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Abstract Geometric and topological features of corneal nerve fibers in confocal microscopy
images are important indicators for the diagnosis of common diseases such as diabetic neu-
ropathy. Quantitative analysis of these important biomarkers requires an accurate segmen-
tation of the nerve fiber network. Currently, most of the analysis are performed based on
manual annotations of the nerve fiber segments, while a fully automatic corneal nerve fiber
extraction and analysis framework is still needed. In this paper, we establish a fully convolu-
tional network method to precisely enhance and segment corneal nerve fibers in microscopy
images. Based on the segmentation results, automatic tortuosity measurement and branching
detection modules are established to extract valuable geometric and topological biomarkers.
The proposed segmentation method is validated on a dataset with 142 images. The exper-
imental results show that our deep learning-based framework outperforms state-of-the-art
segmentation approaches. The biomarker extraction methods are validated on two different
datasets, demonstrating high effectiveness and reliability of the proposed methods.

1 Introduction

Corneal confocal microscopy (CCM) is an efficient and non-invasive imaging technique that
is used to examine the human corneal nerve fiber morphology in a variety of diseases [1–
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3]. There exist strong connections between disease progression and geometric/topological
changes of nerve fibers. Previous findings show that tortuosity, branching points and density,
length and angles of corneal nerve fibers are potential indicators to reflect the function of
neuropathy severity [4–8] and type-II diabetes [1,9].

Diabetic neuropathy is one of the common long-term complications of diabetes, in which
the nerve fibers in the body are affected due to hyperglycemia [2]. It includes a set of neu-
ropathy such as peripheral neuropathy [3] and autonomic neuropathy [10]. The diagnosis of
diabetic neuropathy relies on proper measures such as nerve biopsy and skin biopsy based
on the presence of symptoms such as the feeling of burning, tingling, weakness or pain in the
limbs [11]. These symptoms are not always the indication of nerve damage, which makes the
early detection of neuropathy very challenging. The nerve plexus innervated in the peripheral
corneal is one of the most sensitive tissues of the human body providing sensors for touching,
temperature and chemicals, and plays an important role in eye protection [12]. Recent studies
have highlighted that impaired corneal ultrastructures are observed in patients with diabetic
neuropathy [4,13,14]. Moreover, it is reported that corneal nerve loss was observed in the
early development of neuropathy [9], and in some cases even before the development of other
complications such as diabetic retinopathy, suggesting that corneal nerve loss might be an
early indicator for diabetic neuropathy and diabetic retinopathy.

The sensory nervous system in the limbs and the organs is difficult to observe and examine,
while the corneal nerve fibers can be observed by CCM, which provides the potential for
building a computer-aided diagnosis (CAD) system. Recently, different CAD systems [15–
21] have been well developed in radiology. To better analyze nerve fibers, we also need to
set up a regular work flow: nerve fiber segmentation, biomarker extraction and performing
pathological study by investigating the association between the changes of biomarkers and
the progression of the disease. However, the effectiveness of biomarker extraction relies on
an accurate nerve fiber segmentation process, which is still strongly needed for the further
analysis of corneal confocal microscopy images.

