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Chapter 1
Networks

1.1 Motivation

In this day and age, networks are all around us, ranging from the transportation
network we use, through the online social networks our apps connect us to and the
internet infrastructure that makes it possible, to the network of billions of neurons
that forms our own brains. Big or small, man-made or natural, tangible or not,
networks are everywhere. It is thus crucial to understand how they are structured
and how they operate. How do I get from A to B in my city as fast as possible?
Why and how do blackouts happen? What does my own personal social network
look like? How many �handshakes� does it take to get from me to the president of
my country, or to my favorite celebrity instead? Who to target in a word-of-mouth
type advertising strategy? How can a meme spread around the globe within just a
day, and how can we prevent an epidemic from doing the same? These are just a
few of the many interesting and often challenging problems that have captured the
interest of researchers in multiple �elds in the past several decades. Due to networks
occurring in many di�erent disciplines, such as biology, social sciences, physics
and mathematics, the study of networks has been a multidisciplinary collaboration.
This thesis in particular is inspired mostly by social networks, but lies within
mathematics and takes a theoretical approach.

For a mathematical analysis, as a �rst level of abstraction, we can represent any
network as a graph, to focus solely on the interactions happening and exclude
the details. Of course, as any model, this is only a caricature of reality, as the
details matter in many applications. Graphs consist of elements, called vertices
(singular: vertex), e.g. people, and relations between pairs of elements, called edges,
e.g. friendships. In certain cases, this basic model can or needs to be extended to
re�ect the network better, including other crucial information. For example, the
relation between elements is sometimes asymmetric, think of following someone on
Twitter or a neuron exciting another one: there is clearly a sender and a recipient,
which we can represent as a directed edge. As another example, consider the map
of your country, and major cities connected by highways. Clearly, there is a spatial
element in this network, and these highways have di�erent lengths and travel times,
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1 Networks

which we can represent as a number attached to the edge called its length or weight.

(a) A small friendship network: Zachary’s karate club
Image source: [3], used under Creative Commons

(b) A large network: the Internet Map
Image source: OPTE project [196], used un-
der Creative Commons

Figure 1.1:Visualization of a small and a large network

This level of abstraction is su�cient for a small network, such as the friendships
in a high school class or a club. A visual representation of the graph of friendships,
see Fig. 1.1, presents all the information clearly and in a way that a human can easily
understand. However, when the network is as vast and complex as the internet
or your brain, this may be too much information. Mapping each connection is
tedious at best and impossible at worst, due to the network itself changing with
time and �nite data storage capacity. Further, this data often needs to be further
processed to answer questions relevant to applications, often related to the structure
or functionality of the network. Although one can run randomized simulations
repeatedly and observe general trends in behavior, due to limited computation
capacity, working with such large data is again cumbersome. This is why we
often apply another level of abstraction to complex networks and model them with
random graphs.

Modeling a network using a random graph is often highly bene�cial. Rather
than prescribing each connection, we instead only specify rules according to which
connections can be made and generate them randomly, to mimic the diversity seen
in complex networks. This clearly reduces the amount of data that needs to be
stored. It also allows us to incorporate statistically observed properties of real-life
networks, which are relatively easy to obtain from large network data. Assuming
that the de�ning features of the real-world network have been captured by the
principles of the model, analyzing the model gives a good prediction of further
properties of the real network. These predictions can then be veri�ed by running
a smaller amount of simulations using the real network data, which may lead to
the conclusion that the chosen random graph model is a good �t and predicts the
functionality of the network well, or that the real network has more structure that
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1.2 Empirical studies on networks

has not been taken into account in the model.
In the remainder of this chapter, we focus more on this modeling aspect. In

Section 1.2, we informally discuss some of the empirically observed properties of
networks that random graph models are based on, as well as some of the network
behavior that one aims to study using these models. In Section 1.3.1, we then provide
a precise mathematical de�nition of these concepts. In Sections 1.3.2 and 1.3.3, we
introduce some of the random graph models that have been historically used to
study complex networks and the particular model that this thesis focuses on.

1.2 Empirical studies on networks

In this section, we discuss some of the properties observed in real-world networks,
as well as network behavior that are often subject to study.

1.2.1 Empirical properties of networks

Despite the di�erent origin and function of complex networks, it is striking that
many of them share similar properties. While this list is nowhere near exhaustive,
we introduce a few recurring themes.

Power laws. One of the easiest network statistic to observe is the number of
connections of an entity, called its degree. While the degree of a single vertex does
not tell us much about the network, looking at the entire degree sequence and
the resulting empirical distribution can already provide valuable insight. Our �rst
observation is that most real-world networks are sparse: the average degree remains
bounded even with growing network sizes. Further, the higher the variability of the
degrees, the more the heterogeneity in the role vertices take, which heavily in�uen-
ces the structure of the network. Early empirical observations, e.g. [80, 100, 168]
suggest that the degree distribution of many networks is �scale-free�, i.e., follows a
power law: the fraction p(k) of vertices with degree k is roughly proportional to
k� � for some � > 1. Intuitively, a log-log plot of degree frequencies results in a
close to straight line with slope � � (see Fig. 1.2). More rigorous de�nitions and
statistical testing however gave rise to doubts about these observations, leading
to a decade-long debate in the literature [5, 15, 62, 64, 137, 144, 151, 161, 195, 206].
Recent papers have concluded that while purepower laws with p(k) = ck� � for k
large enough are rare [50], power laws de�ned as regularly varyingdistributions
p(k) = k� � `(k) with a slowly varying function1 `(k) are quite common [202].

The constant � is called the power-law exponentand is an important metric of
the distribution: the lower this exponent, the �heavier the tail�; a heavy tails means

1We call the function ` : R+ ! R+ slowly varying if for all c > 0, ` (cx)=`(x) ! 1 as x ! 1 .
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1 Networks

(a) Autonomous systems of the Internet [142] (b) Facebook friendships [140]

(c) Protein-protein interaction network [141] (d) ArXiv collaboration network [139]

Figure 1.2:Log-log plot of degree distribution in various real-life networks
Plots from KONECT [143], used under Creative Commons

the degrees are heterogeneous and large values are not uncommon. In a network of
size n, the largest degree is of the order n

1
� � 1 , i.e., it grows polynomially with the

network size. The highest degree vertices, with polynomially large degrees, are cal-
led hubs, and their presence heavily in�uences network structure and functionality.
For many real-world networks, the estimated power-law exponent is � 2 (2; 3),
which means the average degree remains �nite but the variance diverges as the
network size n ! 1 .

Power laws are also called Pareto distribution or Zipf’s law, and arise naturally
not only in networks but in areas such as the frequency of words in languages, the
distribution of wealth, city sizes, etc. [168]. They also explain the Pareto principle,
the most common example of which is that 20% of the population holds 80% of the
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wealth. A possible explanation for why power laws arise and are so common is the
�rich-get-richer� e�ect, or preferential attachment [14] rule: for example in a social
network, an already popular person is more likely to be introduced to new people
through one of their already existing connections.

Small-world phenomenon or �six degrees of separation�. Social scientists
have observed the increasing connectedness of people in the 20th century when
technological improvements allowed people to travel faster and farther than ever
before. This led to the idea of a �small world� and the conjecture that any two
people in world can be connected by a chain of acquaintances with at most �ve
intermediaries, i.e., six connections. A notable mention of this from the �folklore�
is the short story Láncszemek (Chain links)[131] by writer Frigyes Karinthy from
1929, where he describes playing a game of �nding a short connection between
famous people. In the 1960s at Harvard, Stanley Milgram, likely inspired by his
colleagues, conducted a letter experiment [160] to demonstrate the small world
phenomenon in the USA, distributing letters to random senders and asking them to
forward to someone they know on a �rst name basis and is more likely to know the
target person. Of those letters that reached the target, it took on average six steps.
While they themselves did not use the expression �six degrees of separation�, their
results did contribute to its spread. See e.g. [204] for more evidence of small-world
networks.

Figure 1.3:Histogram of average degrees of separation in the Facebook graph
�Three and a half degrees of separation� from the Facebook Blog [79]

For network scientists, it is not only an interesting game to �nd the shortest path,
but a very practical problem to understand the distance structure of a network. The
reason is that distances play an important role in all kinds of networks, including
social, transportation and communication networks, such as personal contacts, the
road network, the power grid or the internet. Applications such as transporting pe-
rishable goods and reducing communication delay require us to build and structure
networks in a way that results in su�ciently small distances.
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Clustering and communities. In social networks, it is more likely for two people
to know each other if they share a common acquaintance than for two people picked
randomly. Intuitively, this is well-explained: it is likely that these two people have
been introduced by their common acquaintance, or maybe even belong to the same
group of friends. In the graph that represents this social network, these three people
form a triangle, and it has been observed [205] that many real-world networks
contain signi�cantly more triangles than �purely random� graphs (see the Erdfis-
RØnyi random graph and the con�guration model in Section 1.3.2 below). This
phenomenon is often expressed by saying that real-world networks are highly
clustered(we give a formal de�nition of clustering in Section 1.3.1). There are
di�erent possible reasons why this happens, one of them being geometry. This
may mean actual geographic distances, in the case of a transportation network for
example, where nearby cities or villages are more likely to be connected by a direct
road. Geometry may also refer to a more abstract topology, e.g. one can imagine
a metric space of the interests of people, where people with similar interests are
more likely to know each other due to these common interests.

Another possible explanation is the presence of communities [97]: small parts
of the network that are more densely connected than the rest. It has been demon-
strated [104, 105] that several real-world networks are in fact well explained by
an underlying structure of entities and communities that the entities are part of
(see Fig. 1.7). This underlying structure is represented by a bipartite graph, the two
partitions representing the entities and the communities, and a connection, which
is only allowed between an entity and a community, means that the entity is part
of the community. Building a model on this underlying bipartite structure has led
to random intersection graphs that we introduce in Section 1.3.2.

Despite the belief that communities are present in real-world networks, iden-
tifying them is a highly nontrivial task. Due to the uncertainty in the de�nition
of �community�, community detection is doomed to remain ill-de�ned, yet many
algorithms have been designed to tackle this problem. For a more in-depth overview,
see the surveys [88, 89] and a more recent performance comparison [95]; here, we
brie�y mention some of the more popular methods. Inspired by statistical clustering
algorithms, spectral clustering [145, 189, 203] makes use of the spectrum of the
adjacency matrix, however it has limited applicability for sparse graphs. Statistics-
based approaches also include statistical inference: communities are estimated by
�tting the parameters of a null-model to the network, where the most commonly
used null-model is the degree-corrected stochastic block model [134]. One of the
most popular community detection algorithm is based on maximizing modularity
[165] which is a function designed to describe the quality of a partition. The biggest
issue with this method is its �resolution�, i.e., that it favors certain community sizes,
which can be improved upon by a hierarchical [24] or a multi-resolution [10, 180]
approach. There is a large class of community detection algorithms that are based
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1.2 Empirical studies on networks

on di�erent dynamics on the network. One of these are spin glass dynamics [159,
180] borrowed from statistical physics, in particular the Absolute Potts Model [184].
Several approaches build on random walks and local exploration of communities,
such as the walkmap [129, 179] or InfoMap [185, 186, 201]. Due to their local
perspective, these methods can also be used or extended to detect overlapping
communities, in contrast with the majority of literature that search for a partitionof
vertices, i.e., an assignment where each vertex belongs to exactly one community. A
similar local perspective is taken by cluster quality optimization algorithms [17, 61,
122, 148, 149]. Finally, we mention the clique percolation method [68], designed to
unveil highly connected overlapping communities, which we discuss in conjunction
with our model later in Section 2.6.1.

1.2.2 Network processes and phenomena

In this section, we introduce a few aspects of network behavior that are important
to understand in applications.

Phase transitions. The concept of phase transitionoriginates from the physics
literature and refers to a sudden change in model behavior as a parameter changes
continuously. Such examples include the states of matter as the temperature changes,
or a metal losing its magnetization as a result of heating. The parameter value
(or small interval) where the change occurs is called the critical value (or critical
window). On networks, several structural properties as well as dynamics may
undergo a phase transition, see the survey [71] and the references therein.

In this thesis, we are most interested in phase transitions in terms of the con-
nectivity structure, such as the giant component phase transition [75, 162, 163,
192] or the connectivity phase transition [82, 147, 182], brie�y explained below.
The giant component phase transition means that the network goes from having
only small components to the emergence of one large component while the rest of
the components are still small; the large component is called the giant component
and its size grows linearly with the number of vertices as the network size grows.
The connectivity phase transition means that the network goes from disconnected
(whether it has a giant component or not) to fully connected.

Percolation. Percolation[40, 102] also has its roots in physics: it has been intro-
duced in the �fties in [49] as a probabilistic model to study physical phenomena
of a ��uid� spreading through a �porous medium�, where the spreading behavior
is largely determined by properties of the medium. Percolation allows us to study
applications such as adsorption of gas or liquid into a porous rock and spreading
of a disease through a social network in a uni�ed, abstract way. The �medium� is
represented by a graph, which is made �porous� by randomly removing vertices or
edges. While many variations of the model exist, in this thesis, we focus on Bernoulli
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site or bond percolation, respectively, where each vertex or edge is retained with
the same probability � and otherwise removed, independently of everything else.

While percolation is the simplest possible dynamic on a graph, its study is in fact
highly nontrivial and has led to deep and interesting mathematical results. Due to
the vastness of the literature, we can only mention a few results. Percolation was
�rst studied on in�nite (deterministic) lattices, e.g. Zd , the d-dimensional integer
lattice with nearest-neighbor connections, and it has been shown to exhibit a phase
transition as we vary the retention probability (see e.g. [102] for an overview of early
results). Identifying the critical point of Z2 was already nontrivial [108, 107, 136].
Percolation required the development of many new techniques and identities, such
as the Harris inequailty [110], FKG inequality [87] and van den Berg-Kesten-Reimer
inequality [198, 181], methods for proving uniqueness of the in�nite cluster [51],
continuity of the percolation function [187] and the lace expansion [86, 109] that
has been used to resolve mean-�eld behavior of Zd for large d.

While research into percolation on lattices continues, starting with [77], rese-
archers also took interest in percolation on �nite graphs. The literature is again
vast, including percolation on �nite lattices [45, 46, 47], regular graphs [99], dense
graphs [37] and complex networks models [8, 90, 128, 169]. It is straightforward to
apply the percolation model for a �nite graph and even a random graph, but less
straightforward to de�ne a phase transition. On Zd , the phase transition can easily
be characterized: below the critical point, all remaining connected components are
�nite, while above the critical point, there is a unique in�nite connected compo-
nent. Clearly, on a �nite graph, no in�nite component can exist. Hence the phase
transition on �nite graphs is commonly re-interpreted in the large graph limit as
the giant component problem for the percolated graph, and consequently often
exhibits an analogous phase transition.

In the paragraphs below, we motivate percolation on complex networks by
showing several possible applications, including attack vulnerability and spreading
processes.

Attack vulnerability and robustness. Many networks are subject to outside
e�ects that result in elements of the network �failing�, such as power lines damaged
by extreme weather conditions, roads being closed down due to renovation work,
or hacker attacks on the internet infrastructure. Even when failures happen locally,
a ripple e�ect may take place and a�ect the network on a more global level due to
rerouting the �ow of tra�c or energy. The above examples also highlight that the
failures may happen at random or as a result of a targeted attack aimed to cause
the most possible disruption. For network operators, it is important to understand
how such failures or attacks a�ect the functionality of the network as a whole; in
particular, how the connectivity structure is a�ected, which is often described as
attack vulnerability or robustness of the network. Informally, a network is robust
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and withstands attack well if it remains �well-connected� after some failures happen.
Intuitively speaking, we expect a network to be more robust against a randomized

attack than against a targeted one. For the latter, it is a common strategy to target the
nodes with the highest degrees to remove many connections at once, which is highly
e�cient from the point of view of the attacker, especially in a network where degrees
are highly variable or follow a power law. In this thesis, we focus on randomized
attacks, modeled by percolation, and we interpret a �well-connected� network as one
that has a giant component, that is, we investigate the giant component problem for
the percolated graph and call the network robust when a giant component persists
for any positive retention probability � , i.e., when there is no phase transition.
This problem has been investigated for complex network models [4, 52, 63, 172]
and it is conjectured that robustness happens in scale-free networks, where scale
free in particular refers to networks with power-law degrees with some power-
law exponent � 2 (2; 3), i.e., when the average degree remains bounded but the
variance of the degrees diverges.

Spreading processes. Spreading processes encompass a large class of network
dynamics, both in discrete and continuous time, including di�erent models of epide-
mic and information spreads such as SI, SIS and SIR epidemics, threshold contagions
and �rst passage percolation (the latter can also be applied to obtain results on
distances in the graph). For an overview on the topic of epidemic spreading and its
applications, see [176, 200] and the references therein.

For our purposes, we narrow our scope and focus on the discrete-time SI-epidemic
[156, 157] model the we describe shortly, and we explain its relation to the bond
percolation model [135, 164]. (With slight modi�cations, we can also relate the
SI-epidemic and the site percolation model.) We can think of the SI-epidemic as
a simplistic model for the spread of a rumor or meme through a social network
or the spread of a computer virus. This can be considered as a special case of an
information cascade [101, 106] where all contact probabilities are equal, however
introducing information cascades in full generality is outside the scope of this thesis.

The SI-epidemic obtains its name by the possible states of individuals: susceptible
(S) and infected (I). All individuals start as susceptible and once a susceptible
individual is infected, it never recovers. At time 0, a single individual is chosen
to be the source and becomes infected. Afterwards, in each discrete time step, all
newly infectedindividuals attempt to make an infectious contact along all incident
edges, and each of these contacts succeed independently with a �xed probability p.
When a successful contact is made to a susceptible individual, it becomes infected
and tries to spread the infection in the next time step, while the previously infected
individuals do not attempt to spread the infection anymore. The process terminates
when no more new individuals are infected (which happens at the latest by time
n � 1 in a graph with n vertices). (We note that this dynamic can also be considered
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as an SIR-epidemic, where ‘R’ stands for a recovered or removed state, with an
infectious period of one time unit. In this case one is interested in the �nal recovered
cluster that contains all individuals that have ever been infected.)

We now highlight how percolation is related to the SI-epidemic. One of the most
important metrics of such an epidemic is the size of the �nal infected cluster: the
number of infected vertices when the process terminates. An outbreak is considered
�large� when it a�ects a linear proportion of the vertices. The �nal infected cluster
is in fact the same as the connected component of the source of the infection under
bond percolation with edge retention probability p. This is because for most edges,
we only attempt to spread the infection along it once, thus we can decide in advance
whether the contact along this edge will be successful. The only edges along which
contact is attempted more than once are those between individuals infected at the
same time, that try to infect each other simultaneously. However, these individuals
are both already infected and belong the cluster of the source, hence the outcomes
of the attempted contacts between them do not matter.

Due to this relation between components of percolation and the �nal infected
cluster, epidemics display a phase transition analogous to that of percolation at the
so-called epidemic threshold, i.e., the critical transmission (percolation) probability.
Above the epidemic threshold, there is a positive probability for a large outbreak;
in fact, a large outbreak occurs when the source is chosen in the giant component
of percolation. Below the epidemic threshold, a large outbreak is not possible.
However, it has been observed that in scale-free networks, such a threshold is
absent [33, 178, 177], a large outbreak is always possible, and the epidemic even
spreads at a faster speed [16]. The lack of an epidemic threshold is in fact closely
related with the robustness of the network with respect to bond percolation. The
faster epidemic spread on the other hand suggests the ultra-small world nature (see
Section 1.3.1 below) of scale-free networks.

1.3 Modeling of networks

In this section, we build the mathematical foundation of modeling complex networks
by giving a precise de�nition of the properties discussed above as well as introducing
some historical random graph models used in this �eld.

Large graph limit. Based on the idea that real-world networks may be very
large, we often consider a family of random graphs (Gn )n � 1 with size n ! 1 ,
constructed according to the same rules so that properties of interest remain
consistent. In particular, we often require convergence of the empirical degree
distribution, as follows. Let d = ( d1; : : : ; dn ) denote the degree sequence of Gn

and let U be a vertex of Gn chosen uniformly at random. We can then repre-
sent the degree distribution of Gn with the random variable Dn := dU , since
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P(dU = k) = jf v : dv = kgj=n. We assume that (Dn )n � 1 converges in distribu-
tion to a random variable D with mass function P(D = k) := lim n !1 P(Dn = k),
and that D has a proper (complete) distribution on the non-negative integers. We
often also require that the average degree converges: E[Dn ] ! E[D ] < 1 .

1.3.1 Network properties

We now extend some of the intuitive concepts introduced in Section 1.2 and provide
more rigorous de�nitions where necessary.

Degrees and power laws. For a positive random variable X , we say that it is
regularly varying with exponent � if P(X � x) = `(x)x1� � for some function
`(x) that is slowly varying at in�nity, i.e., `(cx)=`(x) ! 1 as x ! 1 for any
constant c > 0. Loosely speaking, a power-law distribution refers to a regularly
varying distribution, but more strictly a pure power law is the special case when
`(x) is constant for x large enough. The power-law exponent � determines which
(fractional) moments of the distribution exist: exactly the moments of order strictly
smaller than � � 1 are �nite. We say that a graph sequence (Gn )n � 1 has power-law
degrees when the limiting degree distribution D follows a power law. For a given
real-world network of �nite size, the de�nition becomes murky, see the previous
discussion about the power-law debate. One possible remedy is requiring a �t
to a power law on a �nite interval only, say, with some constants 0 < c 1 < c 2

and indices k1 < k 2, we require that c1k1� � � P(Dn � k) � c2k1� � for all
k1 < k < k 2.

Distances and small worlds. First let us specify what we mean by distances in
a graph. For two given vertices u; v, their distance dist(u; v) is the length of the
shortest path between these two vertices, if they are connected at all; otherwise their
distance is in�nity. When we talk about typical distancesin a graph, we consider
two uniformly chosen vertices U; V , and consider their distance Hn := dist( U; V),
conditionally on the two vertices being connected. The diameterof the graph is
the largest �nite distance between any two vertices of the graph, i.e., diam(G) :=
max f dist(u; v) : u; v connectedg.

To de�ne a �small world�, we reach back to the intuition behind the �six degrees
of separation�. It is based on the idea that when you consider friends of friends, and
their friends, in each step the number of people reached is more or less multiplied
by a constant: the average number of acquaintances. Hence the amount of people
we can reach grows exponentially with the degrees of separation, and it only takes
a logarithmic number of connections to reach the entire population. This logarithm
is what we hinge on in the formal de�nition. We say that a graph sequence with size
n ! 1 has the small-world property if the typical distances grow proportionally
with logn, i.e., Hn =logn converges in probability to some (model-speci�c) positive
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constant; this allows for lower order �uctuations. In small-world graphs, often the
diameter is also logarithmic.

Having logarithmic distances is a non-trivial result and indeed quite small for a
network with �nite average degree, for example compared to a

p
n �

p
n square

grid where the typical distance is proportional to
p

n. (This also suggests that in a
way, small-world networks are �disorganized� [166, 205].) However, some networks
exhibit even smaller distances, and such a network is often called an ultra-small
world. Formally speaking, this sometimes refers to any sub-logarithmic typical
distance, i.e., whenever Hn =logn converges to zero in probability; sometimes ultra-
small world speci�cally means log log distances, i.e., that Hn =log logn converges
to some (model-speci�c) positive constant in probability. However, the diameter of
an ultra-small world graph may still be logarithmic. A network being an ultra-small
world is a very strong result indeed: in practice, for the size of any real-world
network, its double logarithm is essentially a constant.

Clustering. Clustering, in essence, describes the amount of triangles in the graph
relative to its potential by a number between 0 and 1, where 0 is a triangle-free
graph and 1 is a complete graph (or disjoint union of cliques). There are several
notions used in the literature; in this thesis, we focus on the global clustering
coe�cient and the (average) local clustering coe�cient. Global clustering counts
the total number of triangles � in the graph and compares it to the number of paths
of length two, also called wedges, W =

P n
v=1

� dv
2

�
=

P n
v=1 dv (dv � 1)=2. For

normalization purposes, the global clustering coe�cient is de�ned as Clglob(n) :=
3� =W. Intuitively, it captures the conditional probability of �nding a triangle if
we know that we have found a connected triple (a wedge or triangle). In contrast,
local clustering coe�cient is de�ned vertex by vertex: it compares the number of
triangles � v that the vertex is part of to the number of wedges Wv that the vertex
is the centerof, i.e., Wv =

� dv
2

�
, where dv denotes the degree of vertex v. We de�ne

the local clustering coe�cient of v as Clv := � v =Wv ; if dv < 2, then Clv := 0 .
Intuitively, the local clustering at v captures the probability that two neighbors
of v chosen uniformly at random are also directly connected. The average local
clustering coe�cient is simply the average of the clustering coe�cient of each
vertex: Cl loc(n) := 1

n

P n
v=1 Clv . Whichever notion of clustering is used, we call a

graph sequence highly clustered when lim inf n !1 Cl(n) > 0.

Percolation and robustness. We formally de�ne bond (resp., site) percolation
on a graph G as follows. Fix the edge (resp., vertex) retention parameter � 2 [0; 1]
and retain each edge (resp., vertex) independently with probability � and remove it
otherwise. (We note that when a vertex is removed, so are all incident edges.) We
denote the random subgraph formed by the retained edges (resp., spanned by the
retained vertices) by Ge(� ) (resp., Gv (� )). In particular, Ge(0) yields a graph of
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isolated points (resp., Gv (0) yields the empty graph), and Ge(1) (as well as Gv (1))
yields the original graph.

In this thesis, we will study the phase transition of percolation as an emerging
property in the large graph limit n ! 1 . In particular, we look for a value of � e

c
(resp., � v

c ) that characterizes the giant component phase transition of Ge
n (� ) (resp.,

Gv
n (� )). For � < � c, the graph sequence Gn (� ) is subcritical, i.e., there is no giant

component, while for � > � c, the sequence Gn (� ) is supercritical. Robustness is
formally de�ned by � c taking its extremal value � c = 0 , so that the subcritical case
does not exist, i.e., percolation with any retention probability � is supercritical.

1.3.2 Network models

In this section, we introduce some classical random graph models to give a brief
(and incomplete) view into the history of modeling complex networks.

Erd®s-Rényi random graph. The �rst and simplest random graph model, known
today as the Erdfis-RØnyi random graph, was introduced simultaneously in two
di�erent versions, although a similar model had been studied non-rigorously before
[192]. Erdfis and RØnyi introduced the model G(n; m) [73, 74, 75, 76], de�ned as
follows: consider all possible simple graphs on n labeled vertices with m �

� n
2

�

edges and pick one of these graphs uniformly at random. Gilbert introduced the
model G(n; p) [96]: rather than choosing m edges uniformly at random, each
edge is present independently with probability p 2 (0; 1), i.e., this model is bond
percolation on the complete graph. In fact, these two models are asymptotically
equivalent when we set the expected number of edges

� n
2

�
p in G(n; p) to be equal to

m. Due to the independence of the edges, the model G(n; p) gained more popularity
in the literature and became known as the Erdfis-RØnyi random graph, or more
precisely, the Bernoulli Erdfis-RØnyi random graph.

Due to its simple structure and long history, plenty of results are available on
G(n; p), and it is often used as a basis of comparison for the performance of other
random graph models. We recall some of the relevant results here. To compare to
real-world networks, we consider the sparse regime of the G(n; p), when p = �=n ,
so that the asymptotic average degree is � . In this regime, the Bin( n � 1; �=n )
degrees converge in distribution to Poisson(� ), which is light tailed, in contrast with
heavy-tailed power laws. Further, simple calculations show that the asymptotic
global clustering is zero,2 thus G(n; �=n ) is not a good �t for most real-world
networks. The original results of Erdfis and RØnyi [73, 74, 75], show that the model
exhibits a phase transition in the size of the largest component at � = 1 . For
alternative proofs and extensions see e.g. [35, 125, 154, 155]. The exact distribution

2It is easy to see that the expected number of triangles remains bounded, hence Markov’s inequality
yields that the clustering coe�cient converges in probability to 0.
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(a) Subcritical, � = 0 :5 (b) Supercritical, � = 1 :5

Figure 1.4:The model G(n; �=n ) with n = 100
Simulation by Robert Fitzner from The Network Pages http://www.networkpages.nl/

CustomMedia/

of component sizes at criticality (� = 1 ) was studied in [6], and extending these
results, the structure of critical components was studied in [2]. In the supercritical
case � > 1, the giant component has the small-world property: typical distances
scale as logn= log � [121]. The connectivity phase transition happens around
� = � (n) = log n [36, 182].

Inhomogeneous and generalized random graphs. Inhomogeneous random
graphs arose as an extension of the Erdfis-RØnyi random graph, to introduce he-
terogeneity into the network: each edge is present independently, however with
di�erent probabilities. E�orts in the literature mostly focus on heterogeneity of
vertices, assigning vertex i an additional parameter wi often called weight. A very
general case is studied in [42], where the edge probability pi;j between vertices i and
j is determined by a general symmetric kernel � (wi ; wj ). Most papers focus on the
so-called rank-1 case, when the kernel factorizes as � (wi ; wj ) =  (wi ) (wj ), for
some function  . Examples include the generalized random graph (GRG) [48] with
pi;j = wi wj =(wi wj + `n ), where `n :=

P n
k=1 wk denotes the total weight, and

the Chung-Lu model (CL) [56, 57, 58, 59, 60] with pi;j = min
�

1; w i w j

` n

	
. Another

related model is the Norros-Reittu random graph (NR) or Poisson random graph
process [174] which we however do not discuss in detail.

We demonstrate some properties of inhomogeneous random graphs through
the following results on the GRG from [48]. The expected degree of each vertex is
proportional to its weight, which allows some control over the degree distribution
of the graph, for example it is possible to incorporate a power law. However, it is

14

http://www.networkpages.nl/CustomMedia/
http://www.networkpages.nl/CustomMedia/
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Figure 1.5:The GRG with a power-law weight distribution with power-law exponent
� = 3 :2 on n = 100 vertices
Simulation by Robert Fitzner from The Network Pages http://www.networkpages.nl/

CustomMedia/

not possible to prescribe the exact degrees, and the resulting asymptotic degree
distribution is a mixed Poisson that depends on the weights used. Conditionally
on the degrees, the GRG yields a uniform simple graph with those degrees. All
three variants, i.e., the GRG, CL and NR display the small-world property when the
asymptotic variance of the weights is �nite [78]. The results in [83] imply that the
diameter is logarithmic as well; this is due to the fact that under certain conditions,
the con�guration model (introduced below) studied in this paper also yields a
uniform simple graph with given degrees. When the weights, and consequently
the degrees, have in�nite asymptotic variance in the CL and NR models, distances
are ultra-small [67].

Con�guration model. The con�guration model CM was initially introduced in
[34] to generate uniform regular graphs, i.e., graphs where all vertices have the
same degree, but has been gradually generalized [19, 158, 162, 163] to accommodate
an arbitrary degree sequence d = ( d1; : : : ; dn ), where it is assumed that `n :=P n

v=1 dv is even. The resulting random graph is denoted by CMn (d), and is de�ned
as follows. Each vertex is given a number of tokens, referred to as stubs or half-
edges, according to its prescribed degree. We then consider all possible ways to pair
these half-edges one-to-one, and choose one pairing uniformly at random. Finally,
we merge each pair of half-edges into an edge between the vertices they belong to,
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possibly resulting in self-loops and multi-edges. The pairing of half-edges is also
referred to as a con�guration, lending the model its name. Since the con�guration
model is relevant to the model introduced in Section 1.3.3 that is the focus of this
thesis, we discuss the properties of the CM in slightly more detail.

(a) Non-scale free, � = 3 :2 (b) Scale-free, � = 2 :8

Figure 1.6:The con�guration model with a pure power-law degree distribution with
power-law exponent � on n = 300 vertices
Simulation by Robert Fitzner from The Network Pages http://www.networkpages.nl/

CustomMedia/

While the CM may produce a multigraph, conditionally on simplicity, the re-
sulting graph is uniform among all simple graphs with the given degree sequence.
Subsequently, the CM has gained immense popularity for generating uniform sim-
ple graphs with given degrees (see e.g. [18, 93, 194] for other work on generating and
enumerating uniform simple graphs with given degrees). However, the probability
of the CM generating a simple graph may vanish as a the graph size grows; the
simplicity probability remains bounded away from zero exactly when the variance
of the degrees remains bounded [9, 36, 123, 124]. As the degree distribution can be
chosen arbitrarily, the CM can replicate the exact degree sequence of a real-world
network, making it a popular null-model. It is often used to model networks with
power-law degrees, and its simple construction allows for a thorough analysis.
However, the asymptotic local clustering in the CM vanishes, and so does the
global clustering coe�cient when the asymptotic variance of the degrees is �nite,3
which limits the applicability of the model.

Analogously to the Erdfis-RØnyi random graph, the con�guration model exhibits
the giant component phase transition [41, 126, 162, 163]. Denoting the asymptotic

3Similarly to the Erdfis-RØnyi random graph, this can be veri�ed by simple calculations of the expected
number of triangles through a given vertex and in the graph, respectively, and Markov’s inequality.
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degree distribution by D and assuming that P(D = 2) < 1,4 the graph is super-
critical and a giant component exists exactly when � := E[D(D � 1)]=E[D ] > 1.
The papers [41, 162, 163] make use of a branching process [11] approximation,
among other methods, to obtain these results. The neighborhood of a uniformly
chosen vertex is compared to a (delayed) Galton-Watson process where the root
has o�spring D and all other vertices have o�spring eD de�ned with mass function
P( eD = k) = ( k + 1) P(D = k + 1) =E[D ]. This approximation also provides
insightful heuristics for further properties of the graph, as demonstrated below.

In the supercritical case � > 1, the giant component exhibits the small-world
property, and when � = 1 , the giant component is ultra-small [113, 114, 199, 170,
171]. This distinction between logarithmic and doubly logarithmic distances is
predicted by the exponential or double exponential growth of the approximating
branching process in the �nite and in�nite mean case, respectively.

By Janson’s construction [128], percolation on the CM can be reduced to another
con�guration model, and the percolation phase transition hence follows from the
giant component phase transition. The results identify the critical percolation
probability as � c = 1=� . This value is also predicted by the branching process
approximation: for � < 1 , with retention probability � c, the �thinned� branching
process is critical with expected retainedo�spring 1. In the �scale-free� regime
� = 1 , the expected retaiend o�spring is always in�nity, which correctly predicts
robustness of the graph. For further results on percolation on the con�guration
model, in particular about critical behavior, see e.g. [69, 70, 127, 130, 183].

