identi�cation Problem 117

general level: TAG can be used to describe a variety of model structures and repre-
sentations, and arbitrary user-speci�ed performance measures can be incorporated.
For speci�c choices of TAG GN (proposed in Chap. 4) and the performance mea-
sures f J i (M; �; DN)g4

i =1 (suggested in Chap. 5), details for parameter estimation
in the proposed identi�cation framework are discussed in Sec. 6.3. The asymptotic
behaviour and computational complexity of the proposed algorithm are studied
in Sec. 6.4. Finally, the main aspects of the proposed identi�cation approach are
discussed in Sec. 6.5.

6.1.2 The Multi-criterion System Identi�cation Problem

Let G be the chosen TAG with the corresponding tree languageL T (G) and model
set M (G) (see Def. 4.8). Recall that for any saturated derived tree 2 L T (G),
the corresponding model structureM can be obtained by the genotype-phenotype
mapping � : L T (G) ! M (G), i.e., M = �(). Furthermore, it is assumed that
any model M 2 M (G) can be parameterized by a parameter vector� 2 �(M),
where the domain �(M) is determined by the structure of M (or alternatively,
by the structure of saturated derived tree). We also assume that modelM
is parameterized such that the parameterized modelM (�) does not contain any
duplicate model terms. Let J (M; �; DN) be the set-valued performance measure
with number of objectives nobj .

The general problem

The general multi-criteria system identi�cation problem can be formalized as the
following optimization problem,

min
M 2M (G);� 2 �(M)

J (M; �; DN); (6.1)

where the minimization of the set-valued performance measures is based on the
strict partial ordering � J on the set M (G). Notice that the feasible set �(M)
for decision variable � is only determined once a model structureM 2 M (G) is
�xed. Hence, there exists a hierarchical structure built into the problem. In order
to suitably re�ne the optimization problem, we divide the set of objective functions
into two subsets - the set of continuous objective functionsJcont (M; �; DN) that
explicitly depend on model parameters� , and the set of categorical objective func-
tions Jcat (M; �; DN) that do not explicitly depend on the values of parameters� or
on measured dataDN , but only depend on the structure of the model. Continuous
objective functions take values in a continuous domain, while categorical objective
functions typically take values in a discrete domain. For example, for the perfor-
mance measures proposed in Sec. 5.3, we haveJcont (M; �; DN) = f J i (M; �; DN)g2

i =1
and Jcat (M; �; DN) = f J i (M; �; DN)g4

i =3 . Consequently, a more natural represen-

118 Chapter 6. Evolutionary Multi-criteria System Identi�cation

tation of the multi-criteria identi�cation problem would be the following:

min
M 2M (G)

J (M; �; DN); (6.2a)

subject to � 2 arg min
� 2 �(M)

Jcont (M; �; DN); (6.2b)

where, again, the minimization of the set-valued performance measures is based
on the strict partial ordering � J on the set M (G). The optimization problem in
(6.2a) and (6.2b) is a bilevel multi-objective optimization problem; it consists of
two levels, the upper level in (6.2a) and the lower level in (6.2b), both of which
are multi-objective. The upper level optimization problem is formulated in terms
of decision variableM , and represents the model-structure-determination problem
that is to be solved. The lower level optimization problem is formulated in terms of
decision variable� 2 �(M) and is de�ned only for a given model structure M , as
it determines the domain �(M) of the lower level decision variable. Observe that
the lower-level problem is formulated for performance measures inJcont (M; �; DN)
since, for a �xed model structure M , the performance measures inJcat (M; �; DN)
are also �xed. The Pareto-e�cient set of the lower level optimization problem is
the set of all parameters � that lie in the Pareto-front corresponding to the set-
valued objective Jcont (M; �; DN). This sets up the following hierarchical structure
in the optimization problem: for any model structure M 2 M (G), the feasible
set of parameters � is determined by the Pareto-e�cient set of the lower level
optimization problem in (6.2b).

Due to the interplay of decision variables between the two levels of the optimiza-
tion problem, bilevel optimization problems can be di�cult to solve. Hansen et al.
(1992) demonstrated that even a single-objective bilevel problem with linear objec-
tives and linear constraints in both levels is an NP hard problem to solve. Neverthe-
less, bilevel optimization problems are relevant for many decision-making problems
in supply chain management (Sadigh et al., 2012), power grid management (Saf-
darian et al., 2014), transportation systems (Fisk, 1984), control theory (Basar and
Selbuz, 1979) and network security (Zhu and Martinez, 2011). In the �eld of game
theory, bilevel programs are studied in terms of the dynamics between a leader and
a follower in a Stackelberg game (Simaan and Cruz, 1973). Due to the relevance of
bilevel programs, several solution techniques have been proposed in the literature,
see Sinha et al. (2017) and Colson et al. (2007) for a review.

The optimization problem in (6.2) encapsulates the general identi�cation problem
as it combines the problems of model structure selection (in the upper-level) and pa-
rameter estimation (in the lower-level). Furthermore, the set valued identi�cation
criteria can be adapted to incorporate performance measures suitable for the use-
case of the model. For the performance measures proposed in Sec. 5.3, the optimiza-
tion problem remains the same as in (6.2) withJ (M; �; DN) = f J i (M; �; DN)g4

i =1
and Jcont (M; �; DN) = f J i (M; �; DN)g2

i =1 .

Simpli�cations to the general problem

In the optimization problem (6.2a) and (6.2b), since both levels are multi-objective,
for any given model structure M 2 M (G), the Pareto-e�cient set of the lower level

6.1 Setup of the Identi�cation Problem 119

problem can be in�nitely large, achieving a continuous trade-o� between objectives
in Jcont , for example, between one-step-ahead-prediction error on one end and
simulation error on the other1. This leads to the problem of storing a rather large
set of parameter values� for a single model structureM , which in itself is a decision
variable in a discrete combinatorial spaceM (G) in the upper level.

To avoid such issues, we simplify the general problem in (6.2a, 6.2b) by replac-
ing the multi-objective problem in lower level 6.2b with multiple single-objective
optimization problems using a scalarization technique, e.g., convex combination
or Chebyshev scalarization (for details, see Ishibuchi et al. (2008) or Emmerich
and Deutz (2018)). This approach e�ectively discretizes the Pareto-front of the
lower-level optimization problem. Hence, the bi-level optimization problem can be
simpli�ed to

min
M 2M (G);� 2 �(M)

J (M; �; DN); (6.3a)

subject to � 2
n �[

i =1

8
<

:
arg min
� 2 �(M)

jJ cont jX

j =1

� i;j J j (M; �; DN)

9
=

;
; (6.3b)

wheren� is the number of combinations considered in the scalarization of the lower-
level multi-objective function, � i;j are trade-o� parameters pre-selected by the user
based on the scalarization technique used, andJ j 2 Jcont for all j 2 [1; jJcont j].

For the performance measures proposed in Sec. 5.3, and using convex combinations
of the proposed identi�cation criteria, the simpli�ed problem can be written as

min
M 2M (G);� 2 �(M)

f J i (M; �; DN)g4
i =1 ; (6.4a)

subject to � 2
n �[

i =1

(

arg min
� 2 �(M)

(� i J1(M; �; DN) + (1 � � i)J2(M; �; DN))

)

;

(6.4b)

As a special case of the optimization problem in (6.4), for� 1 = 1 and � 2 = 0 ,
the lower level multi-objective problem can be replaced with two single-objective
problems of minimizing the one-step-prediction error and simulation error, i.e.,

min
M 2M (G);� 2 �(M)

f J i (M; �; DN)g4
i =1 ; (6.5a)

subject to � 2

(

arg min
� 2 �()

J1(M; �; DN)

)
[

(

arg min
� 2 �(M)

J2(M; �; DN)

)

:

(6.5b)

It should be stressed that the Pareto-e�cient set of the simpli�ed problems in
(6.3), (6.4) or (6.5) is not the same as that of (6.2), since, for a givenM , the set of

1 In the event that the DGS can be represented exactly by model structure M , it is possible
that the Pareto-e�cient set of the lower level problem consists of a single point, i.e., the optimal
parameter vectors for objectives J1 and J2 coincide. However, this is a rare scenario, specially
in realistic identi�cation problems and also due to the generality of the model set described by
TAG.

120 Chapter 6. Evolutionary Multi-criteria System Identi�cation

optimal parameters for (6.3b), (6.4b) and (6.5b) form subsets of the Pareto-e�cient
set of (6.2b). Nonetheless, since objectives inJcont are also included in the upper-
level problems in (6.3a), (6.3a) and(6.5a), we expect the resulting Pareto-fronts
of the simpler bi-level problems to be a fair (albeit sparse) approximation of the
Pareto-front of (6.2).

6.2 The Proposed Algorithm

In this section, we fuse the ingredients of GP, TAG and Pareto-based ordering
in order to develop an algorithm to solve the multi-criteria system identi�cation
problem. We �rst give a general overview of the proposed identi�cation approach
in Sec. 6.2.1. This is followed by detailed discussions of each of the steps in the
proposed methodology.

6.2.1 A Bird's Eye View

In order to solve the bilevel optimization problem in (6.5) (or, in general, in 6.4)
we propose a GP-based algorithm constructed in the following ways.

� The proposed GP-based algorithm is adapted to be compatible with deriva-
tion tree representations of models described by a user-speci�ed TAGG. This
requires suitable modi�cations to

� The initialization scheme, such that the GP population can be initialized
by derivation tree representations of candidate solutions.

� The variation operators, such that the candidate solutions obtained af-
ter the crossover and mutation operator also satisfy the grammar rules
encoded inG.

The modi�cations made to the standard GP are inspired by the �rst TAG-
based GP algorithm proposed in the literature by Hoai and McKay (2001),
and are discussed in Sec. 6.2.2.

� The algorithm is extended to a multi-objective setting using Pareto-based
selection. In this dissertation, we use the non-dominated sorting algorithm
proposed in Deb et al. (2002), however, in principle, relevant concepts from
other MOEAs such as SPEA2 or MOEA/D can also be used, see discussion
in Sec. 5.2.2 or more extensive reviews in Emmerich and Deutz (2018) and
Ishibuchi et al. (2008).

� A local search step is nested within the algorithm to estimate model param-
eters solving the lower-level optimization problem. This is an example of a
memetic algorithm, see discussion in Sec. 3.3.

Each candidate solution is represented using (i) a derivation tree representation
(introduced in Sec. 4.2.3), (ii) a derived tree representation (introduced in Sec.

6.2 The Proposed Algorithm 121

4.2.3), and (iii) a dynamic IO representation (for example, as in (4.10)). The role
of these representations is discussed in Sec. 6.2.2.

An overview of the proposed multi-objective grammar-based memetic algorithm
is given in Alg. 4 and illustrated in Fig. 6.1. In each iteration of GP, modi�ed
variation operators (based on Hoai et al. (2002)) are used to propose candidate
models, in terms of derivation trees and derived trees, of the population (see Step
8). By virtue of the nature of crossover and mutation operators used, the deriva-
tion and derived trees belong to the setsL D (G) and L T (G), respectively, de�ned by
the user-speci�ed TAG G. These individuals are subsequently translated to their
phenotype representation, i.e., parametric dynamical IO model structures. Before
these model structures can be evaluated based on user-speci�ed performance mea-
sures, the parameter vectors of each of the model structures must be estimated.
This corresponds to the local search step of the algorithm in Step 4. The result
of the local search step is the solution to the lower level problem in (6.5b) for the
corresponding model structure. Based on the estimated parameters, in Step 5,
the newly proposed individuals are evaluated using the vector-valued performance
measureJ . In Step 6, the Pareto-based sorting algorithm proposed in Deb et al.
(2002) is used to order and select candidate models based on the strict partial
ordering � J on M (G). An archive, consisting of Pareto-e�cient candidate mod-
els found in the previous iterations, is updated with the Pareto-e�cient subset of
the newly proposed solutions in Step 7. As the GP iterations proceed, the set of
Pareto-e�cient models stored in the archive approaches the Pareto-e�cient set of
the upper level problem in (6.5a).

Algorithm 4 The multi-objective grammar-based memetic algorithm

Require: population size ns > 0, number of iterations L > 0, TAG G, crossover
rate pc, mutation rate pm , maximum tree-depth md

1: Initialize population X (0) , X (� 1) = fg , j = 0 ; A(0) = fg . See Alg. 5
2: ~X (0) X (0)

3: repeat
4: Estimate model parameters in ~X (j) . See discussion of parameter

estimation in Sec. 6.2.2
5: Compute multi-objective �tness of models in ~X (j)

6: X (j) ns individuals selected from(~X (j) [X (j � 1)) . See Alg. 8 and 9
7: A(j +1) E (A(j) [~X (j) ; � J)
8: Propose new population ~X (j +1) using variation operations . See

discussion on variation operators in Sec. 6.2.2
9: j j + 1

10: until j � L + 1
11: return X (L) ; A(l)

6.2.2 Step-by-step Procedure

In the following section, we discuss details of each of the steps in the proposed
identi�cation procedure.

122 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.1: A schematic illustration of the proposed identi�cation algorithm,
where the operations described for each step act upon a population of models. The
crucial ingredients that we used to carefully design each phase of the proposed
algorithm (described in Sec. 6.2.2) are indicated with green. However, the modular
nature of the method allows to take other choices for more extensive grammars or
performance measures, some of which are indicated in gray boxes.

6.2 The Proposed Algorithm 123

Data collection and pre-processing

The measured dataset can be pre-processed in a number of ways in order to make
the modelling task easier and to obtain models that are suitable for their use-case.
Data pre-processing is commonly performed to

� remove trends, such as constant or linear o�set, from data,

� pre-�lter data in order to focus the modelling task on a particular range of
frequencies,

� treat outliers or missing data, for example, by estimating the true values or
removing them altogether.

Pre-processing of data is often speci�c to the application, and in this thesis we
assume that suitable pre-processing has been performed on the measured data.
Some commonly used techniques for pre-processing of data can be found in Ljung
(1998) and Pintelon and Schoukens (2012).