In general, the corneal nerve fiber segmentation can be considered as a problem within the
scope of curvilinear structure enhancement and segmentation tasks [22–24]. For instance,
extensive conventional approaches have been applied to segment elongated medical imaging
structures in three categories: classifier based, tracking based and filter based. Classifier-
based methods extract a set of features from image pixels and use a pre-trained classifiers to
discriminate vascular pixels from background pixels. Soares et al. [25] extract a feature vector
from the pixel intensity and matched filter responses to segment retinal blood vessels using a
supervised classifier. Tracking-based methods iteratively grow the model from one seed point
inside the structure to another seed point located at the peripheral area [26,27] to trace all
vessel regions. Filter-based algorithms are based on convolution kernels which can be used
to enhance curvilinear structures in the image domain. These approaches are generally faster
and simpler than supervised methods. Mendonca et al. [28] employed differential filters
to detect vessel centerlines followed by morphological operators for vessel segmentation.
Zhang et al. [29] proposed a crossing-preserving segmentation approach, which designs
multi-scale rotating filters in invertible orientation scores to highlight and extract curvilinear
structures.The orientation score based framework will be further employed in this work to
extract branches from corneal nerve fiber images. Al-Fahdawi et al. [30] proposed a robust
and fast nerve segmentation and morphometric parameter quantification system for corneal
confocal microscope images. Three main segmentation steps including anisotropic diffusion
filtering based noise reduction, morphological processings and edge detection were applied
to detect all the nerve fibers.
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Convolutional neural networks (CNN) have gained a lot of attention in the recent years
because of the effective convolution kernels which are directly learned from the training
images, instead of relying on user-defined features [31–34]. One way of segmenting objects
is to create a patch around each sample and apply CNN framework to classify these patches.
The drawback of this scheme is that it does not make use of the larger context information
around the samples. In 2015, Ronneberger et al. [35] proposed a fully convolutional network
(FCN) with a U-shape (U-Net) which effectively deals with segmentation problem [36]. A
U-Net-based CNN’s architecture consisting of a contracting path is proposed by Colonna et
al. [37] for the fully automatic tracing of corneal nerves. It demonstrates the potential of CNN
in identifying clinically useful features. These deep learning-based segmentation techniques
show great potential in extracting useful curvilinear structures from different medical images.

In this work, we aim to set up a complete framework to enhance and segment corneal nerve
fiber structures from CCM images, and then design specific modules to extract potentially
important nerve fiber biomarkers for further analysis. Therefore, in the first step, we establish
a FCN-based segmentation approach to precisely extract nerve fibers and generate corre-
sponding centerline maps. Based on the segmented nerve fiber centerline, we then designed
tortuosity measurement and branch detection modules to extract never fiber biomarkers for
further geometric and topological analysis. The proposed framework is evaluated on two
different datasets, i.e., the corneal nerve fiber images of Maastricht (CNM) dataset and the
corneal nerve tortuosity (CNT) dataset, to demonstrate the high segmentation performance
and accurate biomarker measurement for further analysis.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the prepro-
cessing step for normalizing the corneal fiber images, and explain the architecture of deep
learning network for the segmentation. In the second part, we show the biomarker extraction
stage for tortuosity and branches. Section 3 explains and discusses the experimental results
and validations for segmentation and biomarker extraction. Finally, in Sect. 5, we conclude
this paper.

2 Methods

In this work, we first apply a normalization method to reduce the inhomogeneity in images.
Then we employ a fully connected neural network architecture to segment corneal nerve
fibers. Subsequently, biomarkers are extracted from the fiber segmentation results for further
analysis.

2.1 Image normalization

The 2D images acquired from confocal laser scanning microscope often show significant
intensity heterogeneity. The inhomogeneity can be due to photo-bleaching, attenuation in
depth, image acquisition, and variations of illumination exposure rate [38]. Before we per-
form fiber segmentation or extract biomarkers from microscopic images, we apply image
normalization to suppress intensity heterogeneity within an image and across all images.

We apply luminosity and contrast normalization developed by Foracchia et al. [39] to
improve the quality of corneal nerve fibers. The method is based on the estimation of the
luminosity and contrast variability in the background part of the microscopic image. The com-
pensation of this variability is performed in the whole image. The application of this method
results in remark reduction of luminosity variability and an increment of image contrast. The
normalization radius for creating a disk-shaped filter is set as rLC = lh

30 , where lh is the height
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Fig. 1 Example of the a original microscopy image and b after image normalization

of an image. Figure 1 shows one example of the effect of applying the normalization. We
can observe that the inhomogeneity in the original image is suppressed effectively.