The connectivity of the con�guration model depends on the low degree vertices
rather than the average degree, which is a qualitatively di�erent behavior from the
Erdfis-RØnyi random graph. In particular, the CM is connected with probability
tending to 1 when all degrees are at least 3 [53, 147]; [82] identi�es the exact order
of magnitude of degree-1 and degree-2 vertices allowed so that the result still holds.

Household model and hierarchical con�guration model. The household mo-
del [12, 13] o�ers a way to incorporate communities into the con�guration model.
The motivation behind the model is that in social networks, some connections are
created in a �local� fashion, e.g. families, while other connections are created in
a �global� fashion at random. Thus, the model uses small cliques referred to as
communities or householdsas building blocks of the network. Further, vertices in
households have a random number of additional half-edges which are used to create
(possibly) inter-community connections in a fashion analogous to the CM . This
can also be looked at as a network with two layers. The hierarchical con�guration
model (HCM) [118, 119, 120] further generalizes this model by replacing the cliques
with arbitrary small graphs.

4We discuss why this condition is necessary later in Section 2.6.3 based on [81, 111, 126].
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By introducing the communities, both models induce positive asymptotic cluste-
ring (under some mild conditions on the HCM), with a tunable degree distribution.
Their connectivity properties can be reduced to the CM by collapsing each commu-
nity into a single vertex with all the inter-community half-edges, and consequently
both models exhibit the giant component phase transition. Distances in the house-
hold model also behave in the same way (with a factor two and �nite corrections) as
in this contracted CM , and thus it can be a small-world or an ultra-small world (see
the paragraph above for results on the CM). Distances in the HCM have not been
studied in full generality, as this is a nontrivial extension due to the use of arbitrary
community graphs, which means that distances between pairs of vertices within
a community vary. Percolation on both models can be reduced to an HCM model
with random communities, leading to implicit criteria for the critical probability
[119, 120]. It is also not straightforward to see whether community structure causes
spreading processes to propagate faster or slower on the network: a small amount
of clustering provides short alternate paths, however a large amount of clustering
might have a �trapping e�ect� on the spreading process [118].

Random intersection graphs. Random intersection graphs (RIG) are the classical
random graph for modeling networks with overlappingcommunities, in particular
for modeling collaboration networks. The model is created by using an underlying
bipartite graph of individuals (elements) and groups (sets) that they are part of (see
Fig. 1.7). An edge between an individual and a group means that the element is part
of the group. Connections in this bipartite graph are created randomly, according
to di�erent laws that we discuss shortly. The RIG is then created as a graph on
the individuals by connecting any two individuals that are together in at least one
group (in some variants of the model, a larger overlap is required); this step is often
referred to as the one-mode projection.

We now discuss ways to generate the underlying bipartite graph. Originally, a
bipartite version of the Erdfis-RØnyi random graph was used, which model later
become known as the binomial RIG[66, 84, 133, 191]. Variations emerged, such as
the uniform RIG[23, 188] where each individual is part of the same, �xed number of
groups that are chosen independently and uniformly at random for each individual.
This has been generalized to create the generalized RIG[25, 98, 207, 208], where the
number of group memberships per individual are drawn independently from a given
distribution, and the rest of the dynamics are unchanged. In the so-called passive
version of the generalized RIG, the one-mode projection is carried out onto the
groups, rather than onto the individuals [26, 30, 98, 132]. While it is not commonly
studied, it is possible to prescribe not only the number of group memberships per
individual, but also the number of members in each group, using a bipartite version
of the con�guration model as the underlying bipartite graph of group memberships
[167]. More recently, bipartite versions of rank-1 inhomogeneous random graphs
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have been used to incorporate power laws, resulting in the inhomogeneous RIG[27,
28]. In some cases, the bipartite graph is not even necessarily �nite: odd and even
generations in an alternating branching process can function as the graph of group
memberships [65].

An inherent property and drawback of the one-mode projection is that each
group from the bipartite graph appears as a clique (complete subgraph) in the
RIG, and thus the RIG is a network of overlapping cliques that we can think of
as communities. Under the right conditions, the presence of these cliques leads
to non-vanishing clustering, making the RIG well-�tted for modeling real-world
networks with high clustering. Further properties of the RIG highly depend on the
variant of the model used. For example, connectivity properties are fully determined
by the underlying bipartite graph, which leads to the small-world phenomenon
and giant component phase transition in a number of RIGs. For further properties
of these graphs, the interested reader is referred to the references above and the
survey paper [29].

(a) Modeling group memberships as a (random) bipartite
graph

(b) RIG : union of cliques

(c) RIGC : arbitrary communities

Figure 1.7:Two models for overlapping communities: RIG and RIGC

1.3.3 The focus of this thesis

With the perspective of the existing literature, we now introduce the random graph
model that we study in this thesis as well as informally state some of its properties.
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Random intersection graphs with communities. Considering the above two
models, on one hand the HCM incorporates arbitrary communities, but its weakness
is that these communities do not overlap, which may not be true in certain types
of networks. For example, in a social network, it is natural to assume that people
simultaneously participate in the community of their families, workplaces as well
as friend groups.

On the other hand, the classical model for overlapping communities, the RIG has
the weakness that each community is a complete graph, which again may not be a
realistic assumption, especially in the case of large communities. Considering the
prime example of collaboration networks such as the movie network or scienti�c
collaborations, in particular a collaboration of several dozens of people, such as a
movie with a huge cast or research carried out in a giant lab, it is not necessarily
true that each two members are in direct contact. There is some research that
focuses on models where this restriction has been removed by randomly thinning
the communities [31, 32, 103, 132, 167], however the communities are not arbitrary.

This thesis is dedicated to studying the model that bridges this gap: the random
intersection graph with communities(RIGC). In essence, we have created the RIGC
as a crossover of the HCM and RIG models, incorporating both overlapping commu-
nities as well as communities with arbitrary internal structure. We now provide a
brief introduction to the model and our main results that we present in more detail
in the upcoming chapters.

The building blocks of the network, similarly to the HCM, are arbitrary small
graphs, that we refer to as communities. Similarly to the RIG, we have a separate
set of vertices that we refer to as individuals, which are designated to become the
vertices of the RIGC . We think of vertices in the communities as community roles
which can be taken by individuals, and they will be merged with the individual they
are assigned to. Individuals may take on one or more community roles, according
to their prescribed number of membership tokens, so that the total number of
membership tokens equals the total number of community roles. We pick a one-
to-one matching between membership tokens and community roles uniformly at
random among all possibilities, similarly to a bipartite version of the CM . The one-
mode-projection of the RIG is then replaced by the following procedure that we
call the community projection. We identify each individual with all its community
roles taken, intuitively speaking, we �glue� together the community graphs by the
community roles assigned to the same individual to create overlaps.

The RIGC is analytically tractable, and in this thesis, we study the following
properties of the model. We study the asymptotic behavior of the neighborhood of a
�typical� vertex, formally speaking, we prove local weak convergence of the graph;
due to its complexity, we defer the introduction of this notion of convergence to
Section 3.1. Local weak convergence yields further results, including the asymptotic
distribution of degrees and local clustering coe�cient in the graph. As a special
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1.3 Modeling of networks

case, we identify when the graph is sparse with positive asymptotic clustering.
Further, we study the overlapping structure of the communities. We then solve
the giant component problem and explicitly identify the conditions under which
a unique linear-sized component exists. By �nding a relation between the local
weak limit and the giant component, we also obtain the degree distribution and the
total number of edges in the giant component. Further, we study percolation on the
RIGC model and show that it yields another RIGC model with random parameters,
which allows us to implicitly identify the conditions under which percolation is
supercritical. Diving deeper, we also study robustness: the phenomenon when the
graph is so strongly connected that percolation is always supercritical.

Overview of this thesis. The remainder of this thesis is structured as follows.
In Chapter 2, we give a rigorous model de�nition, present our results, provide a
discussion on the applicability of this model in light of its structure and properties
as well as present possible directions for future research. We provide the proofs
of the results in Chapters 3�5: we study local weak convergence and further
local properties of the model in Chapter 3, the giant component phase transition
and properties of the giant component in Chapter 4, and everything related to
percolation in Chapter 5.
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Chapter 2
The random intersection
graph with communities and
its properties

Based on [116, 117, 138, 197]

This chapter is dedicated to describing the random intersection graph with com-
munities(RIGC) in detail and presenting its properties. In Section 2.1, we provide
the precise de�nition of the model, by introducing its construction and its para-
meters. In Section 2.2, we extend the description with additional quantities that
we use throughout our study of the model, and we further pose the assumptions
under which we carry out our analysis. We present the known properties of the
model in Sections 2.3�2.5, respectively on local properties, component structure
and percolation on the model. The proofs of these results are carried out in later
chapters. In Section 2.6, we discuss our modeling choices and assumptions, as well
as compare the properties of our model to empirical properties of real-life networks
to support its relevance. Finally in Section 2.7, we present possible directions for
future research.

2.1 Model definition

In this section, we introduce the RIGC model. First, we recall the intuitive descrip-
tion of the model, then give the detailed, formal de�nition, �rst describing the model
parameters then the construction, which happens in two steps. First, we construct
the community memberships: an underlying bipartite graph that represents the
group memberships, where all the randomness arises from. Then we explain how
to obtain the RIGC based on the given community memberships via the procedure
of community-projection.

Intuitive model description. The aim of the model is to create a network that
uses given community graphs as its building blocks, but at the same time allows
them to overlap. We achieve this by thinking of vertices in the community graphs
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2 The random intersection graph with communities and its properties

as community rolesthat may be taken by the individuals. The individuals are
represented as a distinct set of vertices, and we allow them to take on (possibly
several) community roles by assigning them membership tokens. Each membership
token corresponds to one community role taken, and we match membership tokens
with community roles one-to-one, uniformly at random (uar). Then, we identify each
individual with all the community roles it takes, �gluing� together the community
graphs, which introduces overlaps and creates the (much more interconnected)
network.

Parameters. Intuitively, we think of the individuals being placed on the left-hand
side (lhs) and the groups (communities) on the right-hand side (rhs). Consequently
we sometimes refer to them as l -vertices and r -vertices, respectively. We denote
the set of individuals by V l = [ Nn ], where the number of individuals Nn satis�es
Nn ! 1 as n ! 1 , and [Nn ] := f 1; 2; : : : ; Nn g. Similarly, we denote the set of
communities V r = [ M n ], where the number of communities M n ! 1 is to be
de�ned later.

In this thesis, we will encounter three types of relevant degrees, as we work
with three di�erent types of graphs: the RIGC model itself, the bipartite graph
used to generate its community memberships, and the community graphs we use
as building blocks. The notion �degree� is reserved for the most natural concept,
namely, the number of connections of the individual in the resulting RIGC ; we
sometimes refer to this notion of degree as �projected degree� (p -degree) for clarity.
On the level of the underlying bipartite graph, the role of �degrees� is taken by
the number of group memberships (for individuals) and the number of community
members (for groups). Hence we introduce the concept of l -degrees and r -degrees
(of l - and r -vertices, respectively), that we may collectively refer to as bipartite
degrees (b-degrees). Within the community graphs, we will refer to the degree of a
community vertex as its community degree (c-degree). We soon introduce notation
for all three types of degrees.

For a community a 2 V r , we denote its community graph by Coma and we
suppose that it comes from the set of possible community graphs H , de�ned as
follows. Let H be the set of (non-empty,) simple, �nite, connected graphs, and equip
each graph with an arbitrary �xed labeling, so that any two isomorphic community
graphs are labeled in the exact same way. (We do allow several communities to
have the same community graph.) Without loss of generality (wlog), we assume
that H 2 H is labeled by the set [jH j], where jH j denotes the size of the graph
(i.e., the number of its vertices). We call the size jComa j of the community graph
the r -degree of a, denoted by dr

a = r -deg(a). Similarly, the number of group
memberships of an individual v 2 V l is called its l -degree, which we denote by
dl

v = l -deg(v). We collect the l - and r -degrees and the community graphs in the
vectors d l := ( dl

v )v2 V l , d r := ( dr
a)a2 V r and Com := (Com a)a2 V r , respectively.
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2.1 Model de�nition

Wlog we assume that d l � 1 and d r � 1 (element-wise) for each n, as isolated
vertices can simply be excluded by adjusting Nn and M n . Also note that d r is
derived from Com , thus we parametrize the RIGC by the pair (d l ; Com ). For a
visual representation of the parameters, see Fig. 2.1.

Figure 2.1:An example of the parameters.
Individuals form the lhs partition V l , and their l -degree, i.e., the number of group mem-
berships, is represented by outgoing half-edges. Communities form the rhs partition V r ,
and each is assigned an arbitrary connected community graph. As before, we represent the
r -degree, i.e., the number of community members, by outgoing half-edges. In fact, each
half-edge represents a speci�c vertex (role) in the community graph, thus they are labeled
in the same way. We assign group memberships (community roles) through a (bipartite)
matching of the half-edges.

Group memberships. Recall that the l -degree of v 2 V l denotes the number of
group memberships of v, which we intuitively think of as giving l -deg(v) mem-
bership tokens to v. We represent them as l -deg(v) l -half-edges incident to v
and label them by (v; i ) i 2 [ l -deg( v)] . Let us denote the disjoint union of all vertices
in community graphs by V (Com ), that we call the set of community roles or
community vertices. For a community vertex j 2 V (Coma), we can uniquely
identify j by the tuple (a; l), where l is the vertex label of j in Coma . (Recall that
vertices in the graph Coma are labeled by [jComa j].) Hence we can also think
of V (Com ) as (a; l)a2 V r ;l 2 [ r -deg( a)] . Now, similarly with individuals, we give
each group a 2 V r r -deg(a) community role tokens, represented by r -deg(a)
r -half-edges incident to a and labeled by (a; l) l 2 [ r -deg( a)] , so that we can represent
each community role j 2 V (Com ) by a corresponding r -half-edge (a; l).
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2 The random intersection graph with communities and its properties

Next, we introduce the random matching of membership tokens and community
role tokens. To ensure that the half-edges can indeed be matched, we assume and
denote

hn :=
X

v2 V l

dl
v =

X

a2 V r

dr
a : (2.1)

Let 
 n denote the set of all possible bijections between the set of l -half-edges
(v; i ) i 2 [ l -deg( v)] ;v 2 V l and the set of r -half-edges (a; l) l 2 [ r -deg( a)] ;a2 V r .5 Let the
group memberships be determined by a uniform random bipartite matching(bipartite
con�guration) ! n � Unif[
 n ].

Remark 2.1.1 (Algorithmic pairing). We can produce the uniform bipartite matching
! n sequentially as follows. In each step, we pick an arbitrary unpaired half-edge, and
match it to a uniform unpaired half-edge of the opposite type (so that we always match
onel -half-edge and oner -half-edge). The arbitrary choices may even depend on the
past of the pairing process, as long as we pair them uar with one of the remaining
half-edges.

De�nition 2.1.2 (The BCM and �underlying BCM�).

i) Considering the half-edges as tokens to form edges, the bipartite matching! n

also determines a bipartite (multi)graph, de�ned as follows. For each matched
pair of anl -half-edge(v; i ) and r -half-edge(a; l), add an edge with label(i; l )
betweenv and a. We call this edge-labeled graph theunderlying bipartite
con�guration model (BCM ). As the edge labels allow us to reconstruct the
paired half-edges, the underlyingBCM is an equivalent representation of the
bipartite matching! n , and thus encodes the group memberships.

ii) Deleting the edge-labels, we obtain a bipartite version of the con�guration model,
i.e., thebipartite con�guration model with degree sequences(d l ; d r ), that we
denote byBCM( d l ; d r ).

The �community projection�. We now introduce the community projection, i.e.,
the method of projecting the community graphs to the individuals and genera-
ting the RIGC model, given the realization of the uniform(ly random) bipartite
matching ! n . This procedure is deterministic, and the only randomness of the
model comes from the choice of ! n , thus we can think of the community projection
as an operator P from 
 n to the space of multigraphs. Alternatively, since the
underlying BCM (see De�nition 2.1.2 (i)) provides an equivalent representation of
the bipartite matching ! n , we can think of the projection as an operator6 that maps

5Equivalently, we can think of 
 n as bijections between the l -half-edges and V (Com ) , due to each r -
half-edge (a; l ) , l 2 [r -deg(a)] ; a 2 V r corresponding to a unique community vertex j 2 V (Com ) .

6This operator can be further generalized as an operator mapping a suitable edge-labeled bipartite
graph, that we may interpret as the graph of group memberships, into a network.
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2.1 Model de�nition

(a) Community roles assigned by the matching of half-edges
The community roles of Comc (highlighted) have been assigned
to individuals 4, 2 and 5 (in this order).

(b) Projection ofComc

Each edge in Comc is co-
pied to the corresponding
individuals (that are as-
signed the community ro-
les forming the edge), e.g.
edge (( c;1); (c;2)) beco-
mes edge (4; 2). We do al-
low multigraphs.

(c) Projection ofComa andComb

Obtained analogously to the projection of Comc above.
(d) The resultingRIGC
Obtained by combining the pro-
jection of each community. We do
allow multigraphs.

Figure 2.2:The community projection

the underlying BCM into the RIGC . We will describe the multigraph RIGC by its
edge multiplicities.

Recall that the r -half-edge labeled (a; l) represents the community role (com-
munity vertex) j 2 V (Coma) with vertex label l , and the l -half-edge (v; i ) is one
of the membership tokens of v 2 V l . Then, if (v; i ) and (a; l) are matched by
! n , this intuitively means that one of the community roles taken by v is j . We
denote this by v  [ j . Note that each community role j is assigned to a unique
individual v, however each individual v has l -deg(v) community roles j that are
assigned to it. To create the network, we identify each individual with all its assigned
community roles, and we carry this out by copying each edge between community
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2 The random intersection graph with communities and its properties

roles j 1; j 2 2 V (Coma) (for each community a) to the individuals v; w such that
v  [j 1 and w  [j 2. We emphasize that each edge in a community graph is copied
individually, even when v = w or when there is already an edge (or more) between
v and w; that is, we allow self-loops and multi-edges (see Section 2.6 for a discussion
on multigraphs).

Now, we shift perspective to obtain the random multiplicity X (v; w; ! n ) of an
edge (v; w) (for v; w 2 V l ) for a given bipartite matching ! n . Let us denote the
disjoint union of edges in all community graphs by E(Com ), and we refer to this
set as community edges. Further denote the indicator of an event A by 1A . We
count the number of community edges (j 1; j 2) such that the community roles j 1

and j 2 are taken by individuals v and w (in some order). Formally,

X (v; w) = X (v; w; ! n ) :=
X

( j 1 ;j 2 )2 E(Com )

1f v  [j 1 ;w  [j 2 g[f v  [j 2 ;w  [j 1 g: (2.2)

The random intersection graph with communitiesRIGC( d l ; Com ) is the random
multigraph given by the edge multiplicities (X (v; w)) v;w 2 V l determined by the
uniform(ly random) bipartite matching ! n .

2.2 Descriptive variables and assumptions

In this section, we introduce further random variables that we use in our description
and analysis of the RIGC model, as well as our assumptions. We start by introducing
some notational conventions that we use throughout this thesis.

Notational conventions. We will consider a sequence of graphs, and conse-
quently, a sequence of input parameters, both indexed by n 2 N, where N stands
for the set of non-negative integers (we write Z + for the set of positive integers).
We note that n only serves as the index; it does not necessarily mean the size or any
other parameter of the graph, which allows for studying more general (growing)
graph sequences. We often omit the dependence on n to keep the notation light,
as long as it does not cause confusion. Recall that for n 2 Z+ , we denote the set
[n] := f 1; 2; : : : ; ng. The notions P�! and d�! stand for convergence in probability
and convergence in distribution (weak convergence), respectively. We write X d= Y
to mean that the random variables X and Y have the same distribution. For random
variables X and Y , we say that X is stochastically dominated by Y and write
X � Y if for all x 2 R, P(Y � x) � P(X � x). For an N-valued random variable
X such that E[X ] < 1 , we de�ne its size-biasedversion X ? and the transform eX
with the following probability mass functions (pmf): for all k 2 N,

P(X ? = k) = k P(X = k)=E[X ]; P( eX = k) = P(X ? � 1 = k): (2.3)
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2.2 Descriptive variables and assumptions

For a random variable X taking values in N, we denote its probability generating
function by GX : [0; 1] ! [0; 1], given by

GX (z) := E
�
zX �

=
1X

k=0

P(X = k)zk : (2.4)

The generating functions of the above transforms can be obtained as GX ? (z) =
zG0

X (z)=E[X ] and G eX (z) = GX ? (z)=z = G0
X (z)=E[X ]. We say that a sequence

of events (An )n 2 N occurs with high probability (whp), if limn !1 P(An ) = 1 . For
two (possibly) random sequences (X n )n 2 N and (Yn )n 2 N, we say that X n = oP(Yn )

if X n =Yn
P�! 0 as n ! 1 . Recall that we denote the indicator of an event A by

1A . We say that the collection (X a)a2 A , indexed by a set A, of R-valued random
variables is uniformly integrable (UI) if limK !1 supa2 A E

�
jX a j1 jX a j� K

�
= 0 . For

a graph G, we denote its vertex set by V (G) and its edge set by E(G), and recall
that we denote its size by jGj = j V (G)j.

Bipartite degrees. Throughout this thesis, we make use of the following descrip-
tion of the b-degree sequences. Let V l

n � Unif[ V l ] and V r
n � Unif[ V r ] denote

uniformly chosen l - and r -vertices respectively, and de�ne

D l
n := l -deg

�
V l

n

�
; D r

n := r -deg(V r
n ): (2.5)

Further denote

V l
k := f v 2 V l : l -deg(v) = kg; V r

k := f a 2 V r : r -deg(a) = kg: (2.6)

Then the pmf
p( n )

k := j V l
k j=Nn ; (2.7a)

for k 2 Z+ , describes the distribution of D l
n as well as the empirical distribution of

d l . Similarly, we can describe D r
n and d r by the pmf

q( n )

k := j V r
k j=Mn : (2.7b)

We collect the above pmfs in the (in�nite-dimensional) probability vectors p( n ) =
(p( n )

k )k2 Z+ , q( n ) = ( q( n )

k )k2 Z+ .

The empirical community distribution. Recall that H denotes the set of pos-
sible community graphs: simple, connected, �nite graphs, each H 2 H equipped
with an arbitrary, �xed labeling using [jH j] as labels, so that any two community
graphs that are isomorphic are labeled in the exact same way. For a �xed H 2 H ,
de�ne

V r
H := f a 2 V r : Coma = H g: (2.8)
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2 The random intersection graph with communities and its properties

We introduce the pmf

� ( n )

H := j V r
H j=Mn ; � ( n ) = ( � ( n )

H )H 2 H ; (2.9)

so that � ( n ) describes the empirical pmf of Com as well as the pmf of H n :=
ComV r

n
, with V r

n � Unif[ V r ]. For k 2 Z+ , de�ne the (�nite) set

Hk :=
�

H 2 H : jH j = k
	

: (2.10)

Noting that dr
a = jComa j, we see that q( n ) from (2.7b) can be obtained by q( n )

k =P
H 2 Hk

� ( n )

H .

Community degrees and triangles. Recall that V (Com ) denotes the set of
community roles. To a community role j 2 V (Com ), we assign the vector
(dc

j ; � c
j ), where dc

j = c-deg(j ) denotes the degree of j in its community graph
and � c

j denotes the number of triangles that j is part of within its community
graph. Let Jn � Unif[ V (Com )] denote a community role chosen uar.7 De�ne the
random vector

(D c
n ; � c

n ) := ( dc
J n

; � c
J n

); (2.11)

keeping in mind that its coordinates are dependent. De�ne the pmf

%( n )

(k;t ) :=
1

hn

X

j 2 V (Com )

1f (dc
j ;� c

j )=( k;t )g; %( n ) :=
�
%( n )

(k;t )

�
k2 Z+ ;0� t � (k

2)
; (2.12)

so that %( n ) describes the joint distribution of (D c
n ; � c

n ) as well as the empirical
distribution of (dc

j ; � c
j ) j 2 V (Com ) .

Projected degrees. For v 2 V l , its (random) projected degree, i.e., degree in the
RIGC is by de�nition given in terms of the edge multiplicities (see (2.2)) as

dp
v = p -deg(v) := X (v; v) +

X

w2 V l

X (v; w)

= 2X (v; v) +
X

w2 V l ;w 6= v

X (v; w):
(2.13)

However, it is more intuitive to look at p -deg(v) in terms of the community roles
taken by v. Recall that each community edge incident to some j such that v  [j is
added between v and some other vertex, thus j contributes c-deg(j ) to the degree
of v. Then

p -deg(v) =
X

j :v  [j

dc
j : (2.14)

7Note that the community that Jn is part of is chosen in a size-biased fashion, and then a vertex in that
community is chosen uniformly at random.
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2.2 Descriptive variables and assumptions

Analogously to D l
n , with V l

n � Unif[ V l ] as before, we de�ne

D p
n := p -deg(V l

n ): (2.15)

Recall that p -deg(v) is random for each v 2 V l , due to ! n being random. Thus,
D p

n has two sources of randomness: V l
n and ! n . We denote the randomempirical

cumulative distribution function (cdf) of D p
n as

F p
n (x) = F p

n (x; ! n ) :=
1

Nn

X

v2 V l

1f p -deg( v) � x g =: P
�
D p

n � x
�
� ! n

�
; (2.16)

where P( � j ! n ) denotes the conditional probability with respect to (wrt) ! n .

Assumptions. Recall (2.5), (2.7) and (2.9). We can now summarize the conditions
under which our results hold:

Assumption 2.2.1. Recall thatbitd l ; d r � 1 pointwise for alln, and assume that
(2.1) holds. Further conditions for the empirical distributions are summarized as
follows:

A) There exists a random variableD l with pmf p such thatp( n ) ! p pointwise
asn ! 1 , i.e.,

D l
n

d�! D l : (2.17)

B) E[D l ] is �nite, and asn ! 1 ,

E[D l
n ] ! E[D l ]: (2.18)

C) There exists a probability mass function� on H such that� ( n ) ! � pointwise
asn ! 1 .

C1) Consequently, byq( n )

k =
P

H 2 Hk
� ( n )

H , with the �nite setHk from (2.10),
there exists a random variableD r with pmf q such thatq( n ) ! q point-
wise asn ! 1 , or equivalently,

D r
n

d�! D r : (2.19)

D) E[D r ] is �nite, and asn ! 1 ,

E[D r
n ] ! E[D r ]: (2.20)

Remark 2.2.2 (Consequences of Assumption 2.2.1).
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2 The random intersection graph with communities and its properties

i) By (2.1), it follows that hn = Nn E[D l
n ] = M n E[D r

n ]. By Assumption 2.2.1
(B,D), as n ! 1 ,

M n =Nn = E[D l
n ]=E[D r

n ] ! E[D l ]=E[D r ] =: 
 2 R+ : (2.21)

Note that by our assumption that d l ; d r � 1 pointwise, necessarily D l
n � 1

and D r
n � 1 for all n, hence the limiting random variables D l and D r take

values in Z+ . This ensures that E[D l ] � 1 and E[D r ] � 1, thus 
 2 R+ .

ii) Since %( n ) (see (2.12)) can be obtained from � ( n ) , Assumption 2.2.1 (C) also
implies that there exists a random variable (D c ; � c ) with pmf %such that
%( n ) ! %pointwise as n ! 1 , or equivalently, (D c

n ; � c
n ) d�! (D c ; � c ).

iii) Assumption 2.2.1 (A,B) imply8 that dl
max := max v2 V l dl

v = o(hn ), and
similarly, conditions (C1,D) imply that dr

max := max a2 V r dr
a = o(hn ).

Remark 2.2.3 (Random parameters). The results in Sections 2.3�2.5 below remain
valid when the sequence of parameters(d l ; Com ) (resp.,(d l ; d r )) is random itself.

In this case, we require thatNn
P�! 1 andM n

P�! 1 ,9 and we replace Assump-

tion 2.2.1 (A-D) (resp., Assumption 2.2.1 (A,B,C1,D)) by the conditionsp( n ) P�! p

pointwise,E[D l
n j d l ] P�! E[D l ], � ( n ) P�! � pointwise (resp.,q( n ) P�! q) and

E[D r
n j d r ] P�! E[D r ], where we assume the limiting pmfsp and� (resp.,q) to be

deterministic. For a similar setting in the con�guration model, see [111, Remark 7.9],
where this is spelled out in more detail.

Note that analogously to Remark 2.2.2 (i), under the conditions of Remark 2.2.3,
M n =Nn

P�! 
 , for a deterministic constant 
 2 R+ .

2.3 Results on local properties

In this section, we state our results on local properties of the RIGC , the main result
being the local weak convergence (LWC) of the RIGC . We de�ne the notion of
LWC shortly in terms of subgraph counts (neighborhood counts), however it is a
much stronger concept that we delve into in Chapter 3, and it yields further results
on the local structure of the graph. In particular, local weak convergence implies
the convergence of degrees and local clustering, and provides some insight into the
overlapping structure of communities. We present these results later in this section.

8This implication is proved for a similar setting in [111, Exercise 6.3].
9The notion X n

P
�! 1 is de�ned in the standard way: P(X n � K ) ! 1 as n ! 1 for all �xed

K 2 R+ .
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2.3 Results on local properties

We use the following notation throughout this section. Recall that V l
n � Unif[ V l ]

denotes an l -vertex chosen uar, and that P( � j ! n ) denotes conditional probability
wrt ! n . Let E[ � j ! n ] denote the corresponding conditional expectation, that is,
empirical averages for a given ! n .

Local weak convergence. Here, we give the brief de�nition of local weak conver-
gence that enables us to state our results, and give a much more detailed introduction
to the concept in Section 3.1.1. Throughout this section, �graph� may refer to both
a simple graph or a multigraph.

De�nition 2.3.1 (Rooted graph, rooted isomorphism of graphs, r -neighborhood).

i) We call a pair(G; o) a rooted graph if G is a locally �nite,10 connected graph
ando is a distinguished vertex ofG.

ii) We say that the rooted graphs(G1; o1) ' (G2; o2), arerooted isomorphic, if
there exists a graph-isomorphism11 betweenG1 andG2 that mapso1 to o2.

iii) For somer 2 N, we de�neB r (G; o), the (closed)r -ball aroundo in G or r -
neighborhood of o in G, as the subgraph ofG spanned by all vertices of graph
distance at mostr from o. We think ofB r (G; o) as a rooted graph with rooto.

De�nition 2.3.2 (Local weak convergence in probability). Let(Gn )n 2 N with size

jGn j P�! 1 be a sequence of random graphs, and letUn j Gn � Unif[ V (Gn )]. Let
(R; o) denote a random element of the set of rooted graphs, which we call arandom
rooted graph. We say that(Gn ; Un ) converges to (R; o) in probability in the local
weak convergence sense, and denote(Gn ; Un ) P-loc�! (R; o), if for any �xed rooted
graph(G; o) andr 2 N,

P
�
B r (Gn ; Un ) ' B r (G; o)

�
� Gn

�
:=

1
jGn j

X

u2 V (Gn )

1f B r (Gn ;u ) ' B r (G;o )g

P�! P
�
B r (R; o) ' B r (G; o)

�
:

(2.22)

We also say that(R; o) is thelocal weak limit in probability of (Gn ; Un ).

We can now state our �rst main result on the local weak convergence of the
RIGC model:

10A graph is locally �nite if the degree of any vertex is �nite; the graph itself may be in�nite.
11A graph-isomorphism between graphs G1 and G2 is a bijection ' : V (G1 ) ! V (G2 ) such that for
all v; w 2 V (G1 ) , the multiplicity of (v; w) in G1 equals the multiplicity of ( ' (v); ' (w)) in G2 .
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2 The random intersection graph with communities and its properties

Theorem 2.3.3 (Local weak convergence of the RIGC ). ConsiderRIGCn =
RIGC( d l ; Com ) under Assumption 2.2.1 and recallV l

n � Unif[ V l ]. Then, there
exists a random rooted graph(CP; o) such that, asn ! 1 ,

�
RIGCn ; V l

n

� P-loc�! (CP; o): (2.23)

We describe the distribution of(CP; o) in Section 3.3.1.

The proof of Theorem 2.3.3 is completed in Section 3.3.2. The construction of the
local weak limit relies on the study of the underlying BCM (see De�nition 2.1.2 (i))
that we carry out in Section 3.2, this is why we postpone it. We remark that the
limit (CP; o) is not a tree(under mild conditions on � from Assumption 2.2.1 (C)),
however its construction heavily relies on the �locally tree-like� structure of the
underlying BCM (the local weak limit of which is a tree, see Theorem 2.3.9 below).
In the following, we present some corollaries of Theorem 2.3.3.