The measured datasetDN plays a crucial role in Steps 4 and 5 of Alg. 4. In
Step 4, data is used to obtain parameter estimates for a given model structure,
and in Step 5, data is used to evaluate each model (structure and parameters)
in the population. When TAG G is used to generate complex model structures
that are over-parameterized w.r.t the true system, the use of �nite-length datasets
may result in over-�tting of the model and high variance in the parameter esti-
mates. In order to prevent optimistic training error estimates and over�tting, we
use two independent datasets - an estimation datasetDest , of length Nest , for esti-
mating model parameters in Step 4 and a validation datasetDval , of length Nval ,
to evaluate the performance of proposed model structures. Whenever possible, we
also use a third independent datasetDtest , of length N test , to estimate the general
performance of the Pareto-e�cient set returned at the end of Alg. 4. The three
independent datasets can be obtained either from three independent experiments
or by splitting a su�ciently long experiments into three parts. Splitting a dataset
into three subsets may introduce transient errors at the beginning of each of the
subsets. Transient errors can be reduced by estimating the initial conditions, or by
provisioning a burn-in period (i.e., by ignoring the �rst few samples of the dataset
where the transient errors are more prominent) that allows the transient errors to
decay to an acceptable level (assuming that the estimated model is exponentially
stable).

Representations and encoding

In the proposed TAG-based GP, the population X (j) in iteration j consists of
ns candidate solutions encoded as derivation trees, denoted asf � j

i gn s
i =1 . Deriva-

tion tree representations serve as the genotype for the GP algorithm, replacing
the commonly-used expression trees. Hence, variation operators are used on the
derivation tree representation of the candidate solutions. Each candidate solution
can also be represented as a derived tree� j

i that can be computed by performing

124 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.2: Model representations used in the proposed algorithm.

the adjunctions and substitutions captured in the derivation tree � j
i (see Sec. 4.2.3).

This operation is denoted as� j
i = � G (� j

i). Finally, the derivation tree representa-
tion � j

i of individual i in iteration j can be mapped to a IO modelM j
i 2 M (G),

which forms the phenotype of the GP algorithm. The mapping from genotype� j
i

to phenotype M j
i is denoted by M j

i = � G (� j
i). In practice, the derived tree � j

i
serves as an intermediate step in the conversion from genotype (i.e., the derivation
tree) � j

i to phenotype (i.e., the IO model) M j
i .

The candidate modelM j
i can be parameterized asM j

i (� j
i) by replacing the place-

holder parameters in� j
i with a parameter vector � j

i , whose dimensionality depends
on the structure of M j

i . The various model representations permitted by grammar
G, the corresponding sets they belong to, and mappings between these representa-
tions are illustrated in Fig. 6.2.

Initialization

In Step 1 of Alg. 4, the algorithm is initialized with population X (0) that consists
of candidate solutions generated from grammarG. The initialization schemes for
GP presented in Sec. 3.2.2 must be modi�ed in order to generate individuals using
a user-speci�ed TAG G. Hoai and McKay (2001) developed an approach for ini-
tializing derivation trees based on a TAG for use in GP. We adopt and formalize
the same initialization scheme for our method.

Before introducing the initialization scheme, we recall the relevant notations intro-
duced in Chap. 3 and 4. A TAG G is given by the tuple hN; T; I ; A ; Si , whereN is
the set of non-terminal labels,T is the set of terminal labels, I is the set of initial
trees, A is the set of auxiliary trees, andS is the label of the root node. An initial
tree � is described by the tupleV; E; r , where V is the set of vertices,E is the set
of edges andr is the root-node. Similarly, an auxiliary tree � is described by the

6.2 The Proposed Algorithm 125

tuple V; E; r; f , where f is the foot-node of the auxiliary tree. Finally, � denotes
the null set.

The algorithms used for initialization are presented in Alg. 5, 6 and 7.

Algorithm 5 The initialization scheme

Require: Grammar G = hN; T; I ; A ; Si , maximum initial tree-depth mid , popu-
lation size ns

1: Initialize X (0) fg , D (0) fg
2: while i � ns do . Iterate through each individual in the population
3: Select � i = hV; E; r i 2 I randomly, with uniform distribution, such that

l(r) = S
4: � 0

i h Vi ; E i ; r i i , where Vi = f r i g, E i = � , and l(r i) � i . Initialize the
derivation tree

5: � 0
i � i . Initialize the derived tree

6: � s f (� k ; �) j (� 2 �(� 0
i)) ^ (l (�) 2 N) ^ (9� = hV 00; E 00; r 00i : l (�) =

l(r 00))g . List vertices in the derived tree that can be substituted to, and the
corresponding vertex in the derivation tree

7: (� 0
i ; � 0

i) substitute (� 0
i ; � 0

i ; r i ; � s; G)
8: l 1 + j� sj
9: k 1 . A counter for derivation tree vertices

10: � k r i

11: Selectd 2 [2; mid] randomly with uniform distribution
12: while dt (� 0

i) � d do . Grow derivation tree until chosen depth d
13: � a f (� k ; �) j (� 2 V) ^ (� =2 �(� 0

i)) ^ (9� = hV 0; E 0; r 0; f 0i : l (�) =
l(f 0))g . List vertices in the derived tree that can be adjoined to, and the
corresponding vertex in the derivation tree

14: (� 0
i ; � 0

i ; � a; V) adjoin (� 0
i ; � 0

i ; k + l; � a; G)
15: k k + l
16: � s f (� k ; �) j (� 2 �(� 0

i)) ^ (l (�) 2 N) ^ (9� = hV 00; E 00; r 00i 2 I :
l (�) = l(r 00))g . List vertices in the derived tree that can be substituted to,
and the corresponding vertex in the derivation tree

17: (� 0
i ; � 0

i) substitute (� 0
i ; � 0

i ; � k ; � s; G)
18: l 1 + j� sj
19: � 0

i h Vi ; E i ; r i i
20: k k + 1

return X (0) = f � 0
i gn s

i =1 ; D (0) = f � 0
i gn s

i =1

In the proposed initialization, each derivation tree � 0
i in the initial population X (0)

is grown upto a depth d that is randomly chosen from the range[2; mid], wheremid

is the maximum tree depth in the initial population, a hyper-parameter chosen by
the user. The tree is initialized with an initial tree whose root node is labelled with
start symbol S of grammar G, see Step 3 of Alg. 5. Throughout the initialization
process, we maintain lists� s and � a to track leaves and internal vertices in the
derived tree that can participate in a substitution and adjunction operation, re-
spectively. If the chosen initial tree contains leaves available for substitution (listed

126 Chapter 6. Evolutionary Multi-criteria System Identi�cation

in � s in Step 6), compatible2 initial trees, chosen randomly with uniform distribu-
tion, are substituted in Step 7 of Alg. 5 and in Alg. 6. After any substitution or
adjunction operation, list � a, consisting of all vertices in the derived tree that are
available for adjunction, is updated. Each vertex listed in � s and � a is also paired
with the corresponding node in the derivation tree that generates the vertex in the
derived tree.

After initializing the derivation tree with an initial tree, along with the correspond-
ing substituted trees, the derivation tree can be grown iteratively by adjoining aux-
iliary trees. In each iteration, a vertex available for adjunction is chosen randomly,
with uniform distribution, from list � a (see Step 13 in Alg. 5). Subsequently, a
compatible auxiliary tree is chosen randomly with uniform distribution and ad-
joined to the individual at the chosen location, see Step 14 in Alg. 5 and Alg. 7.
Again, if required, suitable initial trees substituted to the newly adjoined tree in
Steps 16 and 17 in Alg. 5. This process is repeated until the derivation tree has
reached the required depth.

Algorithm 6 Substitute

Require: Derivation tree � j
i = hV; E; r i , derived tree � j

i , vertex � k 2 V , list of
vertex pairs available for substitution � s, grammar G

1: l 1
2: while � s 6= � do
3: Select any pair (� � ; � �) 2 � s

4: Select � = hV 0; E 0; r 0i 2 I such that l(� �) = l(r 0)
5: V V [f � k+ l g with l(� k+ l) = � . Update the derivation tree
6: E E [f eg where e = h� � ; � k+ l i and g(e) = pG (� � ; � j

i)
7: � j

i � j
i [� � ; �] . Update the derived tree

8: l l + 1
9: � s � s n f (� � ; � �)g

10: return � j
i ; � j

i

Parameter estimation and multi-criteria evaluation

In each iteration of the proposed identi�cation method, i.e., Alg. 4, a new popu-
lation ~X (j) is proposed. Let the corresponding models~M j

i be parameterized by
parameter vectors ~� j

i . In Step 4 of Alg. 4, parameter estimates of~� j
i that optimize

the lower level criterion (or criteria) are computed.

Consider a single candidate model structure~M j
i in iteration j of the algorithm. For

the general multi-criterion identi�cation problem in (6.2), the Pareto-e�cient set of
parameters that optimize the lower-level optimization problem for model structure
~M j

i alone may be in�nitely large. This is due to the fact that performance measures
in Jcont may contradict each other, leading to a continuum of possible trade-o�s.
For example, among the performance measures proposed in Chap. 5, prediction
and simulation error minimization may lead to non-identical parameter estimates,

2See Sec. 4.2.3 for conditions under which a substitution operation is well-de�ned.

6.2 The Proposed Algorithm 127

Algorithm 7 Adjoin

Require: Derivation tree � j
i = hV; E; r i , derived tree � j

i , index k for next vertex
position in derivation tree, list of vertices pair available for adjunction � s,
grammar G

1: Select a pair (� � ; � �) 2 � a randomly with uniform distribution . Select a
vertex that can be adjoined to

2: Select � = hV 0; E 0; r 0; f 0i 2 A such that l(� �) = l(f 0). In case of multiple
compatible auxiliary trees, select one randomly with uniform distribution.

3: V V [f � k g with l(� k) = � . Update the derivation tree
4: E E [f eg where e = h� � ; � k i and g(e) = pG (� � ; � j

i)
5: � j

i � j
i J� � ; � K . Update the derived tree

6: � a � a n f (� � ; � �)g . Update the list of vertices available for adjunction
7: return � j

i ; � j
i ; � a; V 0

leading to in�nite trade-o� possibilities. Hence, a more computationally feasible
approach is to simplify the lower-level objective by considering a �nite union of
single-objective problems, as proposed in in (6.4) and (6.5). For each lower-level
objective and each candidate model structure ~M j

i , the estimation dataset Dest is
used to obtain a parameter estimate denoted by~� j

i;r , where r is the index of the
lower-level objective. Hence, in iterationj , the set of candidate parametric models
is given by f[n �

r =1
~M j

i (~� j
i;r)gn s

i =1 .

Optimization techniques that can be used for the parameter estimation step in
Alg. 4 are dependent on the grammarG used to generate models and the per-
formance measuresJcont that depend on the value of the parameters. In general,
when the chosen grammarG and objective function Jcont lead to formulation of
non-linear optimization problems, one must use global optimization techniques such
as Covariance matrix adaptation evolutionary strategies (CMA-ES) or PSO. Due
to the computation-intense nature of such algorithms, they can be challenging to
implement in practice, especially for large datasets. Alternatively, local optimiza-
tion techniques such as gradient-descent-based algorithms may also be used. While
local techniques may be more e�cient computationally, they are susceptible to lo-
cal equilibria. When the chosen grammarG and objective function Jcont lead to
simpler (for example, convex) optimization problems, more e�cient and specialized
optimization techniques can be utilized. In Sec. 6.3, we discuss the numerical as-
pects of minimizing prediction and simulation error for model structures generated
by TAG GN .

After the estimation of parameters, in Step 5 of Alg. 4, proposed model struc-
tures ~M j

i and the corresponding parameter estimates~� j
i;r are used to compute the

vector-valued performance measureJ (M; �; Dval) for each candidate model in the
population. For the P-NARMAX model class generated by TAG GN and the per-
formance measures proposed in Sec. 5.3, the necessary computational details can
be found in Sec. 5.3 and 5.4.

128 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Variation
operator

Hyper-
parameter

Operator
types

Illustration

Crossover pc sub-tree Fig. 6.3

Mutation pm

node insertion Fig. 6.4

branch insertion Fig. 6.5

node deletion Fig. 6.6

branch deletion Fig. 6.7

Table 6.1: List of variation operators and their corresponding types.

Variation operators - Crossover

In each iteration of Alg. 4, crossover and mutation operators are used to propose a
new population. In the proposed algorithm, variation operators are performed on
the derivation tree representation of each candidate solution. Recall that one of the
main motivations for using TAG is to ensure that any model generated using a given
TAG belongs the desired model set. In order to maintain this property during the
evolutionary search, the crossover and mutation operators must be modi�ed. The
variation operators used in the proposed method are based on those used in Hoai
and McKay (2001), where the authors proposed crossover and mutation operators
that ensure the resulting model structures also belong to the desired model set
encoded in the TAG.

We employ standard sub-tree crossover operator, introduced in Sec. 3.2.2, with
additional constraints that ensure validity of the newly proposed adjunction oper-
ators. The crossover operator is applied to a pair of individuals in the population
with probability pc. Let � 1 and � 2 be two derivation trees selected for crossover
and denote the corresponding derived trees as� 1 and � 2. The crossover operation
consists of the following steps:

1. Select a vertex � 1 in derivation tree � 1 randomly3 and let � 0
1 denote the

parent of vertex � 1. The label of vertex � 1 denotes the auxiliary tree � 1 that
is to be adjoined, in the derived tree representation� 1, to the auxiliary tree 4

� 0
1 = hV1; E1; r 1; f 1i represented by the label of the parent vertex� 0

1.

2. Select a vertex � 2 and its parent vertex as � 0
2 in derivation tree � 2 with

corresponding auxiliary trees� 2 and � 0
2 = hV2; E2; r 2; f 2i , respectively, such

that the following conditions are satis�ed

9 � 3 2 V1 : � 0
1J� 3; � 2Kis de�ned; (6.6a)

3The vertex may be selected randomly with uniform distribution, however it is a convention
to bias the random selection towards internal vertices, i.e., vertices that are not leaves. See Koza
(1992).

4Note that the parent node label may correspond to an initial tree rather than auxiliary tree.
For convenience, we assume that the parent node is an auxiliary tree, however the steps described
here also apply for the case when the parent is an initial tree.