2.2 Corneal nerve fiber segmentation by U-Net

The adopted neural network in this study is based on U-Net, which had tremendous success
[35] in the medical image segmentation tasks in past years. It has a U-shape and it consists
of three downsampling steps (encoding path) with convolutions, followed by a batch nor-
malization and three upsampling steps (decoding path) with repeated layers of convolution,
but followed by a concatenation with the correspondingly cropped feature from contraction
path and up convolutions. At the final layer, a final 1 × 1 × 1 convolution is used to map the
desired number of classes, and a soft-max calculation is followed at last to output a proba-
bility for each pixel. To improve the focus on the target fiber structure of varying shapes and
sizes, we incorporate attention gating (AG) modules [40] into the networks. The AG module
basically performed in such a way that the input features are scaled with attention coefficient
computed in AG such that the spatial regions is selected by analyzing both the activation and
contextual information collected from a coarse scale. The AG module acts as memory lookup
mechanisms for fine-grained information to enhance the higher level representation which
is beneficial to object detection and segmentation. We used the cross entropy of a pixel-wise
soft-max loss between the predicted label and ground truth label as the loss function. The
architecture of the network can be found in Fig. 2.

The corneal nerve fibers in the original confocal microscope images are very thin structures
with low signal-to-noise ratio and weak connections. The percentage of nerve fiber pixels
only accounts for a very small portion of the whole image pixels. To obtain well-enhanced
nerve fibers, a more balanced training process is designed by dilating the manually annotated
nerve fiber centerlines to obtain more foreground samples in the training set. Hence, the
nerve fiber maps generated by the trained model present slightly wider centerlines with
better connection. In clinical study, the nerve fiber length, skeleton density, tortuosity and
junction numbers are potentially more valuable biomarkers for diseases analysis compared to
the width of nerve fibers. Thus, a skeletonization step is often performed after fiber extraction
to obtain the centerline map of corneal nerve fibers for further biomarker analysis. This will
not be affected by the increased width.
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Fig. 2 The architecture of the U-net application

To fit the data into the memory of the graphic card, every original image (with a size of
1535 × 1536) is split into smaller images with a size of 288 × 288 with overlaps. During
training, data augmentation of eight times is implemented by applying a combination of
random flipping and rotation of the original image considering the limited number of training
images. During test, every image is also split into images with the same size and the likelihood
in the overlapped area is obtained by averaging. To obtain unbiased results, we perform
twofold cross validation. For a run of training, the training fold is split into a real training set
(70%) and a real testing set (30%). The validation set is used to select the best classifier. We
use 50 epochs for training.

2.3 Fiber tortuosity biomarker extraction

Tortuosity is a measure of the twistedness of a curve. In this study, tortuosity of corneal nerve
fibers is determined using a previously described retinal vessel tortuosity index (VTI). VTI
combines local and global geometric features of a vessel to quantify its tortuosity, and hence
is sensitive to small tortuosity alterations. This measure of tortuosity is invariant to rigid
transformations and was shown to provide a good match with visual perception of tortuosity.
Mathematical derivation of VTI is given by

VTI = 0.1SDθ × N × M × LA

LC
, (1)

where SDθ is the standard deviation of angles between lines tangent to the centerline at
each pixel along the centerline and the x-axis. N is the number of critical points along the
centerline where the first derivative of the centerline vanishes. LA and LC are lengths of the
centerline and its chord, respectively. The visual demonstration of VTI is shown in Fig. 3.
Finally, the magnitude M of derivation of the centerline from a straight line is obtained by
averaging the ratio of centerline length to its chord length between inflection points including
centerline endpoints. It is written as

M = 1

I p + 2

I p+2∑

i=1

LAi

LCi

, (2)