Degrees. Recall (2.15�2.16). We de�ne the random variable D p and its cumulative
distribution function

D p d=
D l
X

i =1

D c
( i ) ; F p (x) := P

�
D p � x

�
; (2.24)

with D l from Assumption 2.2.1 (A), and D c
( i ) are independent, identically distributed

(iid) copies of D c from Remark 2.2.2 (ii). Then, we have the following result on the
empirical degree distribution of the RIGC :

Corollary 2.3.4 (Degrees in the RIGC ). ConsiderRIGC( d l ; Com ) under the
conditions of Theorem 2.3.3. Then, asn ! 1 ,




 F p

n � F p





1 = sup
x 2 R

�
�F p

n (x) � F p (x)
�
� P�! 0; (2.25)

and consequently,

D p
n

d�! D p : (2.26)

In Section 3.4.1, we prove Corollary 2.3.4 using Theorem 2.3.3. However, Corol-
lary 2.3.4 can alternatively be proved independently through a �rst and second
moment method under weaker conditions. In particular, Assumption 2.2.1 (C) can
be replaced by D c

n
d�! D c . Let us also note that while (2.26) is more intuitive, (2.25)

is a stronger statement. Indeed, (2.25) implies that the random empirical degree
distribution, i.e., the observed degree sequence, is close to its theoretical limit whp.
Corollary 2.3.4 together with Lemma 2.4.7 below implies that E[D p

n ] ! E[D p ] < 1 ,
i.e., that the RIGC is sparse, whenever (D c

n )n 2 N is uniformly integrable, with D c
n

from (2.11).
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2.3 Results on local properties

Clustering. We proceed by studying the clustering in the RIGC , in particular
focusing on local clustering. For an arbitrary individual v 2 V l , let � p (v) denote
the (random) number of triangles that v is part of in the RIGC . We de�ne the local
clustering at v as

Cl(v) :=
� p (v)

� p -deg( v)
2

� ; (2.27)

with the convention that Cl(v) := 0 whenever p -deg(v) < 2. De�ne the empirical
local clustering coe�cient � n := Cl( V l

n ) and denote its random empirical cdf by

F �
n (x) = F �

n (x; ! n ) :=
1

Nn

X

v2 V l

1f Cl( v) � x g = P
�
� n � x

�
� ! n

�
: (2.28)

We introduce

� d=
� D l

X

i =1

� c
( i )

� . � P D l

i =1 D c
( i )

2

�
; F � (x) := P(� � x); (2.29)

where (D c
( i ) ; � c

( i ) ) are iid copies of the dependent random vector (D c ; � c ) from
Remark 2.2.2 (ii) and are independent of D l from Assumption 2.2.1 (A). Then, we
have the following result on the empirical local clustering of the RIGC :

Corollary 2.3.5 (Local clustering in the RIGC ). ConsiderRIGC( d l ; Com ) under
the conditions of Theorem 2.3.3. Then, asn ! 1 ,

kF �
n � F � k1 = sup

x 2 R

�
�F �

n (x) � F � (x)
�
� P�! 0: (2.30)

In particular,� n
d�! � and thus the average local clustering converges:

E
�
� n

�
! E[� ]: (2.31)

We prove Corollary 2.3.5 as a consequence of Theorem 2.3.3 in Section 3.4.1.
However, in fact Corollary 2.3.5 still holds if we replace Assumption 2.2.1 (C) by
the conditions Assumption 2.2.1 (C1) and Remark 2.2.2 (ii).

The intuition behind Corollary 2.3.5 is that triangles typically arise within one
community, that is, triangles containing edges from di�erent communities make a
negligible contribution as the model size grows. This is due to the �locally tree-like�
structure of the underlying BCM (see Theorem 2.3.9 below). We remark that under
our general conditions, we cannot establish that the local clustering scales inversely
with the degree (as in e.g. [26, 167]); it is true when all communities are complete
graphs, i.e., the special case of the classical RIG . However, the reciprocal of the
degree serves as an upper boundfor the clustering. In the following corollary, we
establish when the model has positive asymptotic clustering:
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2 The random intersection graph with communities and its properties

Corollary 2.3.6 (Condition for positive asymptotic clustering). Under the conditions
of Corollary 2.3.5, the asymptotic average clusteringE[� ] is positive if and only if
P

�
� c � 1

�
> 0, with � c from Remark 2.2.2 (ii).

Proof of Corollary 2.3.6 subject to Corollary 2.3.5.Recall � from Assumption 2.2.1
(C) and note that P

�
� c � 1

�
> 0 happens exactly when the assigned communities

are not � -almost surely triangle-free, i.e., � H > 0 for at least one H 2 H such
that H contains at least one triangle. Clearly, this is a necessary condition, but it is
also su�cient, as it implies that any vertex has a positive probability to be part of a
triangle and have bounded degree at the same time.

Another measure of clustering is the so-called global clustering coe�cient, de�ned
as three times the total number of triangles in the graph divided by the total number
of connected triples (paths of length 2, often called �wedges�), formally,

Clglob :=
3� p

totalP
v2 V l

� p -deg( v)
2

� =

P
v2 V l � p (v)

P
v2 V l

� p -deg( v)
2

� : (2.32)

Note the relation with the local clustering coe�cient de�ned in (2.27) as the ratio
of � p (v) and

� p -deg( v)
2

�
; in (2.32), we instead consider the ratio of the sumover all

individuals of these quantities. Also note that we can think of the global clustering
coe�cient as the ratio of the averagesof � p (v) and

� p -deg( v)
2

�
:

Clglob =
1

N n

P
v2 `V l � p (v)

1
N n

P
v2 V l

� p -deg( v)
2

� ; (2.33)

while the average local clustering is given by the average of the ratiosof the same
quantities:

E
�
Cl(V l

n )
�
� ! n

�
=

1
Nn

X

v2 V l

Cl(v) =
1

Nn

X

v2 V l

� p (v)
� p -deg( v)

2

� : (2.34)

While the global clustering coe�cient and average local clustering coe�cient grasp
similar concepts, their behaviors are di�erent. By [146], see also [112, Section 2.4.2],
the convergence of the global clustering coe�cient requires the stronger condition
of E

�
(p -deg(V l

n ))2
�
� ! n

�
= E

�
(D p

n )2
�
� ! n

� P�! E
�
(D p )2

�
, which can be reduced

to E
�
(D l

n )2
�

! E
�
(D l )2

�
and E

�
(D c

n )2
�

! E
�
(D c )2

�
. Under these conditions,

Clglob converges in probability to the ratio of expectationsof the numerator and
denominator of � in (2.29), i.e.,

Clglob
P�! E

� D l
X

i =1

� c
( i )

� .
E

�� P D l

i =1 D c
( i )

2

��
; (2.35)

which in general is di�erent from the limiting average local clustering E[� ].
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2.3 Results on local properties

The overlapping structure. Next, we turn our attention to the overlapping struc-
ture of the groups, which is one of the two de�ning features of the RIGC model.
By an overlap, we mean two (or more) groups having one (or more) individual in
common. From this de�nition, it is clear that the internal structure of the groups
does not play a role in the overlapping structure, thus the following discussion
applies to the RIG model as well, nothing that the RIG arises as the special case
when all community graphs are complete graphs. By the construction of the model,
i.e., including individuals in several communities, it is clear that overlaps are present.
First, we will study the number of overlaps, and later the typical size of the overlaps.
Let us introduce some notation. For v 2 V l and a 2 V r , we say that v is part of
Coma and denote v  [Coma if v  [j for some j 2 Coma . Let us denote the size
of overlap between a; b2 V r for a 6= bby

O(a; b) :=
X

v2 V l

1f v  [Com a g\f v  [Com b g: (2.36)

We de�ne the set of communities overlapping with community a as

N(a) := f b 2 V r : b 6= a; O(a; b) � 1g: (2.37)

For k 2 Z+ , we introduce the set of unordered pairs of (at least) k-fold overlapping
groups as

L k = L ( n )

k :=
�

f a; bg : a; b2 V r ; a 6= b;O(a; b) � k
	

: (2.38)

Note that L k � L k+1 for all k 2 Z+ and L 1 contains all overlapping pairs,
regardless of the size of overlap they share. Recall that V r

n � Unif[ V r ], and further
recall that P( � j ! n ) denotes the conditional probability wrt ! n and E[ � j ! n ]
denotes the corresponding conditional expectation. We can now state our result on
the number of overlaps:

Proposition 2.3.7 (Number of overlaps). ConsiderRIGC( d l ; Com ) under As-
sumption 2.2.1. In addition, assume that, asn ! 1 ,

E
�
(D l

n )2�
! E

�
(D l )2�

< 1 : (2.39)

Then, asn ! 1 , the average number of communities overlapping with a �typical�
one converges, i.e.,

E
�
jN (V r

n )j
�
� ! n

�
=

2jL 1j
M n

P�! E[D r ]E[ eD l ]: (2.40)

Note that (2.39) ensures that E[ eD l ] < 1 so that the rhs of (2.40) is �nite. We
prove Proposition 2.3.7 in Section 3.4.2.2 using local weak convergence. Intuitively,
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2 The random intersection graph with communities and its properties

(2.40) asserts that a typical community V r
n overlaps with constantly many others,

and thus the number of overlapping pairs of groups is linear in the total number of
groups.

Next, we assert that the �typical� overlap size is 1, which we call the single-overlap
property. There are several ways to interpret what the �typical overlap� means,
leading to slightly di�erent statements, as follows:

Theorem 2.3.8 (Single-overlap property). ConsiderRIGC( d l ; Com ) under As-
sumption 2.2.1, then the single-overlap property holds, in the following ways:

i) Vertex perspective. For a uniform individualV l
n � Unif[ V l ], the communities

that V l
n is part of whponly overlap atV l

n . Formally, asn ! 1 ,

P
�
9f a; bg 2 L 2 : V l

n  [Coma ; V l
n  [Comb

�
� ! n

� P�! 0: (2.41)

ii) Group perspective. For a uniform communityV r
n � Unif[ V r ], the communi-

ties thatV r
n overlaps with whp only share asingle individual withV r

n . Formally,
asn ! 1 ,

P
�
9b 2 N(V r

n ) : O(V r
n ; b) � 2

�
� ! n

� P�! 0: (2.42)

iii) Global perspective. Assume additionally that condition(2.39) holds, and let
f An ; Bn g � Unif[L 1] denote a pair of communities chosen uar among all
distinct pairs of overlapping communities inL 1. Then, whp their overlap is one
individual. Formally, asn ! 1 ,

P
�
O(An ; Bn ) � 2 j ! n

�
= jL 2j

�
jL 1j P�! 0: (2.43)

We complete the proof in Section 3.4.2 but discuss the statement now. The
extra second moment condition (2.39) in (iii) suggests a substantial di�erence from
(i-ii). Indeed, (i-ii) establish local properties and follow directly from local weak
convergence, which is not true for (iii). The di�culty is in relating the choice of
the pair (An ; Bn ) � Unif[L 1] to the choice of a singleuniform vertex (and further
choices in its neighborhood). This problem is nontrivial and further regularity
is required. Also note that jL 1j is the denominator in (2.43), and to identify the
asymptotics for jL 1j in Proposition 2.3.7, we require the same second moment
condition so that the factor E[ eD l ] in the scaled limit is �nite. In the underlying
BCM (see De�nition 2.1.2 (i)), jL 1j is the number of pairs of groups that are at
graph distance 2; however, the �uctuations of this quantity is an open problem in
the case when the variance of the degrees diverges.
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2.4 Results on the largest component

Relation with the �passive� random intersection graph. The overlapping
structure may be represented as a graph on V r by adding an edge between a
pair of groups for each individual they are both connected to. This leads to a �dual�
random intersection graph, de�ned on the communities, that is sometimes referred
to as the �passive model� in the literature [98]. Then the size of the overlaps O(a; b)
and the number of overlapping pairs jL 1j can be seen as the edge multiplicities and
total number of edges in the passive model, respectively; in particular, 2jL 1j=Mn

gives the average degree. Note that in this regard, applying Theorem 2.3.8 with the
roles of lhs and rhs reversed (also replacing (2.39) by E[(D r

n )2] ! E[(D r )2] < 1
in Theorem 2.3.8 (iii)) provides some insight on the number of multi-edges in the
�active� RIG on the l -vertices, i.e., the RIGC with complete graph communities.
In turn, this provides an upper boundfor the number of multi-edges in the RIGC
model as well, but obtaining a lower bound is nontrivial.12

Local weak convergence of the underlying BCM. Recall the bipartite con�gu-
ration model from De�nition 2.1.2 (ii) and the notion of local weak convergence in
probability from De�nition 2.3.2.

Theorem 2.3.9 (Local weak convergence of the BCM ). Let us considerBCM n =
BCM( d l ; d r ) under Assumption 2.2.1 (A,B,C1,D). LetV b

n = V l + r
n � Unif[ V l [ V r ].

Then, asn ! 1 ,
�
BCM n ; V b

n

� P-loc�! (BPs; 0); (2.44)

where(BPs; 0) is a mixture of branching process family trees de�ned below in
Section 3.2.1.

We prove Theorem 2.3.9 in Section 3.2.2. Note that in particular, Theorem 2.3.9
asserts that the bipartite con�guration model is locally tree-like, i.e., neighborhoods
look like trees in the limit, a property possessed by several random graph models
such as the classical con�guration model or the Erdfis-RØnyi random graph model.
We also remark that while Theorem 2.3.9 and its proof are instrumental to our
results on the RIGC , it is also of independent interest.

2.4 Results on the largest component

In the following, we study global properties of the RIGC model. In particular, in
this section we study the largest connected component of the RIGC .
12Since not all pairs of community roles are connected by an edge, two individuals being together
in several communities does not necessarily mean that they are connected by multiple edges, and
�ner properties of the measure � (see Assumption 2.2.1 (C)) come into play. It further complicates
the situation that conditioning on having several communities that both individuals are part of also
introduces a bias in the b-degrees involved.
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2 The random intersection graph with communities and its properties

The largest component of the RIGC. We prove a phase transition in the size of
the largest component in terms of the model parameters, and explicitly identify
the conditions under which a unique linear-sized component exists. We study
further properties of this component, i.e., its degree distribution and its number of
edges. Denote the largest connected component (the component containing the
most l -vertices, breaking ties arbitrarily) by C1 = C( n )

1 , and the second largest by
C2 = C( n )

2 . Recall (2.3�2.5) and (2.7).

Theorem 2.4.1 (The size of the largest component of the RIGC). Let us consider
RIGC( d l ; Com ) under Assumption 2.2.1, and further assume thatp2 + q2 < 2.
Then, there exists� l 2 [0; 1], the smallest solution of the �xed point equation

� l = G eD r

�
G eD l (� l )

�
; (2.45)

and� l := 1 � GD l (� l ) 2 [0; 1] such that

j C1j=Nn
P�! � l : (2.46)

Furthermore,� l > 0 exactly when

E[ eD l ]E[ eD r ] > 1; (2.47)

which we call thesupercritical case. In this case,C1 is unique in the sense that
j C2j = oP(Nn ), and we callC1 thegiant component.

We prove Theorem 2.4.1 in Section 4.4.2 as a consequence of the upcoming
Theorem 2.4.2, and we discuss the relevance of the condition p2 + q2 < 2 in
Section 2.6. Note that the size of the largest connected component only depends
on D l and D r = jH j, where H is a random graph with pmf � ; this is because all
communities are connected. Consequently Theorem 2.4.1 applies to the classical
RIG , which is the special case of RIGC with complete graph communities.

The largest component of the BCM. We now introduce our results on the largest
component of the BCM (see De�nition 2.1.2 (ii)), which are of independent interest,
and we later apply them to prove our results on the RIGC . Denote the largest
component (the component containing the largest total number of vertices, with
ties broken arbitrarily) of BCM( d l ; d r ) by C1;b = C( n )

1;b, and the second largest by
C2;b = C( n )

2;b. Recall � l , � l from Theorem 2.4.1 and further recall (2.6). Our main
result on the BCM is as follows:

Theorem 2.4.2 (The largest component of the BCM ). ConsiderBCM( d l ; d r )
under Assumption 2.2.1 (A,B,C1,D), and further assume thatp2 + q2 < 2. De�ne� r :=
G eD l (� l ). Under the supercriticality condition(2.47), that we call thesupercritical
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2.4 Results on the largest component

case of theBCM, we have that� l > 0, � l < 1 and� r < 1 (see Section 4.1.1). Then,
asn ! 1 ,

j C1;b \ V l j
Nn

P�! � l ; (2.48)

j C1;b \ V l
k j

Nn

P�! pk
�
1 � � k

l

�
; (2.49)

j E( C1;b)j
Nn

P�! E[D l ]
�
1 � � l � r

�
: (2.50)

In this case,C1;b is unique in the sense thatj C2;bj=(Nn + M n ) P�! 0, and we refer to
C1;b as thegiant component of theBCM. When(2.47) does not hold,j C1;bj=(Nn +

M n ) P�! 0.

We prove Theorem 2.4.2 in Chapter 4 and discuss why the condition p2 + q2 < 2
is necessary in Section 2.6. We provide some comments on, and corollaries of,
Theorem 2.4.2 below. We note that (2.50) is equivalent to both of the following
statements: j E( C1;b)j=Mn

P�! E[D r ](1 � � l � r ), as well as j E( C1;b)j=hn
P�! 1�

� l � r . The equivalence follows from the fact that hn = Nn E[D l
n ] = M n E[D r

n ], by
Remark 2.2.2 (i). This shows that the role of lhs and rhs is in fact symmetric in this
relation. Recall V r

k from (2.6) and 
 from Remark 2.2.2 (i).

Corollary 2.4.3 (The right-hand side partition). Under the conditions of Theo-
rem 2.4.2 and the supercriticality condition(2.47), with � r := 1 � GD r (� r ) 2 [0; 1],
asn ! 1 ,

j C1;b \ V r j
M n

P�! � r ; (2.51)

j C1;b \ V r
k j

M n

P�! qk
�
1 � � k

r

�
; (2.52)

j C1;bj
Nn + M n

P�!
� l + 
� r

1 + 

: (2.53)

Proof of Corollary 2.4.3 subject to Theorem 2.3.9.Observe that the role of the lhs and
rhs partitions, and in particular the role of the quantities � l and � r , as well as that of
� l and � r are symmetric; we formally establish this symmetry below in Section 4.1.1.
Thus, by switching left and right, (2.51-2.52) follow from (2.48-2.49), and combining
(2.48) and (2.51) yields (2.53). Thus, Corollary 2.4.3 follows from Theorem 2.4.2.

Local properties of the giant of the RIGC. We continue by studying the degree
distribution and the number of edges in the giant component of the RIGC model.
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2 The random intersection graph with communities and its properties

Naturally, these quantities depend more sensitively on � and are non-trivial: our
results below show that the degree distribution in the giant component is conside-
rably di�erent from the degree distribution of the whole graph from Corollary 2.3.4
(unless � l = 0 , or equivalently, � l = 1 , and the giant component contains almost all
vertices). The reason for this is a size-biasing e�ect of the giant, see Theorem 2.4.2
and Corollary 2.4.3 (in particular, (2.49) and 2.52). Recall (2.6) and (2.13), and de�ne

V p
d :=

�
v 2 V l : p -deg(v) = d

	
: (2.54)

For H 2 H and c 2 Z+ , we de�ne the number of vertices in H with c-degree c,
� (c j H ) := jf j 2 V (H ) : c-deg(j ) = cgj. Recall � r from Theorem 2.4.2.

Theorem 2.4.4 (Degrees in the giant). ConsiderRIGC( d l ; Com ) under Assump-
tion 2.2.1, additionally assuming the supercriticality condition(2.47). Fork 2 Z+ ; d 2
N, de�ne

A(k; d) :=

pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 N
c1 + ::: + ck = d

�
1 � �

P k
i =1 ( jH i j� 1)

r

� kY

i =1

� (ci j H i )� H i

E[D r ]
: (2.55)

Then, the proportion of individuals that havek group memberships, total degreed and
are in the giant component converges asn ! 1 , i.e.,

j V l
k \ V p

d \ C1j
Nn

P�! A(k; d): (2.56)

The proof of Theorem 2.4.4 is deferred to Section 4.5.1, where we also give a
heuristic interpretation of A(k; d). It follows (via a truncation argument) from The-
orem 2.4.4 and (2.46) that the empirical degree distribution in the giant converges:

j V p
d \ C1j
j C1j

=
X

k2 Z+

j V l
k \ V p

d \ C1j
Nn

Nn

j C1j
P�!

X

k2 Z+

A(k; d)=� l : (2.57)

While the expression in (2.55) seems quite involved, the following remark shows
that in fact, it is closely related to the limiting degree distribution of the whole graph.
Recall D l from Assumption 2.2.1 (A), and D c from Remark 2.2.2 (ii). Recall from
(2.24) and Corollary 2.3.4 that the limiting degree distribution is D p d=

P D l

i =1 D c
( i ) ,

where (D c
( i ) ) i 2 Z+ are independent, identically distributed (iid) copies of D c , and

also independent of D l .
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2.4 Results on the largest component

Remark 2.4.5 (Relation of Theorem 2.4.4 and Corollary 2.3.4). We now explore the
relation between the degree distribution in the giant and the degree distribution in

the entire graph. Heuristically,(2.52) suggests that the factor
�
1 � �

P k
i =1 ( jH i j� 1)

r
�

in
(2.55) corresponds to the probability of belonging to the giant. In the following, we
show that omitting this factor from(2.55), the rhs becomes a convolution that yields
the degree distribution of the entire graph from(2.24). First, note that for any �xed
c 2 Z+ , with %c from Remark 2.2.2 (ii),

X

H 2 H

� (c j H )� H

E[D r ]
= %c = P(D c = c): (2.58)

Here, the denominatorE[D r ] only serves for renormalization, since� ( n ) is a distri-
bution onV r with sizeM n , while%( n ) is a distribution onV (Com ) with sizehn .

Then, omitting the factor
�
1 � �

P k
i =1 ( jH i j� 1)

r
�
, the rhs of(2.55) becomes:

pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 N
c1 + ::: + ck = d

kY

i =1

� (ci j H i )� H i

E[D r ]
= pk

X

c1 ;:::;c k 2 N
c1 + ::: + ck = d

kY

i =1

%ci

= pk P
� kX

i =1

D c
( i ) = d

�
= P

�
D l = k

�
P

�
D p = d

�
� D l = k

�

= P
�
D p = d; D l = k

�
;

(2.59)

which is the asymptotic joint distribution ofl - andp -degrees in the whole graph.
Indeed, combining Corollary 2.3.4 and(2.24) implies that

j V l
k \ V p

d j
Nn

P�! P
�
D p = d; D l = k

�
: (2.60)

Next, we state our result regarding the number of edges in the giant component.
Recall D c

n with pmf %( n ) from (2.12), � r from Theorem 2.4.2 and 
 from (2.21).

Theorem 2.4.6 (Edges in the giant). ConsiderRIGC( d l ; Com ) under Assump-
tion 2.2.1 and the supercriticality condition(2.47), and additionally assume that

(D c
n )n 2 N is uniformly integrable (UI): (2.61)

LetH denote a random graph with pmf� . Then the number of edges in the giant
componentC1 of the supercriticalRIGC satis�es, asn ! 1 ,

j E( C1)j
Nn

P�! 
 E
�
j E(H )j

�
1 � � jH j

r

��
: (2.62)
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We prove Theorem 2.4.6 in Section 4.5.2, where we show that Theorem 2.4.6
follows from Theorem 2.4.4 under the additional uniform integrability condition
(2.61). This extra condition is indeed crucial, as demonstrated by its implications in
the following lemma:

Lemma 2.4.7 (Uniform integrability conditions). The following statements are
equivalent:

i) (D c
n )n 2 N is UI, i.e.,(2.61) holds;

ii) (D p
n )n 2 N is UI;

iii) (j E(H n )j)n 2 N is UI.

We prove Lemma 2.4.7 in Section 4.5.2, but discuss its relevance now. The state-
ment in Lemma 2.4.7 (iii), which, subject to the lemma, is equivalent to the uniform
integrability condition (2.61), is the necessary and su�cient condition for the rhs of
(2.62) to be �nite. Since this condition takes the community structure into account,
it is more re�ned than moment conditions on the community size D r

n . By our
assumption that community graphs are simple and connected, jH j � 1 � j E(H )j �
jH j(jH j � 1)=2, which implies that E[D r

n ] � 1 � E
�
j E(H n )j

�
� E[D r

n (D r
n � 1)]=2.

Thus the condition in Lemma 2.4.7 (iii) is weaker than E
�
(D r

n )2
�

! E
�
(D r )2

�
< 1

(which is su�cient, but not necessary), but stronger than E[D r
n ] ! E[D r ] < 1 ,

which is Assumption 2.2.1 (D). This is necessary, but not su�cient: in the general
case under Assumption 2.2.1, it is still possible that E

�
j E(H n )j

�
diverges, which

implies that j E( C1)j=Nn diverges and Theorem 2.4.6 does not hold.

2.5 Results on percolation and robustness

In this section, we study the behavior of percolation on the RIGC model, wrt bond
and site percolation separately. We recall the following de�nition of percolation.
Fix the edge (resp., vertex) retention parameter � 2 [0; 1], and given a realization of
theRIGC , retain each edge (resp., vertex) independently with probability � . Thus
the percolated RIGC is a graph with two layers of randomness. We denote the
subgraph of retained edges (resp., spanned by the retained vertices) by RIGC e(� )
(resp., RIGC v (� )), or simply by RIGC( � ) when it does not cause confusion. In
particular, RIGC(0) is a graph of isolated points (resp., the empty graph) and
RIGC(1) is the original graph.

Phase transition of bond percolation. Recall D l and D r from Assumption 2.2.1
(A) and (C1) respectively. Recall � l from Theorem 2.4.1 and Nn = j V l j. Denote the
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largest connected component13 of RIGC( � ) = RIGC e(� ) by C1(� ) = Ce;( n )

1 (� ),
and the second largest by C2(� ) = Ce;( n )

2 (� ).

Theorem 2.5.1 (Phase transition of bond percolation on the RIGC ). Consider
(bond) percolation with edge retention probability� 2 [0; 1] on RIGC( d l ; Com )
under Assumption 2.2.1 and the supercriticality condition(2.47). Then there ex-
ists a function� 7! � l (� ) = � e

l (� ) and a threshold� c = � e
c 2 [0; 1] such that

j C1(� )j=Nn
P�! � l (� ) and

i) if � < � c, then� l (� ) = 0 ;

ii) if � > � c, then� l (� ) 2 (0; � l ] and C1(� ) is whp unique:j C2(� )j=Nn
P�! 0.

We prove Theorem 2.5.1 as a consequence of Theorem 2.4.1 in Section 5.1.1,
by representing bond percolation on the RIGC as another RIGC with random
parameters. We refer to the behavior in case (i) as subcritical percolation and the
behavior in case (ii) as supercritical percolation. We brie�y discuss what happens at
� = � c in the proof in Section 5.1.1. We assume the supercriticality condition (2.47),
since when this condition fails, case (ii) becomes impossible, as component sizes
cannot increase in percolation. Consequently there is no phase transition and the
statement becomes trivial. In the following, we characterize the threshold � c = � e

c ,
that we call the critical percolation parameter (critical percolation probability).
Recall (2.3) and Assumption 2.2.1 (A).

Proposition 2.5.2 (Characterization of the threshold � c). LetH denote a random
graph with pmf� and letUH j H � Unif[ V (H )]. Let CH (UH ; � ) denote the con-
nected component ofUH under bond percolation onH with edge retention probability
� . Under the conditions of Theorem 2.5.1, the critical percolation probability� e

c is
given by

� c = inf
�

� : E[ eD l ] � E
�
jH j (j CH (UH ; � )j � 1)

��
E

�
jH j

�
> 1

	
; (2.63)

whereE[�] denotes total expectation (with respect to all sources of randomness). Furt-
hermore,� c < 1.

We prove Proposition 2.5.2 in Section 5.2.2. We remark that � c < 1 ensures
that the set of supercritical percolation parameters is always non-empty. However,
the set of subcritical parameters � < � c may be empty, which happens whenever
� c = 0 . The phenomenon when � c = 0 occurs is called robustness, and we explore
it further after discussing site percolation.

13The component containing the most vertices, with ties broken arbitrarily.
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2 The random intersection graph with communities and its properties

Phase transition of site percolation. Analogously to the above, we now study
site percolation on the RIGC model. Denote the largest connected component14

of RIGC( � ) = RIGC v (� ) by C1(� ) = Cv;( n )

1 (� ), and the second largest by
C2(� ) = Cv;( n )

2 (� ).

Theorem 2.5.3 (Phase transition of site percolation on the RIGC ). Consider site
percolation with vertex retention probability� 2 (0; 1] onRIGC( d l ; Com ) under
Assumption 2.2.1 and the supercriticality condition(2.47). Then there exists a function

� l (� ) = � v
l (� ) and a threshold� c = � v

c 2 [0; 1] such thatj C1(� )j=Nn (� ) P�!
� l (� ), and

i) if � < � c, then� l (� ) = 0 ;

ii) if � > � c, then� l (� ) > 0. Further,C1(� ) is whp unique in the sense that

j C2(� )j=Nn (� ) P�! 0.

Analogously to Theorem 2.5.1, we prove Theorem 2.5.3 as a consequence of
Theorem 2.4.1 in Section 5.1.2, by representing site percolation on the RIGC as
another RIGC with random parameters.15 Analogously to bond percolation, we
refer to case (i) as subcritical and to case (ii) as supercritical percolation, and
we brie�y discuss what happens at � = � c in the proof in Section 5.1.2. The
supercriticality condition (2.47) is again assumed to ensure that case (ii) is possible.

In the following, we characterize the critical percolation probability. Recall that
H denotes a random graph with pmf � and that UH j H � Unif[ V (H )], and
let CH

Ber (UH ; � ) denote the component of UH under Bernoulli( � ) site percolation
on H , i.e., when each vertex is retained independently with probability � 2 [0; 1],
with the convention that if UH is deleted, then CH

Ber (UH ; � ) is the empty graph.
Further recall (2.3), and D l from Assumption 2.2.1 (A).

Proposition 2.5.4 (Critical site percolation probability). Consider site percolation
with vertex retention probability� 2 [0; 1] onRIGC( d l ; Com ) under the conditions
of Theorem 2.5.3. Then the critical percolation parameter is given by:

� c = � v
c =

inf
� 2 [0;1]

n
E

� eD l � �
E

�
jH j(j CH

Ber (UH ; � )j � 1)
�
� j CH

Ber (UH ; � )j 6= 0
�

E[jH j]
> 1

o
:

(2.64)

Furthermore,� c = � v
c < 1.

We prove Proposition 2.5.4 in Section 5.3.2.
14The component containing the most vertices, with ties broken arbitrarily.
15The random parameters used to represent bond and site percolation on the RIGC are di�erent.
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Robustness. Recall that a network is robust wrt bond (resp., site) percolation when
� e

c = 0 (resp., � v
c = 0 ), that is, when percolation does not have a phase transition

and a giant component always persists.
Before tackling this problem for the RIGC , we provide some intuition and context

by discussing robustness of the con�guration model (CM) as well as the bipartite
con�guration model (BCM ), which are relevant since we generate group members-
hips in the RIGC via the underlying BCM (see De�nition 2.1.2 (i)). It is known
[128] that the CM with asymptotic degree distribution D is robust exactly when
E[ eD] = 1 . Intuitively, this is explained by the branching process approximation of
the CM (see the paragraph on the CM in Section 1.3.2), which is a branching process
with o�spring eD (see (2.3)), except for the root that has o�spring D . (We make
this precise in terms of local weak convergence in Chapter 3.) Percolation (both
bond and site) can be seen as thinning this BP: retaining each child independently
with probability � , which yields E[ eD]� expected o�spring and the supercriticality
condition E[ eD]� > 1. If E[ eD] = 1 , the expected thinned o�spring is still in�nite,
and necessarily � c = 0 ; if E[ eD] < 1 , rearranging yields � c(CM) = 1 =E[ eD ].
In Section 3.2.1, we introduce a BP-approximation for the BCM as well; in this
BP, o�spring eD l and eD r alternate in every second generation, expect the root.
Heuristics analogous to the CM above, considering second neighbors instead that
are in the same partition, suggest the supercriticality condition E[ eD l ]� E[ eD r ]� > 1.
This in turn suggests that the critical probability is � c(BCM) = ( E[ eD l ]E[ eD r ]) � 1=2,
that is, the BCM is robust exactly when E[ eD l ]E[ eD r ] = 1 .

However, the situation is not so clear-cut on the RIGC . This is due to the
fact that percolation on the RIGC is not directly related to percolation on the
underlying BCM (except for the special case of site percolation on the RIG , i.e.,
when communities are complete graphs). In Section 5.1, we show that percolation
on the RIGC is equivalent to anotherRIGC , with di�erent, random parameters that
we de�ne exactly in Section 5.1. Intuitively speaking, the main e�ect of removing
vertices and edges of the RIGC is removing vertices and edges of the communities
in turn, which causes them to fall apart into several connected components, and we
treat each as its own smaller community. In the underlying BCM , this corresponds
to r -vertices being cut into several vertices that share the original set of half-
edges in bond percolation, or even a smaller set in site percolation (since each
half-edge corresponds to a community vertex, deleting community roles leads to
a loss of half-edges). This essentially leads to a new rhs partition with a di�erent,
now random empirical community size distribution (r -degree distribution). In
Section 5.1, we establish that the empirical r -degree distribution converges to
a limiting percolated community size distribution D r (� ). The random variable
D r (� ) depends non-trivially on not only the original community-size distribution
D r , but also the exact internal structure of the communities, i.e., the mass function
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2 The random intersection graph with communities and its properties

� . While the lhs partition is also thinned in site percolation, its asymptotic degree
distribution D l does not change. This overall leads to the supercriticality condition
E[ eD l ]E[D̂ r (� )] > 1, which is applicable for both bond and site percolation with
their respective asymptotic r -degree distributions D r ;e(� ) and D r ; v (� ).

Note the asymmetry of this condition, in contrast with the condition obtained for
the BCM above, which suggests a di�erence between the models. Further, as sug-
gested above, D r (� ) depends sensitively on � ; intuitively speaking, the denser the
communities, the less likely they are to break into several connected components. In
fact, the condition E[ eD r ] = 1 is not su�cient anymore to guarantee robustness, as
E[D̂ r (� )] may become �nite if the communities are �sparse enough�. Consequently,
E[ eD l ]E[ eD r ] = 1 is not enough information to determine robustness of the RIGC ,
it is crucial whether E[ eD l ] or E[ eD r ] is in�nite. We formalize this intuition in the
theorem below.

Recall that H denotes a random graph with pmf � , UH j H � Unif[H ], CH (l; � )
denotes the component of l 2 H under bond percolation on H with edge retention
probability � , and CH

Ber (l; � ) denotes the component of l 2 H under Bernoulli site
percolation on H with vertex retention probability � .