6.2 The Proposed Algorithm 129

9 � 4 2 V2 : � 0
2J� 4; � 1Kis de�ned: (6.6b)

In case of multiple possibilities, select one pair of vertices(� 3; � 4) randomly
with uniform distribution. If there does not exist a pair (� 3; � 4) that satisfy
(6.6) for the chosen vertex� 1 in derivation tree � i , select another vertex� 1

randomly and without replacement and repeat item 2.

3. Swap the sub-tree rooted at� 1 in � 1 with the sub-tree rooted at � 2 in � 2, and
label the newly formed edges with the corresponding Gorn addresses

g(h� 0
1; � 2i) = pG (� 3; � 0

1); (6.7a)

g(h� 0
2; � 1i) = pG (� 4; � 0

2): (6.7b)

If the conditions in (6.6) are not satis�ed for any vertex � 1 in � 1, then crossover
cannot be performed for the two chosen individuals.

In Fig. 6.3 we illustrate the crossover operator on two individuals generated by
TAG GN . The models corresponding to the original individuals are the following.

y(k) = c1y2(k � 1) + c2u(k) + c3� (k � 1)� (k � 2) + � (k); (6.8)

y(k) = c1y(k � 2) + c2� (k � 1) + � (k): (6.9)

Subsequent to the crossover operator, the models corresponding to the new indi-
viduals are the following

y(k) = c1y(k � 3) + c2u(k) + c3� (k � 1)� (k � 2) + � (k); (6.10)

y(k) = c1y2(k � 1) + c2� (k � 1) + � (k): (6.11)

Remark 6.1. Observe that, as il lustrated in Fig. 6.3, the standard sub-tree crossover
operator acting on the derivation tree representation is able to exchange components
of the model expression (exponents and delays in the given example) that would not
be possible for the same operator in the standard expression tree encoding used in
GP. In fact, in an expression tree encoding of the model, exchange of delays or ex-
ponents would be achieved through a two-point crossover operation. This highlights
an interplay between the representation of the model and the range of mapping
achieved by the variation operator. In Ashlock et al. (2012), the authors argue that
this interplay determines, in part, the e�ectiveness of an EA in �nding the optimal
solution.

Variation operator - Mutation

In addition to the crossover operator, we also use the mutation operator to add
variations to the proposed population. The mutation operator is applied to an
individual in the population with a probability of pm . The mutation operator used
in the proposed algorithm are of two types - insertion and deletion. Furthermore,

130 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.3: The crossover operator illustrated on two individuals generated using
GN . The illustration depicts the two derivation trees � 1; � 2, the corresponding
derived trees � 1; � 2 and vertices � 1; � 2 chosen for crossover. The coloured sections
in the derivation trees and derived trees track the changes made in each individual.

6.2 The Proposed Algorithm 131

Figure 6.4: The node insertion mutation operator illustrated on an individual
generated usingGN . The illustration depicts the derivation tree � , the correspond-
ing derived trees� and vertex � chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the individual. The
new auxiliary tree (shaded in green) introduced into the individual is � m = � 4.

there are two variations for each type of mutation operator - node or branch muta-
tion. See overview in Tab. 6.1. For any chosen individual selected for mutation, the
type of mutation operator used is determined randomly with uniform distribution 5.

The two variations of insertion mutation operator are described below.

5Note that deletion operator cannot be used if the chosen derivation tree has tree depth less
than 2. Similarly, insertion operator cannot be used if the derivation tree has depth equal to md .

132 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.5: The branch insertion mutation operator illustrated on an individual
generated usingGN . The illustration depicts the derivation tree � , the correspond-
ing derived trees� and vertex � chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the individual. The
new auxiliary tree (shaded in green) introduced into the individual is � m = � 7.

1. Let the derivation tree of the individual selected for insertion mutation be
denoted by � 1. Select a vertex� in the derivation tree randomly with uniform
distribution on all vertices except the root node, and denote the parent node
of � as � 0. Denote the auxiliary trees4 corresponding to vertices� and � 0 in
the derived tree representation as� and � 0 = hV 0; E 0; r 0; f 0i , respectively. If
node-type insertion is selected, go to Step 2, else if branch-type insertion is

6.2 The Proposed Algorithm 133

selected, go to Step 3.

2. For node-type insertion operator:

(a) select an auxiliary tree � m = hV; E; r; f i 2 A that satis�es the following
conditions

9 � 1 2 V 0 : � 0J� 1; � m Kis de�ned; (6.12a)

9 � 2 2 V : � m J� 2; � Kis de�ned: (6.12b)

For multiple choices of vertices pair (� 1; � 2), select one randomly with
uniform distribution. If there exists no pair of vertices that satisfy the
conditions in (6.12), repeat Step 1 to choose a new vertex� for mutation
(without replacement).

(b) In � 1, delete edgeh� 0; � i and insert a new vertex� m with label l (� m) =
� m . Make new edgesh� 0; � m i and h� m ; � i with the corresponding edge
labels g(h� 0; � m i) = pG (� 1; � 0) and g(h� m ; � i) = pG (� 2; � m).

3. For branch-type insertion operator:

(a) Select an auxiliary tree � m = hV; E; r; f i 2 A that satis�es

9 � 1 2 V : � J� 1; � m Kis de�ned: (6.13)

In the case of multiple choices for the pair (� 1; � m), select one pair
randomly with uniform distribution. If there exists no pair (� 1; � m)
that satis�es the conditions in (6.13), repeat Step 1 to choose a new
vertex � for mutation (without replacement).

(b) In � 1, insert a new vertex � m with label l (� m) = � m . Make new edge
h�; � m i with edge label g(h�; � m i) = pG (� 1; �).

The two variations of the insertion mutation operator are illustrated in Fig. 6.4
and 6.5. In both examples, the model corresponding to the parent individual� is

y(k) = c1y(k � 3) + c2� (k � 1) + � (k): (6.14)

The model obtained as a result of node insertion mutation in Fig. 6.5 is

y(k) = c1u(k � 2)y(k � 1) + c2� (k � 1) + � (k): (6.15)

In this example, the node insertion mutation introduces an input term u(k) in the
model expression, and moves the two delay-type auxiliary trees from the existing
output term y(k � 3) to the newly introduced input-term.

The branch-insertion mutation operation in Fig. 6.5 results in the following model

y(k) = c1y(k � 3) + c2� (k � 2) + � (k): (6.16)

In this example, the mutation operator simply introduces a delay-type auxiliary
tree to the existing noise-term � (k � 1).

The two variations of the deletion operator are described below.

134 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.6: The node deletion mutation operator illustrated on an individual gen-
erated usingGN . The illustration depicts the derivation tree � , the corresponding
derived trees � and vertex � chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the individual.

1. Let � be the derivation tree chosen for the deletion operation. Select a vertex
� in the derivation tree randomly with uniform distribution on all vertices
except the root node. Denote the parent node of� as � 0 and the auxiliary
tree4 generated by� 0 in the derived tree representation as� 0 = hV 0; E 0; r 0; f 0i .
If the chosen variation of deletion operation is node-type, go to Step 2, else
if the chosen variation is sub-tree type, go to Step 3.

2. For node-type deletion operator:

(a) Let the chosen vertex � have n children vertices � 00
1 ; : : : ; � 00

n . Let the
auxiliary trees generated by the children vertices be� 00

1 ; : : : ; � 00
n . The

chosen vertex� can be deleted if the auxiliary trees� 00
1 ; : : : ; � 00

n can be
adjoined to the auxiliary tree � 0. This can be formalized as the following
condition

9 f � 1; : : : ; � n g � V 0 : � 0J0� 1; � 00
1 K: : : J� n ; � 00

n Kis de�ned. (6.17)

6.2 The Proposed Algorithm 135

Figure 6.7: The branch deletion mutation operator illustrated on an individual
generated usingGN . The illustration depicts the derivation tree � , the correspond-
ing derived trees� and vertex � chosen for mutation. The coloured sections in the
derivation trees and derived trees track the changes made in the individual.

If there exist many choices for subsetf � 1; : : : ; � n g � V 0 that satisfy
(6.17), select one randomly with uniform distribution. If there exists
none, then vertex � cannot be deleted. In that case, go to Step 1 to
select another vertex� in � without replacement.

(b) Delete vertex � and edges connected toh�; � 00
1 i ; : : : ; h�; � 00

n i . Make new
edges h� 0; � 00

1 i ; : : : ; h� 0; � 00
n i with labels g(h� 0; � 00

1 i) = pG (� 1; � 0); : : : ;
g(h� 0; � 00

n i) = pG (� n ; � 0).

3. For sub-tree deletion operator:

(a) Select a vertex� in derivation tree � randomly with uniform distribution
on all vertices except the root node.

(b) Delete the sub-tree rooted at � .

The two operations of deletion are illustrated in Fig. 6.6 and 6.7. The model

136 Chapter 6. Evolutionary Multi-criteria System Identi�cation

corresponding to the parent individual in both examples is

y(k) = c1u(k) + c2y2(k � 1) + c3� (k � 1)� (k � 2) + � (k): (6.18)

The result of the node deletion operator in Fig. 6.6 is

y(k) = c1u(k) + c2y2(k � 1) + c3� (k � 2) + � (k): (6.19)

In this example, the mutation operator deletes one of the noise factors� (k � 2) and
adjoins the delay-type tree to the other noise term� (k � 1) in the model expression.
The model obtained due to branch deletion operator in Fig. 6.5 is

y(k) = c1u(k) + c2y2(k � 1) + c3� (k � 1) + � (k): (6.20)

In this example, the sub-tree corresponding to� (k � 2) is completely deleted (i.e.,
including the adjoining delay-type tree).

Selection and archiving

The selection mechanism adopted in the proposed algorithm plays a crucial role
in the search for appropriate model structures in a multi-objective setting. The
importance of the selection operator can be attributed to two factors: (i) the selec-
tion operator guides the evolutionary search, in a heuristic way, towards regions of
the solution space that may contain �good� solutions, and (ii) the selection oper-
ator determines the goodness of a model structure based on the notion of Pareto-
dominance allowing the proposed algorithm to address the upper-level optimization
problems in (6.2), (6.4) or (6.5).

In the proposed algorithm, we employ the Pareto-based sorting and selection algo-
rithm proposed in Deb et al. (2002). The selection mechanism relies on two order-
ing relations - Pareto-based ordering and crowding-distance-based ordering. In the
�rst step, the individuals of a population are sorted based on Pareto-dominance
relationships.

1. Pareto-based ordering: In this step, candidate solutions are ranked and
grouped based on Pareto-dominance ordering. For an individualM j

i (� j
i) in

population X (j) , the rank rND (M j
i (� j

i)) , based on non-dominated ordering is
determined by the number of solutions inX (j) that Pareto-dominate M j

i (� j
i).

A model M j
i (� j

i) that is not Pareto-dominated by any other model in X (j)

is said to have rank r ND (M j
i (� j

i)) = 1 . Similarly, a model M j
i (� j

i) that is
Pareto-dominated by only one other model inX (j) has rank 2, and so on. In
iteration j , all solutions M j

i (� j
i) in X (j) with rND (M j

i (� j
i)) = 1 are grouped

together as rank one solutions (denoted asF (j)
1), all solutions M j

i (� j
i) with

rND (M j
i (� j

i)) = 2 are grouped as rank two solutions (denoted asF (j)
2), and

6.2 The Proposed Algorithm 137

Algorithm 8 Non-dominated sorting (Deb et al., 2002)

Require: Candidate solutions M (j) = f M j
i (� j

i)gn s
i =1

Initialize l 1
while M (j) 6= � do

F (j)
l � . Rank l solution front

for each M j
i (� j

i) 2 M (j) do
F (j)

l F (j)
l [f M j

i (� j
i)g . Include the individual temporarily in the

solution front
for each M j

q (� j
q) 2 F l ^ M j

q (� j
q) 6= M j

i (� j
i) do

if M j
i (� j

i) � J M j
q (� j

q) then . If the newly added model dominates
any other model in the solution front

F (j)
l F (j)

l n f M j
q (� j

q)g . remove the dominated model
else if M j

q (� j
q) � J M j

i (� j
i) then . If the newly added model is

dominated by any other model in the solution front
F (j)

l F (j)
l n f M j

i (� j
i)g . Remove the newly added model

M (j) M (j) n F (j)
l . Remove all rank l models from the set of models

yet to be sorted
l l + 1

return F (j)
1 ; : : : ; F (j)

l � 1

so on. This can be expressed as follows6:

F (j)
1 = f M j

i (� j
i) j r ND (M j

i (� j
i)) = 1 g := E(X (j) ; � J);

F (j)
2 = f M j

i (� j
i) j rND (M j

i (� j
i)) = 2 g := E(X (j) n F (j)

1 ; � J);

...

F (j)
n s

= f M j
i (� j

i) j rND (M j
i (� j

i)) = nsg := E(X (j) n F (j)
1 n � � � n F (j)

n s � 1; � J);
(6.21)

Computation of the solution fronts described in (6.21) can be performed using
the Pareto-dominance-based sorting algorithm presented in Alg. 8.

2. Crowding-distance-based ordering: Since Pareto-based ranking allows
multiple candidate solutions to occupy any given rank, the solutions within
each rank group are further sorted using an estimate of the crowding distance
with respect to other models in the same rank group. Crowding distance is
a measure of the density of solutions surrounding a given candidate model.
In Deb et al. (2002), the authors estimate the crowding distance of a model
by measuring the largest cuboid that includes the given model in objective
space such that no other model in the rank group is included in the cuboid.

6Note that, since the population X (j) contains ns candidate solutions, there can maximally
exist ns solution fronts in each iteration.

138 Chapter 6. Evolutionary Multi-criteria System Identi�cation

Figure 6.8: Illustration of estimation of the crowding-distance based on the largest
cuboid that can be drawn around individual M i n that does not include any other
individual in the same rank.

Algorithm 9 Crowding-distance-based sorting (Deb et al., 2002)

Require: Solution front F = f M i (� i)gn
i =1 , number of performance measuresnobj

1: Initialize l 1
2: for each M i (� i) 2 F do
3: Initialize d(M i (� i) 0) . Initialize the crowding distance of each model as

0
4: while l � nobj do
5: I = (i 1; : : : ; i n) Ordering (F ; l) . Compute the ordering of model

indices that sorts the models based on performance measureJ l

6: d(M i 1 (� i 1)) 1 . Set crowding distance on models on the ends of the
frontier as in�nite

7: d(M i n (� i n)) 1
8: for each i 2 f i 2; : : : ; i n � 1g do
9: d(M i (� i)) d(M i (� i)) + (J l (M i +1 ; � i +1 ; DN) � J l (M i � 1; � i � 1; DN)) .