123



  266 Page 6 of 16 Eur. Phys. J. Plus         (2020) 135:266 

Fig. 3 Demonstration of parameters used for VTI calculation on a simulated sinusoidal curve. Red and blue
squares are critical and inflection points, respectively. LAi and LCi (i = 1–4)are the lengths of the centerline
and its chord between pairs of inflection points. Yellow dots show example points along the centerline where a
tangent line was plotted and its angle with respect to x-axis was measured. The angle is determined for every
pixel on the centerline and the SD of all the angles is calculated and included in VTI formula

where IP is the number of inflection points where the first derivative of the centerline vanishes.
Those points are located on the centerline where the sign of the centerline curvature changes.
The curvature of the centerline is provided by

k(l) =
dx(l)

dl
d2 y(l)

dl2
− d2x(l)

dl2
dy(l)

dl
((

dx(l)
dl

)2 +
(

dy(l)
dl

)2
) 3

2

.

To automatically calculate tortuosity of the corneal nerve fibers, centerline extraction
and bifurcation detection are performed on each image. MATLAB built-in “bridge” func-
tion is first used to eliminate any discontinuity along the fibers. Afterward, an iterative
thinning is performed to obtain the skeleton image. Small spurs that generated during
the thinning process are removed by repeatedly (20 times) deleting pixels that had only
one connected nerve fiber neighborhood. The value of 20 pixels is selected because this
value is approximately equal to diameter of the largest nerve fiber in the image, and the
length of spurs are not expected to exceed the nerve fiber diameter. Bifurcation points
are detected through convolution of the skeleton image with a unity kernel of size 3 × 3,
and detection of points with a value greater or equal to 3. Nerve fiber centerlines between
the bifurcation points are then labeled automatically based on their length (i.e. number of
connected pixels) and tortuosity of each one is calculated correspondingly. In Sect. 4.3,
we will evaluate the tortuosity measurement technique on a specific corneal nerve fiber
dataset.

2.4 Detection of nerve fiber branches on orientation scores

The curvilinear topology and geometry at corneal nerve fiber branches include impor-
tant landmarks for further disease study. It is, therefore, useful to detect all the branch-
ing points for quantitative analysis of nerve fibers. In this section, the corneal nerve fiber
branches are located by employing the orientation response based branching detection in
orientation scores [41]. An orientation score data representation is obtained by mapping
a 2D image into a 3D space of positions and orientations R

2
� S1 via a wavelet-type

transform. This transform is completed through convolution with an anisotropic wavelet
ψ ∈ L2(R

2):
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Fig. 4 Examples of our corneal nerve fiber segmentation and tortuosity measurement on the CNT dataset

Uf (x, θ) =
∫

R2
ψ(R−1

θ (y−x)) f (y)dy,

where Rθ =
(

cos θ − sin θ

sin θ cos θ

)
denotes a counterclockwise rotation over angle θ . In this

work, we choose cake wavelets [27] for ψ . Cake wavelets are quadrature filters. The real
part shows the locally symmetric structures like curvilinear ridges/lines, while the imaginary
part represents the antisymmetric structures like edges. For branching detection, we choose
the real-valued wavelets to analyze the nerve fiber geometry. The orientation scores are
functions defined on R

2
� S1 by lifting 2D images to the 3D coupled space of positions

and orientations. When the image data is transformed to orientation scores, the anisotropic
convolution kernels will perform the corresponding rotations and translations that follow
the group operations defined in R

2
� S1. Therefore, the rotating coordinate system and the

rotating-invariant operations can always match each other for the processing of orientation
scores.

In this work, we use 24 discrete orientations (from 0 to 2π) to map corneal nerve
fibers into the orientation score representation. As shown in Fig. 4b, curvilinear struc-
tures like corneal nerve fibers are lifted into a 3D orientation space (x, θ) with a
corresponding orientation response Uf (x, θ) at each spatial location x. To avoid the
false detection of topological outliers, the scores of dominant orientations are obtained
by only considering the magnitude larger than a threshold value t = 1.2σ , where
σ denotes the standard deviation of Uf . In general, a corneal nerve fiber branch-
ing point splits into three separate segments at different directions. Thus, it can be
detected by automatically counting the number of dominant orientations. In the ori-
entation score domain, since we already have the responses Uf (x, θ) of each pixel
location at different orientations θ , we can efficiently obtain the number of domi-
nant orientations by detecting the local maximum along the θ dimension, as shown in
Fig. 4c, d.