Theorem 2.5.5 (Robustness of the RIGC ). ConsiderRIGC( d l ; Com ) under As-
sumption 2.2.1 and the supercriticality condition(2.47). Then,

i) if E[ eD l ]E[ eD r ] < 1 , theRIGC model isnot robust wrt either bond or site
percolation;

ii) if E[ eD l ] = 1 , irrespective of whetherE[ eD r ] is �nite, the RIGC model is
robust wrt both bond and site percolation;

iii) if E[ eD l ] < 1 andE[ eD r ] = 1 , theRIGC can exhibitboth robust and non-
robust behavior, depending on �ner properties of the measure� . In particular,
theRIGC is robust wrt bond percolation exactly when

lim
� ! 0

E
�
jH j (j CH (UH ; � )j � 1)

�
= 1 : (2.65)

Analogously, it is robust wrt site percolation exactly when

lim
� ! 0

E
�
jH j

�
j CH

Ber (UH ; � )j � 1
� �

� j CH
Ber (UH ; � )j 6= 0

�
= 1 : (2.66)

We prove Theorem 2.5.5 in Section 5.4.1 and discuss it now. Theorem 2.5.5 (i)
and (ii) correspond to the two classical regimes of the CM : �nite second moment
E[ eD] < 1 and in�nite second moment E[ eD] = 1 , respectively. The di�erence
from classical models is shown in case (iii), where only the community sizes have
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in�nite second moment, hence why the exact community graph distribution plays
an important role in determining whether the asymptotic percolated community
size D r (� ) has a �nite second moment. The condition we identify in this regime
is exact, and further, only depends on the unpercolated limiting measure � . We
conclude this section with the following non-equivalence result:

Proposition 2.5.6 (Non-equivalence of robustness wrt bond and site percolation).
In case (iii) of Theorem 2.5.5, the limiting community graph distribution� can be
chosen in such a way that the resultingRIGC is robust wrt bond percolation but
non-robust wrt site percolation.

We prove Proposition 2.5.6 in Section 5.4.2. We note that the reverse is not
possible, due to the universal result � e

c � � v
c .

2.6 Discussion

In this section, we provide a discussion of the RIGC model focusing on modeling
aspects and known properties, as well as a discussion on the underlying BCM .

2.6.1 Discussion on modeling choices

In this section, we discuss the RIGC from a modeling standpoint: why we set up
memberships tokens the way we did and how the parameters can be chosen in
applications.

Membership tokens. It is quite intuitive to take �xed community graphs as the
building blocks of the networks. However, it is less natural to also prescribe the
number of group memberships for each individual, which is why we discuss this
modeling choice now. An alternative method, inspired by the (passive) generalized
RIG would be to only �x the number of individuals and assign each community
membership independently to a uniformly chosen individual. For convenience, we
still refer to the number of group memberships of an individual as its l -degree,
however it is now random. Assuming M n =Nn ! 
 2 R+ , so that the l -degree
distribution has a proper limit, this limit is always a Poisson random variable
with mean E[D l ] = 
 E[D r ]. In particular, this means that a linear proportion
of individuals are not part of any community and thus super�uous in the graph.
Further, note that conditionally on the resulting l -degrees, we obtain a uniform
simple bipartite graph with the given degree sequences.16 In Section 2.6.3 below, we
16Given the community sizes d r = ( dr

i )M
i =1 , the probability of obtaining a given assignment is

Q M
i =1

1
M !=( M � d r

i )! , where we recognize a uniform distribution. Consequently restricted to the assign-
ments with given l -degrees, we obtain a distribution that is uniform on this subset.
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2 The random intersection graph with communities and its properties

show that conditionally on simplicity, the assignment using the uniform bipartite
matching is also a uniform bipartite graph with the given sequences. This suggests
a (not entirely rigorous) relation between the two models, among which prescribing
the number of group memberships for each individual is more general, as it allows
for an arbitrary limiting l -degree distribution. This includes Poisson as a special case
and also has the advantage that we can exclude isolated vertices in the underlying
bipartite graph.

Parameter choices in application. Working with prescribed parameters allows
us to obtain the parameters (d l ; Com ) from various sources, which provides a
wide range of applicability. For example, using data obtained from a real-world
network allows us to use the RIGC as a null model for this network. In this case,
the parameters can be obtained explicitly through community-detection algorithms
[88, 89]. For theoretical research, one may be interested in generating the input
parameters randomly, of which we give two examples. A simple idea is to use
iid random variables with distribution D l and random graphs with pmf � to
generate the sequences d l and Com , respectively. However, the parameters must
satisfy (2.1) so that it is possible to assign the community memberships. If both
Var( D l ) < 1 ; Var( D r ) < 1 , then we can use the algorithm proposed by Chen
and Olvera-Cravioto17 in [55] to generate the sequences d l , Com in such a way that
the sum of the l - and r -degrees are equal, meanwhile the entries are asymptotically
independent.

Our second example is to generate a matching pair of d l and d r in a dependent
way through a bipartite version of the generalized random graph [48], as follows.
Consider the lhs partition [Nn ] and the rhs partition [M n ] with weight sequences
(w l

i ) i 2 [N n ] and (wr
j ) j 2 [M n ] such that hn :=

P
i 2 [N n ] w l

i =
P

j 2 [M n ] wr
j . Then

the edge probability between i 2 [Nn ] and j 2 [M n ] can be de�ned as pij =
(w l

i wr
j )=(hn + w l

i wr
j ), and edges are present independently. We then forget about

this bipartite GRG and only retain the degree sequences d l and d r for the RIGC .
Once d r is given, we then have to generate Com in a compatible way, i.e., such
that the community sizes are indeed the r -degrees. Assumption 2.2.1 (C) implies
that there exists a family of conditional measures

� H jk = P
�
Coma = H j dr

a = jComa j = k
�
;

� �j k = ( � H jk )H 2 Hk ; (� �j k )k2 Z+ ;
(2.67)

that describe the conditional distribution of community graphs for each given
community size. In fact � H jk = � H =qk , with � and q from Assumption 2.2.1 (C)
and (C1), respectively. (We note that due to this relation, under Assumption 2.2.1
17While their algorithm was designed for the directed con�guration model, it is straightforwardly
applicable to the BCM .
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(C1), the implication is reversible, i.e., the existence of (� �j k )k2 Z+ implies Assump-
tion 2.2.1 (C).) Thus we can generate each Coma according to the respective measure
� �j r -deg( a) , independently of each other.

Multigraphs. The usual criticism that the traditional con�guration model receives
is that it may produce a multigraph, and this happens whp in case the degrees have
in�nite (asymptotic) variance [111, Chapter 7]. This is true for the bipartite version
as well. As the RIGC uses a bipartite con�guration model in its construction, we
are bound to deal with multigraphs on the level of group memberships, and possibly
on the level of the projection as well. One classical remedy is to condition the graph
on simplicity, it is however outside the scope of this thesis to study this conditional
measure or to study whether the simplicity probability remains bounded away
from 0 as the graph size grows. Another classical approach is using the erased
con�guration model where self-loops are erased and multi-edges are collapsed into
single ones. Analogously, we can de�ne the erased RIGC 18 by removing self-loops
and collapsing multi-edges into a simple edge, i.e., rede�ning the edge multiplicities
from (2.2) as X 0

v;v = 0 and X 0
v;w = 1f X v;w � 1g . In this thesis, we choose to study

the RIGC as a multigraph, and argue that we do not see the e�ect of this in the
local behavior; indeed, subject to Theorem 2.3.3, the local weak limit of the RIGC is
simple (a distribution on rooted simple graphs). This means that a typical individual
will whp not see a self-loop or multi-edge in its �nite neighborhood. Based on this
observation, our results extend to the erased RIGC without any modi�cation.

2.6.2 Discussion on the properties and application of
the RIGC

In this section, we compare properties of the RIGC studied in Sections 2.3�2.5 to
other known networks models and empirical properties of real-world networks,
and discuss the implications of these properties for the applicability of the model.

Structure and consequences. The RIGC is designed to model networks with
arbitrary and at the same time overlapping communities, �lling a gap in the literature
and providing a null model for networks of this kind. The communities, that are used
as building blocks, are combined in an overlapping fashion into a network through
randomness. Such a model is best suited to model networks where the structure
of each community is determined by its functionality, while the combination of
community roles that entities take on is highly variable and can thus be considered
random. For example, consider a social network, where groups can represent

18Note that using the erased BCM in the construction does not ensure that the resulting RIGC is a
simple graph, multi-edges may still arise due to two individuals being part of two (or more) communities
together.
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families, workplaces, sport teams, creative communities, etc., and people take on
various combinations of roles in di�erent communities based on their personal
interests.

As a consequence of this structure, local properties of the model, such as degree
distribution and local clustering, are de�ned by an interplay between the internal
structure of communities, as well as the randomness arising from the combination
of roles taken by each individual in the network. This intuitively explains the
form of the limiting degree distribution and clustering in Corollaries 2.3.4 and 2.3.5.
Studying these formulas, we see that we have a sparse graph whenever the uniform
integrability condition (2.61) holds. Further, if either D l (from Assumption 2.2.1
(A)) or D c (from Remark 2.2.2 (ii)) follows a power law, then the degree distribution
D p follows a power law with the same tail exponent. In case both D l and D c

follow power laws, the �heavier tail wins�, and the exponent of D p is the smaller
of the two exponents. Assuming the graph to be sparse, under the mild additional
condition of Corollary 2.3.6, the RIGC also has positive asymptotic clustering.
A model with these properties is well-suited for modeling real-world networks,
making the RIGC a better candidate for this purpose than classical models such as
the Erdfis-RØnyi random graph or the con�guration model, which have vanishing
clustering.

In determining the global properties of the model, the added randomness domina-
tes, due to the fact that the communities have �nite average size. These microscopic
structures become negligible and generic macroscopic e�ects emerge, leading to a
similar connectivity structure and giant component phase transition as observed
in other well-known random graph models. However, spreading processes and
disorganized attacks on the RIGC , that we have modeled by percolation, as well as
graph distances in the model, sensitively depend on the exact internal structure of
the communities. In fact, this e�ect is even stronger than that in the local properties,
for the following reasons. For the degree distribution and local clustering coe�cient,
it is su�cient to understand local properties of each community role: its commu-
nity degree and the number of triangles it is part of within its community graph.
However for distances and percolation, the entire connectivity structure of the
community graphs matters: pairwise distances of community vertices and typical
component sizes under percolation. Further, analogously to the con�guration
model, percolation on the RIGC reduces to another RIGC with di�erent (random)
parameters. In particular, percolation on the traditional RIG results in a RIGC as
well, which suggests that the RIGC is the natural way of looking at percolation on
random intersection graphs of all kind, and provides additional incentive to use the
RIGC to study networks with overlapping communities.

Overlaps. The motivation behind random intersection graphs is to generate over-
lappingcommunities, recall Proposition 2.3.7. However, Theorem 2.3.8 asserts the
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single-overlap property of the RIGC and RIG graphs, which appears to limit the
applicability of these models. For example, they may not appear be a good �t
for scienti�c collaboration networks, where the same authors often collaborate
on several papers and with several other collaborators, however shortly below
we suggest a way to improve this �t. Further, the RIGC may be used for social
networks when the di�erent groups of the same person tend to be separate: their
family members, their colleagues, their sports club friends, etc., typically do not
know each other.

On the other hand, the single-overlap property may be used to optimize commu-
nity detection; for example, consider the C-�nder algorithm based on the clique
percolation method [68, 175], that we explain brie�y. A k-clique in a graph is a
complete subgraph on k vertices, and we call two k-cliques adjacent when they
share k� 1 vertices. A component in k-clique percolation is a maximal set of vertices
that are connected through a chain of adjacent k-cliques. We remark that such
components may overlap, as long as the intersection does not contain a (k � 1)-
clique; the simplest case is when the overlap has less than k � 1 vertices. The
C-�nder algorithm outputs such components as possibly overlapping communities
in the network. Now suppose each community of the RIGC is 3-clique connected,
i.e., built up from edge-adjacent triangles. Due to the single-overlap property of the
RIGC , a typical community does not have other communities 3-clique adjacent
to it, thus whp it will be a component of 3-clique percolation by itself, allowing
community detection with great accuracy. Thus, such an RIGC works really well
in conjunction with the C-�nder algorithm, either as �rst generating the RIGC
and then detecting its communities, or running C-�nder on the dataset for which
one wishes to use the RIGC as a null model. This has been demonstrated on a few
examples in [43].

We believe that we can also use the clique percolation approach to make the
RIGC a better �t than the traditional RIG for collaboration networks, in particular
for scienti�c collaboration networks of authors and the papers they collaborate on.
Rather than considering each paper as its own community, which leads to cliques
with a typical overlap size larger than one, we can instead merge cliques with more
than a single overlap into one community, that is, we can use the components of
clique percolation as communities. Then we can think of each community as the
collaboration network of a subgroup of authors who often collaborate with one
another, and the collaboration network as a network with hierarchical structure.

2.6.3 Discussion on the bipartite configuration model

We now discuss relevant properties of the underlying BCM , including why the
extra condition p2 + q2 < 2 is necessary in Theorem 2.4.2, and the use of the BCM
to generate simple bipartite graphs with a given degree sequence.
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The condition p2 + q2 < 2. We brie�y explain why the almost-2-regular graph
p2 + q2 = 2 is excluded. First, we show that the con�guration model (CM) can be
obtained from the BCM as a special case, then we recall from the literature why
the general results are not applicable for the almost-2-regular case of the CM .

Assume that V r
2 = V r for all n, i.e., all r -vertices have degree 2. Then each

r -vertex a only serves as connecting two l -vertices, say, v and w through the
2-length path (v; a; w). We can construct a unipartite graph on V l by contracting
each of these (v; a; w) paths into an edge (v; w). We show that this unipartite graph
has the distribution of the con�guration model CMn (d l ). For each (unipartite)
matching b! n = f (v; i1); (w; i2)g of the l -half-edges corresponding to a unipartite
graph, there are exactly j V r j!2j V r j bipartite matchings ! n that are mapped into b! n

by the above contraction. The reason is that we can permute all r -vertices, as well
as each pair of r -half-edges attached to the same r -vertex. Since ! n is a uniform
bipartite matching, necessarily b! n is a uniform (unipartite) matching.

In [126], the p2 = 1 case of the CM is excluded for the reason that the size of
the giant component is not concentrated: it shows diverse behavior depending on
the more re�ned asymptotics of the degree structure. In particular, if there are only
degree-2 vertices, then the proportion of the largest component converges to a
non-degeneratedistribution, rather than a constant. However, adding a sublinear
proportion of degree-1 vertices makes the size of the giant component drop to
sublinear. In contrast, when almost all vertices have degree 2 and a sublinear
proportion has degree 4, the giant component constitues almost all vertices. For a
more detailed discussion see [81, 112, 126].

By the contraction described above, the p2 + q2 = 2 case of the BCM includes
the ambiguous p2 = 1 case of the CM . In particular, when V r

2 = V r for all n and
p2 = 1 , the BCM is equivalent to the CM with p2 = 1 . This shows that not only
the proof fails for this case, but Theorem 2.4.2 itself does not hold.

Uniform simple bipartite graphs with given degrees. In the literature, it is
well known that the CM conditioned on being simple is a uniform simple graph
with the given degree sequence. Not surprisingly, the corresponding statement is
also true for the BCM . We provide a brief justi�cation below. Let G be an arbitrary
bipartite multigraph with l -degree and r -degree sequences d l and d r , and for
v 2 V l ; a 2 V r , let xb(v; a) denote the multiplicity of the edge (v; a) in G. As
explained below, the number of (bipartite) matchings ! n that realize G is

Q
v2 V l dl

v !
Q

a2 V r dr
a !

Q
v2 V l ;a2 V r xb(v; a)!

: (2.68)

We justify the formula, as follows. The numerator arises since all half-edges attached
to the same vertex are equivalent, hence permuting them leads to the same graph,
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but a di�erent matching. The denominator in turn arises since all instances of a
multi-edge are equivalent, and by permuting both l - and r -half-edges, the same set
of pairs appears in all possible orderings. All simple bipartite graphs, i.e., where all
the multiplicities xb(v; a) are 0 or 1, arise from

Q
v2 V l dl

v !
Q

a2 V r dr
a ! matchings

and thus have the same probability. Thus conditioning the BCM on being simple
indeed leads to a uniform simple bipartite graph with the given l - and r -degree
sequences.

Note that the probability of obtaining a simple graph might tend to 0 as n ! 1 .
Whether the asymptotic probability of obtaining a simple graph is positive is a
non-trivial question and falls out of the scope of this thesis. Partial results are
known, e.g. when E[(D l

n )2] ! E[(D l )2] < 1 and E[(D r
n )2] ! E[(D r )2] < 1

hold, the asymptotic probability of a simple graph is positive, as shown in [9, 36,
123, 124].

We remark that using the above observed relation of the BCM to uniform random
graphs with given degree sequences, our results can be extended beyond the scope
of the BCM . It is known that the generalized random graph (GRG) conditioned on
its degree sequence yields a uniform random graph with those degrees [48]. As
above, we de�ne the bipartite version of the model, with lhs partition [Nn ] and
rhs partition [M n ] with weight sequences (w l

i ) i 2 [N n ] and (wr
j ) j 2 [M n ] such that

hn :=
P

i 2 [N n ] w l
i =

P
j 2 [M n ] wr

j . For i 2 [Nn ]; j 2 [M n ], the edge probability

is given by pij =
w l

i w r
j

hn + w l
i w r

j
. A similar argument as in [48, Section 3] shows that

conditionally on the lhs and rhs degree sequences, this model also yields a uniform
bipartite graph with the given degree sequences. Consequently, we remark without
going into details that the bipartite version of the GRG also undergoes a phase
transition analogously to Theorem 2.4.2.

2.7 Open problems

Above, we have stated our results on the random intersection graph with communi-
ties, but clearly, there are several aspects of the model that remain unstudied. Here,
we sketch possible directions for future research.

In Section 2.6.1, we have discussed the possible application of the RIGC model as
a null-model for real-world networks. By design, the RIGC is well-�tted to model
networks where local communities are well-de�ned but community memberships
are random and mixed on a global scale. Extracting communities from a data set
to apply the model is possible using community detection algorithms that use a
localized approach and can handle overlapping communities, such as walkmap, Info-
Map, cluster quality optimization, see the paragraph on clustering and communities
in Section 1.2.1. In Section 2.6.2, we have also discussed the particular synergy
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between the clique percolation method and the RIGC with triangle-connected
communities, due to the single-overlap property. While a bachelor project was
conducted on the topic [43], it remains an intriguing future research direction to
evaluate the predictive power of the RIGC for real data sets and whether it shows
signi�cant improvement over other models with community structure.

2.7.1 Local properties

In Section 2.3, we have studied local properties of the RIGC , heavily relying on
the local weak convergence stated in Theorem 2.3.3 (with the exact description of
the limiting object deferred to Section 3.3.1). As a consequence, we have obtained
the asymptotic degree distribution in Corollary 2.3.4, asymptotic distribution of the
local clustering coe�cient in Corollary 2.3.5, as well as the single-overlap property
in Theorem 2.3.8. However, as we have already observed while discussing the
overlapping structure, that local weak convergence describes the neighborhood
of a singleuniformly chosen vertex. This is non-trivial to relate to the dependent
selection of two vertices, such as neighbors, or vertices with a common neighbor,
and only possible under higher moment conditions. Due to this limitation, we have
left unsolved some naturally arising questions.

Degree-degree correlations. In networks, it is often of interest whether and how
the degrees of neighboring vertices are correlated [85, 152, 173]. A network with
positive degree-degree correlation is called assortative. This means high-degree
vertices tend to connect to other high-degree vertices, which seems to be the case
in social networks. The opposite of this is a disassortative network where this
correlation is negative and high-degree vertices tend to connect to low-degree ones,
which happens in many non-social networks.

Studying degree-degree correlations with local weak convergence in the RIGC is
possible under some extra moment assumptions, see [112, Section 2.4.3]. However a
more direct approach can also be applied. The calculations are quite straighforwad
but rather convoluted hence we do not make it formal. Note that choosing an edge
of the RIGC uar is equivalent to choosing a community edge uar; given the measure
� , we are able to quantify the correlation of the c-degrees of the community roles
that are the endpoints of this edge. These community roles are taken by individuals
which are chosen independently in a size-biased fashion according to their l -degree,
which then take on more uniformly sampled community roles, asymptotically inde-
pendently. Hence we believe that, if E[(D l

n )2] ! E[(D l )2] < 1 , the assortativity
of the RIGC is determined by the assortativity of the community graphs, but the
correlations are weakened. Studying the degree of a random neighbor W of a
uniformly chosen vertex V can be carried out in a similar fashion, by taking into
account the distorted distribution of the c-degree contributing to the degree of
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W within the community shared with V , as well as the size-biasing e�ect in the
l -degree of W .

Overlapping structure. Recall that we have �rst encountered di�culty applying
local weak convergence in relation with Theorem 2.3.8 (iii), where we have to
choose a pair of r -vertices at distance 2 in the underlying BCM uar. To show
this version of the single-overlap property in Theorem 2.3.8 (iii), as well as to
even identify the �rst order asymptotics of the number of overlapping pairs in
Proposition 2.3.7, we needed a second moment condition (2.39). We strongly believe
that this condition is not only technical and the number of overlaps jL 1j (see (2.38))
grows superlinearly when condition (2.39) fails. Suppose for the sake of speculation
that D l and D r are both regularly varying (see Section 1.3.1) with index � l 2 (2; 3)
and � r > 2, respectively. Clearly, the number W r of length-2 paths connecting
r -vertices (r -wedges) is an upper bound for the number of r -vertices at distance
2, as some of these paths may have the same endpoints. More precisely, with L k

from (2.38), almost surely

W r =
X

k � 1

jL k j =
X

k � 1

k � jL k n L k � 1j: (2.69)

Since each r -wedge has an l -vertex as its middle point, it is straightforward to
calculate W r as the number of pairs edges adjacent at some l -vertex. Hence, by
properties of regularly varying distributions, almost surely

jL 1j � W r =
X

v2 V l

�
dl

v

2

�
� Nn E

�
(D l

n )2�
� N 2=( � l � 1)

n : (2.70)

For � r > 3, we conjecture that in fact jL 1j = W r (1 � oP(1)) , which also implies
jL 2j = o(W r ); intuitively speaking, the r -wedges do not typically share both their
endpoints. In a way, this statement is the converse of Theorem 2.3.8 (iii) with the
roles of lhs and rhs reversed. Indeed, a double-overlap between two communities
also means two individuals together in both communities. In other words, a 4-
cycle can be decomposed into two r -wedges but also into two l -wedges, de�ned
analogously, and when � r > 3, we know that the number of l -wedges is linear and
they do not �cluster�. For � r 2 (2; 3), the above reasoning is no longer true, and
the asymptotic behavior jL 1j remains a true open problem.

Clustering coe�cient. With our local weak convergence result in hand, analy-
zing local clustering coe�cient was convenient. We have identi�ed the asymptotic
distribution of the local clustering coe�cient in Corollary 2.3.5 and the exact condi-
tion under which the RIGC is highly clustered (see Section 1.3.1) in Corollary 2.3.6.
However, some intriguing open questions remain. One of these relates to the
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clustering spectrum, i.e., partial averages of the local clustering coe�cient as a
function of the degree. It is often observed to scale inversely with the degree, and
we strongly believe that this is the case when all communities are complete graphs,
as this has been observed in other variants of the RIG [26] and other scale-free
network models [91, 115, 193]. However with arbitrary community graphs, the
clustering spectrum is non-trivial to analyze and remains an open problem.

2.7.2 The phase transition

In Section 2.4, we have identi�ed the giant component phase transition of the RIGC
and the �rst order asymptotics of the size of the giant in Theorem 2.4.1. Further,
we have identi�ed the degree distribution in the giant in Theorem 2.4.4 and the
�rst order asymptotics for the number of edges in the giant in Theorem 2.4.6. We
stated analogous results for the BCM in Theorem 2.4.2 and Corollary 2.4.3. This
leaves many �ner details of the phase transition as open problems, such as the
concentration of the size of the giant, the size of the components aside from the
giant, as well as component sizes in the subcritical case and at criticality that we
consider below.

Component sizes and connectivity. Noting that each component of the RIGC
is exactly the collection of l -vertices in the corresponding component of the BCM ,
which we refer to as the lhs partition of the component. Hence it is su�cient to
answer the above questions for the BCM , however in enough detail that one can
also answer for the partitions of the component. With the vast literature on the
unipartite version on the model, we expect analogous results to hold for the BCM ,
however often more attention to detail is required when dealing with the bipartite
version. In particular, we expect that a central limit theorem holds for the size
of the giant component under second moment conditions on the b-degrees. The
results on the CM [147] can be lifted to show that the BCM and consequently the
RIGC are whp connected when all b-degrees are at least 3. However identifying
exact asymptotics for how many vertices with degree 1 and 2 are allowed as in [82]
is slightly more involved. We also expect that under suitable moment conditions,
the universal n2=3 scaling of critical component sizes holds for both the BCM and
RIGC models.

Distances. We also expect the giant component of the BCM to be a small world
when 1 < E[ eD l ]E[ eD r ] < 1 , and ultra-small in the scale-free case E[ eD l ]E[ eD r ] =
1 . It is su�cient for one of E[ eD l ] or E[ eD r ] to be in�nite, in which case hubs in
that one partition will be connected via a possibly low-degree intermediary vertex
in the other partition; structurally, such a BCM takes traits from the scale-free CM
as well as the preferential attachment model [14, 38, 39]. In the special case when
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all communities are complete graphs, these results translate directly to the RIGC ,
with a factor 1=2: in the underlying BCM , the community that the vertices are
connected through appears as an intermediate vertex.

However in the general case, the distance structure of the RIGC is di�erent
from the underlying BCM , due to the arbitrary community graphs: certain pairs
of community roles do not have a direct connection and need several edges to
connect them. This can increase distances signi�cantly, depending on the structure
of the community graphs, line graphs being the worst case scenario. This suggests
that, analogously to robustness, verifying the ultra-small property of the RIGC
is not as clear-cut as verifying it for the underlying BCM . In fact, on a high level
of abstraction, we speculate the same three regimes as for robustness, that we
elaborate shortly in a heuristic manner. When E[ eD l ]E[ eD r ] < 1 , the RIGC is a
small world. When E[ eD l ] = 1 , irrespective of E[ eD r ], the RIGC is ultra small.
When E[ eD l ] < 1 but E[ eD r ] = 1 , the RIGC may be either a small world or an
ultra-small world, depending on the exact structure of the communities. It is an
intriguing open question whether the exact point of phase transition of robustness
and the ultra-small property coincide.

In the �rst case, due to E[ eD r ] < 1 , community graphs have on average a small
size and small diameter, hence distances only increase by a constant factor compared
to the underlying BCM which is a small world. In the second case, E[ eD l ] = 1
guarantees that a typical individual is part of many communities, having at least one
neighbor in each, hence neighborhoods grow fast. In the third case, it is only due
to the communities being heavy-tailed that the underlying BCM is ultra-small. In
this case, it depends heavily on the exact community structure how much distances
are stretched out. For example, with complete graph communities, the RIGC is
also ultra small, however with line graph communities, it is only a small world. In
this speculation, we do not aim to quantify where the transition between these two
behaviors happens, leaving it as an open problem.

2.7.3 Percolation and robustness

In Section 2.5, we have stated the phase transition of Bernoulli bond and site perco-
lation on the RIGC respectively in Theorems 2.5.1 and 2.5.3, as well as implicitly
identi�ed the critical percolation probabilities in Propositions 2.5.2 and 2.5.4. Further,
in Theorem 2.5.5, we stated exact but rather implicit conditions on when the RIGC
is robust wrt bond and site percolation, respectively, and in Proposition 2.5.6, we
have highlighted that robustness of bond and site percolation are not equivalent.
More detailed behavior of percolation, such as the critical window and scaling
limits remain open, and we once again expect more complex behavior than in the
con�guration model. It is also for future research to establish more �hands-on�
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necessary and su�cient conditions for robustness.
One can always ask the question how a di�erent percolation model, or a com-

bination of already understood models would behave on the graph. It would be
intriguing to consider site percolation with parameter � v and bond percolation
with parameter � e at the same time on the RIGC , and establish the curve of critical
pairs of these parameters. Studying them independently corresponds to setting the
other value at 1, hence we have already identi�ed the two endpoints of this curve.
While we do not carry out these calculations, we believe our proof techniques can
be applied in such an analysis and can yield an implicit condition similar to (2.63)
and (2.64) on the pair (� v ; � e). While other variants of percolation would be highly
intriguing, such as a site retention probability depending on the degree of the vertex,
or a bond retention probability depending on the degree of both endpoints, our
techniques do not extend to such cases. Our proof is better suited to handle thinning
on the communities, which may depend on community size and even be dependent
for elements of the same community; such work would rather be in the spirit of [31,
32, 103, 132]. In fact, such research may be highly relevant in our current situation
when larger communities are unable to function.
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Chapter 3
Local weak convergence
and local properties of the
RIGC model

Based on [116]

This chapter is dedicated to proving the results in Section 2.3, namely the results
on local weak convergence as well as the local properties of the RIGC model.
The chapter is organized as follows. In Section 3.1, we introduce several notions
which are crucial for the proof, in particular give a detailed introduction to local
weak convergence. In Sections 3.2 and 3.3, we carry out the proof of local weak
convergence for the underlying BCM and the RIGC itself, respectively. Finally
in Section 3.4, we prove further local properties of the RIGC , i.e., the degree
distribution, local clustering coe�cient and our results on the overlapping structure,
as consequences of local weak convergence.

3.1 Preliminaries: marked graphs, ordered
trees and local weak convergence

In order to prove our results, we �rst introduce the concepts that we rely on
in our proof, the most central one being local weak convergence(LWC). Local
weak convergence, also called Benjamini-Schramm convergence, is a notion of
convergence for sparsegraph sequences, where the typical degree is tight. As its
name suggests, local weak convergence describes the graph from a local point
of view; indeed, in De�nition 2.3.2, we have de�ned local weak convergence in
probability in terms of convergence of frequencies of graph neighborhoods. For
dense graphs, a di�erent notion of convergence (with a di�erent limiting object)
was developed by LovÆsz et al. They have also made e�orts to unify the study
of graph limits over the di�erent regimes. For an overview of this topic, see the
introductory book [153]. Studying graph limits not only has theoretical merits, but
applications as well. Numerous properties of the �nite graph(s) in the sequence can
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be determined or approximated based on the limiting object alone [22, 190]. In this
thesis, we apply LWC to obtain local graph properties, but there exist applications
for spectral measure [1], PageRank [54, 94], probabilistic combinatorial optimization
[7, 92], etc.

We cover some of the theory behind the notion of LWC in Section 3.1.1, in fact
in the more general setting of marked graphs, which are de�ned in Section 3.1.1 as
well. The theory presented here is partially based on [7, 20, 21] and [112, Chapter
2], but generalized and tailored to our needs. In Section 3.1.2, we introduce some
more practical tools for the proofs that follow in Sections 3.2 and 3.3.

3.1.1 Local weak convergence of marked graphs

In this section, we introduce marked graphs, and the theory of LWC �rst for
deterministic graphs, then generalized to random graphs. Throughout this chapter,
graphsinclude both simple graphs and multigraphs. If G is a multigraph, then we
think of E(G) as a list with multiplicities.

Marked graphs. Marksprovide a general framework for indicating additional
information on the edges and/or vertices of a graph, such as edge weights, edge
directions, graph coloring, etc. In our case, we use marks to include edge labels of
the underlying bipartite con�guration model (BCM ; see De�nition 2.1.2 (i)), as well
as indicate the community graphs assigned to each r -vertex. We formally de�ne
marked graphs below.

Let Gdenote the set of all locally �nite graphs that have a countable (�nite or
countably in�nite) vertex set.19 Let the set of marks M be an arbitrary countable
set that contains the special symbol ? , which is to be interpreted as �no mark�. A
marked graph is a pair (G; �) , where G 2 Gand � is the mark function that maps
elements of G into M , in particular, �( v) 2 M for v 2 V (G), while �( e) 2 M 2

for e 2 E(G). Di�erent edges between the same pair of vertices are marked
individually. Notably, as is common in the literature, we associate two marks to
each edge, with one mark associated to each endpoint. This is often interpreted
as separate marks associated to the two directions of a bi-directed edge. Since we
work with the bipartite con�guration model, it is more useful to think of the marks
being associated to the half-edges that form the edge.20 We denote the set of graphs
with marks from the mark set M by G(M ).

We remark that any graph in G, that we may refer to as an unmarked graphfor
clarity, can be turned into a marked graph by assigning the �no mark� symbol ?

19These graphs are not labeled and may or may not be connected.
20While edges are undirected, we use the following convention: if we write �

�
(u; v )

�
= ( m1 ; m 2 ) , we

mean that the half-edges incident to u and v are marked by m1 and m2 , respectively, in this order. In
particular, for the BCM , the �rst and second mark are associated with the l - and r -half-edge forming
the edge, respectively.
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to each vertex and half-edge. Consequently all results and de�nitions formulated
below for marked graphs apply straightforwardly to (unmarked) graphs.

Rooted marked graphs, isomorphisms and r -neighborhoods. We now gene-
ralize De�nition 2.3.1 to marked graphs.

i) Choose a vertex o in a marked graph (G; �) to be distinguished as the root,
and denote the rooted marked graphby (G; � ; o). If G is not connected, then
(G; � ; o) only consists of the connected component of o, with � also restricted
to this spanned subgraph.

Denote the set of rooted marked graphs (with mark set M ) by Go(M ).21 We call a
random element of Go(M ) a random rooted marked graph.

ii) We say that the rooted marked graphs (G1; � 1; o1) and (G2; � 2; o2) are
isomorphic, and denote this by (G1; � 1; o1) ' (G2; � 2; o2), if there is a
graph-isomorphism ' between them that also maps root to root and preserves
marks.22

iii) The (closed) ball B r (G; � ; o) can be de�ned analogously to the unmarked
graph ball in De�nition 2.3.1 (iii), by also restricting the mark function to the
subgraph within distance r .

Distance and topology. We are now ready to de�ne a metric on Go(M ). For two
elements (G1; � 1; o1); (G2; � 2; o2) 2 Go(M ), we de�ne the largest radius r such
that the r -neighborhoods of the roots are isomorphic:

rmax :=

8
><

>:

+ 1 if (G1; � 1; o1) ' (G2; � 2; o2);
� 1 if � 1(o1) 6= � 2(o2);
sup

�
r 2 N : B r (G1; � 1; o1) ' B r (G2; � 2; o2)

	
otherwise:

(3.1)

Then, we de�ne the distance of the rooted marked graphs as

dloc
�
(G1; � 1; o1); (G2; � 2; o2)

�
:= 2 � r max 2 [0; 2]: (3.2)

The distance dloc is a metric on the isomorphism classesof Go(M ), which turns
this space into a Polish space, i.e., a complete, separable metric space (see [150,
Proposition B.5] or [112, Appendix A.2]).