Compute the crowding distance of each individual as the sum of distances
between the closest neighbours

10: l l + 1
11: F Sort (F ; f d(M i (� i))gn

i =1) . Sort the solution front based on crowding
distance of the individuals

12: return F

This idea in illustrated in Fig. 6.8. The crowding-based sorting algorithm
is described in Alg. 9. The rank of a modelM j

i (� j
i) in a solution front

F (j)
l based on based on descending order of crowding-distance is denoted as

r c(M j
i (� j

i)) . Hence, a modelM j
i 1

(� j
i 1

) in solution front F (j)
l with the largest

crowding distance is said to have rankr c(M j
i (� j

i)) = 1 , a model M j
i 2

(� j
i 2

) in

solution front F (j)
l with the second-largest crowding distance is said to have

rank r c(M j
i (� j

i)) = 2 , and so on.

Based on the two ordering procedures described in the prequel, the combined se-

6.3 Parameter Estimation for Grammar GN 139

lection ordering � sel on the set X (j) is obtained as the following

M j
i 1

(� j
i 1

) � sel M j
i 2

(� j
i 2

))
�

r ND (M j
i 1

(� j
i 1

)) < r ND (M j
i 2

(� j
i 2

))
�

_
��

rND (M j
i 1

(� j
i 1

)) = r ND (M j
i 2

(� j
i 2

))
�

^
�

r c(M j
i 1

(� j
i 1

)) < r c(M j
i 2

(� j
i 2

))
��

: (6.22)

The selection ordering, hence, selects one model over another if the former domi-
nates the latter, or if the former is in the same solution front as the latter but has
a greater crowding distance (i.e., occupies a sparser region in the objective space)
than the latter. Selection of ns individuals to be propagated to the next iteration
takes place in Step 6 of Alg. 4.

Additionally, in Step 7 of Alg. 4, an archive of non-dominated solutionsA is updated
with the newly generated candidate solutions. The archiveA records the set of all
non-dominated solutions explored by GP upto the current iteration, i.e.

A(j) = E(X (1) [X (2) [� � � [X (j) ; � J); (6.23)

and can be computed iteratively as

A(j) = E(A(j � 1) [X (j) ; � J): (6.24)

For practical implementation, the archive size is limited to a �nite number ma 2
Z> 0 of individuals. If the size of the e�cient set E(A(j � 1) [X (j) ; � J) is larger
than ma, crowding-distance-based ordering is used to selectma individuals from
E(A(j � 1) [X (j) ; � J).

6.3 Parameter Estimation for Grammar GN

The description of the algorithm presented in Sec. 6.2 is on a fairly general level,
and can be applied for arbitrary user-speci�ed TAG and performance measures.
It is worth noting that there is one crucial exception to the general applicability
of the algorithm - the parameter estimation step. While the variation operators
are de�ned based on fundamental concepts related to TAG and not on the speci�c
TAG chosen by the user, the parameter estimation step, in general, is dependent
on the model set generated by the chosen TAG. While general global optimization
techniques such as CMA-ES or Di�erential Evolution (DE) can be used to solve
the parameter estimation problem for a large variety of grammars, the �exibility
comes at the cost of added computational complexity. This problem is acerbated
by the fact that, in GP, the parameter estimation step must be performed for ns

candidate solutions in each of theL iterations.

In this section, we discuss optimization techniques for speci�c choices proposed in
Chap. 4 and 5. More speci�cally, we discuss optimization techniques for prediction
error minimization (i.e. J1) and simulation error minimization (i.e. J2) for the
class of P-NARMAX models generated by TAG GN . Hence, in this section, we
address the lower-level optimization problem in (6.5), where we chose the trade-o�
values � 1 = 1 and � 2 = 0 .

140 Chapter 6. Evolutionary Multi-criteria System Identi�cation

6.3.1 Prediction Error Minimization

Any model structure M proposed by the GP algorithm can be written as

y(k) =
pX

i =1

ci

n uY

j =0

ubi;j (k � j)
n �Y

q=1

� di;q (k � q)
n yY

r =1

ya i;r (k � r) + � (k): (6.25)

Based on model (6.25), we can obtain a one-step-ahead predictor model which is a
non-linear �lter formulated in terms of known input um , measured output ym and
the one-step-ahead prediction error"p (k). The one-step-ahead predictor model for
P-NARMAX model (6.25) is given by:

ŷ(k j k � 1) =
pX

i =1

ci

n uY

j =0

ubi;j
m (k � j)

n �Y

q=1

"di;q
p (k � q)

n yY

r =1

ya i;r
m (k � r): (6.26)

where "p (k) := ym (k) � ŷ(kjk � 1) is the one-step-ahead prediction error.

In the literature, several methods have been proposed to estimate model parameters
in (6.26) for the squared prediction error cost function J1. For an overview, see
(Billings, 2013, Chap. 3). For completeness, in this section, we present an iterative
least-squares-based estimator to estimate model parameters in (6.26) for objective
function J1, see Billings and Voon (1984) or (Billings, 2013, Chap. 3) for more
details. This approach is also known as pseudo-linear regression in the SI literature.

Let � p = (c1; : : : ; cp)> be the parameter vector for the predictor model (6.26). The
predictor (6.26) can be written in matrix form as

Ŷ = � p � p (6.27)

where Ŷ = (ŷ(nl jnl � 1); : : : ; ŷ(Nest jNest � 1))> is the vector of one-step-ahead
predicted outputs, � p = (' p;1; : : : ; ' p;N est)> is the regression matrix with kth row
being

' p;k =

n uY

j =0

um (k � j)b1;j

n �Y

q=1

"p (k � q)d1;q

n yY

r =1

ym (k � r)a1;r ; : : : ;

n uY

j =0

um (k � j)bp;j

n �Y

q=1

"p (k � q)dp;q

n yY

r =1

ym (k � r)ap;r

!

: (6.28)

The regression matrix � p is a function of the unknown prediction error "p . Hence,
to estimate the model parameters in (6.25), we use an identi�cation procedure that
iteratively estimates model parameters� p and prediction error "p .

Reformulate the predictor model in (6.26) as

ŷ(k j k � 1) = f uy (um (k � 1); : : : ; um (k � nu); ym (k � 1); : : : ; ym (k � ny))+
f uy� (um (k � 1); : : : ; um (k � nu); ym (k � 1); : : : ; ym (k � ny);

"p (k � 1); : : : ; "p (k � n�)) ;
(6.29)

6.3 Parameter Estimation for Grammar GN 141

where f uy is the part of the model expression without any noise terms andf uy� is
the part of the model with noise terms. Note that the decomposition in (6.29) is
not unique. In order to obtain an initial estimate of the prediction error sequence,
we estimate model parameters for the underlying P-NARX predictor model that
can be computed by ignoringf uy� in (6.29). The P-NARX predictor model can
also be written in matrix form

Ŷ = � uy � uy ; (6.30)

where the de�nitions of � uy and � uy is similar to the P-NARMAX case. The
minimizer of J1 for the predictor model in (6.30) can be computed as the least
squares estimate�̂ uy of � uy , and is computed as

�̂ uy =
�
� >

uy � uy
� � 1

� >
uy Ŷ : (6.31)

Using the estimate �̂ uy , the initial estimate of the prediction error "̂ (0)
p can be

computed as

"̂ (0)
p (k) = ym (k) � ŷ(kjk � 1);

= ym (k) � ' uy;k �̂ uy ; (6.32)

where ' uy;k is the kth row of the regressor matrix.

The initial estimate of prediction error "̂ (0)
p can be used to begin the iterative esti-

mation procedure. Let h be the iteration index. In each iteration, the parameter
estimate �̂ (h)

p can be computed as the linear least squares estimate for the pre-
dictor model in (6.27) where the prediction error terms in the regressor matrix
 p is replaced by the estimate"̂ (h � 1)

p . Based on the new parameter estimate, the
prediction error estimate can be updated as

"̂ (h)
p (k) = ym (k) � ŷ(kjk � 1);

= ym (k) � ' p;k �̂ (h)
p : (6.33)

The iterations are stopped when the prediction error (or parameter) estimates
converge within some user-speci�ed tolerance level� :

N estX

k=1

�
"̂ (h)

p (k) � "̂ (h � 1)
p (k)

� 2
< �: (6.34)

The �nal estimate �̂ p minimizes the cost function J1 for the grammar GN . The
estimate can be computed e�ciently using a sequence of least squares estimators,
and typically converges in a small number of iterations (typically less than 10
iterations, see Billings (2013)). If the lower-level of the original bi-level problem
in (6.2) is simpli�ed as in (6.5), then �̂ p is one of the parameter estimates in the
feasible set of the parameter space.

142 Chapter 6. Evolutionary Multi-criteria System Identi�cation

6.3.2 Simulation Error Minimization

For the simulation error minimization problem, we again assume that structure of
the model proposed by the GP algorithm can be expressed as (6.25). Under the
assumption that � (k) � N (0; � �), from Theorem 5.10 and Remark 5.6 we get that
the l � approximate simulation model can be expressed as

ys;l (k) =
X

i 2 Pe

ci

n u + lY

j =0

ubi;j (k � j)
n yY

r =1

ya i;r

s;l (k � l � r)
n � + lY

q=1

� di;q

� (di;q � 1)!!: (6.35)

In comparison with prediction error minimization, simulation-error-based estima-
tion of P-NARMAX models is a far more challenging non-convex optimization
problem. While the predictor model in (6.26) is formulated in terms of known
past measured input and output, the simulation model in (6.35) is formulated in
terms of the unknown past simulation output. This leads to complex non-linear
dependencies between the parameters to be estimated and the simulation output.
Nonetheless, the problem of simulation error minimization has been treated in the
literature, for example for P-NARX models in Piroddi and Spinelli (2003), for de-
coupled P-NARX models in Karami et al. (2019) and for Polynomial Non-linear
State-Space (PNLSS) models in Paduart et al. (2010). While the speci�c details
of these approaches vary, the general idea is similar - the model parameters are
optimized using a gradient-descent-based optimization technique, where various
techniques are used to compute or approximate the Jacobian.

In Farina and Piroddi (2011) and Farina and Piroddi (2012) the authors proposed
an approximation to simulation error minimization via an iterative multi-step-
ahead prediction error scheme. The proposed Multi-Step Prediction (MSP)-based
algorithm is demonstrated to be robust to initial conditions when compared to
direct gradient-descent-based simulation error minimization. The authors also
showed that the MSP algorithm achieves faster convergence when compared to
other approaches for simulation error minimization (see Farina and Piroddi (2012)).
However, for the class of P-NARMAX models and P-NARX models that arenot
output-a�ne, the MSP algorithm proposed in Farina and Piroddi (2011) leads to
biased estimates. This is due to the fact that the higher-order moments of the
noise distribution are not taken into account in the simulation model considered
in Farina and Piroddi (2011). In Sec. 5.4, the l � approximate simulation model
concept was developed to systematically incorporate the bias introduced due to
the higher-order moments of the noise in the computation of the simulation re-
sponse. This allows us to develop an MSP-based algorithm for the larger class of
P-NARMAX models.

In the following, we present (i) a Gauss-Newton-based method, and (ii) a MSP-
based method to solve the non-convex simulation error minimization problem for
the class of P-NARMAX models.

Direct gradient-based optimization

In this section, we describe the computations involved in computing the simulation-
error parameter estimate of (6.35) using the Gauss-Newton method. A similar

6.3 Parameter Estimation for Grammar GN 143

computational scheme was devised in Paduart et al. (2010) for the class of PNLSS
models.

Let Pe = f i 1; : : : ; i pg be the indices of model terms in (6.35) and let� s;l =
(ci 1 � � � ci p)> . Introduce � (� s;l) = (� i 1 � � � � i p)> where� i := ci

Q n � + l
q=1 � di;q

� (di;q � 1)!!,

and let ' i (k; � s;l) :=
Q n u + l

j =0 ubi;j (k � j)
Q n y

r =1 ya i;r

s;l (k � l � r). The simulation output
ys;l (k) can be expressed as

ys;l (k) = ' (k; � s;l)� (� s;l);

:=
�
' i 1 (k; � s;l) � � � ' i p (k; � s;l)

�
� (� s;l): (6.36)

The mean squared simulation error of (6.35) is given by

J2(M; � s;l ; Dest) =
1
N

N estX

k= n l +1

(ym (k) � ys;l (k; � s;l))
2 : (6.37)

Let Ŷs;l (� s;l) = f ys;l (k; � s;l)g
N est
k=1 and let r J2 denote the Jacobian of (6.37), i.e.,

r J2 = @
@�s;l

J2(M; � s;l ; Dest). Then, the simulation error parameter estimate �̂ s;l

can be computed using the Gauss-Newton method, starting from an initial estimate

(�̂ s;l)
0
, with the following iterations

(�̂ s;l)
j

= (�̂ s;l)
j � 1

�
�
(r J2)> (r J2)

� � 1
(r J2)> Ŷs;l : (6.38)

To perform the iterations in (6.38), we need to compute the Jacobianr J2 for a
given parameter estimate�̂ s;l . In the following, we discuss the computation of the
Jacobian.

The Jacobian is given by

r J2 =
@

@�s;l
J2(M; � s;l ; Dest)

�
�
�
�
� s;l = �̂ s;l

;

= �
2
N

N estX

k= n l +1

(ym (k) � ys;l (k; � s;l))
@

@�s;l
ys;l (k; � s;l)

�
�
�
�
� s;l = �̂ s;l

(6.39)

De�ne � (k; � s;l) := @ys;l

@�s;l
. The Jacobian of the simulated output, given by � (k; � s;l),

can be computed using the chain rule in (6.36), as follows.