In principle, the proposed branching detection module also works on original images.
However, the accuracy of the detection on original images can be affected by image noise
and background artifacts. The low contrast of nerve fibers in original images results in
relatively weak orientation responses, while the enhanced nerve fibers can produce high
responses at branches. To better illustrate the improvement, in Fig. 5, we show the quali-
tative performance of branch detection on an original image and an enhanced image. We
can observe that the orientation responses at branches of the original image are in general
lower than the same branches in the enhanced nerve fiber images. The noise and background
artifacts in the original image cause inaccurate responses due to unstable local maximums.
Thus, the missing detections at low-contrast junctions can easily happen without enhance-
ment.
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Fig. 5 Comparison of the branch detection performance between a original image and b enhanced image.
Blue points indicate correct detections and red points indicate missing detections

3 Validation and experimental results

3.1 Materials

We use the corneal nerve fiber images of Maastricht (CNM) dataset provided by The Maas-
tricht Study [42], the Netherlands. This dataset includes 142 composite images (92 healthy
individuals with normal glucose metabolism (NGM), 4 impaired fasting glucose, 16 impaired
glucose tolerance, and 30 type-II diabetes (DM2) subjects) with a resolution of 1536 × 1536
pixels. In each of the images, the nerve fibers were manually annotated. The binary mask of
each image was also manually created to define the region of interest.

We also validate both our segmentation and tortuosity measurement methods on the corneal
nerve tortuosity (CNT) dataset [43] which consists of 30 images from the sub-basal corneal
nerve plexus, acquired in normal (6 images, 20%) and pathological subjects, including dia-
betes (10 images, 33.3%), pseudoexfoliation syndrome (8 images, 26.7%), and keratoconus
(6 images, 20%). This dataset was collected using the Heidelberg Retina Tomograph II with
Rostock Corneal Module (HRTII32-RCM) confocal laser microscope (Heidelberg Engineer-
ing GmbH, Heidelberg, Germany). All the images consisting of 384 × 384 pixels cover an
area of 400 × 400µm. The manual grading of the corneal nerve tortuosity is provided for
this dataset.

3.2 Performance measurements

To measure the performance of corneal nerve fiber classification, we calculate the following
metrics: true positives (TP), true negatives (TN), false negatives (FN) and false positives
(FP). A pixel that is classified as nerve fiber in both the ground truth and the segmentation
result belongs to TP, while a pixel that is classified as non-fiber in both the ground truth and
the segmentation result is considered as TN. A pixel which is wrongly identified as non-fiber
in the segmentation result belongs to FN, while a non-fiber pixel which is classified as a fiber
pixel in the segmentation result is taken as FP.
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The statistical performance measurements, including sensitivity (Se), specificity (Sp), and
accuracy (Acc), are used to evaluate the global performance of a binary classification system.
These measurements are given by

Se = TP

TP + FN
, Sp = TN

TN + FP
, Acc = TP + TN

N
,

where N = TN + TP + FN + FP. The Dice similarity coefficient (DSC) and the Matthews
correlation coefficient (MCC) within the field of view (FOV) are reliable metrics for evalu-
ating an unbalanced dataset with two classes of different sizes. In fact, this is the case in the
corneal nerve fiber segmentation, where the percentage of nerve fiber pixels is only around
9–14%. The DSC only counts true positives in both the numerator and denominator, and the
MCC is a correlation coefficient between the manual segmentation and the ground truth. The
DSC and MCC are given by

DSC = 2TP

2TP + FP + FN
, (3)

MCC = TP/N − S × P√
P × S × (1 − S) × (1 − P)

, (4)

where S = (TP+FN)/N , P = (TP+FP)/N . The MCC value ranges from − 1 (completely
incorrect classification) to 1 (perfect classification), and DSC from 0 (completely incorrect
classification) to 1 (perfect classification). Moreover, the precision–recall curve (PRC) is used
to evaluate the quality of the obtained nerve fiber probability maps since it is very suitable
for measuring the performance of imbalanced datasets like corneal nerve fiber images. The
PRC is formed by plotting the precision (TP/(TP + FP)) versus the recall (TP/(TP + FN))
with respect to the varying threshold value t . All the performance measurements are taken
within the FOV.