21Note that by rooting a graph, we also restrict ourselves to the connected component of the root, hence
every rooted graph is connected.
22For a multigraph, we require that there is the same number of edges with any given mark between
any ordered pair of vertices u; v in G1 and ' (u); ' (v) in G2 .
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Local weak convergence of a deterministic graph sequence. Consider a se-
quence (Gn ; � n )n 2 N, (Gn ; � n ) 2 G(M ) of (deterministic) �nite marked graphs
such that jGn j ! 1 . For each n, let Un be a vertex of Gn chosen uar, and consider
the measuresde�ned by (Gn ; � n ; Un ) on ( Go(M ); dloc ). We will de�ne the local
weak convergence of (Gn ; � n )n 2 N as the weak convergence of the above measures,
which can be done in the standard way. Introduce the set of test functionals23

� = f ' : Go(M ) ! R : ' is bounded and continuousg: (3.3)

Further, denote the set of bounded functionals that only depend on a �nite r -
neighborhood of the root for some r 2 N, by

� r :=
�

' 2 � :
' is bounded, and for all (G; � ; o) 2 Go(M ),

' (G; � ; o) = '
�
B r (G; � ; o)

�
�

: (3.4)

In fact, this is a special case of continuity, i.e., for all r , � r � � .
We say that (Gn ; � n ; Un )n 2 N converges in the local weak convergence senseto

a (possibly random) element (G; � ; o) 2 Go(M ), and denote (Gn ; � n ; Un ) loc�!
(G; � ; o), if for all ' 2 � , as n ! 1 ,

E
�
' (Gn ; � n ; Un )

�
! E

�
' (G; � ; o)

�
: (3.5)

This statement is equivalent (see e.g. [112, Theorem 2.5] for a proof of this equi-
valence) to the convergence of the neighborhood counts, that is, the following
statement is an equivalent de�nition of local weak convergence: for any r 2 N and
any �xed (G0; � 0; o0) 2 Go(M ), as n ! 1 ,

P
�
B r (Gn ; � n ; Un ) ' B r (G0; � 0; o0)

�

! P
�
B r (G; � ; o) ' B r (G0; � 0; o0)

�
:

(3.6)

Local weak convergence of a sequence of random graphs. We are now re-
ady to generalize De�nition 2.3.2 to marked graphs, simultaneously generalizing
(3.6) to random graphs. Let (Gn ; � n )n 2 N, (Gn ; � n ) 2 Go(M ) be a sequence of
(�nite) random marked graphs such that jGn j P�! 1 ,24 and let Un j (Gn ; � n ) �
Unif[ V (Gn )] be a uniformly chosen vertex. Let P

�
�

�
� (Gn ; � n )

�
denote condi-

tional probability wrt the marked graph (i.e., the free variable is Un ). We say
23As usual, continuity of a functional ' : Go (M ) ! R is de�ned at (G; � ; o) 2 Go (M ) as follows: for
all " > 0, there exists � > 0 such that for all (G0; � 0; o0) 2 Go (M ) , if dloc

�
(G; � ; o); (G0; � 0; o0)

�
<

� , then j ' (G; � ; o) � ' (G0; � 0; o0)j < " . Then ' is continuous if it is continuous at all (G; � ; o) 2
Go (M ) .
24The notion X n

P
�! 1 is de�ned in the standard way: P(X n � K ) ! 1 as n ! 1 for all �xed

K 2 R+ .
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3.1 Preliminaries of local weak convergence

that (Gn ; � n ; Un )n 2 N converges in probability in the local weak senseto a (possi-
bly) random element (G; � ; o) 2 Go(M ), and denote this by (Gn ; � n ; Un ) P-loc�!
(G; � ; o), if the empiricalneighborhood counts converge in probability, i.e., for any
�xed r 2 N and �xed (G0; � 0; o0) 2 Go(M ), as n ! 1 ,

P
�
B r (Gn ; � n ; Un ) ' B r (G0; � 0; o0)

�
� (Gn ; � n )

�

:=
1

jGn j

X

u2 V (Gn )

1f B r (Gn ;� n ;u ) ' B r (G0;� 0;o0)g

P�! P
�
B r (G; � ; o) ' B r (G0; � 0; o0)

�
:

(3.7)

We can also generalize (3.5) to an equivalent de�nition of LWC in probability (again,
see e.g. [112, Theorem 2.9] for a proof of the equivalence). Let E

�
�

�
� (Gn ; � n )

�

denote the conditional expectation corresponding to the conditional probability
measure P

�
�

�
� (Gn ; � n )

�
. Then, (Gn ; � n ; Un ) P-loc�! (G; � ; o) exactly when for all

test functionals ' 2 � (see (3.3)),

E
�
'

�
B r (Gn ; � n ; Un )

� �
� (Gn ; � n )

� P�! E
�
'

�
B r (G; � ; o)

��
: (3.8)

Extensions. We remark that there exist other notions of LWC for random graphs.
Almost surelocal weak convergence can be de�ned by replacing the convergence
in probability by almost sure convergence in (3.7). Local weak convergence in
distributionis de�ned as

P
�
B r (Gn ; � n ; Un ) ' B r (G0; � 0; o0)

�

! P
�
B r (G; � ; o) ' B r (G0; � 0; o0)

�
;

(3.9)

where we note the lack of conditioning on the lhs. In this work, we use LWC
in probability exclusively, as it is not too restrictive, while being strong enough
to imply asymptotic independenceof the neighborhoods of two uniformly chosen
vertices.

Remark 3.1.1 (Di�erent root distributions). In the classical de�nition of local weak
convergence,Un is chosenuniformly at random. However, in certain cases it is
meaningful and interesting to study the convergence of subgraph counts around a
vertexWn chosen according to adi�erent (non-uniform) distribution, for example size-
biased by degree or chosen within a (large enough) subset of vertices. Our motivation
is to restrict the choice of the root to one partition of theBCM. This motivated us to

emphasize the role ofUn by writing (Gn ; � n ; Un ) P-loc�! (G; � ; o) and deviate from
the common notation, which simply omitsUn . With slight abuse of our extended
notation, we shall write, for a random vertexWn with an arbitrary distribution on
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3 Local weak convergence and local properties

V (Gn ), (Gn ; � n ; Wn ) P-loc�! (GW ; � W ; oW ) to mean that the neighborhood counts
aroundWn converge, i.e., for allr 2 N and all(G0; � 0; o0) 2 Go(M ), asn ! 1 ,

P
�
B r (Gn ; � n ; Wn ) ' B r (G0; � 0; o0)

�
� (Gn ; � n )

�

P�! P
�
B r (GW ; � W ; oW ) ' B r (G0; � 0; o0)

�
:

(3.10)

3.1.2 Practical tools: general neighborhoods and
ordered trees

In order to calculate neighborhood counts and prove local weak convergence of the
RIGC and BCM , we also rely on a few more practical tools and concepts that we
introduce below.

General neighborhoods. As we can relate the RIGC to the underlying BCM , we
take the approach of proving LWC for the underlying BCM �rst. It turns out that
graph balls (r -neighborhoods) are not the right way to look at two neighborhoods in
the RIGC and the underlying BCM that we are trying to relate. Due to the arbitrary
community graphs, graph distances are substantiallydi�erent in the RIGC and
the underlying BCM , thus graph balls in one graph typically do not map to graph
balls in the other. Hence we need to generalize the notion of neighborhoods. In a
rooted marked graph (G; � ; o), let bG be any �nite, connected edge-subgraph (i.e.,
not necessarily spanned subgraph) of G that contains o. With � restricted to bG, we
call ( bG; � ; o) a generalized neighborhoodof o in (G; �) .

Comparing neighborhoods. In Theorem 2.3.9, we have claimed that the local
weak limit of the BCM is a mixture of branching processes (BPs). To prove such
a statement, we have to compare neighborhoods in the BCM to BP family trees
through isomorphism. Our approach consists of �xing an ordering of the vertices of
the family tree according to a breadth-�rst search algorithm, and then constructing
the BCM in an isomorphic fashion by adding one vertex at a time in this �xed order.
Note that for the BP, the children of each vertex are already ordered. Using this,
we can start at the root and recursively build the desired (�lexicographic�) ordering
of all vertices in the family tree. To make the comparison straightforward, it will be
convenient to de�ne an ordering of neighbors of an arbitrary vertex in the BCM
as well, which we introduce shortly. We also formalize this method of comparison
below by introducing ordered treesand ordered isomorphisms, and express the usual
notion of isomorphism in terms of ordered isomorphism.

Ordered trees. Inspired by branching process family trees, we introduce ordered
treesand some related terminology to talk about a (locally �nite) rooted tree (T; o).
Let dist(v; w) denote the graph distance between vertices v and w. We de�ne
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3.1 Preliminaries of local weak convergence

generationr as @Br (T; o) := f v 2 V (T) : dist( o; v) = r g, i.e., the set of vertices
at graph distance r from the root. We call the neighbors of v further away from the
root its childrenand the neighbor of v closer to the root its parent. We call (T; o)
an ordered treeif the children of any vertex are ordered. (Such trees are sometimes
called planted plane trees or Catalan trees [72].)

Ulam-Harris labeling. We can use the above ordering of children to recursively
build a labeling of all vertices, called the Ulam-Harris labeling. Each label is a
sequence or word on the alphabet N, and we start by labeling the root as 0 := (0) .
The recursion is as follows: suppose a vertex in generation r has already been labeled
by the sequence v = (0 ; v1; : : : ; vr ), then we label its kth child by (0; v1; : : : ; vr ; k).
We denote the generation of v by jvj = r (which equals the length of the sequence
minus one). The Ulam-Harris labeling provides an ordering of all vertices in the
tree, de�ned as follows: if jvj < jwj, then v < w ; if jvj = jwj, then we compare the
sequences lexicographically. In the following, we indicate ordered trees (which are
necessarily always rooted) in the notation by writing 0 for the root.

Next, we establish the ordering of children in rooted subtrees of the underlying
BCM . Recall from Section 2.1 that the l -half-edges incident to v 2 V l are la-
beled by (v; i ) i 2 [ l -deg( v)] and the r -half-edges incident to a 2 V r are labeled by
(a; l) l 2 [ r -deg( a)] . Further recall that an edge formed by l -half-edge (v; i ) and r -half-
edge (a; l) is labeled (i; l ). We de�ne the ordering of the children of a vertex u in
the BCM using the labels on respective edges between u and its children. If u is an
l -vertex, then we order its children by the �rst (lhs) coordinate of the edge label
(the marks of the l -half-edges); if u is an r -vertex, then we order its children by
the second(rhs) coordinate of the edge label (the marks of the r -half-edges).

Ordered isomorphism and its relation to (unordered) isomorphism. Let
(T1; � 1; 01) and (T2; � 2; 02) denote two ordered marked trees, and consider the
correspondence between their vertices with identical Ulam-Harris labels. If this
correspondence is a rooted marked isomorphism,25 then we say that the trees are
ordered isomorphicand denote this event by (T1; � 1; 01) �= (T2; � 2; 02).26

In the following, we show how isomorphism can be expressed in terms of ordered
isomorphism. Let (T; � ; o) be a �nite rooted marked tree (without an ordering).
Then, there are �nitely many, say I 2 Z+ , ways to equip this tree with an ordering
(or equivalently, Ulam-Harris labeling), and denote the set of all possible resulting
orderedtrees by (T ( i ) ; � ( i ) ; 0( i ) ) i � I . For short, we denote T ( i ) := ( T ( i ) ; � ( i ) ; 0( i ) ).

25Note that the Ulam-Harris labeling ensures that as long as each vertex has a corresponding vertex in
the other tree, the graph structure is the same, and also that the root is mapped to the root. Further, we
have to ensure that the corresponding vertices and edges have the same mark for the mapping to be a
rooted marked isomorphism.
26Note the di�erence between the notation ' for isomorphism and �= for ordered isomorphism.
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3 Local weak convergence and local properties

By the construction of (T ( i ) ) i � I , any ordered marked tree (T0; � 0; 00) that is iso-
morphic to (T; � ; o) must be ordered isomorphic to T ( i ) for a unique i � I ; in other
words, we have partitioned27 the isomorphism class of (T; � ; o) into the ordered
isomorphism classes of each (T ( i ) ) i � I . Consequently, we can decompose the event
f (T0; � 0; 00) ' (T; � ; o)g as a disjointunion:

f (T0; � 0; 00) ' (T; � ; o)g =
�
[ i � I f (T0; � 0; 00) �= (T ( i ) ; � ( i ) ; 0( i ) )g: (3.11)

This implies that, if (T0; � 0; 00) is a random ordered marked tree, then

P
�
(T0; � 0; 00) ' (T; � ; o)

�
=

X

i � I

P
�
(T0; � 0; 00) �= (T ( i ) ; � ( i ) ; 0( i ) )

�
: (3.12)

3.2 Local weak convergence of the bipartite
configuration model

In this section, we prove Theorem 2.3.9. In fact, we prove local weak convergence
for a marked version of the BCM (as in De�nition 2.1.2 (ii)), where we mark each
vertex by l or r according to its partition. In Section 3.2.1, we formally de�ne this
mark function, describe the local weak limit of this marked graph, and we prove
the convergence in Section 3.2.2.

3.2.1 Describing the local weak limit

The aim of this section is to introduce (BPs; 0), the local weak limit in probability
of the BCM . Intuitively, we expect this random rooted graph to describe the
neighborhood of a vertex chosen uar over the entire graph, while we also expect
this neighborhood to look di�erent, depending on whether we choose an l - or an
r -vertex as the root. However, we have no directway to determine which partition
our chosen vertex falls in from observing only its neighborhood. Hence, it will be
useful to keep track of the lhs and rhs partitions as marks. Recall from Section 3.1.1
that we associate two marks with each edge, in particular, one mark with each
corresponding half-edge. Let M b := f l ; r ; ? g be the mark set we use, and we
mark l -vertices as l , r -vertices as r , and half-edges as the �no mark� symbol ? .
Formally,

� b
n (x) :=

8
><

>:

l if x 2 V l ;
r if x 2 V r ;
? if x is a half-edge:

(3.13)

27The partition of a set is a family of subsets that are pairwise disjoint and their union is the original set.
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3.2 Local weak convergence of the BCM

Next, we introduce the object (BPs; � s; 0) that Proposition 3.2.1 below establishes
as the local weak limit of the BCM equipped with the mark function � b

n . The object
of interest, (BPs; 0) in Theorem 2.3.9, is obtained by omitting the mark function � s.
Recall 
 from (2.21). We de�ne (BPs; � s; 0) as a mixture of two marked BP-trees
(BP l ; � l ; 0) and (BP r ; � r ; 0) de�ned below, with mixing variable s:

P(s = l ) = 1 =(1 + 
 ); P(s = r ) = 
= (1 + 
 ); (3.14a)

(BPs; � s; 0) d= 1f s= l g(BP l ; � l ; 0) + 1f s= r g(BP r ; � r ; 0): (3.14b)

Intuitively, (BP l ; � l ; 0) and (BP r ; � r ; 0) describe the neighborhood of an l - and
r -vertex, respectively. Indeed, with V l

n � Unif[ V l ], V r
n � Unif[ V r ] and the

generalized notion of P-loc�! from Remark 3.1.1,

(BCM n ; � b; V l
n ) P-loc�! (BP l ; � l ; 0);

(BCM n ; � b; V r
n ) P-loc�! (BP r ; � r ; 0);

(3.15)

as revealed by the proof of Proposition 3.2.1 in Section 3.2.2. Consequently, we can
re-interpret the mixing variable s as the random mark of the root.

Lastly, we de�ne the marked BP-tree (BP l ; � l ; 0), that we think of as a random
ordered marked tree. Recall (2.3), Assumption 2.2.1 (A) and (C1). The tree is genera-
ted as the family tree of a discrete-time BP, and the o�spring of any two individuals
are independent. We mark individuals in even and odd generations respectively by
l and r , and edges are �unmarked� (marked by (? ; ? )). Generation 0 consists of
the single root 0 that has o�spring distributed as D l ; further individuals marked l
and r have o�spring distributed as eD l and eD r , respectively. This concludes the
dynamics of the BP. We de�ne (BP r ; � r ; 0) as the BP family tree generated by
the corresponding BP when we reverse the roles of l and r .

Neighborhoods in the limit. To prepare for proving local weak convergence,
we study the proposed limit, that is, the probability of observing a given tree as a
neighborhood of the root 0 in BPs. For simplicity, we focus on r -neighborhoods,
but the probability of observing a given general neighborhood can be determined
analogously. Let us denote the set of ordered marked trees (T; � T ; 0) that are
possible BP family trees by supp(BPs; � s; 0) (the support of the distribution).
Recall that vertices are marked l or r in an alternating fashion, i.e., marks are
chosen based solelyon the parity of the generation. Thus conditionally on the
rooted tree (T; 0), the function � T is uniquely determined by the single value
m0 := � T (0). Recall that the random mark of the root in the mixture BPs is
denoted by s = � s(0). Consequently, B r (BPs; � s; 0) �= B r (T; � T ; 0) holds exactly
when s = m0 and B r (BPs; 0) �= B r (T; 0). Formally,
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3 Local weak convergence and local properties

P
�
B r (BPs; � s; 0) �= B r (T; � T ; 0)

�

= P
�
B r (BPs; 0) �= B r (T; 0)

�
� s = m0

�
� P(s = m0)

= P
�
B r (BPm 0 ; 0) �= B r (T; 0)

�
� P(s = m0):

(3.16)

By the construction of (BPs; � s; 0), in particular, by (3.14),

P(s = m0) =

(
P(s = l ) = 1 =(1 + 
 ) for m0 = l ;
P(s = r ) = 
= (1 + 
 ) for m0 = r :

(3.17)

In the following, we focus on the case m0 = l so that we can further expand
the arising factor P

�
B r (BP l ; 0) �= B r (T; 0)

�
from (3.16) in terms of quantities

derived from the ordered tree (T; 0). The case m0 = r can be handled analogously.
Recall from Section 3.1.2 that we denote the generation of a vertex v 2 (T; 0) by
jvj. We further denote its degree by d(v), and note that for v 6= 0 , the number of
children of v equals d(v) � 1. Recall p and q from Assumption 2.2.1 (A) and (C1)
respectively, and further recall (2.3). Recall from Section 3.1.2 that we have de�ned
ordered isomorphism using the correspondence between vertices with the same
Ulam-Harris labels. Consequently, the probability of observing a given unmarked
neighborhood in the BP equals the probability of observing the given sequence of
degrees. Thus, for a given radius r 2 Z+ ,

P
�
B r (BP l ; 0) �= B r (T; 0)

�

= P
�
D l = d(0)

� Y

v2 T
0< jv j<r

jv j odd

P
� eD r = d(v) � 1

� Y

w2 T
0< jv j<r
jw j even

P
� eD l = d(w) � 1

�

= pd(0 )

Y

v2 T
0< jv j<r

jv j odd

d(v) � qd(v)

E[D r ]

Y

w2 T
0< jv j<r
jw j even

d(w) � pd(w)

E[D l ]
:

(3.18)

Note that we only check the degrees up to generation r � 1, since generation r
in ther -neighborhoodin any tree are just leaves (as their children are not part of
the r -neighborhood). The corresponding probability P

�
B r (BP r ; 0) �= B r (T; 0)

�

arising in case m0 = r can easily be obtained from (3.18) by reversing the roles of
l and r , and consequently the roles of p and q. Then, combining (3.16�3.18) yields
the following expansion: for m0 = � T (0) = l ,

P
�
B r (BPs; � s; 0) �= B r (T; � T ; 0)

�

=
1

1 + 

pd(0 )

Y

v2 T
0< jv j<r

jv j odd

d(v) � qd(v)

E[D r ]

Y

w2 T
0< jw j<r
jw j even

d(w) � pd(w)

E[D l ]
; (3.19a)
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while for m0 = � T (0) = r ,

P
�
B r (BPs; � s; 0) �= B r (T; � T ; 0)

�

=



1 + 

qd(0 )

Y

v2 T
0< jv j<r

jv j odd

d(v) � pd(v)

E[D l ]

Y

w2 T
0< jw j<r
jw j even

d(w) � qd(w)

E[D r ]
: (3.19b)

3.2.2 Proof of local weak convergence

In this section, we formally prove the local weak convergence of the marked BCM ,
as stated below:

Proposition 3.2.1 (Local weak convergence of the markedBCM ). ConsiderBCM n

= BCM( d l ; d r ) under Assumption 2.2.1 (A,B,C1,D). Recall the mark function� b
n

(encoding the partition of each vertex) from(3.13) and letV b
n = V l + r

n � Unif[ V l [
V r ]. Then, asn ! 1 ,

�
BCM n ; � b

n ; V b
n

� P-loc�! (BPs; � s; 0): (3.20)

This immediately implies local weak convergence of the unmarked BCM as well:

Proof of Theorem 2.3.9 subject to Proposition 3.2.1.Note that the mark set M b is �-
nite, and that Theorem 2.3.9 asserts the convergence in Proposition 3.2.1 without
the mark function. Thus subject to Proposition 3.2.1, Theorem 2.3.9 immediately
follows.

We remark that similar statements without the mark function have been present
in the literature. For example, [44] heuristically states that the local weak limit
of the BCM is a mixture, that is, (BCM n ; V b

n ) P-loc�! (BPs; 0). Meanwhile [146]
provides a rigorous proof for (BCM n ; V l

n ) P-loc�! (BP l ; 0), where P-loc�! is used in the
generalized sense of Remark 3.1.1. The proof in [146] uses a coupling argument
that can be generalized for the marked case, which provides an alternative proof of
Proposition 3.2.1. Below, we prove local weak convergence of the marked BCM by
explicitly calculating neighborhood frequencies.

Proof of Proposition 3.2.1.Recall that
�
BCM n ; � b

n ; V b
n

�
has two sources of random-

ness: the graph realization determined by the bipartite matching ! n and the choice
of V b

n . Recall that P( � j ! n ) denotes the conditional probability wrt the graph realiza-
tion, that is, the free variable is the choice of V b

n . Further recall that supp(BPs; � s; 0)
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denotes the set of all possible ordered family trees produced by BPs. We claim that
for all r 2 N and all orderedfamily trees (T; � T ; 0) 2 supp(BPs; � s; 0), as n ! 1 ,

P
�
B r (BCM n ; � b

n ; V b
n ) �= B r (T; � T ; 0)

�
� (BCM n ; � b

n )
�

:=
1

j V l [ V r j

X

u2 V l [ V r

1f B r (BCM n ;� b
n ;u ) �= B r (T; � T ;0)g

P�! P
�
B r (BPs; � s; 0) �= B r (T; � T ; 0)

�
:

(3.21)

Below, we prove this statement via a �rst and second moment method, but �rst
we show why this is su�cient for completing the proof of Proposition 3.2.1. In-
troduce supp(BPs; � s; 0), the set of unorderedversions of the family trees in
supp(BPs; � s; 0). Recall the relation between ordered and unordered isomorphisms
from (3.11�3.12). Then, subject to (3.21), it follows that for all unorderedfamily
trees (T; � T ; o) 2 supp(BPs; � s; 0) and all r 2 N, as n ! 1 ,

P
�
B r (BCM n ; � b

n ; V b
n ) ' B r (T; � T ; o)

�
� (BCM n ; � b

n )
�

P�! P
�
B r (BPs; � s; 0) ' B r (T; � T ; o)

�
:

(3.22)

Then, for any r 2 N �xed, it also immediately follows by completeness of measure
(for a more detailed argument, see [112, Theorem 2.10]) that for a rooted marked
graph (G; � ; o) not in supp(BPs; � s; 0), its frequency as a neighborhood must
converge to 0 in probability. That is, (3.22) follows for all rooted marked graphs
(G; � ; o) 2 Go(M b), which is how we de�ned LWC in probability in (3.7). This
concludes the proof of Proposition 3.2.1 subject to (3.21).

In the following, we prove (3.21).

3.2.2.1 First moment

Fix an arbitrary ordered family tree T := ( T; � T ; 0) 2 supp(BPs; � s; 0) and an
integer r 2 N. For convenience, we denote the event, with v 2 V b := V l [ V r ,

B r
T (v) :=

�
B r (BCM n ; � b; v) �= B r (T; � T ; 0)

	
; (3.23)

which is the event on the lhs of (3.21). We compute the expected neighborhood
frequency

E
�
P

�
B r

T (V b
n )

�
� ! n

��
= P

�
B r

T (V b
n )

�
; (3.24)

where P on the rhs denotes total probability, i.e., wrt the product measure of ! n and
V b

n . In the following, we compute this probability analogously to how we calculated
the neighborhood probabilities in the limit in (3.19), once again taking advantage
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of the notion of ordered trees and ordered isomorphism introduced in Section 3.1.2.
Again, we only detail the case � T (0) = l , as the case � T (0) = r is analogous.

Recall from Section 3.1.2 that we denote the ordering of vertices in T by < ,
i.e., that v < w means that v precedes w. Further recall that @Br (T) denotes
generation r in T and that the degree of v 2 T is denoted by d(v). For short, we
write B r (T) := B r (T; � T ; 0).

In Section 3.1.2, we have also de�ned the ordering of neighbors of any vertex in
the BCM , which allows us to look at tree neighborhoods in the BCM as ordered
trees, and by Remark 2.1.1, we can construct the BCM in the order prescribed by
T . Thus we can compute the probability in (3.24) simply by checking the degree
and mark of the vertex added in each step as we construct the BCM . Note that the
mark function � b

n in (3.13) does not depend on the matching, hence we can assume
that the marks are already present before constructing the matching. Recall the set
of vertices with a given mark and degree from (2.6). However, we cannot always
use all elements in the appropriate set V l

k or V r
k . Since we want the constructed

neighborhood in the BCM to be isomorphic to B r (T), it must also be a tree, thus
we cannot choose the same vertices again. Further, by the de�nition of the BCM ,
we can only pair a half-edge once, thus we are not allowed to choose the same
half-edges again either. This is called the depletion-of-points-and-half-edges e�ect.
In the following, we describe this e�ect in terms of quantities derived from B r (T),
assuming and relying on the isomorphism between B r (T) and the constructed
neighborhood in the BCM . We denote the total number of vertices in B r (T) and the
number of vertices preceding some vertex v 2 B r (T) in the ordering < respectively
by

� r := jB r (T)j; � <
r (v) :=

�
�f w 2 B r (T) : w < v g

�
�: (3.25)

Since T is a tree, � r � 1 equals the total number of edges in B r (T), and � <
r (v) � 1

equals the number of edges created beforechoosing the vertex corresponding to
v.28 Note that each edge consists of an l - and an r -half-edge, thus these quantities
exactly describe the depletion of half-edges. Next, we describe the depletion of
vertices. Let w � v denote the event that w is �similar� to v, in the sense of having
the same mark and degree; formally,

f w � vg := f � T (w) = � T (v)g \ f d(w) = d(v)g: (3.26)

Denote the number of vertices similar to v, in total in B r (T) and preceding v,
respectively, by

� r (v) :=
�
�f w 2 B r (T) : w � vg

�
�;

� <
r (v) :=

�
�f w 2 B r (T) : w < v ; w � vg

�
�:

(3.27)

28In particular, we do not count the edge that connects the vertex corresponding to v to the previous
neighborhood.
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3 Local weak convergence and local properties

That is, � <
r (v) counts the number of vertices with the desired properties that are

already used up in the construction when we pick the vertex corresponding to
v 2 B r (T), while � r (v) is the corresponding quantity after constructing the entire
neighborhood isomorphic to B r (T). Recall (2.1), (2.7), (2.21) and (3.23), and denote
the positive part of an expression f by f + := max f f; 0g. Let bB r �

T (V b
n ) denote the

event that the neighborhood of V b
n up to generation r � 1 is the �desired marked

tree�, i.e., B r � 1
T (V b

n ) happens, and further, generation r � 1 in the neighborhood
of V b

n has the desired degree sequence (d(v)) v2 @Br � 1 (T ) . With the above notation
and arguments, we calculate (and explain the formula below):

P
�
B r

T (V b
n )

�
=

j V l
d(0 ) j

Nn + M n

Y

i 2 T
0< j i j<r

j i j odd

d(i )
�
j V r

d( i ) j � � <
r (i )

�
+

hn �
�
� <

r (i ) � 1
� (3.28a)

�
Y

j 2 T
0< j j j<r
j j j even

d(j )
�
j V l

d( j ) j � � <
r (j )

�
+

hn �
�
� <

r (j ) � 1
� (3.28b)

� P
�
no cycle closed in generation r

�
� bB r �

T (V b
n )

�
: (3.28c)

Note that once again, the products in (3.28a�3.28b) only include degrees of vertices
up to generation r � 1, as generation r is the last generationin B r (T) and consists
of leaves only. To ensure that the vertices in generation r of the neighborhood in the
BCM are also leaves in ther -ball, we have to make sure they do not create any cycle
in generation r . The probability (3.28c) accounts for this, conditionally on the past of
the construction bB r �

T (V b
n ). Due to the bipartite structure, odd cycles (edges between

two vertices in generation r ) are impossible, thus we only have to make sure the
vertices chosen as �leaves� do not coincide. Denote the desired number of vertices
(�leaves�) in generation r by L := j@Br (T)j, and let db

max := max f dl
max ; dr

max g,
with dl

max and dr
max from Remark 2.2.2 (iii). We use the union bound to bound the

complement probability of (3.28c), as explained below, as

P
�
there is a cycle closed in generation r

�
� bB r �

T (V b
n )

�

�
X L

i =2
P(i th �leaf� coincides with a previous one)

�
X L

i =2

(i � 1)(db
max � 1)

hn � (� r � 1) � (i � 1)
;

(3.29)

where the denominator is the exact number of available half-edges,29 while the
29Considering the bipartite structure of the graph, the number of edges formed equals the number of

74



3.2 Local weak convergence of the BCM

numerator is an upper bound on the �prohibited� half-edges. The prohibited half-
edges are those incident to the vertices already chosen to be in generation r , hence
there are at most i � 1 such vertices and each has at most db

max � 1 unmatched
half-edges. For �xed r and T , � r and L are �xed constants, and db

max = o(hn )
by Remark 2.2.2 (iii), thus we have �nitely many o(1) terms. Consequently, the
probability in (3.28c) equals

P
�
no cycle closed in generation r

�
� bB r �

T (V b
n )

�
= 1 � o(1): (3.30)

The �rst factor in (3.28a) equals

j V l
d(0 ) j

Nn + M n
=

Nn

Nn + M n

j V l
d(0 ) j

Nn
!

1
1 + 


pd(0 ) ; (3.31)

by Assumption 2.2.1 (A) and Remark 2.2.2 (i). We now look at a factor in the
product over i in (3.28a). By (3.25�3.27), 0 � � <

r (i ) � � r (i ) � � r , and hn � hn �
(� <

r (i ) � 1) > hn � � r (since i 6= 0 ). Further recall (2.7). Then, for �xed r and T ,
by Assumption 2.2.1 (C1�D) and Remark 2.2.2 (i), as n ! 1 ,

d(i )
�
j V r

d( i ) j � � <
r (i )

�
+

hn �
�
� <

r (i ) � 1
� =

d(i )
�
M n � q( n )

d( i ) � O(1)
�

M n E[D r
n ] � O(1)

!
d(i ) � qd( i )

E[D r ]
: (3.32)

It is analogous to show convergence for the factors in the product over j in (3.28b),
using Assumption 2.2.1 (A�B) and Remark 2.2.2 (i). From (3.30�3.32), we conclude
that, since there are only �nitely many factors, (3.28) converges to (3.19) as n ! 1 .
That is, as required,

E
�
P

�
B r

T (V b
n )

�
� ! n

��
! P

�
B r (BPs; � s; 0) �= B r (T)

�
: (3.33)

3.2.2.2 Second moment

Let V b
n ; Ub

n � Unif( V b), with V b = V l [ V r , denote two independent, uniformly
chosen vertices of the BCM . To show that the variance of the neighborhood counts
converge to 0, we compute the second moment

E
h
P

�
B r

T (V b
n )

�
� ! n

� 2
i

= E
h 1

(Nn + M n )2

X

v;w 2 V b

1B r
T (v) � 1B r

T (w )

i

=
1

(Nn + M n )2

X

v;w 2 V b

P
�
B r

T (v) \ B r
T (w)

�

= P
�
B r

T (V b
n ) \ B r

T (Ub
n )

�
:

(3.34)

paired l -half-edges as well as the number of paired r -half-edges.
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3 Local weak convergence and local properties

Let dist(u; v) denote the (random) graph distance of u; v 2 V b in the BCM . We
analyze the probability in (3.34) in parts, noting that necessarily,

1f U b
n = V b

n g + 1f 0< dist( U b
n ;V b

n ) � 2r g + 1f dist( U b
n ;V b

n )> 2r g = 1 : (3.35)

First, consider the event f Ub
n = V b

n g. We have that, as n ! 1 ,

P
�
B r

T (V b
n ) \ B r

T (Ub
n ) \ f V b

n = Ub
n g

�

� P
�
V b

n = Ub
n

�
=

1
M n + Nn

! 0:
(3.36)

Next, we consider the event f 0 < dist(Ub
n ; V b

n ) � 2r g, where V b
n and Ub

n are
distinct, but their r -neighborhoods intersect. Let K denote the largest degree in
B r (T). On the event

B r
T (V b

n ) \ B r
T (Ub

n ) \ f 0 < dist(Ub
n ; V b

n ) � 2r g; (3.37)

there must exist a path between V b
n and Ub

n that is fully contained in the union of
their r -neighborhoods. Such a path consists of j � 2r vertices, each of which has
degree at most K . Let us denote v0 := V b

n ; vj := Ub
n . By relaxing the conditions

on the path and taking a union bound,

P
�
B r

T (V b
n ) \ B r

T (Ub
n ) \ f 0 < dist(V b

n ; Ub
n ) � 2r g

�

� P
�
b-deg(v0); b-deg(v1) � K

�

� P
�
(v0; v1) 2 E(BCM)

�
� b-deg(v0); b-deg(v1) � K

�

+
2rX

j =2

X

v1 ;:::;v j � 1 2 V b

P
�
8 0 � i � j; b-deg(vi ) � K

�

� P
�

(vi ; vi +1 ) j
i =0 � E(BCM n )

�
�
� 8 0 � i � j : b-deg(vi ) � K

�
:

(3.38)

We can trivially bound P
�
b-deg(v0); b-deg(v1) � K

�
� 1 as well as P

�
8 0 � i �

j; b-deg(vi ) � K
�

� 1. Since by construction, half-edges are paired uniformly,
and we condition on each vertex having at most K half-edges attached, we can
upper bound (3.38) by

2rX

j =1

(Nn + M n ) j � 1 K �
�
K (K � 1)

� j � 1
� K

(2hn � 2j ) j : (3.39)

Note that for r and T �xed, K is a �xed, �nite constant, while M n and hn grow
linearly with Nn by Remark 2.2.2 (i). Thus the bound we obtained in (3.39) is of
order O(N � 1

n ), which implies that, as n ! 1 ,

P
�
B r

T (V b
n ) \ B r

T (Ub
n ) \ f 0 < dist(V b

n ; Ub
n ) � 2r g

�
= O(N � 1

n ) ! 0: (3.40)
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3.2 Local weak convergence of the BCM

Finally, we consider the event f dist(Ub
n ; V b

n ) > 2r g, when the r -balls of V b
n and

Ub
n are disjoint. Analogously to the �rst moment, we calculate the probability

of interest by constructing neighborhoods in the BCM in the fashion prescribed
by the ordered family tree T . In particular, we �rst construct the r -ball around
V b

n avoiding Ub
n , then construct the r -ball around Ub

n avoiding the r -ball of V b
n ,

leading to slight changes compared to (3.28). Again, we carry out the calculation
in the case � T (0) = l , as the case � T (0) = r is analogous. Recall (2.1), (2.7),
(2.21), f + := max f f; 0g, (3.25�3.27), and the event bB r �

T (V b
n ) de�ned above (3.28).