� (k; � s;l) = ' (k; � s;l)
@�(� s;l)

@�s;l
+

@'(k; � s;l)
@�s;l

� (� s;l);

= ' (k; � s;l)
@�(� s;l)

@�s;l
+

�
@'i 1 (k; � s;l)

@�s;l
� � �

@'i p (k; � s;l)
@�s;l

�
� (� s;l): (6.40)

Recall that � (� s;l) = (� i 1 � � � � i p)> where � i = ci
Q n � + l

q=1 � di;q

� (di;q � 1)!!. Hence, in

(6.40), the term @�(� s;l)
@�s;l

can be easily computed for a given estimatê� s;l , since

@
@�s;l

� i =
n � + lY

q=1

� di;q

� (di;q � 1)!! 1i ; (6.41)

144 Chapter 6. Evolutionary Multi-criteria System Identi�cation

where 1i 2 [0; 1]dim(� s;l) is the indicator vector such that the i th component of the
vector is 1, and all other components are0.

Remark 6.2. Note that, in order to compute (6.41), we can use the standard
deviation of prediction error "p as an estimate of� � . However, this estimate will
be accurate only when the predictor model accurately describes the dynamics of the
true system. Alternatively, we can incorporate the contributions of� � in � s;l , and

subsequently estimate� s;l = (ci 1

Q n � + l
q=1 �

di 1 ;q

� � � � ci p

Q n � + l
q=1 �

di p ;q

�)> .

Let R = f 1; 2; : : : ; ny g. Since ' (k; � s;l) is a vector of polynomial regressor terms,
the term @' i (k;� s;l)

@�s;l
in (6.40) can be computed as follows:

@'i (k; � s;l)
@�s;l

=
n u + lY

j =0

ubi;j (k � j)

0

@
n yX

�r =1

0

@
Y

r 2 R n�r

ya i;r

s;l (k � l � r)

1

A

ai; �r ya i; �r � 1

s;l (k � l � �r) � (k � l � �r)
�

: (6.42)

By combining (6.40), (6.41), and (6.42), we get the equations necessary to com-
pute the Jacobian of the simulated output ys;l (k). Observe that the Jacobian is
formulated as a recursive �lter for f � (k)gN est

k= n l +1 . Hence, in order to compute the
Jacobian, we need an estimate of the initial conditionsf � (k)gn l

k=1 . This can be
done by including the initial conditions as unknown parameters to be estimated in
the non-linear optimization problem. Alternatively, if the Jacobian �lter is asymp-
totically stable, the initial conditions can be assumed to be0, and the consequent
exponentially decaying transient error can be ignored by incorporating a burn-in
period in the computation of J2.

The Multi-Step Prediction algorithm for P-NARMAX models

The direct gradient-descent-based approach described in the previous section may
converge to local minima, and furthermore, may be slow to converge. To alleviate
such problems, we also develop an MSP-based approach to solving the simulation
error minimization problem for P-NARMAX models. Unlike Farina and Piroddi
(2011), the MSP algorithm presented in this section is applicable to the entire class
of P-NARMAX models due to the l � approximate simulation concept introduced
in Sec. 5.4.

In order to describe the concept of the MSP algorithm, we recall some concepts
and notations introduced in Chap. 5. Recall that the simulation model, as de�ned
in (5.7), of (6.25) can be seen as the in�nite-step-ahead predictor of the model.
Also recall the in Sec. 5.4, we proposed thel � approximate simulation model con-
cept, that makes it possible to compute an approximate simulation response for
P-NARMAX models. The l � approximate simulation model of (6.25) is given by

ys;l (k) = f s;l

�
Un u + l

0 (k); Ys;l
n y + l
l +1 (k)

�
; (6.43)

6.3 Parameter Estimation for Grammar GN 145

wheref s;l is a polynomial function in terms of past inputs Un u + l
0 (k) = f u(k � i)gn u + l

i =0

and past simulated outputs Ys;l
n y + l
l +1 (k) = f ys;l (k � i)gn u + l

i =0 . The exact form of f s;l

can be found in Theorem 5.10. Let thel � approximate simulation model is param-
eterized by parameter vector� s;l .

The basic concept of the MSP algorithm is as follows. De�ne, for some� 2 Z> 0,
such that � � l , the � -step-ahead predictor of thel � approximate simulation model
(6.43), as follows

ŷ(kjk � �) = f̂ �

�
Um

n u + �
0 (k); Ym

n y + �
� +1 (k)

�
; (6.44)

where, ŷ(kjk � �) is the � -step-ahead prediction, f̂ � is the � -set-ahead predic-
tor (computational aspects will be discussed in the sequel), andYm

n y + �
� +1 (k) =

f ym (k � i)gn y + �
i = � +1 is the set of past measured outputs.

Remark 6.3. The predictor (6.44) is the � -step-ahead predictor of thel-approximate
simulation response in (6.43) and should not be confused with the predictor of the
P-NARMAX model in (6.25).

The predictor (6.44) allows us to approximate l � approximate simulation (6.43)
using measured data. As� ! 1 , the � -step-ahead prediction output approximates
arbitrarily well the l � approximate simulation responseys(l), i.e.,

lim
� !1

ŷ(kjk � �) = ys;l (k): (6.45)

Hence, in the MSP algorithm, the simulation model parameters� s;l is approximated
by a sequence of parameter estimates(�̂ s;l) � for � = l; l + 1 ; :::1 , that optimize the
cost function

(�̂ s;l)
�

� = arg min J � (� s;l); (6.46)

whereJ � (� s;l) is the 2-norm of the squared� -step-ahead prediction error cost func-
tion. In practice, a stopping criteria based on convergence of parameter estimates
or maximum number of iterations is used.

Remark 6.4. In principle, the prediction model 6.44 can be computed by recur-
sively replacing the output terms model expression in(6.43), and re-formulating the
subsequent model as a non-linear �lter in terms of measured inputs and outputs.
However, since the prediction model in(6.44) is polynomial, performing multiple
recursive substitutions of the output terms may result in polynomial growth of the
order and the length of the model, making it infeasible to compute for large values
of � . A feasible approach for computing the� -step-ahead predictor is discussed in
the following subsection.

Remark 6.5. The role of parameter � in the MSP algorithm is similar to the role
of parameter l in the l � approximation method for computing the simulation model.
The crucial di�erence between the two is that thel � approximation scheme deter-
mines the accuracy of asimulation model, while parameter � ultimately determines
the accuracy of aprediction model.

146 Chapter 6. Evolutionary Multi-criteria System Identi�cation

In the following, we discuss the computational structure of the MSP algorithm.
For � = l , the predictor model of (6.43) can be written in matrix form as

Ŷl (� s;l) = � l � s;l ; (6.47)

whereŶl = (ŷ(l +1 j1); : : : ; ŷ(Nest jNest � l))> is the vector of l -step-ahead predicted
outputs, � l = (' l (l +1) ; : : : ; ' l (Nest))> is the regression matrix. Rows' l (k) consist
of monomials in um and ym and can be derived from (6.35). Computation of� �

is discussed in detail in the following section. Similarly, the matrix-form of (6.44)
for � > l can be computed by recursively substituting output terms in (6.44), and
can be written as

Ŷ� (� s;l) = � � #� (� s;l); (6.48)

where#� (� s;l) is the non-linear parameterization (due to the recursive substitutions
of the output terms) of the � -step-ahead predictor model w.r.t l � approximate
simulation model parameters� s;l , and � � is the corresponding regressor matrix.

For a given � , the optimization problem (6.46) can written as

(�̂ s;l)
�

� = arg min
1

Nest � �
(Ym (�) � Ŷ� (� s;l))> (Ym (�) � Ŷ� (� s;l)) ; (6.49)

where Ym (�) = (ym (� + 1) ; : : : ; ym (Nest))> is a vector of measured outputs of the
estimation dataset Dest . Gauss-Newton method is used to solve the non-linear least
squares problem in (6.49).

The MSP algorithm consists of two loops - the outer loop iterates over prediction
time-horizon � , while the inner loop corresponds to Gauss-Newton iterations re-
quired for solving the optimization problem in (6.49) for a �xed time horizon � .
Denote the parameter estimate for thei th Gauss-Newton iteration corresponding to

time horizon � as (�̂ s;l)
i

� . The algorithm is initialized with the linear least squares

estimate (�̂ s;l)
�

l (see (6.47)). Set� = l + 1 and (�̂ s;l)
0

� = (�̂ s;l)
�

� � 1. For each time
horizon � , the Jacobian is given by

r � s;l J � (� s;l) =
2

Nest � �

�
Ŷ� (� s;l)> � Ym (�)>

�
	 � (� s;l) :=

z }| {
r � s;l Ŷ� (� s;l)

=
2

Nest � �

�
Ŷ� (� s;l)> � Ym (�)>

�
	 � (� s;l): (6.50)

The computation of 	 � is discussed in the following subsection. The Gauss-Newton
iterations for a given time-horizon � is given by

(�̂ s;l)
i +1

� = (�̂ s;l)
i

� +
�

	 � ((�̂ s;l)
i

�)> 	 � ((�̂ s;l)
i

�)
� � 1

	 � ((�̂ s;l)
i

�)>

�
Ym (�) � Ŷ� ((�̂ s;l)

i

�)
�

(6.51)

The Gauss-Newton method is said to have converged when

jJ � ((�̂ s;l)
i

�) � J � ((�̂ s;l)
i � 1

�)j � � s; (6.52)

6.3 Parameter Estimation for Grammar GN 147

where � s is a user-speci�ed tolerance threshold. Alternatively, the Gauss-Newton
algorithm terminates after reaching a maximum number of iterations (to be spec-
i�ed by the user). The converged parameter estimate for time horizon � is de-
noted by (�̂ s;l)

�

� . After convergence of the inner loop, set� = � + 1 and initialize

(�̂ s;l)
0

� = (�̂ s;l)
�

� � 1, and repeat the Gauss-Newton method. The outer loop is termi-
nated when the following criterion is satis�ed

jJ � ((�̂ s;l)
�

�) � J � ((�̂ s;l)
�

� � 1)j � � s; (6.53)

or when the outer loop exceeds the maximum number of iterations. The �nal
parameter estimate is denoted as� s;l

� .

Computation of the multi-step-ahead prediction output and its Jacobian

Computation of the multi-step-ahead prediction model in (6.44) for large time-
horizons may be infeasible since the model expression may grow polynomially in
length and degree due to the numerous recursive substitutions. In order to circum-
vent this problem, the authors in Farina and Piroddi (2012) proposed an iterative
scheme to compute the multi-step-ahead prediction outputŶ� (� s;l) and its Jaco-
bian 	 � (� s;l). In this approach, for a given parameter vector�̂ s;l , the � -step-ahead
prediction output Ŷ� (�̂ s;l) and Jacobian 	 � (�̂ s;l) are computed recursively based
on Ŷl (�̂ s;l), Ŷl +1 (�̂ s;l); : : : ; Ŷ� � 1(�̂ s;l).

For a given parameter vector �̂ s;l , the l � step-ahead predicted output is given by
the linear-in-the-parameters formulation

ŷ(kjk � l) = ' l (k)> �̂ s;l : (6.54)

where ' l (k); (k > l) are the rows of matrix � l and contain monomials in um and
ym . Hence, Ŷl (�̂ s;l) can be computed as a matrix inner-product. Based on the
Ŷl (�̂ s;l), the (l + 1) -step-ahead prediction output can be expressed as

ŷ(kjk � l � 1) = ' l +1 (k; �̂ s;l)> �̂ s;l ; (6.55)

where' l +1 (k; �̂ s;l); (k > l +1) contains monomials inum (k); : : : ; um (k � nu � l � 1),
ym (k � l � 1); : : : ; ym (k � l � ny), and ŷ(k � l jk � l � 1), and can be computed from
' l (k) using the following substitution

' l +1 (k; �̂ s;l) = ' l (k)j8j< (l +1): ym (k � j)= ŷ (k � j j k � l � 1) : (6.56)

Observe that, although the (l + 1) -step-ahead prediction ŷ(kjk � l � 1) depends
non-linearly on �̂ s;l , the non-linear dependency is hidden in the regressor' l +1 (k),
which can be computed if' l (k) is known. Hence, usingŶl (�̂ s;l), predicted outputs
Ŷl +1 (�̂ s;l) can be computed as a matrix inner-product.

This concept can be generalized to compute the� -step-ahead prediction output

148 Chapter 6. Evolutionary Multi-criteria System Identi�cation

ŷ(kjk � �) iteratively, through the following sequence of matrix inner-products

ŷ(kjk � l) = ' l (k)> �̂ s;l ;

ŷ(kjk � l � 1) = ' l +1 (k; �̂ s;l)> �̂ s;l ;

...

ŷ(kjk � �) = ' � (k; �̂ s;l)> �̂ s;l ; (6.57)

where ' � (k; �̂ s;l) is derived from ' l (k); : : : ; ' l (k; �̂ s;l) by performing the following
substitution

' � (k) = ' l (k)j8j<� :ym (k � j)= ŷ (k � j j k � �) : (6.58)

The variable substitution in (6.58) replaces measured output termsym (k � j) in
' l (k) that lie within the prediction horizon k � (� +1) ; : : : ; k with predicted output
terms ŷ(k � j jk � �). This implies that the vector ' � (k) consists of monomials
in um (k); : : : ; um (k � nu � l), ym (k � �); : : : ; ym (k � l � ny), and ŷ(k � l � 1jk �
�); : : : ; ŷ(k � � + 1 jk � �). In this manner, performing numerous recursive symbolic
substitutions in the non-linear model to compute (6.44) can be avoided.

For a given �̂ s;l , the Jacobian of the predicted outputs can also be computed itera-
tively, as follows. Let 	 �;k denote the Jacobian of the predicted outputŷ(kjk � �),
i.e.,

	 �;k = r � s;l ŷ(kjk � �): (6.59)

Since the derivatives of measured inputsum and outputs ym with respect to � s;l is
0, we can compute the Jacobian of thel-step-ahead predicted as

	 l;k = ' l (k)> : (6.60)

For � > l , we get

	 l +1 ;k = ' l +1 (k; �̂ s;l)> + �̂ >
s;l r � s;l ' l +1 (k; � s;l)

�
�
� s;l = �̂ s;l

;

...