4 Experimental results

4.1 Corneal never fiber segmentation on the CNM images and challenging structures

In Fig. 6, we show qualitative corneal nerve fiber segmentation results on the CNM dataset
using our proposed method. We can see that our method achieves very good segmentation
performance on extracting corneal nerve fibers. Our method is able to preserve tiny structures
with low contrast and high illumination changes, as shown in the small patches in column
3–4 of Fig. 6. Even small disconnections at low-visible regions are recovered after enhance-
ment. Although the corneal nerve fiber images exhibit background artifacts and high-noise
characteristics, we can still observe from Fig. 6 that those factors have limited influences to
the segmentation performance. This is due to that most of the false positives actually come
from the missed annotation of weak nerve fiber structures in the ground truth images. This
indicates that the proposed FCN framework is capable of preserving the corneal nerve fiber
structures and meanwhile suppressing the background noise.

In Fig. 7, several examples of complex nerve fiber structures are given to show the enhance-
ment ability of the proposed method. In rows 1 and 3 of Fig. 7, we can observe that our method
is better at dealing structures with strong occlusions. The background noise and non-fiber
artifacts are reduced after enhancement. In row 2, we see that tiny nerve fibers with discon-
nections are better highlighted when compared to the results from the other two methods.
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Fig. 6 Examples of corneal never fiber segmentation results on the CNM dataset. Row 1: original images;
Row 2: enhanced nerve fiber probability maps; Row 3: segmentation performance maps compared with ground
truth. Columns 1–2: two original images (565 × 584) with boundary clipping. Columns 3–4: two zoomed
image patches (170 × 150). Green represents the correctly segmented structures (TP), blue indicates the
missing structures (FN), and red means the wrongly segmented structures (FP)

Fig. 7 Examples of corneal never fiber enhancement results on challenging patches from the CNM dataset.
Column 1: original image patches 380 × 380; Columns 2–4: the enhanced nerve fiber probability maps from
the proposed method, Frangi vesselness [44] and LIDOS [29], respectively

123



Eur. Phys. J. Plus         (2020) 135:266 Page 11 of 16   266 

This shows that the proposed deep FCN-based segmentation method produces high-quality
nerve fiber images for subsequent analysis.

4.2 Quantitative evaluation of the segmentation performance

To investigate the influence of our proposed corneal nerve fiber segmentation method, we
compare our segmentation results on the 142 corneal nerve fiber images with the results
obtained from the state-of-the-art segmentation approaches [29,44] as shown in Table 1. The
sensitivity, specificity, DSC and MCC metrics are used to evaluate the global performance
since they are suitable for evaluating the corneal nerve fiber images which have imbalanced
classes. For the sake of equal comparison, we obtain the best performance of the Frangi
vesselness and LIDOS (left-invariant derivative filters in orientation scores) filters with the
same preprocessing steps as in our approach. We can see that the proposed method achieves
significantly higher DSC and MCC values than the other methods. All the three methods
obtain very high specificities due to the large portion of background pixels in the corneal
nerve fiber images. Nevertheless, the proposed method still achieves the highest sensitivity
of 0.8632, DSC of 0.8433 and MCC of 0.8431 at the highest specificity of 0.9978 compared
to the other two methods.