Similarly to (3.28), we compute (and explain the formula below):

P
�

B r
T (V b

n ) \ B r
T (Ub

n ) \ f d(V b
n ; Ub

n ) > 2r g
�

=
j V l

d(0 ) j

Nn + M n
�

j V l
d(0 ) j � 1

Nn + M n
(3.41a)

�
Y

i 2 T; 0< j i j<r; j i j odd

d(i )
�
j V r

d( i ) j � � <
r (i ) � 1f i � 0g

�
+

hn �
�
� <

r (i ) � 1
� (3.41b)

�
Y

j 2 T; 0< j j j<r; j j j even

d(j )
�
j V l

d( j ) j � � <
r (j ) � 1f j � 0g

�
+

hn �
�
� <

r (j ) � 1
� (3.41c)

� P
� no cycle in B r (V b

n ) &
not connecting to Ub

n

�
�
� bB r �

T (V b
n ) avoiding Ub

n

�
(3.41d)

�
Y

k2 T; 0< jk j<r; j k j odd

d(k)
�
j V r

d(k ) j � � r (k) � � <
r (k)

�
+

hn � (� r � 1) �
�
� <

r (k) � 1
� (3.41e)

�
Y

l 2 T; 0< j l j<r; j l j even

d(l)
�
j V l

d( l ) j � � r (l ) � � <
r (l )

�
+

hn � (� r � 1) �
�
� <

r (l ) � 1
� (3.41f)

� P
� no cycle in B r (Ub

n ) &
not connecting to B r (V b

n )

�
�
� B r

T (V b
n ); bB r �

T (Ub
n ) disjointly

�
: (3.41g)

The line (3.41a) corresponds to the choice of V b
n and Ub

n , and both factors separately
converge to 1

1+ 
 pd(0 ) , by Assumption 2.2.1 (A) and Remark 2.2.2 (i). The lines
(3.41b�3.41c) arise from the construction of the neighborhood of V b

n , and only di�er
from the products in (3.28a�3.28b) in the terms 1f i � 0g and 1f j � 0g , which ensure
avoiding Ub

n in the neighborhood of V b
n . By the same argument as in Section 3.2.2.1,

each factor converges to the corresponding factor in (3.19). The lines (3.41e�3.41f)
arise from the construction of the neighborhood of Ub

n , where we have to avoid
the neighborhood of V b

n , thus we further exclude (� r � 1) paired l -and r -half-
edges and � r (v) vertices �similar� to v when choosing the vertex corresponding
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3 Local weak convergence and local properties

to v. As these are �nite corrections, it still holds that each factor converges to the
corresponding factor in (3.19), which we demonstrate for a factor from the product
over k in (3.41b). Recall (2.7). Note that for T and r �xed, � r is a �nite constant,
and it serves as an upper bound for � r (k), � <

r (k) and � <
r (k), see (3.25) and (3.27).

Then, by Assumption 2.2.1 (C1�D) and Remark 2.2.2 (i), as n ! 1 ,

d(k)
�
j V r

d(k ) j � � r (k) � � <
r (k)

�
+

hn � (� r � 1) �
�
� <

r (k) � 1
� =

d(k)
�
M n � q( n )

d(k ) � O(1)
�

+

M n E[D r
n ] � O(1)

!
d(k) � qd(k )

E[D r ]
:

(3.42)

Analogous results hold for the factors in the product over l , using Assumption 2.2.1
(A�B) and Remark 2.2.2 (i). Note that each factor in the products in (3.19) now
appears as the limit of two factors in (3.41), one in (3.41b�3.41c) and one in (3.41e�
3.41f). By calculations analogous to (3.29), the conditional probabilities in (3.41d)
and (3.41g) are again 1 � o(1). Combining (3.41) and the arguments below it with
(3.19) yields that, as n ! 1 ,

P
�
B r

T (V b
n ) \ B r

T (Ub
n ) \ f dist(V b

n ; Ub
n ) > 2r g

�

! P
�
B r (BPs; � s; 0) �= B r (T)

� 2
:

(3.43)

Combining (3.34�3.36), (3.40) and (3.43), we conclude that, as n ! 1 ,

E
�
P(B r

T (V b
n ) j ! n )2�

! P
�
B r (BPs; � s; 0) �= B r (T)

� 2
: (3.44)

Thus, by (3.33), it follows that, as n ! 1 ,

Var
�
P(Br (V l + r

n ) j ! n )
�

! 0: (3.45)

By (3.33) and (3.45), Chebyshev’s inequality yields that (3.21) holds for arbitrary r 2
N and T = ( T; � T ; 0) 2 supp(BPs; � s; 0). Since at the beginning of Section 3.1.2,
we have reduced Proposition 3.2.1 to this statement, this concludes the proof of
Proposition 3.2.1.

We remark that the calculation of the second moment, in particular the result
(3.44), asserts that neighborhoods of two independently and uniformly chosen
vertices are asymptotically independent.

3.3 Local weak convergence of the random
intersection graph with communities

This section is dedicated to proving Theorem 2.3.3 on the local weak convergence
of the RIGC model. We introduce the local weak limit in Section 3.3.1 and prove
the convergence in Section 3.3.2.
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3.3 Local weak convergence of the RIGC

3.3.1 The local weak limit of the RIGC

First, we construct the random rooted graph (CP; o), that is the local weak li-
mit in probability of the RIGC . The notation is inspired by the fact that (CP; o)
is the community-projection(see Section 2.1) of the random rooted marked tree
(BP l ; � p ; 0) de�ned below, in the same way that the RIGC is the community-
projection of the underlying BCM (see De�nition 2.1.2 (i)). It is not surprising that
(BP l ; � p ; 0) is in fact the local weak limit of the underlying BCM , including the
community graphs, and that it is obtained from the BP-tree (BP l ; 0), introduced
in Section 3.2.1 by equipping it with a newmark function � p de�ned below. In the
following, we give a formal de�nition of these objects, starting with the marked
graph representation of the underlying BCM .

The pre-image: the community-marked BCM. We introduce the new mark
function � c on BCM to encode not only the partition of each vertex, but also
the community graphs and the assignment of community roles. Recall the set of
possible community graphs H and the �no mark� symbol ? that is part of any mark
set. Let the set of marks be M p := H [ Z+ [ f ? ; l g. We mark each v 2 V l by
l =: � c (v) and each a 2 V r by its community graph Coma =: � c (a). Recall that
the edge e of the underlying BCM formed by l -half-edge (v; i ) and r -half-edge
(a; l) is labeled by (i; l ); we also mark this edge by the tuple (i; l ) =: � c (e). Now
(BCM ; � c ), that we call the community-markedBCM , encodes all information
necessary for constructing the RIGC . Indeed, the community graphs are given as
the marks of r -vertices, and edge-marks encode the assigned community roles: if
an l -vertex v is connected to an r -vertex a by an edge marked (i; l ), then we know
that v takes on the community role of the vertex with label l in Coma . Thus the
community-projection operator P : ! n 7! RIGC from Section 2.1 can be naturally
rede�ned as an operator bP : (BCM ; � c ) 7! RIGC , mapping (a realization of) the
community-marked BCM into (a realization of) the RIGC . For a vertex v 2 V l , we
also write bP : (BCM ; � c ; v) 7! (RIGC ; v) for the rooted version of the projection.

Constructing the local weak limit of the RIGC. To be able to de�ne (CP; o)
as the community-projection bP of (BP l ; � p ; 0), we now introduce this marked BP-
family tree. Recall (BP l ; 0) from Section 3.2.1, and conditionally on this (possibly
in�nite) ordered tree, we now de�ne the random mark function � p , using the set
of marks M p from the paragraph above.

We mark vertices in even generations by l , and vertices in odd generations by
some H 2 H , randomly determined as follows. Recall the family of conditional
measures (� � j k )k2 Z+ from (2.67), and that we denote the degree of a 2 BP l by
d(a). Independently of everything else, we mark a vertex a in an odd generation
according to the measure � � j d(a) .
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3 Local weak convergence and local properties

We mark each edge e by a random tuple (i; l ) 2 (Z+ )2, and we determine i
and l separately. Denote the endpoint of e in an even generation by v and the
endpoint in an odd generation by a, that intuitively correspond to an l - and r -
vertex, respectively. We think of i and l as the marks of the l - and r -half-edges
incident to v and a, respectively. We mark families of half-edges incident to the
same vertex u jointly, so that each mark in [d(u)] is used once, but independently
of all other families. In particular, the two coordinates in each edge mark are
independent. For u 6= 0 , we �rst mark the half-edge that is part of the edge
connecting u to its parent, by a uniform mark K � Unif[d(u)]. Recall that the
family tree is ordered, which also determines an ordering of half-edges incident
to u that are part of edges connecting u to its children. We mark these half-edges
by [d(u)] n f K g in increasing order. Analogously, for the root, we mark all its
half-edges by [d(0)] in increasing order. This de�nes the conditional law of � p

given (BP l ; 0), and consequently the joint law (BP l ; � p ; 0). Finally, we de�ne
(CP; o) as the bP -projection of (BP l ; � p ; 0).

It follows from the construction that (CP; o) is a simple, locally �nite rooted
graph with countable (possibly in�nite) vertex set V (CP) = f v 2 BP l ; jvj eveng.
Further, we obtain some insight on the overlapping structure of the communities:
each vertex v 2 V (CP) is part of exactly d(v) communities; however, by the tree
structure of BP l , any two of these communities only share v as a common vertex,
i.e., the proposed local weak limit CP has (a stronger version of) the single-overlap
property.

3.3.2 The proof of local weak convergence of the RIGC

As (RIGC ; V l
n ) is de�ned as the bP -projection of (BCM n ; � c ; V l

n ), and (CP; o) is
de�ned as the bP -projection of (BP l ; � p ; 0), this provides a natural way to prove
local weak convergence of the RIGC through the local weak convergence of the un-
derlying BCM . However, as argued before, ball neighborhoods (r -neighborhoods)
in the BCM generally do not map to ball neighborhoods in the RIGC , which is why
we have introduced generalized neighborhoods in Section 3.1.2. To obtain conver-
gence of frequencies for ball neighborhoods in the RIGC , we require convergence
of frequencies of generalized neighborhoodsin the underlying BCM . To formalize
such results, we �rst need to generalize the concept of ordering for non-tree graphs,
as well as the notation B r

T (v) = f B r (BCM n ; � b; v) �= B r (T; � T ; 0)g from (3.23).

Ordered graphs. Recall from Section 3.1.2 that ordered trees are de�ned by having
an ordering of the children of any vertex. This de�nition can in fact be generalized
for non-tree rooted graphs, that we call ordered graphs, and formally de�ne them
as follows, utilizing a breadth-�rst search (BFS) algorithm. In this context, for
simplicity, we suppose an ordering of all neighbors of each vertex is given. The
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3.3 Local weak convergence of the RIGC

children of a vertex v are now all of its neighbors that have not yet been explored
by the algorithm when v is explored, and they are added to the list of to be explored
vertices in the order determined by the parent v. Another adjustment we must
make is to allow vertices that close cycles to have more than one parent, however
each vertex is only explored once and obtains its Ulam-Harris label via its �rst
explored parent. The ordering of all vertices is determined by the order in which
the BFS explores the vertices. Recall from Section 3.1.2 the ordering of children of
each vertex in ordered subtrees of the underlying BCM using the edge labels. This
ordering can easily be extended to all neighbors, which turns the underlying BCM
into an ordered graph once a root is chosen.

Neighborhood event. Let H := ( H; � H ; 0) be a �nite ordered marked graph
with marks from M p , and consider the correspondence between vertices of H
and (BCM ; � c ; v) with the same Ulam-Harris labels. If this correspondence is a
rooted marked isomorphism, we say that v has an H -neighborhood, and denote this
event by BH (BCM n ; � c ; v). We de�ne the corresponding event BH (BP l ; � p ; 0)
for (BP l ; � p ; 0) analogously.

Recall V l
n � Unif[ V l ] and that P( � j ! n ) denotes conditional probability wrt

! n . We can now state the convergence of neighborhood frequencies in the BCM
for generalized neighborhoods, as follows:

Lemma 3.3.1 (Convergence of general neighborhoods in the BCM ). Consider
(BCM n ; � c ) under Assumption 2.2.1, and letH := ( H; � H ; 0) denote an ordered
graph marked fromM p . Then, asn ! 1 ,

P
�
BH (BCM n ; � c ; V l

n )
�
� ! n

� P�! P
�
BH (BP l ; � p ; 0)

�
: (3.46)

Proof.Lemma 3.3.1 can be proven analogously to Proposition 3.2.1 via a �rst and
second moment method.

Corollary 3.3.2. Under the conditions of Lemma 3.3.1, with the generalized meaning

of the notionP-loc�! from Remark 3.1.1,

(BCM n ; � c ; V l
n ) P-loc�! (BP l ; � p ; 0): (3.47)

Proof.The statement follows by applying Lemma 3.3.1 to the special case of ball
neighborhoods in ordered trees, then completing the argument using similar argu-
ments as in the proof of Proposition 3.2.1 in Section 3.2.2. There, we have shown
that the convergence of frequencies of ordered trees implies the convergence of
frequencies of unordered trees. Since the support of the limiting measure only
contains trees, by completeness of measure, the convergence must hold for any
neighborhood.
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3 Local weak convergence and local properties

We are now ready to prove Theorem 2.3.3 that asserts the local weak convergence
in probability of the random intersection graph with communities.

Proof of Theorem 2.3.3.By De�nition 2.3.2, to prove Theorem 2.3.3, we have to
prove that for any r 2 N and (H; o) 2 Go (see De�nition 2.3.1),

P
�
B r (RIGC n ; V l

n ) ' B r (H; o)
�
� ! n

� P�! P
�
B r (CP; o) ' B r (H; o)

�
: (3.48)

Recall from Section 3.3.1 that (CP; o) is the community-projection of (BP l ; � p ; 0),
just as the RIGC is the community-projection of the underlying BCM . Thus,
to prove the local weak convergence of the RIGC , we rely on the local weak
convergence of the underlying BCM , more precisely, the convergence of generalized
neighborhood counts in Lemma 3.3.1. To relate neighborhoods in the RIGC to
neighborhoods in the underlying BCM , we introduce the concept of pre-image,
that we think of as the inverse operator of the community-projection bP . Formally,
the pre-imagesof a neighborhood B r (H; o) are all possible orderedgraphs Ui :=
(Ui ; � i ; 0) (where i 2 I for some index set I ) that are mapped into B r (H; o)
by the community-projection bP . That is, the event BU i (BCM n ; � c ; v) implies
the event f B r (RIGC ; v) ' B r (H; o)g. By de�nition, the pre-images contain all
information necessary to determine the r -neighborhood in the projection, thus
only one pre-image can occur as an ordered neighborhood in the underlying BCM .
Consequently, we can decompose the following events as disjointunions:

�
B r (RIGC n ; V l

n ) ' B r (H; o)
	

=
�
[ i 2 I BU i (BCM n ; � c ; V l

n ); (3.49)
�

B r (CP; o) ' B r (H; o)
	

=
�
[ i 2 I BU i (BP l ; � p ; 0): (3.50)

In the following, we analyze the structure of the pre-images so we can intuitively
regroup these unions. Note that when we only observe the RIGC (or CP) graph,
the communities are not known, thus we have to consider each possibility for the
communities to reconstruct every pre-image. By the properties of the projection,
each edge belongs to a unique community, thus the communities intersecting
B r (H; o) determine a partition30 of all edges in this neighborhood. Figure 3.1
illustrates a neighborhood, a possible edge-partition and a possible pre-image.

Let F denote the set of all edge-partitions of B r (H; o), noting that F is �nite , since
the number of edges in B r (H; o) is �nite. For each pre-image Ui , the communities
uniquely determine an edge-partition F 2 F , which we call the edge-partition
corresponding to this pre-image. Denote the (possibly empty) index set of pre-
images corresponding to an edge-partition F by I (F ) � I . Since

�
[ F 2 F I (F ) = I ,

30The partition of a set is a family of subsets that are pairwise disjoint and their union is the original
set. We refer to the subsets in the family as partition blocks.
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3.3 Local weak convergence of the RIGC

(a) A 2-neighborhood in theRIGC
The circles and colors represent distance
from the root (central red vertex).

(b) A possible edge-partition
Partition blocks containing vertices on the boun-
dary (black vertices) may correspond to �un�-
nished� communities that extend beyond this
neighborhood.

(c) The �pre-image� corresponding to the above partition
We preserved the color of each individual, and more or less its angular direction
from the root. We can observe the bipartite structure and the change in graph
distances. The pre-image is not unique: the community graph of �un�nished�
communities (e.g. on the top left) is only partially known, and individuals may be
part of �invisible� 1-member communities (e.g. on the bottom right).

Figure 3.1:A neighborhood and a possible pre-image

P
�
B r (RIGC n ; V l

n ) ' B r (H; o)
�
� ! n

�

=
X

F 2 F

P
� �
[ i 2 I (F ) BU i (BCM n ; � c ; V l

n )
�
� ! n

�
; (3.51)
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3 Local weak convergence and local properties

P
�
B r (CP; o) ' B r (H; o)

�
=

X

F 2 F

P
� �
[ i 2 I (F ) BU i (BP l ; � p ; 0)

�
: (3.52)

Then, by jF j < 1 , it is su�cient to prove that for any �xed F 2 F ,

P
� �
[ i 2 I (F ) B U i

(BCM n ; � p ; V l
n )

�
� ! n

�

P�! P
� �
[ i 2 I (F ) B U i

(BP l ; � p ; 0)
�
:

(3.53)

Clearly, this convergence is trivial if I (F ) is empty, thus in the following we
consider edge-partitions F such that I (F ) is not empty. We argue why the set
(Ui ) i 2 I (F ) contains several, in fact possibly in�nitely many, elements. To construct
any pre-image (see Fig. 3.1), more information is necessary, that is captured neitherin
the neighborhood B r (H; o) nor in the partition F . First, one-member communities
do not produce edges, and thus remain �invisible� in the community-projection.
Second, each partition block E 2 F containing an edge adjacent to a vertex in
generation r may correspond to an �un�nished community� that intersects the ball
B r (H; o), but is not fully contained in it.

We rely on a truncation argument so that we can focus on a �nite subset of I (F ).
We �rst show that each pre-image Ui is contained in a ball of radius 2r + 1 in
the BCM (or BP l ). Note that distances in the pre-images are the largest possible
when each edge forms a partition block by itself, then an r -vertex (community)
in the BCM representing an edge between generation r individuals in the RIGC
can reach the maximum distance 2r + 1 . Next, we use the fact that local weak
convergence implies that the maximal degree in a �nite neighborhood of the root is
a tight random variable. We sketch the argument as follows. Consider the functional
1f maximal degree in the r -neighborhood of the root>K g , which is in the class � r from (3.4), thus
bounded and continuous. Recall V b

n � Unif[ V l [ V r ], as well as the construction
of (BPs; � s; 0) from Section 3.2.1. Further, note that by construction, degrees in
the BCM are the same with mark functions � c and � b, and similarly, degrees in
BP l are the same with mark functions � p and � l . By Proposition 3.2.1 and (3.8),

P
�
maxf b-deg(v) : v 2 B2r +1 (BCM n ; � c ; V l

n )g > K
�
� ! n

�

=
P

�
maxf b-deg(v) : v 2 B2r +1 (BCM n ; � b; V b

n )g > K; V b
n 2 V l

�
� ! n

�

P
�
V b

n 2 V l
�

P�!
P

�
maxf d(v) : v 2 B2r +1 (BPs; � s; 0)g > K; s = l

�

P(s = l )

= P
�
maxf d(v) : v 2 B2r +1 (BP l ; � p ; 0)g > K

�
:

(3.54)
We now show that the limit vanishes as K ! 1 . The degrees in BP l follow
distributions D l , eD r or eD l , which are all almost surely �nite by Assumption 2.2.1.
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3.3 Local weak convergence of the RIGC

Then necessarily the maximal degree up to a �nite generation r is also almost surely
�nite. Consequently, for any " > 0, there exists K = K (") < 1 such that

P
�
maxf b-deg(v) : v 2 B2r +1 (BP l ; � p ; 0)g > K

�
< "= 6; (3.55a)

and by (3.54), whp

P
�
maxf b-deg(v) : v 2 B2r +1 (BCM n ; � c ; V l

n )g > K
�
� ! n

�
< "= 3: (3.55b)

De�ne the index set I
�
F ; � K

�
=

�
i 2 I (F ) : maxf d(v) : v 2 V (Ui )g � K

	
.

As each Ui for i 2 I (F ; � K ) has depth (maximal distance from the root) bounded
by 2r + 1 and degree bounded by K , necessarily I

�
F ; � K

�
is �nite. Denote

I (F ; >K ) := I (F ) n I (F ; � K ). By the triangle inequality,
�
�
�P

� �
[ i 2 I (F ) BU i (BCM n ; � p ; V l

n )
�
� ! n

�
� P

� �
[ i 2 I (F ) BU i (BP l ; � p ; 0)

� �
�
�

� P
� �
[ i 2 I (F ;>K ) BU i (BCM n ; � p ; V l

n )
�
� ! n

�

+ P
� �
[ i 2 I (F ;>K ) BU i (BP l ; � p ; 0)

�

+
X

i 2 I (F ;� K )

�
�P

�
BU i (BCM n ; � p ; V l

n )
�
� ! n

�
� P

�
BU i (BP l ; � p ; 0)

� �
� :

(3.56)

We �rst study the �nite sum over I (F ; � K ). By Lemma 3.3.1, for each i 2
I (F ; � K ), whp

�
�P

�
BU i (BCM n ; � p ; V l

n )
�
� ! n

�
� P

�
BU i (BP l ; � p ; 0)

� �
� �

"
3jI (F ; � K )j

: (3.57)

Now, we look at the �rst two terms on the rhs of (3.56). By the de�nition of the set
I (F ; >K ),

P
� �
[ i 2 I (F ;>K ) BU i (BCM n ; � p ; V l

n )
�
� ! n

�

� P
�
maxf b-deg(v) : v 2 B2r +1 (BCM n ; � c ; V l

n )g > K
�
� ! n

�
;

(3.58a)

P
� �
[ i 2 I (F ;>K ) BU i (BP l ; � p ; 0)

�

� P
�
maxf d(v) : v 2 B2r +1 (BP l ; � p ; 0)g > K

�
;

(3.58b)

which both are whp smaller than "=3 by (3.55). Combining (3.56�3.58), we obtain
that for any " > 0, whp

�
�
�P

� �
[ i 2 I (F ) BU i (BCM n ; � p ; V l

n )
�
� ! n

�

� P
� �
[ i 2 I (F ) BU i (BP l ; � p ; 0)

� �
�
� � ";

(3.59)

which is equivalent to (3.53). Since we have previously reduced Theorem 2.3.3 to
this statement, this concludes the proof of Theorem 2.3.3.
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3 Local weak convergence and local properties

3.4 Local properties of the random
intersection graph with communities

This section is dedicated to proving further local properties of the RIGC model, in
particular, we prove Corollaries 2.3.4 and 2.3.5 in Section 3.4.1 and Proposition 2.3.7
and Theorem 2.3.8 in Section 3.4.2.

3.4.1 Degrees and clustering

Recall the de�nition of (CP; o), the local weak limit of the RIGC from Section 3.3.1.
By the construction of (CP; o) as the bP -projection of (BP l ; � p ; 0), it is clear that
D p from (2.24) and � from (2.29) describe the degree and local clustering coe�cient
of o 2 CP, respectively. Further recall the empirical degree D p

n from (2.15�2.16)
and the empirical local clustering � n from (2.28�2.29), that we can look at as the
degree and clustering of the root V l

n in BCM n . By (RIGC n ; V l
n ) P-loc�! (CP; o), it

is intuitive that D p
n

d�! D p and � n
d�! � . We complete the formal proof of the

stronger statements (2.25) and (2.30) below.

Proof of Corollaries 2.3.4 and 2.3.5.Recall that P( � j ! n ) denotes conditional proba-
bility wrt ! n and that E[ � j ! n ] denotes the corresponding conditional expectation.
Further, denote the probability measure of (CP; o) by Po and the corresponding
expectation by Eo. For arbitrary �xed x 2 R, we de�ne the functionals ' x ;  x ;  x

from Go to f 0; 1g as follows:

' x (G; o) := 1f deg( o) � x g;

 x (G; o) := 1f Cl( o) � x g;  x (G; o) := 1f Cl( o)<x g:
(3.60)

Clearly, all three functionals are in the class � 1 from (3.4) with r = 1 , thus they
are bounded and continuous in the metric space ( Go; dloc ). Further note that we
can express the empirical and limiting cdfs from (2.16), (2.24), (2.28) and (2.29)
respectively as

F p
n (x) = E

�
' x (RIGC n ; V l

n )
�
� ! n

�
; F p (x) = Eo

�
' x (CP; o)

�
;

F �
n (x) = E

�
 x (RIGC n ; V l

n )
�
� ! n

�
; F � (x) = Eo

�
 x (CP; o)

�
:

(3.61)

Let us denote the left limit f (x� ) := lim " & 0 f (x � " ). Then also

F �
n (x� ) = E

�
 (RIGC n ; V l

n )
�
� ! n

�
; (3.62)

F � (x� ) = lim
" & 0

Po
�
� � x � "

�
= Po

�
� < x

�

= Eo
�
 x (CP; o)

�
:

(3.63)
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3.4 Local properties of the RIGC

By Theorem 2.3.3, (RIGC n ; V l
n ) P-loc�! (CP; o), thus by (3.8), the equivalent de�ni-

tion of LWC in probability, for any �xed x 2 R, as n ! 1 ,

F p
n (x) P�! F p (x); F �

n (x) P�! F � (x); F �
n (x� ) P�! F � (x� ): (3.64)

That is, we have established pointwise convergence of the cdfs. In the following,
we show that this in fact implies convergence in sup-norm as well, by a truncation
argument for the degrees and a discretization argument for the clustering. We
complete the proof for the degrees �rst. As D p

n and D p take values in N,

sup
x 2 R

�
�F p

n (x) � F p (x)
�
� = sup

k2 N

�
�F p

n (k) � F p (k)
�
�: (3.65)

Fix " > 0 and choose K = K (") 2 N minimal such that F p (K ) > 1 � 1
3 " . Then

by (3.64), F p
n (K ) > 1 � 2

3 " whp. By the triangle inequality and the monotonicity
of distribution functions, whp for all k � K jointly,

�
�F p

n (k) � F p (k)
�
� � 1 � F p

n (k) + 1 � F p (k)

� 1 � F p
n (K ) + 1 � F p (K ) < 2

3 " + 1
3 " = ":

(3.66)

That is, maxk � K
�
�F p

n (k) � F p (k)
�
� � " whp. By (3.64), clearly the �nite maximum

maxk<K
�
�F p

n (k) � F p (k)
�
� � " whp as well. For short, denote a _ b := max f a; bg.

Combining the above, we conclude that whp

kF p
n � F p k1 = max

k<K

�
�F p

n (k) � F p (k)
�
� _ max

k � K

�
�F p

n (k) � F p (k)
�
� � ": (3.67)

This is equivalent to the convergence in probability in (2.25), and concludes the
proof of Corollary 2.3.4.

We move on to study the distribution of the local clustering. As � n and � take
potentially all rational values in [0; 1], a di�erent approach from the above truncation
is required. First, we write

sup
x 2 R

�
�F �

n (x) � F � (x)
�
� = sup

x 2 [0;1)

�
�F �

n (x) � F � (x)
�
�; (3.68)

and in the following, we discretize this supremum. Since F � is a cdf, it is non-
decreasing and takes values between 0 and 1. Consequently for any �xed " > 0,
there must exist K = K (") < 1 and a �nite sequence 0 = z0 < z 1 < : : : < z K =
1 such that for all k = 0 ; 1; : : : ; K � 1,

0 � F � (zk+1 � ) � F � (zk ) < "= 3: (3.69)
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3 Local weak convergence and local properties

We introduce the following �good event�:

En :=
K � 1\

k=0

� �
jF �

n (zk ) � F � (zk )j < "= 3
	

\
�

jF �
n (zk+1 � ) � F � (zk+1 � )j < "= 3

	 �
:

(3.70)

By (3.64), each event on the rhs happens whp, thus the �nite intersection En also
happens whp. On the eventEn , using (3.69�3.70) and the fact that F �

n is non-
decreasing, the following bound on the empirical cdf is valid for any k and all
x 2 [zk ; zk+1 ):

F �
n (x) � F �

n (zk ) > F � (zk ) � 1
3 "; (3.71a)

F �
n (x) � F �

n (zk+1 � ) < F � (zk+1 � ) + 1
3 " < F � (zk ) + 2

3 ": (3.71b)

Using (3.69) and the fact that F � is non-decreasing, the following bound on the
limiting cdf is valid for any k and all x 2 [zk ; zk+1 ):

F � (x) � F � (zk ); F � (x) � F � (zk+1 � ) < F � (zk ) + 1
3 ": (3.72)

Combining (3.71�3.72) through the triangle inequality yields that, on the event En ,
for any �xed k,

sup
x 2 [zk ;zk +1 )

�
�F �

n (x) � F � (x)
�
� < ": (3.73)

Recall that [ K � 1
k=0 [zk ; zk+1 ) = [0 ; 1). Consequently on the event En , which happens

whp,
kF �

n � F � k1 = sup
x 2 [0;1)

�
�F �

n (x) � F � (x)
�
� < ": (3.74)

That is, (2.30) holds, which concludes the proof of Corollary 2.3.5.

3.4.2 The overlapping structure

In this section, we prove Proposition 2.3.7 and Theorem 2.3.8 on the typical number
and size of overlaps in the RIGC model. We �rst prove Theorem 2.3.8 (i�ii) which
follow directly from Theorem 2.3.3, then prove Proposition 2.3.7 and Theorem 2.3.8
(iii), which also require the extra second moment condition (2.39), and consequently
a slightly di�erent approach. Throughout this section, we make use of the following
notation. Recall that V l

n � Unif[ V l ], V r
n � Unif[ V r ] and V b

n � Unif[ V l [
V r ]. Further recall that P( � j ! n ) denotes the conditional probability wrt ! n (i.e.,
conditionally on the graph realization), and that E[ � j ! n ] denotes the corresponding
conditional expectation (i.e., partial average over the choice of the uniform vertex).
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3.4 Local properties of the RIGC

3.4.2.1 Overlaps from the local local perspective: proof of
Theorem 2.3.8 (i), (ii)

Consider that an overlap of size (at least) two happens in the RIGC exactly when
there are (at least) two individuals that are part of (at least) two groups together. In
the underlying BCM , these two individuals and two groups form a K 2;2 complete
bipartite graph, which we can also look at as a 4-cycle. In the following, we study
4-cycles through typical, i.e., uniformly chosen, vertices in the BCM . Recall the
notion of local weak convergence from Section 3.1.1, and in particular the set Go of
rooted graphs and the metric dloc de�ned on it. We de�ne the functional 1C4 on
Go as the indicator that there is a 4-cycle containing the root. Recall (2.36�2.38).
We can rewrite the lhs of (2.41) and (2.42) respectively as

P
�
9f a; bg 2 L 2 : V l

n  [Coma ; V l
n  [Comb

�
� ! n

�

= E
�
1C4 (BCM n ; V l

n )
�
� ! n

�
;

(3.75)

P
�
9b 2 N(V r

n ) : O(V r
n ; b) � 2

�
� ! n

�
= E

�
1C4 (BCM n ; V r

n )
�
� ! n

�
: (3.76)

Interpreting the conditional expectation as a partial average,

E
�
1C4 (BCM n ; V l

n )
�
� ! n

�
=

1
Nn

X

v2 V l

1C4 (BCM n ; v)

�
Nn + M n

Nn

1
Nn + M n

X

v2 V l [ V r

1C4 (BCM n ; v)

=
Nn + M n

Nn
� E

�
1C4 (BCM n ; V b

n )
�
� ! n

�
;

(3.77)

and analogously,

E
�
1C4 (BCM n ; V r

n )
�
� ! n

�
�

Nn + M n

M n
E

�
1C4 (BCM n ; V b

n )
�
� ! n

�
: (3.78)

We now show that this upper bound vanishes. Note that 1C4 2 � 1 from (3.4) with
r = 2 , hence it is bounded and continuous. Thus by Theorem 2.3.9 and (3.8),

E
�
1C4 (BCM n ; V b

n )
�
� ! n

� P�! E
�
1C4 (BPs; 0)

�
= 0 ; (3.79)

since BPs is a tree, and the probability that there is a 4-cycle through the root is 0.
Further, by Remark 2.2.2 (i), as n ! 1 ,

(Nn + M n )=Nn ! 1 + 
 < 1 ; (Nn + M n )=Mn ! (1 + 
 )=
 < 1 : (3.80)

Combining (3.75�3.80) yields (2.41�2.42), as required, which concludes the proof of
Theorem 2.3.8 (i�ii).