	 �;k = ' � (k; �̂ s;l)> + �̂ >
s;l r � s;l ' � (k; � s;l)

�
�
� s;l = �̂ s;l

: (6.61)

Recall that ' �; �̂ s;l
(k) consists of monomials inum (k); : : : ; um (k � nu � l), ym (k � �);

: : : ; ym (k � l � ny), and ŷ(k � l � 1jk � �); : : : ; ŷ(k � � + 1 jk � �). Hence,	 �;k can
be computed iteratively since for all j 2 [l + 1 ; � � 1], we haver � s;l ŷ(k � j jk � �) =
	 � � j;k � j .

6.4 Analysis of the Algorithm

In this section, we analyse the proposed identi�cation approach along two lines - the
asymptotic behaviour of the proposed algorithm and the computational complexity
of the same.

The identi�cation methodology presented in Sec. 6.2 was formulated in a general
setting for an arbitrary TAG G and arbitrary performance measures. To make the
analysis concrete and tractable, we make the following choices:

6.4 Analysis of the Algorithm 149

� The model set of the identi�cation problem is speci�ed by TAG GN , which
generates the class of P-NARMAX models,

� The general multi-criteria identi�cation problem in (6.2) is simpli�ed to the
form of (6.5), i.e., the lower-level multi-objective optimization problem is
simpli�ed to multiple single-objective optimization problem. The necessity
of such a simpli�cation is discussed in Sec. 6.1.2.

� The multi-objective optimization problem (6.5) is formulated in terms of
the four performance measures proposed in Chap. 5, i.e.,J (M; �; DN) =
f J i (M; �; DN)g4

i =1 , and Jcont (M; �; DN) = f J i (M; �; DN)g2
i =1 .

6.4.1 Asymptotic Analysis

In this section, we perform an asymptotic analysis of the proposed algorithm. The
focus of this analysis is not on the internal details of the population being evolved,
but on the evolution of the population as a whole. The analysis presented here
is based on work presented in Rudolph and Agapie (2000), and is extended to
incorporate parameter estimation in Step 4 of Alg. 4.

Recall that a maximum limit of md is imposed on the depth of the trees explored
by GP. Let the set of models with corresponding derived tree-depth less thanmd

be M d (GN) � M (GN). Let F � be the e�cient set of solutions in the model set
M d (GN) with respect to the multi-criteria identi�cation problem in (6.5).

In order to understand the asymptotic behaviour of the proposed algorithm, we
ask ourselves the following sequence of questions:

A. How likely is it for GP to propose candidate model structures that correspond
to solutions that belong to the Pareto-e�cient set F � ?

B. Do the parameter estimation algorithms discussed in Sec. 6.3 converge to the
global minima of their corresponding objective functions?

C. If a model M (�) 2 F � is successfully identi�ed in generation j of the algo-
rithm, can it successfully be retained in archiveA(j) in the limit j ! 1 ?

The three questions listed above will demarcate thethree stages of the analysis
presented in the sequel. However, before we begin, it is useful to de�ne the notions
of (i) convergence for the multi-criteria identi�cation problem and (ii) persistence
of excitation for the generalized model set speci�ed by a TAG.

We study the evolution of the archive of estimated Pareto-e�cient solutions A(j) as
the number of iterations j increases. The distance between the estimated Pareto-
e�cient set A(l) to the true Pareto-e�cient set F � is measured using the following
metric

� F � (A(j)) =
�
�
�A(j)

�
�
� �

�
�
�A(j) \ F �

�
�
� ; (6.62)

150 Chapter 6. Evolutionary Multi-criteria System Identi�cation

where jAj is the cardinality of set A. The metric corresponds to the number of
models in the estimated Pareto-frontA(j) that does not belong to the true Pareto-
front F � . Note that while the set F � may be uncountably in�nite, the set A(j) \F �

is, at most, �nite because the size of the archive is limited to
�
�A(j)

�
� < m a.

Based on the distance metric in (6.62), we can de�ne the notion of convergence for
the multi-criterion identi�cation algorithm as follows.

De�nition 6.1. The estimated Pareto-front A(j) of the multi-criteria identi�cation
algorithm in Alg. 4 is said to converge to F � if,

lim
j !1

� F � (A(j)) ! 0; w:p: 1: (6.63)

Remark 6.6. Observe that the notion of convergence proposed in Def. 6.1 avoids
the issue arising due to the fact that the cardinality of setF � is typically larger than
that of A(j) . The notion of convergence proposed here only requires the estimated
Pareto-e�cient set A(j) to be a subset ofF � .

To develop an asymptotic analysis of the parameters estimated in the proposed
identi�cation method, we also need to introduce a notion ofpersistence of excitation
w.r.t to the model set M d (G). Due to the fact that the TAG-based model set may
span models of varying complexity, it is possible to have multiple models in the
model set that are indistinguishable under the given set of performance measures
for any input u 2 U, i.e., the model setM d (G) is not identi�able under the speci�ed
performance measures. However, observe that, while the model set of the overall
identi�cation method is M d (G), the parameters estimation step only functions
at the lower-level of the bi-level optimization problem in (6.5), where the model
structure M is �xed. This observation leads us to the following weaker notion of
persistence of excitation.

De�nition 6.2. Let u be a quasi-stationary signal, M 2 M d (G) be a model
structure parameterized by � 2 �(M), where domain � is determined by the
structure of M , and let Jcont ;� (u) be the mapping from input u to the image of
Jcont for a given � . Input u is weakly persistently excitingfor the model setM d (G)
if, for any M 2 M d (G), and for all � 1; � 2 in the corresponding parameter space
�(M) for which Jcont ;� 1 (�) 6= Jcont ;� 2 (�), input u satis�es

Jcont ;� 1 (u) 6= Jcont ;� 2 (u) (6.64)

The notion of persistence of excitation introduced here ensures that for any two
models in the model set thatcan be di�erentiated (i.e., do not lead to the identical
mappings from U to the image of Jcont), there exists at least one input sequence
u 2 U that di�erentiates the two models.

In order to develop an asymptotic analysis of the model estimates obtained from
Alg. 4, we make the following assumption.

Assumption 6.1. The conceptual in�nitely long dataset D1 is obtained by excite-
ing the true systemS by a weakly persistently exciting inputf u(k)g for the model
set M d (GN).

6.4 Analysis of the Algorithm 151

Equipped with the notions of convergence and persistence of excitation, we now
present the three stages of the asymptotic analysis of the proposed identi�cation
framework (based on the three questions listed in the prequel).

Stage A

In this part of the analysis, we study the behaviour of GP population f X (j) g as a
�nite Markov process. Due to the imposed limit md on the depth of trees generated
from GN , the maximum number of (possibly non-unique) model structures that can
be generated, in the worst case7, is nT = jIj � 1�jAj m d

1�jAj , where jIj and jAj are the
number of initial and auxiliary trees in GN , respectively. In each iteration, the
proposed identi�cation algorithm proposes a population X (j) from the set of all
possible population of model structuresSM := M d (GN)n s . The population X (j)

is obtained entirely from the population X (j � 1) via the crossover, mutation and
selection operators. Moreover, the stochastic choices made in the crossover and
mutation steps remain independent over the number of iterations. Hence, the
evolution of the population X can be described as a time-homogeneous Markov
process, since the probability distribution of X (j) is completely determined by
X (j � 1) , i.e.,

p
�

X (j) j X (j � 1) ; : : : ; X (0)
�

= p
�

X (j) j X (j � 1)
�

: (6.65)

The state-space of the Markov process, i.e., the set of all possible values thatX
can take, is SM . The transition matrix P of the �nite time-homogeneous Markov
process is the collection of the transition probabilities (pX;X 0)X;X 02 SM . Let � (j)
be the probability distribution over the state-space at iteration j . The probability
distribution at the next iteration can then be computed as

� (j + 1) = P � (j): (6.66)

In each iteration, the new population of proposed model structures is obtained by
applying the crossover and mutation operators. Hence, the probability distribution
� (j + 1) can also be computed as

� (j + 1) = Pm Pc� (j); (6.67)

where Pc and Pm are the transition matrices of the crossover and mutation opera-
tors, respectively.

The properties of transition matrices Pc and Pm allow us to study the limit be-
haviour of the Markov chain model of the proposed algorithm. To do so, we intro-
duce the following notions.

De�nition 6.3 (Stochastic matrix) . A stochastic matrix is a square matrix in
which all entries are non-negative and the sum of entries in each column is 1.

7This is based on the assumption that each auxiliary tree in A can adjoin to each syntactic
tree generated from the grammar. This is usually not the case.

152 Chapter 6. Evolutionary Multi-criteria System Identi�cation

De�nition 6.4 (Column-allowable transition matrix, Rudolph and Agapie (2000)) .
A stochastic matrix is said to be column-allowable if each column of the matrix
has at least one positive entry.

De�nition 6.5 (Irreducible transition matrix, Rudolph (1994)) . The transition
matrix P of a �nite time-homogeneous Markov chain is said to beirreducible if
there exist no equivalence transformations that reduceP to the form

�
C 0
R T

�
; (6.68)

where C; T are square matrices.

By de�nition, transition matrices are stochastic matrices. A Markov chain f X (j) g
with an irreducible transition matrix implies that it is possible to reach any state
X 0 2 SM from any initial state X 2 SM in a �nite number of transitions. More
formally, for any pair X; X 0 2 SM , there exists anm 2 Z> 0 such that

p
�

X (j + m) = X 0 j X (j) = X
�

> 0: (6.69)

Based on these notions, we obtain the following result.

Lemma 6.6. The Markov chain corresponding to the sequence of populationf X (j) g
in Alg. 4 with state spaceSM is irreducible for pc 2 [0; 1) and pm 2 (0; 1].

Proof: See Appendix B.2. �

It should be noted that crossover and mutation rates in Lemma 6.6 are su�-
cient conditions, but not necessary, to establish irreducibility of the Markov Chain
f X (j) g. Since Markov chain f X (j) g can be shown to be homogeneous and ir-
reducible, we can use Lemma 1 of Rudolph and Agapie (2000), given below, to
describe its limit behaviour.

Lemma 6.7 (Rudolph and Agapie (2000)). A homogeneous Markov chain with
�nite state space and irreducible transition matrix visits every state in�nitely often
with probability one regardless of the initial distribution.

From Lemmas 6.6 and 6.7, we infer that the proposed Alg. 4 generates all model
structures in M d (GN), and consequently, in F � , with probability 1 as j ! 1 .
This inference relates to merely the search for appropriate model structures, i.e.,
model structures in F � , in a �nite, albeit large, discrete search space. In other
words, the inference relates to the asymptotic behaviour of the search algorithm
corresponding to the upper-level optimization problem of the overall multi-criteria
identi�cation problem in (6.5).

Stage B

We now turn our attention towards parameter estimation algorithms that solve the
lower-level optimization problems. In the given setting, the lower-level optimization

6.4 Analysis of the Algorithm 153

problem is formulated in terms of mean-squared prediction errorJ1, and mean-
squared simulation error J2. For any candidate model structure M 2 M d (G)
proposed by GP, we can examine the mean squared error (MSE) (prediction or
simulation) achieved by the estimated modelM (�̂). For this, let the true, unknown
DGS be S parameterized by � 0. Let the candidate model structure be M (�) and
the parameter estimated for a given datasetDN be �̂ . The model M may be a
prediction or simulation model, and correspondingly, the parameter estimatê� may
be prediction error or simulation-error-based estimate. For a given inputu, let y0

be the the response of the DGS andy(�̂) be the model response (prediction or
simulation). The MSE can be expressed as

MSE(y0 � y(�̂)) = E � [(y(�̂) � y0)2]: (6.70)

Under the assumption that f y(�̂)g is a quasi-stationary process, the MSE can be
decomposed as follows (Friedman et al., 2001):

MSE(y0 � y(�̂)) = E �

� �
y0 � E � [y(�̂)] + E � [y(�̂)] � y(�̂)

� 2
�

;

= E �

� ��
y0 � E � [y(�̂)]

�
�

�
y(�̂) � E � [y(�̂)]

�� 2
�

;

= E �

� �
y0 � E � [y(�̂)]

� 2
�

+ E �

� �
y(�̂) � E � [y(�̂)]

� 2
�

�

2E �

h�
y0 � E � [y(�̂)]

�
(y(�̂) � E � [y(�̂)])

i
;

= lim
N !1

1
N

1X

k=1

�
y0(k) � E � [y(k; �̂)]

� 2

| {z }
bias 2

+ E �

� �
y(�̂) � E � [y(�̂)]

� 2
�

| {z }
var

:

(6.71)

Hence the MSE of the model estimate can be decomposed into two components
- bias and variance. Bias refers to a systematic error in the estimated model
and variance refers to variability of the model (or parameter) estimate. Under
Assumption 6.1, the variance of the parameter estimate reduces to 0. The bias
component of the error may be caused due to a structural error in the model
structure M or a systematic error in the estimator, and are typically dependent on
the nature of the excitation signal. Let U be the desired class of inputs andu 2 U.
Then the bias error, averaged over all possible inputsu 2 U can be decomposed
into the following components:

Eu [(y0 � E � [y(�̂)])2] = Eu [(y0 � y� � E � (y(�̂)) + y�)];

= Eu [(y0 � y�)2]
| {z }

structural bias

+ Eu [(E � [y(�̂)] � y�)2]
| {z }

estimation bias

; (6.72)

where y� corresponds to the response of the hypothetical average model estimate
Eu [M (�̂)] over the input class U for the �xed model structure M . The �rst term
in (6.72) can be attributed to a structural error in model structure M . The second

154 Chapter 6. Evolutionary Multi-criteria System Identi�cation

term can be attributed to a systematic estimation error, e.g., when the parameter
estimator is biased or is susceptible to be converge to a local minima.

Equation (6.72) reveals the essential challenge for parameter estimation within the
proposed identi�cation framework. For a given identi�cation problem, the e�cient
set F � consists of a large number of models with varying model structures. While
some of these model structures may be complex enough to describe the DGSS,
other model structures in F � will be too simple to model the dynamics present in
the dataset. For such model structures inF � , the structural bias component in
(6.72) cannot be reduced to 0, and is re�ected in the MSE (prediction or simulation)
achieved by the corresponding models. Hence, in order to ensure that the model
estimate M (�̂) converges toF � , in terms of the distance metric in (6.62), the
parameter estimator, for both simulation error and prediction error, is required
to converge to the global minima. In other words, for any model structureM 2
M d (GN) (or at least F �), the second term in (6.72) should be 0 in expectation.