The receiver operating characteristics (ROC) curve is often used to evaluate the quality of
a binary segmentation. However, in this work we employ the precision–recall curve (PRC)
as an alternative since it is more suitable to represent the segmentation performance of the
extremely imbalanced corneal nerve fiber images. Figure 8 shows the precision–recall curve
of the corneal nerve fiber segmentation results. We can see that the proposed method gives
much better and stable performance in the low threshold value region (right part of Fig. 8).

Table 1 Quantitative
measurements of the proposed
reconnection method on gaps
from the automatic segmentation
results

Methods Sensitivity Specificity DSC MCC

Frangi 0.7629 0.9962 0.7284 0.7319

LIDOS 0.8327 0.9925 0.7320 0.7400

Proposed method 0.8632 0.9978 0.8433 0.8431

Fig. 8 Precision–recall curve of
the corneal nerve fiber
segmentation results. From left to
right, the threshold value
decreases from 1 to 0
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Fig. 10 Examples of our corneal nerve fiber branching detection approach on the CNT dataset. Image intensity
values are reversed for better visualization

4.3 Validation of the tortuosity biomarker measurement

To better validate the proposed nerve fiber segmentation and tortuosity measurement tech-
niques, the CNT dataset is processed to evaluate the performance of our pipeline. Since this
dataset only provides the tortuosity grading of each image without having any manual anno-
tation of the nerve fibers available, we employ a crossing-training to obtain the segmentation
results using the classifier trained from the CNM dataset. Figure 9 shows the qualitative
performance of our segmentation method on this dataset. We can observe that most of the
fibers are perfectly extracted from those CNT images based on our trained classifier from the
CNM dataset.

Afterwards, we calculate the tortuosity measure κμ of each image in the CNT dataset using
our tortuosity measurement method described in Sect. 2.3. In Fig. 9, we can see examples
of showing the measured fiber tortuosity values 0.0938, 0.2108 and 0.8539, respectively, on
three typical images from different stages labeled by experts. The tortuosity measurements
intuitively show the fiber tortuosity variations of different cases, which indicate the reliability
of our tortuosity calculation method.

4.4 Validation of the branching biomarker detection

The orientation score-based approach described in Sect. 2.4 provides us with an efficient way
for localizing corneal nerve fiber branches. Based on the FCN-enhanced nerve fiber map, the
orientation responses at each branching location are better optimized under the well-preserved
curvilinear continuity. Unlike other curvilinear structures in medical images, the corneal
nerve fiber junctions in general only include branching structures (with three directions) but
not crossings (with four directions). Thus, in our setting we mainly consider the detection
of critical location with three maximum responses. We evaluated the nerve fiber branching
detection approach on both the CNM dataset and the CNT dataset. To quantitatively evaluate
the detection performance, we manually labeled all branching points of 20 images from
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each dataset for comparing with the automatic detection approach. The proposed pipeline
successfully achieves high accuracy of 98.3% and 99.5% on the CNM and CNT images,
respectively. In Fig. 10, we provide typical examples from both datasets to qualitatively
present the performance of branching detection on corneal nerve fibers. Figure 10a shows
the result on an image from the CNM dataset and Fig. 10b–e shows the results on four images
from the CNT dataset. We can observe that almost all the branching points in these images
are accurately located using the orientation score responses based method.

5 Conclusion

In this work, we proposed a fully automated solution for corneal nerve fiber touristy mea-
surement and branching detection in microscope images. In the first phase, an automatic
deep learning-based framework was proposed to enhance and extract corneal nerve fiber
images. We applied intensity normalization to effectively address the homogeneity of the
images. A FCN was proposed to address the challenges of low nerve fiber visibility and
high-background artifacts. The proposed framework achieves promising quantitative and
qualitative results based on the evaluation on two datasets. In the second phase, an auto-
matic tortuosity calculation and an accurate branching detection methods were established
to extract valuable geometric and topological biomarkers from corneal nerve fiber images.
Both methods have been validated on the CNM and CNT datasets to show their effectiveness
and reliability. In the future, we will use those extracted biomarkers to analyze clinical data
for disease discrimination.
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