89



3 Local weak convergence and local properties

3.4.2.2 The number of overlapping pairs of communities

Proof of Proposition 2.3.7.As before, our aim is to reduce Proposition 2.3.7 to local
weak convergence. Recall Go from Section 3.1.1 and de�ne the functional ' on Go

that counts the number of vertices at graph distance 2 from the root, formally,

' (G; o) := j@B2(G; o)j: (3.81)

Recall (2.36�2.37). With ' , we can rewrite the lhs of (2.40) as

2jL 1j
M n

= E
�
jN(V r

n )j
�
� ! n

�
= E

�
' (BCM n ; V r

n )
�
� ! n

�
: (3.82)

Recall the de�nition of (BP r ; 0) and (3.15) from Section 3.2.1, and note that

E
�
' (BP r ; 0)

�
= E[D r ]E[ eD l ]; (3.83)

which is exactly the proposed limit of (3.82). It is tempting to conclude the result
by (3.8) as before, however, (3.8) is not applicable, since ' is not in the class � from
(3.3). While ' only depends on a �nite neighborhood of the root and is necessarily
continuous, it is not bounded. Instead, we rely on a truncation argument to prove
the required convergence in probability by de�nition: for any �xed "; � > 0 and
n = n("; � ) large enough,

P
� �

� E
�
' (BCM n ; V r

n )
�
� ! n

�
� E

�
' (BP r ; 0)

� �
� > "

�
< �: (3.84)

With K = K ("; � ) 2 N to be speci�ed later, we decompose

P
� �

� E
�
' (BCM n ; V r

n )
�
� ! n

�
� E

�
' (BP r ; 0)

� �
� > "

�

� P
� �

� E
�
' (BCM n ; V r

n )
�
� ! n

�
� E

�
' (BCM n ; V r

n ) ^ K
�
� ! n

� �
� > "= 3

�
(3.85a)

+ P
� �

� E
�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
� E

�
' (BP r ; 0) ^ K

� �
� > "= 3

�
(3.85b)

+ P
� �

� E
�
' (BP r ; 0) ^ K

�
� E

�
' (BP r ; 0)

� �
� > "= 3

�
: (3.85c)

We study (3.85b) �rst. As before, we make use of the fact that the connections in the
BCM are the same under both mark functions, � c from Section 3.3.1 and � b from
Section 3.2.1, and for simplicity, we use � b. Recall its mark set M b = f l ; r ; ? g and
denote x ^ y := min f x; yg. We de�ne the boundedfunctional ' K on Go(M b) as

' K (G; � ; o) := 1f �( o)= r g �
�
' (G; o) ^ K

�
: (3.86)
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3.4 Local properties of the RIGC

By the truncation and (3.81), ' K is in the class � 2 from (3.4) with r = 2 , thus it is
bounded and continuous. By properties of conditional expectation, we can rewrite

E
�
' K (BCM n ; � b; V b

n )
�
� ! n

�

= P
�
V b

n 2 V r �
E

�
' (BCM n ; V b

n )
�
� ! n ; V b

n 2 V r �

=
M n

Nn + M n
E

�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
;

(3.87)

and analogously,

E
�
' K (BPs; � s; 0)

�
=



1 + 


E
�
' (BP r ; 0)) ^ K

�
: (3.88)

We note that the convergence in (3.15), which only holds in the generalized sense
of the notion P-loc�! from Remark 3.1.1, is su�cient for using the equivalent de�nition
(3.8), as the proof of [112, Theorem 2.9] applies to this case as well. Thus, by
(3.15) and (3.8), the lhs of (3.87) converges in probability to the lhs of (3.88), and
M n =(Nn + M n ) ! 
= (1 + 
 ) by Remark 2.2.2 (i). Necessarily

E
�
' (BCM n ; V r

n ) ^ K
�
� ! n

� P�! E
�
' (BP r ; 0) ^ K

�
; (3.89)

or equivalently, for any "; � > 0 �xed and n = n("; � ) large enough,

P
� �

� E
�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
� E

�
' (BP r ; 0) ^ K

� �
� > "= 3

�
< �= 2: (3.90)

Next, we study (3.85c). Recall D l and D r from Assumption 2.2.1 (A) and (C1),
and recall (2.3). By the de�nition of BP r in Section 3.2.1, ' (BP r ; 0) d=

P D r

i =1
eD l

( i ) ,
where eD l

( i ) are iid copies of eD l and independent of eD r . Under the second moment
condition (2.39), E[ eD l ] < 1 , thus E

�
' (BP r ; 0)

�
< 1 . Then we can choose and

�x K = K ("; � ) large enough so that

0 � E
�
' (BP r ; 0)

�
� E

�
' (BP r ; 0) ^ K

�
< ("=3) ^ ("�= 18); (3.91)

where we will require the second bound later on. The �rst bound implies that the
probability in (3.85c) equals 0. Finally, we claim that for n = n("; � ) large enough,
we can bound (3.85a) as

P
� �

� E
�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
� E

�
' (BCM n ; V r

n )
�
� ! n

� �
� >

"
3

�
<

�
2

: (3.92)

Subject to (3.92), (3.84) follows by combining (3.90�3.92), that is, Proposition 2.3.7
holds subject to (3.92). We now prove (3.92) using a �rst moment method. The
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3 Local weak convergence and local properties

advantage of this method is that taking expectation removes the conditioning on
! n , and we better understand the distribution of ' (BCM n ; V r

n ) with bothsources
of randomness, i.e., V r

n and ! n . However, we could not use a �rst moment method
earlier, due to the presence of absolute values. Now using that ' (BCM n ; V r

n ) ^
K � ' (BCM n ; V r

n ), we compute

E
h�
� E

�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
� E

�
' (BCM n ; V r

n )
�
� ! n

� �
�
i

= E
h
E

�
' (BCM n ; V r

n )
�
� ! n

�
� E

�
' (BCM n ; V r

n ) ^ K
�
� ! n

� i

= E
�
' (BCM n ; V r

n )
�

� E
�
' (BCM n ; V r

n ) ^ K
�
:

(3.93)

In the following, we have to prove that ' (BCM n ; V r
n ) is uniformly integrable. As

a �rst step, we bound E
�
' (BCM n ; V r

n )
�

using stochastic domination. Recall D r
n

from (2.5). We de�ne a size-biased reordering(dl
� ( i ) ) i � N n of d l , characterized by

the random permutation (� (i )) i � N n that we de�ne recursively as follows. Denote
the set of already chosen indices by [� ]i1 := f � (1); : : : ; � (i )g, with the convention
that [� ]01 is the empty set. Then for i = 0 ; 1; : : : ; Nn � 1,

P
�
� (i + 1) = k

�
� [� ]i1

�
=

8
><

>:

0 for k 2 [� ]i1;
dl

kP
j 62[� ]i

1
dl

j
otherwise:

(3.94)

Under the joint measure of ! n and V r
n , the following stochastic domination holds,31

with D r
n independent from (dl

� ( i ) ) i � N n :

' (BCM n ; V r
n ) = j@B2(BCM n ; V r

n )j �
D r

nX

i =1

(dl
� ( i ) � 1); (3.95)

In the following, we bound the expectation of the rhs. Clearly, D r
n � dr

max , and
by Remark 2.2.2 (iii), dr

max = o(hn ), hence for any � 0 > 0, for n large enough,
D r

n � dr
max � � 0Nn necessarily. We will choose � 0 later, and now study E

�
dl

� ( i )

�

for i � � 0Nn . Recall (2.3). Let dl
(k ) denote the kth largest element of d l (with ties

broken arbitrarily). We compute

E
�
dl

� (1)

�
=

P
v2 [N n ](d

l
v )2

P
v2 [N n ] dl

v
= E

�
D l ;?

n

�
= E

� eD l
n

�
+ 1 < 1 ; (3.96)

E
�
dl

� ( i +1)

�
= E

h
E

�
dl

� ( i +1)

�
� [� ]i1

� i
= E

� P
v62[� ]i

1
(dl

v )2

P
v62[� ]i

1
dl

v

�
: (3.97)

31The domination follows by a natural coupling using Remark 2.1.1 and noting that j@B2 (BCM n ; V r
n )j

is the largest possible when all community roles of the uniform community V r
n are taken by di�erent

individuals, and all further memberships of these individuals are taken in di�erent communities.
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3.4 Local properties of the RIGC

By taking the worst-case scenario in the denominator and completing the sum in
the numerator, necessarily

E
�
dl

� ( i +1)

�
�

P
v2 [N n ](d

l
v )2

P
v2 [N n ] dl

v �
P

k2 [i ] dl
(k )

: (3.98)

We claim that for any 1=2 > " 0 > 0 and i � � 0Nn with an appropriate � 0 = � 0("0)
and n large enough,

E
�
dl

� ( i +1)

�
�

1
1 � "0E

�
dl

� (1)

�
=

1
1 � "0E[D l ;?

n ] � (1 + 2 "0)E[D l ;?
n ]; (3.99)

that is, E
�
dl

� ( i +1)

�
is bounded uniformly in i � � 0Nn . Note that (3.98) only di�ers

from the exact formula for E
�
dl

� (1)

�
in (3.96) in the term

P
k2 [i ] dl

(k ) . Thus, to
prove (3.99), it is su�cient to show that for i � � 0Nn ,

P
k2 [i ] dl

(k ) � "0hn , with
hn =

P
v2 [N n ] dl

v from (2.1). To choose an appropriate � 0 for a given "0, �rst note
that E[D l ] < 1 by Assumption 2.2.1 (B), thus we can choose K 0 = K 0(" ) so that
E[D l 1f D l >K 0g] � ("0=2) E[D l ]. Now de�ne � 0 := P(D l > K 0)=2, so that for n
large enough, P(D l

n > K 0) > � 0, which is equivalent to dl
(b� 0N n c) > K 0. Thus,

X

k2 [i ]

dl
(k ) �

X

k � � 0N n

dl
(k ) =

X

k � � 0N n

dl
(k ) 1f d l

( k ) >K 0g

�
X

v2 [N n ]

dl
v 1f d l

v >K 0g = Nn E[D l
n 1f D l

n >K 0g]:
(3.100)

By Assumption 2.2.1 (B), the collection (D l
n )n 2 N is uniformly integrable, thus

as n ! 1 , E[D l
n 1f D l

n >K 0g] ! E[D l 1f D l >K 0g] � ("0=2) E[D l ]. Further, by
Remark 2.2.2 (i), Nn =hn ! 1=E[D l ]. Combining these two facts, we obtain that
Nn E[D l

n 1f D l
n >K 0g]=hn ! "0=2, hence (3.100) implies that for n large enough,

P
k2 [i ] dl

(k ) � "0hn for all i � � 0Nn , as required, which concludes the proof of
(3.99).

We now combine the above results. Recall that D r
n is independent from the size-

biased reordering (dl
� ( i ) ) i � N n , and that D r

n � dr
max � � 0Nn for n large enough.

Taking expectation in (3.95) and using (3.99), we obtain

E
�
' (BCM n ; V r

n )
�

� E
hD r

nX

i =1

�
dl

� ( i ) � 1
� i

= E
h
E

hD r
nX

i =1

�
dl

� ( i ) � 1
� �

� D r
n

ii

= E
hD r

nX

i =1

�
E

�
dl

� ( i )

�
� 1

� i
� E

hD r
nX

i =1

�
(1 + 2 "0)E[D l ;?

n ] � 1]
� i

= E[D r
n ]

�
E[ eD l

n ] + 2 "0E[D l ;?
n ]

�
;

(3.101)
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3 Local weak convergence and local properties

since E[ eD l
n ] = E[D l ;?

n ] � 1. By Assumption 2.2.1 (D), we have that E[D r
n ] !

E[D r ] < 1 , and the second moment condition (2.39) ensures that E[ eD l
n ] !

E[ eD l ] < 1 , as well as that (E[D l ;?
n ])n 2 N is bounded. Thus, for any "; � > 0, by

choosing the above "0 = "0("; � ) appropriately, we obtain that for n large enough,

E
�
' (BCM n ; V r

n )
�

� E[D r ]E[ eD l ] + "�= 18 = E
�
' (BP r ; 0)

�
+ "�= 18: (3.102)

That is, we have obtained a bound on E
�
' (BCM n ; V r

n )
�

uniformly in n. We now
use this statement and previous bounds to obtain a bound on E

�
' (BCM n ; V r

n )
�

�
E

�
' (BCM n ; V r

n ) ^ K
�

uniformly in n. Recall that by the choice of K in (3.91),

0 � E
�
' (BP r ; 0)

�
� E

�
' (BP r ; 0) ^ K

�
< "�= 18: (3.103)

As E
�
' (BCM n ; V r

n ) ^ K
�
� ! n

�
is bounded by K , and E

�
' (BP r ; 0) ^ K

�
is a

constant, the convergence in probability in (3.90) implies convergence of the mean.
Thus, for n large enough,

�
� E

�
' (BCM n ; V r

n ) ^ K
�

� E
�
' (BP r ; 0) ^ K

� �
� < "�= 18: (3.104)

Noting that E
�
' (BCM n ; V r

n ) ^ K
�

� E
�
' (BCM n ; V r

n )
�

and combining (3.102�
3.104) via the triangle inequality, we obtain that for n large enough,

0 � E
�
' (BCM n ; V r

n )
�

� E
�
' (BCM n ; V r

n ) ^ K
�

� 3"�= 18 = "�= 6:
(3.105)

Then (3.92) follows by Markov’s inequality. Since we have previously proved
Proposition 2.3.7 subject to (3.92), this concludes the proof of Proposition 2.3.7.

3.4.2.3 Overlaps from the global perspective

Proof of Theorem 2.3.8 (iii).Recall O(a; b) and L k from (2.36�2.38). By Proposi-
tion 2.3.7, jL 1j is of order M n , thus to show that jL 2j=jL 1j = oP(1), it is su�cient
to prove that jL 2j = oP(M n ), which we carry out via a �rst moment method. We
compute

2E
�
jL 2j

�
= E

h X

a;b2 V r

a6= b

1f O(a;b) � 2g

i
=

X

a;b2 V r

a6= b

P
�
O(a; b) � 2

�
: (3.106)

With some K to be chosen later, we split the sum
X

a;b2 V r

a6= b

P
�
O(a; b) � 2

�
=

X

a;b2 V r

a6= b
d r

a � K

P
�
O(a; b) � 2

�
+

X

a;b2 V r

a6= b
d r

a >K

P
�
O(a; b) � 2

�
:

(3.107)
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3.4 Local properties of the RIGC

We start by bounding the �rst term. Recall that v  [Coma denotes the event that
v takes a community role in Coma . For individuals v1; : : : ; vk and communities
a1; : : : ; al , denote the event that all k individuals are in all l communities by

�
f v1; : : : ; vk g 
 � [f Coma1 ; : : : ; Coma l g

	
:= \ i � k \ j � l f vi  [Coma j g:

(3.108)
Further recall dl

v and dr
a from Section 2.1 and hn from (2.1). By the union bound,

P
�
O(a; b) � 2

�
= P

�
9v; w 2 V l ; v < w : f v; wg 
 � [f Coma ; Combg

�

�
1
2

X

v;w 2 V l

v6= w

P
�
f v; wg 
 � [f Coma ; Combg

�

�
X

v;w 2 V l

v6= w

dr
a(dr

a � 1)dr
b(dr

b � 1)dl
v (dl

v � 1)dl
w (dl

w � 1)
2 � hn (hn � 1)(hn � 2)(hn � 3)

:

(3.109)

Using (2.3), (2.5), and that hn = E[D l
n ]Nn by Remark 2.2.2 (i),

X

v2 V l

dl
v (dl

v � 1)
hn

=
1

Nn

X

v2 V l

dl
v (dl

v � 1)
E[D l

n ]
=

E
�
D l

n (D l
n � 1)

�

E[D l
n ]

= E
� eD l

n

�
:

(3.110)
Since hn ! 1 as n ! 1 , then 2hn (hn � 1)(hn � 2)(hn � 3) � h 4

n for n large
enough. Thus combining (3.109�3.110), we obtain

P
�
O(a; b) � 2

�
�

dr
a(dr

a � 1)dr
b(dr

b � 1)
h 2

n

X

v;w 2 V l

dl
v (dl

v � 1)
hn

dl
w (dl

w � 1)
hn

�
dr

a(dr
a � 1)dr

b(dr
b � 1)

h 2
n

�
E[ eD l

n ]
� 2

:

(3.111)

Then, using that dr
b � dr

max with dr
max from Remark 2.2.2 (iii), the condition

dr
a � K , and that hn =

P
b2 V r dr

b by de�nition,

X

a;b2 V r

a6= b
d r

a � K

P
�
O(a; b) � 2

�
�

�
E[ eD l

n ]
� 2 X

a;b2 V r

a6= b
d r

a � K

dr
a(dr

a � 1)dr
b(dr

b � 1)
h 2

n

<
�
E[ eD l

n ]
� 2

K 2M n

X

b2 V r

dr
b(dr

max � 1)
h 2

n
�

�
E[ eD l

n ]
� 2

K 2M n
dr

max

hn
:

(3.112)

We continue by bounding the second term in (3.107), where dr
a > K . Using

Markov’s inequality, we obtain an alternative bound for the probability
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P
�
O(a; b) � 2

�
� E

�
O(a; b)

�
=2: (3.113)

Taking expectation in (2.36) and again using (3.110),

E
�
O(a; b)

�
=

X

v2 V l

P
�
v 
 � [f Coma ; Combg

�

�
X

v2 V l

dr
adl

v (dl
v � 1)dr

b

hn (hn � 1)
=

dr
adr

b

hn � 1
E[ eD l

n ]:
(3.114)

Combining (3.113�3.114), and using that
P

b2 V r dr
b = hn � 2(hn � 1) for n large

enough,
X

a;b2 V r

a6= b
d r

a >K

P
�
O(a; b) � 2

�
�

E[ eD l
n ]

2

X

b2 V r

dr
b

hn � 1

X

a2 V r

d r
a >K

dr
a

� E[ eD l
n ]

X

a2 V r

dr
a1f d r

a >K g:

(3.115)

Combining (3.107), (3.112) and (3.115),

2E
�
jL 2j

�

M n
�

�
E[ eD l

n ]
� 2

K 2 dr
max

hn
+ E[ eD l

n ]
1

M n

X

a2 V r

dr
a1f d r

a >K g

=
�
E[ eD l

n ]
� 2

K 2 dr
max

hn
+ E[ eD l

n ]E[D r
n 1f D r

n >K g]:

(3.116)

We show that 2E
�
jL 2j

�
=Mn ! 0 by showing that it can be made arbitrarily small

for n large enough. We �x an arbitrary " > 0, and we choose �rst K then n to
obtain an upper bound that is smaller than " . Under the second moment condition
(2.39), E[ eD l

n ] ! E[ eD l ] < 1 , thus (E[ eD l
n ])n 2 N is bounded. By Assumption 2.2.1

(D), (D r
n )n 2 N is uniformly integrable, thus we can choose K = K (") large enough

so that for all n large enough,

E[ eD l
n ]E[D r

n 1f D r
n >K g] � "=2: (3.117)

Again using that (E[ eD l
n ])n 2 N is bounded, and that K is now �xed and dr

max =hn ! 0
by Remark 2.2.2 (iii), we conclude that for n large enough,

�
E[ eD l

n ]
� 2

K 2 dr
max

hn
� "=2: (3.118)

We conclude that for n large enough, 2E
�
jL 2j

�
=Mn � " , which implies that

E
�
jL 2j

�
= o(M n ). By Markov’s inequality, jL 2j = oP(M n ), thus jL 2j=jL 1j =

oP(1) by Proposition 2.3.7. This concludes the proof of Theorem 2.3.8 (iii).
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Chapter 4
The largest component of
the random intersection
graph with communities

Based on parts of [117, 197]

This chapter is dedicated to studying the largest component of the random inter-
section graph with communities (RIGC ) as well as the largest component of the
underlying bipartite con�guration model (BCM ). In particular, we prove the results
stated in Section 2.4, showing that component sizes in both models undergo a phase
transition: either all components are sublinear, or there is a unique linear-sized
component, called the giant component. In Section 4.1, we provide a heuristic
explanation for the phase transition using the local weak limits of the random
graph models from Chapter 3 and formalize the relation of these two properties.
The formal proof of the results on the phase transition is carried out using a di�erent
method: a continuous-time exploration algorithm that we introduce and analyze in
Sections 4.2�4.4. The majority of the proof focuses on the BCM and we transfer the
results to the RIGC in Section 4.4.2. Finally in Section 4.5, we study local properties
of the giant component of the RIGC , using the relation between the local weak
limit and the giant component established in Section 4.1.

4.1 The big picture

In this section, we explore the relation between �local� and �global� properties of
the RIGC and the (underlying) BCM on an intuitive level.

Such a relation has been observed for example in the con�guration model [162,
163] and the Erdfis-RØnyi random graph [75]. For both of these models, the lo-
cal weak limit is a branching process (BP) whose phase transition (for survival)
coincides with the phase transition (for the existence of the giant component) of
the respective model. A giant component exists exactly when the corresponding
BP is supercritical, furthermore, the proportion of vertices in the giant is exactly
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4 The largest component of the RIGC

the survival probability of the BP. The survival event for a BP is de�ned as the
event that the BP produces an in�nite tree; more generally, the survival event of an
individual in the BP is the event that this individual produces an in�nite subtree.

In Section 4.1.1, we show that an analogous statement is true for the under-
lying BCM and its local weak limit, the mixture of BPs from Section 3.2.1. In
Sections 4.1.2 and 4.1.3, we dig deeper into the reason behind this relation. In
Section 4.1.2, we show that in any locally weakly convergent graph sequence, the
proportion of the giant is always upper boundedby the survival probability of the
local weak limit. However, more is true in many models: whenever a vertex �locally
survives�, i.e., its neighborhood grows large enough, it joins the giant component
whp. We prove this asymptotic equivalence for the RIGC model in Section 4.1.3
subject to Theorem 2.4.1.

4.1.1 Branching process approximation

First, recall the local weak limit of the BCM as the mixture of branching processes
(BPs) from Section 3.2.1. In particular, in (3.15), we have shown that the neighbor-
hoods of l - and r -vertices are well approximated by BP l and BP r , respectively.
Also recall the random variables D l , D r from Assumption 2.2.1 (A) and (C1) and
the transform from (2.3). Further recall the following constants that describe the
largest component of the BCM and RIGC models from Section 2.4:

i) � l in Theorem 2.4.1, the smallest solution to the �xed point equation (2.45);

ii) � l = 1 � GD l (� l ) in Theorem 2.4.1, the limiting proportion of l -vertices
that are in the giant component of the RIGC as well as the BCM ;

iii) � r de�ned as � r = G eD l (� l ) in Theorem 2.4.2;

iv) � r = 1 � GD r (� r ) in Corollary 2.4.3, the limiting proportion of r -vertices
that are in the giant component of the BCM .

In the following, we show that both BP l and BP r are supercritical exactly when
the BCM is supercritical, that is, under the condition (2.47); in particular, these
models are supercritical at the same time. Further, we show that the survival
probabilities of these BPs are exactly � l and � r , respectively.

The special casep2 = q2 = 1 . In Theorems 2.4.1 and 2.4.2 and Corollary 2.4.3,
we pose the additional condition that p2 + q2 < 2, or equivalently, we exclude the
special case P(D l = 2) = P(D r = 2) = 1 . In Section 2.6, we have shown why this
case is irregular in the BCM ; we now discuss why it is also the case in its local weak
limit. If P(D l = 2) = P(D r = 2) = 1 , then P( eD l = 1) = P( eD r = 1) = 1 . That
is, in this special case, in both BP l and BP r exactly oneo�spring is guaranteed
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4.1 The big picture

in each generation (except for the root that has o�spring 2). This guarantees the
survivalof both BPs in an atypicalway: generally, E[ eD l ]E[ eD r ] = 1 means that
the BP is critical, which goes extinct almost surely. To avoid dealing with this
special case, we exclude it from now on.

The survival probability of BP l . First, let us consider the subprocess cBP l for-
med by the descendants in odd generations of the �rst child of the root, so that
o�spring in cBP l is de�ned as grandchildren in BP l . Consequently, cBP l is a
Galton-Watson process, with o�spring distribution

N r d=
eD r

X

i =1

eD l
( i ) ; (4.1)

where eD l
( i ) are iid copies of eD l and are independent from eD r . We know from

branching process literature (see e.g. [11]) that the extinction probability of the
Galton-Watson process cBP l is the smallest �xed point of the generating function
GN r (see (2.4)). By (4.1),

GN r (z) = G eD r

�
G eD l (z)

�
; (4.2)

which yields the �xed point equation (2.45) in Theorem 2.4.1, where the smallest
�xed point has been de�ned as � l . Further, the extinction probability � l satis�es
� l < 1 exactly when E[N r ] = E[ eD r ]E[ eD l ] > 1 (by Wald’s identity), i.e., when
(2.47) holds. Each child of the root in BP l survives exactly when its corresponding
cBP l survives. Since the root of BP l produces o�spring distributed as D l , the
survival probability of BP l is 1 � GD l (� l ), de�ned as � l in Theorem 2.4.1. By
properties of GD l , � l > 0 exactly when � l < 1, that is, under the supercriticality
condition (2.47).

Symmetry of lhs and rhs. We de�ne the analogous Galton-Watson process cBP r

(consisting of descendants in odd generations of the �rst child of the root in BP r )
with o�spring distribution N l d=

P eD l

i =1
eD r

( i ) , where eD r
( i ) are iid random variables

with distribution eD r and independent from eD l . This process is supercritical when
E[N l ] = E[ eD r ]E[ eD l ] > 1, where we again recognize the supercriticality condi-
tion (2.47). Thus the extinction probability of cBP r is the smallest solution to the
analogous �xed point equation

G eD l

�
G eD r (z)

�
= z: (4.3)

Recall � r = G eD l (� l ) from Theorem 2.4.2. Applying G eD l to both sides of (2.45)
implies that � r satis�es (4.3); further, when (2.47) holds, we have that � l < 1, which
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4 The largest component of the RIGC

implies � r < 1. Necessarily � r is the smallest solution to (4.3). Analogously with
� l , the survival probability of BP r equals 1 � GD r (� r ) = � r from Corollary 2.4.3,
and � r > 0 exactly when � r < 1, that is, under the supercriticality condition (2.47).

We also note that applying G eD r to both sides of (4.3) yields � l = G eD r (� r ), sho-
wing that the roles of lhs and rhs are indeed symmetric, however the corresponding
survival and extinction probabilities are generally not equal.

4.1.2 An upper bound on the size of the giant
component

In this section, we use the local weak limit to upper bound the size of the largest
component of the graph, as follows:

Lemma 4.1.1 (Upper bound on the size of the largest component with local weak
convergence). Let(Gn )n 2 N be a sequence of random graphs such thatjGn j P�! 1

and letUn j Gn � Unif[ V (Gn )]. Suppose that(Gn ; Un ) P-loc�! (G; o) for a random
rooted graph(G; o). Let CGn

1 denote the largest component ofGn and suppose that

j CGn
1 j=jGn j P�! c 2 [0; 1]. ThenP(jGj = 1 ) � c.

Note that if P(jGj = 1 ) = 0 , then c = 0 as well and necessarily c = P(jGj = 1 )
in this case. In particular, Theorem 2.3.9 and Lemma 4.1.1 imply that Theorem 2.4.2
holds in the case when the supercriticaly condition (2.47) fails. We also remark that
Lemma 4.1.1 is in essence the same as [112, Corollary 2.19] (see also [112, Theorem
2.20]).

Proof.The statement trivially holds if c = 0 , thus we assume c > 0 in the following.
Let us denote the component of a vertex v 2 Gn by CGn (v), and denote the set of
vertices in components of size at least K 2 Z+ by

Z Gn
� K :=

�
v 2 V (Gn ) : j CGn (v)j � K

	
: (4.4)

Introduce the functional ' K : G0 ! f 0; 1g, de�ned as

' K (Gn ; v) := 1fj CG n (v) j� K g; (4.5)

so that we can rewrite

Z Gn
� K :=

�
v 2 V (Gn ) : ' (Gn ; v) = 1

	
: (4.6)

Clearly, ' K is bounded; note that in fact, it is in the class � K from (3.4) with
r = K , hence it is also continuous. Then by (3.8), (4.5) and our assumption that
(Gn ; Un ) P-loc�! (G; o),
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4.1 The big picture

E
�
' K (Gn ; Un )

�
� Gn

�
=

1
jGn j

X

v2 V (Gn )

1fj CG n (v) j� K g =
jZ Gn

� K j

jGn j

P�! E
�
' (G; o)

�
= E

�
1fj CG (o) j� K g

�
= P(jGj � K ):

(4.7)

On the other hand, note that under the condition c > 0, j CGn
1 j=jGn j P�! c and

jGn j P�! 1 imply that j CGn
1 j P�! 1 . Thus, for any �xed K , whp j CGn

1 j � K .
On the event fj CGn

1 j � K g, vertices in CGn
1 are also in Z Gn

� K by (4.4), that is,
CGn

1 � Z Gn
� K . Consequently, whp

j CGn
1 j=jGn j � j Z Gn

� K j=jGn j: (4.8)

Combining (4.7�4.8) and the assumption that j CGn
1 j=jGn j P�! cyields that P(jGj �

K ) � c, and this is true for all K 2 Z+ . By continuity, P(jGj � K ) ! P(jGj = 1 )
as K ! 1 . Thus it follows that P(jGj = 1 ) � c, as required.

In general, the bound may not be sharp. For example, consider a graph on
N = 2n vertices that consists of two iid copies of the same con�guration model
on n vertices. Then the local weak limit is the same branching process as the local
weak limit of a single copy of the CM , with survival probability � . However the
largest component is the larger of the two giants in each copy of the CM , which is
of order �n + oP(n) = N�= 2 + oP(N ).

4.1.3 Asymptotic e�ivalence of local survival and
being in the giant component

In this section, we formally prove the relation between the survival of the local
weak limit and being in the giant component, subject to Theorem 2.4.1. While we
carry out the proof for the RIGC , by analogous arguments, the result is also true
for the underlying BCM .

Let us denote the symmetric di�erence of sets A and B by A 4 B := ( A n B ) [
(B n A). For v 2 V l , denote its connected component in the RIGC by C(v). For
K 2 Z+ , introduce the set of vertices in components of size at least K :

Z � K :=
�

v 2 V l : j C(v)j � K
	

: (4.9)

Lemma 4.1.2 (Relation of the local weak limit and the giant component). Consider
RIGC( d l ; Com ) under Assumption 2.2.1. Then, for any" > 0,

lim
K !1

lim
n !1

P
�
N � 1

n jZ � K 4 C1j > "
�

= 0 : (4.10)
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4 The largest component of the RIGC

This notion is closely related to convergence in probability: without the limit in
K , the statement would be equivalent to N � 1

n jZ � K 4 C1j P�! 0.

Proof of Lemma 4.1.2 subject to Theorem 2.4.1.We �rst prove the lemma assuming
the supercriticality condition (2.47). Note that, for any K �xed, for n large enough
C1 � Z � K whp, since j C1j � � l Nn + oP(Nn ) � K whp for n large enough, since
under the supercriticality condition (2.47), � l > 0. Thus jZ � K 4 C1j = jZ � K n
C1j = jZ � K j � j C1j whp, and (4.10) is equivalent to

lim
K !1

lim
n !1

P
�
N � 1

n jZ � K j � N � 1
n j C1j > "

�
= 0 : (4.11)

Subject to Theorem 2.4.1, independently of K , as n ! 1 ,

P
� �
�N � 1

n j C1j � � l
�
� > "= 2

�
! 0: (4.12)

Recall (CP; o), the local weak limit of the RIGC , from Section 3.3.1. By the triangle
inequality,

lim
K !1

lim
n !1

P
� �
�N � 1

n jZ � K j � � l j > "= 2
�

� lim
K !1

lim
n !1

P
� �

�N � 1
n jZ � K j � P

�
jCPj � K

� �
� > "= 4

�
(4.13a)

+ lim
K !1

lim
n !1

P
� �

�P
�
jCPj � K

�
� � l

�
� > "= 4

�
: (4.13b)

By Theorem 2.3.3, the inner limit in (4.13a) equals 0 for any �xed K , thus (4.13a)
equals 0. Note that the limit in n in (4.13b) can be omitted, and also note that the
survival probability is � l = P(jBP l j = 1 ). Since CP is the community-projection
of BP l , we know that P(jCPj = 1 ) = P(jBP l j = 1 ). As P(jCPj � K ) !
P(jCPj = 1 ) = � l , (4.13b) equals 0 as well. Combining this with (4.11-4.12)
through the triangle inequality yields (4.10), concluding the proof in the case when
the supercriticality condition (2.47) holds.

When (2.47) does not hold, we have that � l = 0 . In this case, the �rst argument
(that C1 � Z � K whp) does not hold, instead we can bound

N � 1
n jZ � K 4 C1j � N � 1

n jZ � K j + N � 1
n j C1j: (4.14)

The rest of the argument is analogous. Subject to Theorem 2.4.1, j C1j=Nn
P�!

� l = 0 , and
�
�N � 1

n jZ � K j � � l
�
� = N � 1

n jZ � K j can still be bounded by (4.13a�4.13b).
We conclude that (4.10) holds in this case as well. This concludes the proof of
Lemma 4.1.2 subject to Theorem 2.4.1.

In Section 4.1.1, we have given a heuristic interpretation for Theorem 2.4.1 (2.46),
Theorem 2.4.2 (2.48) and Corollary 2.4.3 (2.51) by showing that � l and � r are the
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4.2 The continuous-time exploration

survival probabilities of BP l and BP r , respectively. Lemma 4.1.2 formalizes this
relation and we are now able to give a heuristic interpretation to our further results
in Theorem 2.4.2 and Corollary 2.4.3. Applying the BP-approximation to a root with
a known degree yields (2.49) and (2.52), since we know the extinction probability
of a single child of the root. For (2.50), note that choosing an edge uniformly at
random (uar)32 in the random graphis equivalent to picking the comprising l -and
r -half-edges uar independently. Then the two endpoints can be viewed as a child
of the root in BP l and BP r , respectively, and at least one of them has to survive,
which has probability 1 � � l � r .