Based on this discussion, we make the following assumption to simplify the overall
analysis of the proposed identi�cation method.

Assumption 6.2. Under Assumption 6.1, for any model structureM 2 F � , pa-
rameter estimates �̂ p (for prediction error) and �̂ s (for simulation error) converge
to the corresponding global minima with probability (w.p.) 1.

Considering that the problems of prediction error minimization and simulation
error minimization are non-linear for the class of P-NARMAX model, Assumption
6.2 is a strong assumption. Global optimization techniques such as GA or CMA-
ES can be used to obtain unbiased estimates asymptotically. Unfortunately, this
comes at a great computational cost.

In Sec. 6.3, we presented algorithms for optimizing model parameters w.r.t ob-
jective functions J1 and J2 for the class of P-NARMAX models. The proposed
estimation algorithms are far more computationally e�cient than global optimiza-
tion techniques. Furthermore, the convergence properties of the estimators are
also well studied in the literature. Unfortunately, the proposed estimators are not
guaranteed to converge for all P-NARMAX models, as discussed below.

An iterative least-squares method was presented in Sec. 6.3.1 to estimate model
parameters P-NARMAX models based on 1-step-ahead prediction error. In Ljung
(1979), the author described the recursive algorithm using an equivalent ODE
system, and derived the conditions required for convergence of the algorithm to a
local minima for linear ARMAX models. Essentially, the algorithm was found to
converge asymptotically if the noise model of the DGS is invertible. In Chen and
Billings (1989), the analysis was extended to the case of P-NARMAX models. The
authors showed that the analysis can be directly extended to the set of P-NARMAX
models that can be decomposed as

y(k) = f (y(k � 1); : : : ; y(k � ny); u(k); : : : ; u(k � nu)) + H (q� 1)� (k); (6.73)

whereH (q� 1) is a linear �lter and f is a polynomial non-linear function. Extending
the result to the general class of P-NARMAX models, however, is far more involved
since a general P-NARMAX model may contain multiplicative terms of input,

6.4 Analysis of the Algorithm 155

output and noise, which complicates the notion of invertibility of the noise model.
Hence, Chen and Billings (1989) de�ned a notion ofm invertibility , which makes
it possible to extend the conditions for convergence to the case of P-NARMAX
models.

The multi-step prediction algorithm described in Sec. 6.3.2 was proposed and stud-
ied in Farina and Piroddi (2011) and Farina and Piroddi (2012). Convergence prop-
erties of the MSP algorithm can be found in Theorem 3.1 in Farina and Piroddi
(2010). A key assumption required for the validity of the results is that the au-
tonomous response of modelM to non-zero initial conditions decays exponentially
to 0, i.e., the model M does not have in�nite memory. This excludes, for e.g.,
chaotic systems.

Stage C

In Part A, we established the su�cient conditions required for the GP algorithm op-
erating in search spaceM d (GN) to visit each model structure in F � in�nitely often
w.p. 1. In Part B, we assumed that for each model structureM in F � the param-
eter estimates for the mean-squared simulation and prediction error loss functions
converge to the respective global minima. By combining these two elements, we
get that as j ! 1 , the proposed algorithm identi�es each model structure in F �

and estimates the corresponding model parameters w.p. 1. It remains to be shown
that once a modelM (�) in F � is identi�ed, it enters and subsequently remains in
the archive A(j) as j ! 1 .

The need to preserve non-dominated solutions in the population is well recognized
in MOEA literature. An EA that preserves non-dominated solutions in the popu-
lation deterministically (or w.p. 1) is said to have an elite preserving strategy, or
in short, an elitist strategy. Rudolph (1998) demonstrated that elitism is a crucial
property required to proof convergence of an MOEA to a subset of Pareto-e�cient
solutions in an �nite search space. As a consequence, many MOEAs with elitist
strategies have been since developed, e.g., Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele, 1999) and Pareto Archived Evolution Strategy (PAES)
(Knowles and Corne, 2000).

In Step 7 of Alg. 4, the archive A(j) stores the set of e�cient solutions in the set
A(j � 1) [X (j) . The set of e�cient solutions is computed using the non-dominated
sorting algorithm in Alg. 8 (see Deb et al. (2002)), which is an elitist algorithm.

We can now assemble the three stages of reasoning discussed above, in order to
obtain a general result for the asymptotic properties of the proposed identi�cation
method. Recall the following conclusions from the three stages of the analysis:

(i) In Stage A of the reasoning, we showed that asymptotically, for certain ranges
of crossover and mutation rates, the proposed algorithm is likely to explore
all model structures in F � with probability 1.

(ii) In Stage B, we determined the parameter estimation properties required in
the general setting of TAG-based model set speci�cation.

156 Chapter 6. Evolutionary Multi-criteria System Identi�cation

(iii) In Stage C, we determined the properties required from the selection operator
in order to retain model estimates that belong to the Pareto-e�cient set F � .

Based on these conclusions, we now obtain the following result.

Theorem 6.8. For the model setM d (GN), under Assumptions 6.1 and 6.2, the
archive A(j) of the identi�cation method in Alg. 4 satis�es

lim
j !1

� F � (A(j)) ! 0; w:p: 1; (6.74)

if pc 2 [0; 1) and pm 2 (0; 1].

Proof: See Appendix B.2. �

Theorem 6.8 establishes the su�cient conditions required in order to guarantee
asymptotic convergence (in the sense of (6.63)) of the proposed identi�cation al-
gorithm. Unlike classical identi�cation techniques such as PPEM, the proposed
identi�cation method converges not to a single optimal solution, but to an entire
set of optimal (i.e., non-dominated) solutions. In doing so, we do not require the
true DGS to be part of the model set in order for our analysis to hold.

It should be noted that while we make a strong claim with regards to solving
the structure-determination problem (i.e., the upper-level optimization problem in
(6.5)), the analysis rests on the assumption that the parameter estimation tech-
niques used to solve the lower-level optimization problem in (6.5) converge to the
global minima. While it is reasonable to require that the parameter estimates con-
verge to the global minima in order to obtain convergence for the broader problem
of determining non-dominated models in the model set, it is nonetheless a strong
assumption in the context of non-linear system identi�cation.

Remark 6.7. It should be pointed out that Theorem 6.8 only provides su�cient
conditions for convergence as de�ned in Def. 6.1. Furthermore, the notion of con-
vergence used here only ensures that the models in archiveA(j) are non-dominated,
and do not consider the diversity of models in the archive. In practice, the diver-
sity is ensured by rank-ordering models that have the same Pareto-dominance rank
using crowding-distance-based ordering (see details in Sec. 6.2.2). Furthermore, in
practice, duplicate models are not included in the archive.

6.4.2 Computational Complexity

The objective of Alg. 4 is to perform automated model structure selection and
subsequent parameter estimation, such that minimal user intervention is required
during model estimation, while a�ording the user the ability to choose a suitable
model a posteriori based on the estimated Pareto front. While the proposed identi-
�cation approach makes it easier for the user to obtain data-driven model estimates,
it comes with the cost of a higher demand for computational resources. In this sec-
tion, we look at the computational complexity of Alg. 4. Empirical run-time �gures
for various datasets will be provided in Chap. 7.

6.5 Discussion 157

The most computational-intensive step in the proposed algorithm is the parameter
estimation step, i.e., Step 4 in Alg. 4. The complexity of the parameter estimation
step depends on the lower-level problem of the bi-level identi�cation problem. In
this section, we study the run-time complexity of the algorithm for the class of
P-NARMAX models and performance measuresf J i (M; �; DN)g2

i =1 .

For grammar GN , prediction error minimization involves a sequence of linear least
squares operations, see Sec. 6.3.1. The run-time complexity of each least squares
operation is given by O(N dim(�)) , where N is the length of the dataset, and
dim(�) is the length of parameter vector � . Let mp be the maximum number of
least squares iterations required for the prediction error minimization algorithm to
converge or time-out. The computational complexity to estimate parameter � for
an individual M (�) 2 M (GN) is O(mpNest dim(�)) .

The complexity of each step in simulation error minimization for a given time-
horizon � is given below

� Computation of � -step-ahead predicted outputsŷ(kjk� �) has time-complexity
O(Nest � dim(� s;l)) .

� Computation of Jacobian 	 � requires O(Nest � (dim(� s;l))2) time.

� The parameter update step in (6.51) requiresO((dim(� s;l))3) computations
for matrix inversion and O(Nest (dim(� s;l))2) for matrix multiplication.

Since Nest � dim(� s;l), the dominant computation is O(Nest � (dim(� s;l))2). This
step is repeated for� = 1 ; : : : ; m� , wherem� is the maximum prediction horizon for
which the model estimates converge or the algorithm times-out. Furthermore, let
ms be the maximum number of Gauss-Newton iterations required for each predic-
tion horizon � . The overall complexity for simulation-based parameter estimation
for an individual M (�) 2 M (GN) is O(msNestm2

� (dim(� s;l))2).

As one would expect, parameter estimation based on simulation error is the most
time-consuming step for each individual in an iteration. This step is repeated for
each individual in the population, and for each iteration of the GP run. Hence, the
overall computational complexity of the algorithm is O(nsLm sNestm2

� (dim(� s;l))2),
where ns is the size of the population andL is the maximum number of iterations
in the GP algorithm.

6.5 Discussion

In this chapter, the concepts and methodologies introduced in Chap. 3, 4, 5 were
integrated to formulate an identi�cation approach that is aligned with the main
research goal of this dissertation, see Chap. 1. The main features of the proposed
identi�cation framework are listed below.

� Based on the discussion in Sec. 2.5, we formalized the identi�cation problem
as a multi-criteria bi-level optimization problem in (6.2). The formulation

158 Chapter 6. Evolutionary Multi-criteria System Identi�cation

of the optimization problem was made possible by the TAG-based model
set concept introduced in Sec. 4.3.1 and Pareto-dominance-based ordering of
candidate solutions discussed in Sec. 5.2.

� The general identi�cation problem essentially consists of two inter-connected
problems - model structure determination and model parameter estimation.
The proposed multi-criteria optimization problem in (6.2) encapsulates these
two problems into a single hierarchical structure. The upper-level optimiza-
tion problem relates to the model structure determination, and the lower level
corresponds to the model parameter estimation problem.

� The general identi�cation problem, as formulated in (6.2), consists of multi-
criteria optimization problems on both levels, making it a challenging problem
to solve. Hence, the problem is simpli�ed in Eqns. (6.3) and (6.5) by replacing
the lower-level multi-objective problem by a number of single-objective opti-
mization problems. Essentially, we discretize the number of possible trade-o�s
between objectives inJcont .

� Genetic programming forms the foundation of the proposed identi�cation al-
gorithm to solve the multi-criteria problem. The evolutionary search explores
the discrete space of model structures generated by TAG, and hence is as-
sociated with the upper-level optimization problem. Variation operators are
adapted to ensure that the rules of grammar encoded in the given TAG are
preserved during the search. Furthermore, the selection operator is modi�ed
to select models based on Pareto-dominance and crowding-distance-based or-
dering.

� It should be pointed out that the search for model structures is formulated
on the basic building blocks of any TAG, and is independent of the choice
of TAG. Hence, the proposed algorithm can address the model structure
determination problem for any model class, and even representation, that
can be formulated as a TAG.

� Within each iteration of GP, a parameter estimation step is incorporated to
optimize model parameters w.r.t the performance measures in the lower-level
optimization problem. Unlike the evolutionary search for model structure,
the parameter estimation algorithms used will typically depend on the per-
formance measures and the speci�c choice of TAG.

� The result of the identi�cation method is an estimate of the e�cient set of
models that lie on the estimated Pareto-front. The Pareto-front estimate
informs the user of the possible trade-o�s that can be made between the
various modelling objectives. Based on this information, the user may select
a posteriori a model that achieves the trade-o� that is suitable for use-case.

The purpose of the identi�cation method developed in this chapter is to automate
the system identi�cation process. Nonetheless, the user may choose to customize
the algorithm, for example, to introduce prior understanding of the dynamics of
the DGS or to express preferential bias for model structures. From the user's
perspective, the identi�cation method can be adapted in the following ways.

6.5 Discussion 159

� The user may introduce prior knowledge of the dynamics of the DGS in the
TAG that speci�es the model set. The prior information may be formulated at
a high level, for example, restricting the search to linear models of arbitrary
complexity, or may be more detailed, for example, by seeding the initial
population with an preliminary model estimate.

� The user may incorporate additional modelling objectives that are relevant
for the ultimate use-case of the model.

In Sec. 6.4.1, we analyzed the the asymptotic behaviour of the algorithm and
showed that, under some assumptions on the parameter estimation algorithms, the
estimated Pareto-e�cient set of models converges to a subset of the true Pareto-
e�cient set. While the analysis is primarily academic in nature, it does reveal
several important aspects of the algorithm. Part A of the analysis reveals that the
types and rates crossover and mutation operator may play a crucial role in deter-
mining the convergence properties of the algorithm. While the analysis only address
asymptotic convergence, it may be plausible that the crossover and mutation rates
also in�uence the rate of convergence. This will be examined via simulation studies
in Chap. 7. Part B of the analysis reveals the parameter estimation algorithms are
required to converge to the global optimum of the optimization problem to assure
convergence. And �nally, Part C of the analysis highlights the importance of the
archive updating rule used in the algorithm.

Finally, in Sec. 6.4.2, we examined the run-time complexity of the proposed algo-
rithm. As one would expect, the proposed algorithm is far more computationally
demanding than most tradition identi�cation methodologies. However, in general,
the additional computational time can be easily o�set considering that the pro-
posed identi�cation method automates the identi�cation task for the user. This
is especially bene�cial for more involved non-linear identi�cation problems. Fur-
thermore, the computations involved can easily be parallelized over multiple CPU
cores, thereby making it possible to scale the method for larger population sizes or
datasets.

160 Chapter 6. Evolutionary Multi-criteria System Identi�cation

The casino is the only human venture I know where the
probabilities are known, Gaussian, and almost com-
putable.

Nassim Nicholas Taleb

7
Experimental results

I n Chap. 6, we presented the proposed identi�cation framework and a
theoretical analysis of its asymptotic behaviour and computational com-

plexity. In this chapter, we evaluate the performance of the proposed iden-
ti�cation approach on a number of identi�cation problems, categorized into
three types: an academic example, experimental case studies and bench-
mark examples.

The academic example is used to empirically evaluate the performance
and convergence properties of the proposed algorithm, and to evaluate the
in�uence of some key algorithm hyper-parameters on the estimated result.

Next, we consider the problem of identifying three physical systems: a pen-
dulum system, a thermo-mechanical system and a weaving machine. The
three physical case studies pose varying challenges in terms of dynamics to
be identi�ed, including complex non-linearities and large, unknown delays
in the system.

Finally, the performance of the proposed identi�cation method is com-
pared to that of other non-linear identi�cation techniques proposed in the
literature based on three benchmark examples: the silverbox system, the
coupled drives system and a Weiner-Hammerstein benchmark example.

Some key observations derived from the obtained results are discussed.

161

162 Chapter 7. Experimental results

7.1 Introduction

As stated in Chap. 1, the over-arching objective of the present dissertation is to
automate the process of system identi�cation and enable the user to estimate dy-
namical models that are better aligned to the ultimate use-case of the model. To
achieve this, over the course of Chap. 4, 5 and 6, we developed a multi-objective
identi�cation framework based on the concepts of TAG, GP and multi-objective
optimization. The proposed identi�cation algorithm minimizes the need for user-
intervention during the identi�cation process by incorporating the model-structure-
determination problem within the optimization problem being solved. On the other
hand, the algorithm still allows the user to introduce preferences, in terms of desired
model structures and identi�cation criteria. In Sec. 6.4, the proposed algorithm
was studied theoretically to verify the asymptotic behaviour and the computational
cost. The stage is now set to study the performance of the proposed algorithm em-
pirically, and verify whether the proposed identi�cation framework achieves the
overall research objective, and more speci�cally, the research goals laid down in
Chap. 1.

In this chapter, we apply the multi-criteria identi�cation approach proposed in
Chap. 6 to a collection of identi�cation problems. The identi�cation problems are
categorized into three types - academic example, experimental case studies and
benchmark problems. We use an academic example to study the performance of
the proposed algorithm in a setting where the DGS is known. Subsequently, the
algorithm is used to model data obtained from real physical systems. The chosen
case studies emulate a variety of challenges encountered in modelling physical sys-
tems. Finally, the performance of the algorithm is examined and compared with
other specialized non-linear system identi�cation methods with the help of bench-
mark datasets available online. All computations described in this chapter were
performed on a PC equipped with an IntelR CoreTM i7 CPU with 4 cores, 3:40
GHz frequency and16 GB RAM.

In the sequel, we discuss some of the recurrent aspects of the identi�cation exper-
iments that will be discussed in this chapter.

Tree Adjoining Grammar

The initial and auxiliary trees of the most general TAG used in this chapter are
illustrated in Fig. 7.1. The proposed TAG extends beyond the class of P-NARMAX
by including sin; cosand abs functions of the input, output and noise terms. Note
that the trigonometric and absolute-value non-linearities are introduced without
scaling of their arguments, thereby retaining the linear-in-the-parameters structure
of the models. The following grammars will be used in the case studies:

� The full grammar GAT with initial trees f � i g4
i =1 and auxiliary trees f � i g8

i =1
in Fig. 7.1.

� The grammar Gtrig with initial trees f � i g3
i =1 and auxiliary trees f � i g8

i =1 in
Fig. 7.1. Grammar GN extends beyond the class of P-NARMAX by including
trigonometric (sin and cos) transformations of input, output and noise terms.

7.1 Introduction 163

Figure 7.1: Initial trees f � i g4
i =1 and auxiliary trees f � j g8

j =1 of the of the over-
arching TAG GAT

1.

� The P-NARMAX grammar GN with initial trees f � 1g and auxiliary trees
f � i g7

i =1 in Fig. 7.1.

Of course, as discussed in Sec. 4.3.3, it is possible to extend the grammar, and hence
the resulting model set, by introducing suitable elementary trees in the TAG used
for identi�cation. Similarly, it is also possible to restrict the TAG to specialized
model structures, whose choice is guided by prior knowledge or user preference.

Hyper-parameters

While the objective of the proposed identi�cation approach is to minimize user-
intervention during the identi�cation procedure, there are nonetheless some hyper-
parameters of the algorithm that must be selected upfront. While some of these
hyper-parameters such as grammarG, population sizens and maximum tree depth
md can be chosen fairly conservatively such that they do not strongly in�uence the
results of the algorithm, other hyper-parameters such as probability of crossover
pc and mutation pm may play a critical role in determining the quality of results
obtained.

In Tab. 7.1, we list the hyper-parameters that are not critical to performance of
the algorithm, when selected conservatively, along with their default values. These
hyper-parameter values will be used for the identi�cation experiments presented in
the subsequent sections, unless otherwise speci�ed.

1The superscript NA in auxiliary tree � 8 refers to a null adjunction constraint on the root
node, which prohibits the adjunction of any auxiliary tree at that location. See Joshi and Schabes
(1997) for details.

164 Chapter 7. Experimental results

Table 7.1: General hyper-parameters of the algorithm and their default values.

Hyper-parameter Notation Default value

Population Size ns 100

Maximum GP iterations L 150

Maximum adjunctions md 150

Maximum initial adjunctions mid 50

Tree Adjoining Grammar G GAT

l � approximation simulation recursions l 1

Table 7.2: Hyper-parameters that determine the dynamics of the evolutionary
search.

Hyper-parameter Notation

Crossover rate pc

Mutation rate pm

The hyper-parametersns; L; m d and mid can be adapted to a particular identi�ca-
tion experiment based on prior information about the system. For example, if the
true system is expected to be complex in terms of the tree-depth of the correspond-
ing derivation tree, the derivation tree depth mid can be suitably adjusted to re�ect
this information. Similarly, self-adaptive mechanisms can also be implemented for
these hyper-parameters, e.g., see Spector (2011). The parameterl determines the
accuracy of the simulation response, and can be increased for higher simulation
accuracy, when required.

As suggested in Lemma 6.6, the hyper-parameterspc and pm , listed in Tab. 7.2, play
a vital role in determining the dynamics of the evolutionary search. To study the
in�uence of pc and pm on the performance of the proposed algorithm, we perform
Monte-Carlo (MC) simulations for the academic example in Sec. 7.2. Based on
the simulation study, we select values forpc and pm that will be used for all other
identi�cation studies considered in this chapter.

Identi�cation criteria

In Chap. 6, we formulated the identi�cation problem as a bi-level optimization
problem, see (6.2). The upper-level optimization problem was formulated in terms
of the set-valued identi�cation criteria J (M; �; DN), and the lower-level problem
was formulated in terms of the subset of the performance measuresJcont (M; �; DN)
that depend on the value of parameter� . In Chap. 5, we proposed four performance
measures for the multi-criteria identi�cation problem: (i) J1 based on prediction
error, (ii) J2 based on simulation error, (iii) J3 based on parametric complexity
and (iv) J4 based on dynamic complexity. Based on these performance measures,

7.1 Introduction 165

the bi-level optimization problem was simpli�ed to (6.5), where the upper-level
optimization problem is formulated in terms of J (M; �; DN) = f J i (M; �; DN)g4

i =1
and the lower-level optimization problem is formulated in terms of J1(M; �; DN)
and J2(M; �; DN).

For all identi�cation results discussed in this chapter, we use the set-valued perfor-
mance measureJ (M; �; DN) = f J i (M; �; DN)g4

i =1 for the upper-level optimization
problem (similar to (6.5)). However, we simplify the lower-level optimization prob-
lem by optimizing model parameters only for prediction error, i.e., J1(M; �; DN).
This is done to reduce the overall algorithm complexity from O(nsLm sNestm2

�
(dim(� s;l))2) to O(nsLm pNest dim(�)) (see Sec. 6.4.2), since, in the parameter esti-
mation step, we only make use of the estimation technique presented in Sec. 6.3.1.
This reduction in algorithm complexity comes at a price; for model structures that
are too simple to describe the DGS, the estimated models will be tuned for pre-
diction error alone, and will have non-optimal simulation performance. For model
structures that can describe the DGS without over�tting, we expect estimated
models to also have good simulation performance, as will be demonstrated in Sec.
7.2. Note that simulation error minimization is included in the set-valued perfor-
mance measureJ in the upper-level optimization problem. This ensures that the
selection of proposed candidate models for subsequent iterations takes into account
the simulation performance of the estimated model.

Data collection or generation

As discussed in Sec. 6.2.2, the proposed algorithm ideally makes use of three inde-
pendent datasets:

� Estimation dataset Dest for estimating model parameters that minimize the
lower-level objectives;

� Validation dataset Dval for computing the upper-level objectives and addi-
tionally to estimate the generalization error of the estimated models;

� Test datasetDtest to estimate the generalization error of the �nal Pareto-front
estimate.

In the experimental results presented in the sequel, whenever possible, we make use
of three independent datasets as described above. However, for certain experiments
(or benchmark datasets), it was not possible to obtain or derive the requisite num-
ber of datasets. In such cases, we make ad-hoc decisions to design a work-around.
For example, when we have access to only two independent datasets, we may use
Dest to estimate model parameters that optimize the lower-level criterion, i.e. J1,
and also compute the upper-level criteriaf J i g4

i =1 for the estimated model parame-
ters. In other words, we setDest = Dval . Recall that the purpose of datasetDval in
the proposed identi�cation method was to prevent over-�tting in models that were
over-parameterized, by performing cross-validation on the parameter estimates us-
ing a dataset independent ofDest . This function is no longer performed when we
set Dest = Dval . Nonetheless, this is not an issue, since

166 Chapter 7. Experimental results

� In the lower-level problem, datasetDest is used to estimate model parameters
that optimize prediction error alone. Hence, in the upper-level optimization
problem, simulation error can be used as a proxy to test the generalization
capability of the estimated model structure and parameters.

� The presence of complexity measuresJ3 and J4 in the multi-objective criteria
keeps the population bloating in check (see discussion in Sec. 3.3).

For each identi�cation experiment in this chapter, we will describe the measured
(or simulated) data available, and how it is utilized.

7.2 Academic Example

In this section, we perform an empirical study of the proposed multi-criteria identi-
�cation approach using a simulation example. In particular, we empirically evaluate
the estimated Pareto-front obtained from the algorithm and the ability to recover
the structure of the true DGS from �nite measurement data and �nite number of
GP iterations. Furthermore, the e�ect of varying crossover and mutation proba-
bilities is studied using MC simulations.

System, data and hyper-parameters

The DGS S is a polynomial IO model given by

y(k) = 0 :5y(k � 1) � 0:3u3(k � 5) + 0 :3u(k � 1); (7.1)

with additive measurement noise� acting on the measured outputym , i.e.,

ym (k) = y(k) + � (k); (7.2)

The three simulated datasetsDest ; Dval and Dtest , each consisting of2501samples,
are generated using a normally distributed excitation signalum (k) � N (0; 1) and
i.i.d Gaussian noise� (k) � N (0; � �) with � � = 0 :05. . The resulting signal-to-noise
ratio (SNR) is approximately 56dB, where the SNR is computed as

SNR = 20 log10
� y

� �
; (7.3)

where � y is the standard deviation of output y. Hence the dataset contains low
measurement noise.

Remark 7.1. Note that system (7.1) has an output-error noise structure. How-
ever, models generated by TAG are only optimized for one-step-ahead prediction
error and not for simulation error (see Sec. 7.1). The mismatch in noise structure
is likely to cause bias in the parameter estimates. However, we expect the bias to
be small due to the low noise in the dataset.

7.2 Academic Example 167

Table 7.3: Algorithm hyper-parameters for the academic example.

Hyper-parameter Value
Probability of crossover pc f 0; 0:2; 0:4; 0:6; 0:8; 1g
Probability of mutation pm f 0; 0:2; 0:4; 0:6; 0:8; 1g
Grammar GAT

SystemS has a fairly simple structure, with only three model terms. The structure
is nonetheless complex enough for a simple random search to be ine�ective. This
will be veri�ed in the sequel via simulation results.

The hyper-parameter values presented in Tab. 7.1 are used for all simulations pre-
sented in this section. In addition, a range of values are used for the crossover
and mutation probabilities, see Tab. 7.3. As discussed in Sec. 7.1, the values for
population size ns, maximum GP iterations L and maximum adjunctions md are
chosen fairly conservatively. We make this choice deliberately to test the capabili-
ties of the proposed methodology. Furthermore, we also make a conservative choice
for the grammar by choosing TAG GAT . This would typically be a choice made
when there exists no prior preference for the desired model set. For the purpose
of this analysis, TAG GAT ensures that the generated model structures not only
include the model structure that corresponds to that of DGS S, but also model
structures that are too simple or too complex with respect to S. For the prob-
abilities of crossover and mutation, we choose a range of values in[0; 1]. In the
sequel, we present results from several runs of the proposed algorithm for each of
the proposed values ofpc and pm .

Simulation results - Random search

The proposed identi�cation approach leverages the abundance of computational
resources to minimize user-intervention in the identi�cation cycle. A common crit-
icism of such approaches is that a random search of model structures may achieve
a performance similar to that of EC-based method. The criticism is not unfounded
since it can be reasoned that arguments used in the asymptotic analysis of the
proposed algorithm in Sec. 6.4 can also be used for a random search, where model
structures are randomly sampled, with uniform distribution, from the model set
M d (GAT). However, for �nite number of iterations, the performance of the GP-
based algorithm is far superior to that of a simple random-search approach. To
verify this, in this section, we present the results obtained by a random search
of model structures generated by TAG. The overall approach is exactly the same
as in Alg. 4 with one key di�erence: in each iteration, new models are generated
randomly from the TAG instead of by applying variation operators on the existing
population. The initialization scheme proposed in Sec. 6.2.2 is used to generate the
new model structures. In the next section, the results obtained by the GP-based
approach for a variety of crossover and mutation probabilities will be presented.

The results obtained by random search are illustrated in Fig. 7.2. Fig. 7.2a depicts
the evolution of minimum and average simulation and prediction performance of

	Title Page
	Summary
	Contents
	List of Abbreviations
	List of Symbols

	Introduction