4.2 The continuous-time exploration

As we have seen in Section 4.1.2, local weak convergence by itself only provides an
upper boundfor the size of the largest component, which is not always sharp. Further,
we have proved the equivalence in Section 4.1.3 subject toour results on the largest
component. We remark that it is possible to extend the local weak approach and
prove that �the giant is almost local�, see e.g. [112, Theorem 2.20]. However, we have
chosen to take a di�erent approach, and prove the phase transition of the largest
component via a continuous-time exploration algorithm. This algorithm is based
on the exploration algorithm for the (unipartite) con�guration model introduced in
[126], but adapting it to the bipartite case is nontrivial and the analysis becomes
signi�cantly more complex. The naive adaptation of the original algorithm only
yields the average proportion in (2.53) and is not su�cient to obtain results for
the lhs and rhs partitions individually, which are necessary for transferring the
results to the RIGC . To provide intuition and a comparison, we sketch the original
algorithm as well as our adaptation below before a formal de�nition and analysis
of our adapted algorithm.

The original (unipartite) algorithm from [126]. The algorithm introduced by
Janson and Luczak in [126] simultaneously builds and explores the con�guration
model, one component at a time, and within a component, it reveals edges in a
randomized order. The exploration of a new component is initialized by picking an
unexplored vertex randomly (in a degree-biased fashion). During the exploration
of a component, edges are created as follows. We pick an arbitrary unmatched
half-edge incident to any vertex in this component and match it with an unpaired
half-edge chosen uar among all unmatched half-edges. (This either adds a new
vertex to the component or creates a cycle.) This uniform choice is realized by iid
Exp(1) alarm clocksassigned to each half-edge, and waiting for the �rst alarm

32We consider each copy of a multi-edge as a separate edge, and each of them has the same probability
to be chosen as any singular edge (an edge that is not part of a multi-edge).
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4 The largest component of the RIGC

to �go o��. As a result, this also introduces the time component of the algorithm.
The exploration of a component is completed exactly when there are no more
unmatched half-edges incident to vertices in it. This is repeated while there are
unexplored vertices, or equivalently,33 while there are unmatched half-edges.

Sketch of the bipartite algorithm. Our adapted algorithm follows analogous
steps to the above, however we assign di�erent roles to the lhs and rhs partitions,
which will allow us to obtain not only (2.53), but all the results in Theorem 2.4.2
and Corollary 2.4.3. In particular, we always initialize the exploration of a compo-
nent with an l -vertex, again chosen randomly (in a size-biased fashion) among all
unexplored l -vertices. Further, we replace creating one edge by a roundthat consists
of exploring all connections of an r -vertex, so that we reach second neighbors
of an l -vertex, which are again l -vertices, that share the r -vertex as a common
neighbor.34 Formally, we pick an arbitrary unmatched l -half-edge incident to a
vertex in the component, and match it to a uniform unmatched r -half-edge. Then
we match the remaining r -half-edges incident to this r -vertex one by one to l -
half-edges chosen uar among all unmatched l -half-edges. The choices of uniform
l -half-edges are again realized by iid Exp(1) alarm clocks, however r -half-edges
are not assigned alarm clocks, and the choice of uniform r -half-edges are instanta-
neous. After each round, by construction, all unmatched half-edges incident to the
component are again l -half-edges, and when there are none, the exploration of the
component is complete. We repeat this while there are unexplored l -vertices.35

New challenges in the analysis of the bipartite algorithm. The part of the
analysis that undergoes the most signi�cant changes is the evolution of the number
of unmatched half-edges. In the unipartite case, each �round� corresponds to
exploring a single edge, where one half-edge is picked arbitrarily and for the other,
we wait for its alarm clock to ring. This evolution is closely related to a pure death
process where each individual dies independently with rate 1, i.e., jumps from state
i happen with rate i , which is well understood.

In the bipartite case however, a random number of edges is created in each round,
depending on the degree of the random r -vertex explored in that round. The �rst
edge is created instantaneously when we explore the r -vertex, however to pair its
further r -half-edges, we wait for alarm clocks of l -half-edges to ring. This leads to
a death process where regular jumps happen with rate i when the process is in state
i , however the �rst jump in each round happens instantaneously. The evolution of
this process is rather complex, as the distribution of the number of edges explored
33We assume that there are no isolated vertices.
34If we consider the bipartite graph as a representation of a hypergraph, with l -vertices being the

vertices and r -vertices being the hyperedges (sets), then this corresponds to exploring a hyperedge.
35This happens exactly when there are unexplored r -vertices, by our assumption that there are no
isolated vertices.
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per round continuously changes throughout the process. This is because we choose
the r -vertex to explore in each round in a size-biased fashion and then remove it
from the available pool, hence the degree distribution of the remaining r -vertices
changes continuously.

We are able to analyze the death process with occasional instantaneous jumps
through its hitting times, that we compare to a �standard� death process where only
regular jumps happen. Then we can describe the e�ect of the instantaneous jumps
as saved time. As such, we can study the time saved in an elegant way by giving it a
new probabilistic interpretation in terms of the size-biased reordering of r -vertices.

4.2.1 The exploration algorithm

In this section, we introduce the required terminology and notation, as well as
formalize the bipartite algorithm in pseudo-code.

We call two (or more) half-edges siblings(a family of half-edges) if they are
incident to the same vertex. To keep notation simple, we do not always explicitly
indicate the dependence on n, however it is always meant. Instead, we add the
superscripts l or r to emphasize whether a quantity is related to the lhs or rhs.
We de�ne the algorithm focusing on the lhs partition to obtain the statements in
Theorem 2.4.2. We could analogously de�ne and analyze the algorithm focusing on
the rhs partition and obtain the statements in Corollary 2.4.3 instead. Note that the
number of paired half-edges in the two partitions must always be equal. All the
quantities below are de�ned to be right-continuous, i.e., if the algorithm updates a
quantity at time t , the value at time t is the updated value. We denote the left limit
of a function f at t by f (t � ) := lim " & 0 f (t � " ).

At any given time, V l is partitioned into the time-dependent sets of sleepingand
awakevertices. Initially, all l -vertices are sleeping, then they are later moved one
by one to the awake set and never return to sleeping. Intuitively, an awake vertex is
at least partially explored. We denote the number of sleeping l -vertices of degree k
at time t by V l

k (t). Similarly, V r is partitioned into the sleeping set and awake set,
and each r -vertex starts in the sleeping set and later progresses into the awake set.

The set of l -half-edges is, at any given time, partitioned as follows: the sleeping
set of size Sl (t), the active set of size A l (t) and the paired (dead) set. Intuitively,
active half-edges are those half-edges that we already know to belong to the compo-
nent that we are currently exploring and are still unpaired. We can thus use them
to progress the exploration. Each l -half-edge progresses from sleeping to active
to paired, or directly from sleeping to paired. Sometimes we say a half-edge �dies�
to mean that we pair it or that we must pair it immediately. We thus refer to the
union of the sleeping and active sets as the living (unmatched) set, which has size
L l (t) = A l (t) + Sl (t). Further, we assign iid Exp(1) random variables to each
l -half-edge, that we call the alarm clockof the l -half-edge. Once the exploration
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4 The largest component of the RIGC

time reaches the value of this variable, the alarm goes o�, and if the l -half-edge
is still unpaired, it dies and must be paired immediately. When an l -half-edge
dies, if the incident l -vertex is sleeping, then we set it awake, and set all sibling
half-edges active. (If the incident l -vertex is already awake, then we do not change
the status of the vertex or the sibling half-edges.) When we set an l -vertex awake
for a di�erent reason, we set each incident half-edge active. Hence

Sl (t) =
1X

k=1

kV l
k (t): (4.15)

The r -half-edges are partitioned into the sleeping set, the waiting-to-be-pairedset
of size W r (t), and the paired (dead) set. Half-edges may progress from sleeping
to paired directly, or through the waiting-to-be-paired status, but never move
backwards. While the waiting-to-be-paired set on the rhs plays an analogous role
to the active half-edges on the lhs, we use a di�erent notion to emphasize their
di�erent roles in the algorithm: while the set of active l -half-edges is allowed to
grow large, the waiting-to-be-paired set always must be exhausted immediately.
When an r -half-edge is paired, the incident r -vertex is set to awake, and all sibling
half-edges are set to be waiting-to-be-paired. (By the design of the algorithm, this
is the only way to set an r -vertex awake.)

With the setup complete, the algorithm is formalized as pseudo-code in Algo-
rithm 4.2.1. Before the formal analysis in Section 4.2.2, we now make some general
observations about the algorithm.

In the sketch algorithm above, a round refers to the execution of step2 and
the internal while loop of step3 s (see Algorithm 4.2.1), which corresponds to
discovering an r -vertex and matching all its remaining half-edges. The unit of
the algorithm we often focus on is one iterationof the outer while loop, i.e., the
conditional execution of step1 and the execution of one round. By construction,
the lists S1 and S2 contain the time stamps of all executions of step1 and step2 ,
respectively. Noting that in each iteration, step2 is executed once while step1 is
executed once only if the condition is satis�ed and is otherwise not executed, S1

must be a sublist of S2. We also remark that both S1 and S2 may contain duplicates
of the same time stamp, as the time variable is only increased in step3 , which is
not executed in those iterations in which the condition of the internal while loop
fails. This occurs when the r -vertex found has degree one, so that the chosen
r -half-edge does not have any sibling half-edges.

Remark 4.2.2 (Original algorithm as special case). In Section 2.6, we have shown that
when eachr -vertex has degree2, the bipartite con�guration modelBCM n (d l ; d r ) is
equivalent toCMn (d l ). In this case,step3 is executed exactly once in each iteration
and Algorithm 4.2.1 is equivalent to the exploration for theCM in [126].
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Algorithm 4.2.1 (The continuous-time exploration of the BCM ).
Initially, t = 0 , all vertices and half-edges are sleeping, and all half-edges are
unpaired. Let S1 and S2 be initially empty lists.
while there are unpaired l -half-edges (L l (t) > 0) do

if there are no active l -half-edges (A l (t) = 0 ) then
step1: Starting the exploration of a new component.

pick a sleepingl -half-edge x uar.
set the incident l -vertex v as awake. (V l

l -deg( v) (t) :=

V l
l -deg( v) (t� ) � 1)

set x and all sibling half-edges as active. (A l (t) := l -deg(v))
append t to the list S1. (t remains unchanged.)

end step1
end if

step2: Discovering a newr -vertex.
pick an activel -half-edge x arbitrarily and a sleepingr -half-edge y
uar.
match x and y to form an edge and set both as paired. (A l (t) :=
A l (t� ) � 1)
set the r -vertex a incident to y as awake.
set sibling half-edges of y as waiting-to-be-paired. (W r (t) :=
r -deg(a) � 1)
append t to the list S2. (t remains unchanged.)

end step2
while there are waiting-to-be-paired r -half-edges (W r (t) > 0) do

step3: Exploring further connections of ther -vertex.
pick a waiting-to-be-pairedr -half-edge y arbitrarily.
wait dt time until the �rst alarm clock of an unpairedl -half-edge
x rings.
if x is sleeping then

set the l -vertex v incident to x as awake. (V l
l -deg( v) (t + d t) :=

V l
l -deg( v) (t) � 1)

set sibling half-edges of x as active. (A l (t + d t) := A l (t) +
l -deg(v) � 1)

end if
match x and y to form an edge and set both as paired. (L l (t +
dt) := L l (t) � 1, W r (t + d t) := W r (t) � 1)
increase time t := t + d t .

end step3
end while

end while
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4.2.2 Properties of the exploration algorithm

In this section, we sketch the analysis of Algorithm 4.2.1, recall the results on the
unipartite algorithm from [126] that can be lifted to the bipartite case, and state
our novel results. These serve as ingredients of the proof of Theorem 2.4.2 that we
complete in Section 4.4.1.

Recall that we begin the exploration of a new component exactly when step1
is executed, for which A l (t) = 0 is a necessarycondition. Thus our aim is to
understand the behavior of t 7! A l (t) during the course of the exploration, in
particular, to determine the zeros of this function. Our analysis, as in [126], is based
on the simple observation that A l (t) = L l (t) � Sl (t). We move on to studying
the quantities Sl (t) and L l (t) separately.

The dynamics of Sl (t), similarly to the corresponding quantity in the algorithm
in [126], are the following. Note that step2 does not a�ect Sl (t). Regularly, l -half-
edges are removed from the sleeping set when the alarm clock of the half-edge itself
or one of its siblings rings, due to step3 . However, some families of l -half-edges
are removed from the sleeping set due to step1 , when we start the exploration of
a new component by picking a uniform l -half-edge and set it active together with
its siblings, and set the incident l -vertex awake. Let bV l

k (t) denote the number of
l -vertices of degree k such that the alarm clocks of all l -half-edges show a time
greater than t , and de�ne

bSl (t) :=
1X

k=1

k bV l
k (t): (4.16)

Comparing with (4.15), we intuitively think of bSl (t) as the number of sleeping l -
half-edges ignoring the contribution of step1 , and it serves as an approximation for
Sl (t). Recall (2.3), (2.4) and D l from Assumption 2.2.1 (A). We recall the following
result that holds unchanged for the bipartite case:

Lemma 4.2.3 (Sleeping vertices and half-edges, [126, Lemma 5.2.]). De�ne

h1(z) := E[D l ]zG eD l (z) (4.17)

for z 2 [0; 1]. For anyt0 �xed, asn ! 1 ,

8 k � 1; sup
t � t 0

�
�
�

1
Nn

bV l
k (t) � pk e� kt

�
�
�

P�! 0; (4.18)

sup
t � t 0

�
�
�

1
Nn

1X

k=1

bV l
k (t) � GD l (e� t )

�
�
�

P�! 0; (4.19)

sup
t � t 0

�
�
�

1
Nn

bSl (t) � h1(e� t )
�
�
�

P�! 0: (4.20)
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We introduce
bA l (t) := L l (t) � bSl (t); (4.21)

that serves as our approximation for A l (t). Recall dl
max from Remark 2.2.2 (iii).

The next lemma, recalled from [126], bounds the error that we make with this
approximation:

Lemma 4.2.4 (The e�ect of step1 , [126, Lemma 5.3.]). For anyt � 0,

0 � bSl (t) � Sl (t) < sup
s� t

� bSl (s) � L l (s)
�

+ dl
max : (4.22)

The above bound can be rewritten in the more convenient form

0 � A l (t) � bA l (t) = bSl (t) � Sl (t) < � inf
s� t

bA l (t) + dl
max : (4.23)

Recall the sequence S1 from Algorithm 4.2.1 that contains the time stamps of all
executions of step1 , and that it may contain the same time stamp several times.
Since this does not occur in the original algorithm in [126], we reprove the lemma
to show that this does not cause an issue.

Proof.First, we study what happens at a time t 2 S1 � S2. As explained after
Algorithm 4.2.1, t may appear several times in the sequences S1 � S2, as �nding
a degree 1 r -vertex uses up its single half-edge in step2 , which results in not
executing step3 in that iteration and not increasing the time variable. However,
the number of active l -half-edges changes with each execution of step1 and
step2 , thus we overwrite (rede�ne) A l (t) each time until an r -vertex with degree
at least 2 is found in step2 . This step2 then necessarily corresponds to the last
instance of t in S2 and sets the �nal value of A l (t), as step3 must be executed next
and the time variable will increase. Consider the last execution of step1 at t , which
is either in the same or an earlier iteration than the last step2 , and denote the l -
vertex woken up by this step1 by v. As step2 is executed at least once afterwards,
we have A l (t) � l -deg(v) � 1 < d l

max . Recall that L l (t) = A l (t) + Sl (t), hence

bSl (t) � Sl (t) = bSl (t) � L l (t) + A l (t) < bSl (t) � L l (t) + dl
max : (4.24)

By the de�nition of bSl (t), bSl (t) � Sl (t) � 0 and the di�erence grows only due
to step1 , while it might decrease due to step2 or step3 .36 Hence for a time
t0 =2 S1, bSl (t0) � Sl (t0) � bSl (s) � Sl (s), where s := max f t 2 S1 : t < t 0g. Then,
using (4.24) and that the supremum is in fact a �nite maximum over a subsequence
of S1,

bSl (t0) � Sl (t0) � sup
s� t 0

� bSl (s) � Sl (s)
�

< sup
s� t 0

� bSl (s) � L l (s)
�

+ dl
max ; (4.25)

36E.g. when a clock of an l -half-edge rings that was waken up in step1 previously.
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4 The largest component of the RIGC

which concludes the proof.

Next, we state our novel result on the process of living (unmatched) half-edges
L l (t). As remarked above, the dynamics of this process in the bipartite case are
signi�cantly di�erent from the unipartite case in [126]. The analysis of the new pro-
cess, carried out in Section 4.3 below, is our major novel contribution to generalizing
the algorithm to the bipartite case.

We introduce some notation necessary to state our result. For an arbitrary
invertible function f , let f ( � 1) denote the inverse function of f , i.e., f ( � 1) (f (z)) = z
for any z in the domain of f and f (f ( � 1) (z)) = z for any z in the domain of f ( � 1)

(i.e., the range of f ). Recall (2.3), (2.4), D l and D r from Assumption 2.2.1 (A) and
(C1). Since the generating function GX of a random variable X taking values from
N (such that P(X = 0) < 1) is continuous and strictly increasing, G( � 1)

X exists on
the interval

�
P(X = 0) ; 1

�
.

Proposition 4.2.5 (Living half-edges). De�ne the function

h2(z) := E[D l ]zG( � 1)

eD r
(z) (4.26)

on [eq0; 1], whereeq0 := P
� eD r = 0

�
= q1=E[D r ]. The process of living half-edges

L l (t) satis�es, for any0 < t 0 < � log eq0,

sup
t � t 0

�
�
�

1
Nn

L l (t) � h2(e� t )
�
�
�

P�! 0: (4.27)

We prove Proposition 4.2.5 in Section 4.3. We remark that for the RIGC and
its underlying BCM , postulating q1 = 0 implies eq0 = 0 and � log eq0 = 1 . It is
hard to give an intuitive interpretation to the appearance of an inversegenerating
function in (4.26-4.27). The analysis of the process L l (t) in Section 4.3 shows that
it arises due to step2 happening instantaneously. The proof of Theorem 2.4.2 in
Section 4.4.1 reveals that this inverse is necessary for obtaining the �xed point
equation (2.45) for the compositionof the generating functions, which arises from
the bipartite nature of the graph as we have seen in Section 4.1.1.

4.3 The new process of living (unmatched)
half-edges

In this section, we carry out the analysis of the process of living half-edges in
Algorithm 4.2.1. We give the outline of the analysis and prove Proposition 4.2.5 in
Section 4.3.1, then provide the details in Sections 4.3.2 and 4.3.3.
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4.3 The new process of living (unmatched) half-edges

4.3.1 Asymptotics for the living half-edges

As mentioned in the sketch of the algorithm, the process of living l -half-edges
behaves like a death process with occasional instantaneous jumps. With the notation
and the exact algorithm in hand, we now also make the de�nition of this death
process precise. First, note that step1 does not a�ect L l (t), thus the unit of the
algorithm we focus on here are rounds. In each execution of step2 , as well as in
each execution of step3 , one l -half-edge is paired, thus both steps correspond to
a jump of size � 1. As step2 does not increase the time variable, it corresponds to
an instantaneous jump (a jump with in�nite rate). In step3 , we wait for the �rst
Exp(1) alarm clock (see Section 4.2.1) of an unmatchedl -half-edge to ring, which
corresponds to each living half-edge dying at rate 1. Thus in the death process, the
�regular� jumps corresponding to iterations of step3 happen with rate i when the
process is in state i .

We recall some observations that we have made after the sketch of the algorithm.
In each round, we explore an r -vertex, and its degree determines the number of
edges formed in that round, i.e., the number of l -half-edges paired in that round.
Step2 and the corresponding instantaneous jump happens once at the beginning
of each round, and the remaining jumps are regular jumps corresponding to step3 .
Further, we choose the r -vertices to explore according to a size-biased reordering,
thus the number of edges explored in each round has a changing distribution
throughout the process. Such a process is di�cult to analyze directly, hence we
take an alternative approach, using hitting times. Note that the initial value of the
death process L l (0) = L l ;( n ) (0) = hn is deterministic. For c 2 [0; 1], we de�ne
the hitting time process

� (c) := min f t : L l (t) � chn g: (4.28)

The following claim ensures that studying the hitting times is essentially equivalent
to studying the death process:

Lemma 4.3.1(Concentration of a death process and its hitting times). For eachn 2
N, let

�
X ( n ) (t)

�
t � 0 be a pure death process with deterministic initial conditionan :=

X ( n ) (0) ! 1 asn ! 1 . Forc 2 (0; 1], letT ( n ) (c) := min f t : a� 1
n X ( n ) (t) � cg

and letf : [0; 1 ) ! (0; 1] be a strictly decreasing function such thatf (0) = 1 and
bothf and its inversef ( � 1) are continuous. Then the following two statements are
equivalent:

i) for anyt0 < 1 , sup
t � t 0

�
�a� 1

n X ( n ) (t) � f (t)
�
� P�! 0,

ii) for anyc0 2 (0; 1), sup
c� c0

�
�T ( n ) (c) � f ( � 1) (c)

�
� P�! 0.
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4 The largest component of the RIGC

We prove Lemma 4.3.1 in Section 4.3.3. Lemma 4.3.1 is straightforwardly tailored
to be applicable to L l (t). It is stated in slightly more generality to allow application
to similar processes that we de�ne shortly and that are necessary for the analysis.

To understand L l (t), we compare it to a �standard� process L l
stn (t), de�ned as

the pure death process where each individual dies independently at rate 1. That is,
in the process L l

stn (t) each jump happens at rate i from state L l
stn (t) = i , and we set

the same initial condition L l
stn (0) := hn . The processes L l (t) and L l

stn (t) can be
coupled in an intuitive way by using the same realization of jumps, however L l

stn (t)
�forgets� about the occasional in�nite rates. In other words, in L l

stn (t), all jumps
happen at rate i from position i , even when an instantaneous jump happens in
L l (t). We formalize this coupling later in (4.46�4.47) and the paragraph in between.
Due to its simpler dynamics, the behavior of L l

stn (t) is well understood, and hence
so is the behavior of its hitting times

� stn (c) := min f t : L l
stn (t) � chn g: (4.29)

However, in the process L l (t), the instantaneous jumps due to step2 save us time,
which gives rise to a crucial correction term. We de�ne the saved time as

� skip (c) := � stn (c) � � (c) > 0; (4.30)

with � (c) and � stn (c) de�ned in (4.28) and (4.29). Recall (2.3), (2.4), D l and D r from
Assumption 2.2.1 (A) and (C1), and that f ( � 1) denotes the inverse of a function f .
We summarize the asymptotics of the above hitting time processes as follows:

Lemma 4.3.2 (Concentration of � (c)). For anyc0 > 0, asn ! 1 ,

sup
c� c0

�
� � stn (c) + log( c)

�
� P�! 0; (4.31)

sup
c� c0

�
� � skip (c) + log

�
G( � 1)

D r ;? (c)
� �
� P�! 0: (4.32)

Consequently, by(4.30),

sup
c� c0

�
� � (c) + log( c) � log

�
G( � 1)

D r ;? (c)
� �
� P�! 0: (4.33)

We prove Lemma 4.3.2 in Section 4.3.2. We point out the appearance of the inverse
generating function in the asymptotics of the saved time � skip (c), which is related to
the size-biased reordering. However also note that the inverse generating function
is of the distribution D r ;? = eD r + 1 . We are now ready to prove Proposition 4.2.5
subject to Lemmas 4.3.1 and 4.3.2:
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4.3 The new process of living (unmatched) half-edges

Proof of Proposition 4.2.5 subject to Lemmas 4.3.1 and 4.3.2.In (4.33), we have esta-
blished that � (c) concentrates around

f ( � 1) (c) = � log c + log
�
G( � 1)

D r ;? (c)
�
: (4.34)

Thus, by Lemma 4.3.1, L l (t)=hn concentrates around the inverse of this function,
f . We claim that f can be expressed as

c = f (t) = e � t G( � 1)

eD r
(e� t ): (4.35)

We show that the inverse of the above function f is indeed f ( � 1) by rearranging
for t in a clever way. Let s := G( � 1)

eD r
(e� t ), then e� t = G eD r (s), and c = f (t) =

G eD r (s) � s = GD r ;? (s), by (2.3) and (2.4). Hence

e� t = G eD r (s) =
GD r ;? (s)

s
=

c
G( � 1)

D r ;? (c)
: (4.36)

Applying the function � log(�) on both sides of (4.36) and noting that f ( � 1) (c) = t
yields (4.34), as required. Combining the above, we conclude that with f from
(4.35), supt � t 0

�
�L l (t)=hn � f (t)

�
� P�! 0. By (4.26), h2(e� t ) = E[D l ]f (t), and

hn =Nn = E[D l
n ] ! E[D l ] by Remark 2.2.2 (i) and Assumption 2.2.1 (B), thus

(4.27) follows. This concludes the proof of Proposition 4.2.5 subject to Lemmas 4.3.1
and 4.3.2.

4.3.2 Asymptotics of the hitting times

This section is dedicated to proving Lemma 4.3.2. We show that (4.33) follows from
(4.31�4.32), then prove (4.31) and (4.32).

Proof of(4.33) subject to(4.31) and (4.32). Combining (4.31�4.32) via the triangle
inequality yields that, for any " > 0 �xed as n ! 1 ,

P
�

sup
c� c0

�
� � (c) + log( c) � log

�
G( � 1)

D r ;? (c)
� �
� > "

�

� P
�

sup
c� c0

�
� � stn (c) + log( c)

�
� +

�
� � � skip (c) � log

�
G( � 1)

D r ;? (c)
� �
� > "

�

� P
�

sup
c� c0

�
� � stn (c) + log( c)

�
� > "= 2

�

+ P
�

sup
c� c0

�
� � skip (c) + log

�
G( � 1)

D r ;? (c)
� �
� > "= 2

�
! 0:

(4.37)

Hence by de�nition, the convergence in probability in (4.33) holds.
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Proof of(4.31). Recall the �standard� pure death process L l
stn (t) and its hitting

times (4.31) from Section 4.3.1. Also recall that the process jumps from state i to
state i � 1 at rate i . Using that Exp(i ) d= Exp(1)

�
i ,

� stn (c) = � stn

� bchn c
hn

�
d=

hnX

i = bchn c+1

E ( n )

i

i
; (4.38)

where for any �xed n, (E ( n )

i ) i 2 Z+ are independent Exp(1) random variables. For
convenience, we de�ne the index set

I c = I ( n )
c := fbchn c + 1 � i � hn g: (4.39)

Then, for any c �xed, using (4.38) and recognizing the approximating sums of a
Riemann-integral,

E[� stn (c)] =
X

i 2 I c

1
i

= log( hn ) � log(chn ) + O
�
N � 1

n

�

= � log(c) + O
�
N � 1

n

�
;

(4.40)

and for c > 0, as n ! 1 ,

Var
�
� stn (c)

�
=

X

i 2 I c

1
i 2 <

1X

i = bchn c+1

1
i 2 ! 0; (4.41)

since hn ! 1 and
P

i 2 N 1=i2 < 1 . For s � 0, de�ne the process

Y(s) = Y ( n ) (s) := � stn (e� s) � E
�
� stn (e� s)

�
=

X

i 2 I ( n )
exp f� s g

E ( n )

i � 1
i

: (4.42)

Note that Y is a zero-mean martingale and thus Y 2(s) is a non-negative submar-
tingale. We apply Doob’s martingale inequality and (4.41) to obtain that, for any
�xed " > 0 and c0 > 0, with s0 := � log(c0) < 1 ,

P
�

supc� c0

�
� stn (c) � E[� stn (c)]

� 2
� "

�
= P

�
sups� s0

Y 2(s) � "
�

�
E

�
Y 2(s0)

�

"
=

Var
�
Y (s0)

�

"
=

Var
�
� stn (c0)

�

"
! 0

(4.43)

as n ! 1 . It follows that

sup
c� c0

�
� � stn (c) � E[� stn (c)]

�
� P�! 0: (4.44)

114



4.3 The new process of living (unmatched) half-edges

Consequently, by (4.40), we can bound

sup
c� c0

�
� � stn (c) + log( c)

�
�

� sup
c� c0

�
� � stn (c) � E[� stn (c)]

�
� + oP(1) + O

�
N � 1

n

� P�! 0:
(4.45)

This concludes the proof of (4.31).

We remark that [126, Lemma 6.1] is applicable to L l
stn (t), which provides a

shorter alternative proof for (4.31). However, we have chosen to present the proof
above to shed light on the decomposition (4.38), preparing for the proof of (4.32),
which is much more interesting and insightful.

Proof of(4.32). Recall (4.39), and the de�nition of the process L l
stn (t) and its hitting

times � stn (c) from Section 4.3.1. The decomposition in (4.38) is equivalent to

� stn (c) d=
X

i 2 I c

E ( n )

i

i
: (4.46)

Next, we derive a similar decomposition for � (c). Let J c � I c denote the set of such
indices i 2 I c that the jump from position i to position i � 1 in the process L l (t)
happened instantaneously, i.e., due to step2 . (We provide a formal de�nition of
the set J c later.) Clearly, since both processes are de�ned using the same realization
of jumps, the di�erence in � (c) and � stn (c) only arises due to the di�erent jump
rates from positions i 2 J c. While rate i in L l

stn (t) results in the term E ( n )

i =i, the
instantaneous jump in L l (t) results in a 0 term. That is, we can write

� (c) =
X

i 2 I c nJ c

E ( n )

i

i
+

X

i 2 J c

0 =
X

i 2 I c nJ c

E ( n )

i

i
; (4.47)

and necessarily the saved time is

� skip (c) = � stn (c) � � (c) =
X

i 2 J c

E ( n )

i

i
: (4.48)

We analyze � skip (c) through the index set J c. Recall that step2 is executed once
at the beginning of each round, i.e., the discovery and exploration of an r -vertex
(see the paragraph below Algorithm 4.2.1). The degree of the r -vertex explored
determines the number of edges paired in each round, which corresponds to the
total number of jumps. We execute step2 for the (j + 1) st time after j rounds,
when all half-edges of the �rst j r -vertices have been paired. To determine the
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4 The largest component of the RIGC

position where these jumps happen, we count the total number of jumps in j rounds,
as follows. Recall that we pick an unmatched r -half-edge uar, hence we choose
an available r -vertex in a size-biased fashion, and the sequence of exploring the
r -vertices is a size-biased reordering. Analogously with (3.94), we denote this by
(dr

� ( j ) ) j 2 [M n ] , characterized by the random permutation (� (j )) j 2 [M n ] . We de�ne
this permutation recursively. Denote the set of indices chosen in the �rst j steps by
[� ]j1 := f � (1); : : : ; � (j )g, with the convention that [� ]01 is the empty set. Then the
conditional distribution of the (j + 1) st index is given by

P
�
� (j + 1) = k

�
� [� ]j1

�
=

8
><

>:

0 for k 2 [� ]j1;
dr

kP
i 2 [M n ]n[� ]j

1
dr

i
for k 2 [M n ] n [� ]j1: (4.49)

Denote the partial sums of the �rst j r -degrees in this reordering by

� j :=
jX

i =1

dr
� ( i ) ; (4.50)

with the convention that the empty sum � 0 equals 0. Then hn � � j gives the state
of L l (t) after the j th round, i.e., the position where an instantaneous jump happens
for the (j + 1) st time. We can now give an alternative, formal de�nition of the index
set J c as

J c = J ( n )
c =

�
hn � � j ; j 2 [M n ]

	
\ I ( n )

c : (4.51)

For simplicity, de�ne

j max (c) := max
�

j : hn � � j > c hn
	

; (4.52)

so that we can rewrite (4.48) as

� skip (c) =
j max (c)X

j =0

E ( m )

j

hn � � j
; (4.53)

where the set (E ( m )

j ) j 2 N is a subset of (E ( n )

i ) i 2 Z+ , hence it consists of iid Exp(1)
random variables. We now give a convenient alternative probabilistic interpretation
to the decomposition obtained in (4.53), allowing us to relate it to a process that we
already understand.

We de�ne a process Z r (s) = Z r ;( n ) (s) in continuous time s � 0 on the r -half-
edges, completely independent of the exploration algorithm. The process Z r (s)
follows dynamics analogous to bSl (t),37 formally de�ned as follows. Initially, all
37We avoid the intuitive notion bS r (s) to emphasize that this process is not related to the exploration
algorithm. We use a separate time variable s rather than t for the same reason.
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r -vertices and r -half-edges are sleeping, and we assign independent Exp(1) alarm
clocks to each r -half-edge. An r -vertex and all its half-edges are woken up (and
never return to sleeping) when the alarm clock on any of the half-edges goes o�.
The process Z r (s) keeps track of the number of sleeping r -half-edges. We claim
that the hitting times of this process correspond to � skip (c), formally,

�
min

�
s : Z r (s) � chn

	�
1� c> 0

d=
�
� skip (c)

�
1� c> 0; (4.54)

where the distributional equality is meant as stochastic processes. We prove (4.54)
by induction on the number of awake r -vertices. Clearly, Z r (0) = hn = hn � � 0.
Assume the number of sleeping r -half-edges to be Z r (s) = hn � � j . Since the
alarm clocks of awake r -half-edges can be ignored, the time we have to wait for
the next r -half-edge y to wake up is equal in distribution to E ( m )

j =(hn � � j ). The
r -half-edge y is chosen uar among the sleeping ones, hence the incident r -vertex
a is chosen in a size-biased fashion. That is, r -deg(a) d= dr

� ( j +1) , with the random
permutation � in (4.49). Also note that all r -half-edges incident to a are woken up
at once, thus the jump in Z r (s) equals � r -deg(a). Hence

min
�

s : Z r (s) = hn � � j +1
	

� min
�

s : Z r (s) = hn � � j
	

=
E 0

j

hn � � j
; (4.55)

where E 0
j is an Exp(1) random variable, independent of everything else. Then by

induction,

min
�

s : Z r (s) = hn � � k+1
	

=
kX

j =0

E 0
j

�
(hn � � j ): (4.56)

To determine the hitting time minf s : Z r (s) � chn g, we want the smallest k such
that hn � � k+1 � chn . Since Z r (s) is non-increasing, this is equivalent to �nding
the largest k such that hn � � k > c hn , that we recognize as j max (c) in (4.52). Thus

minf s : Z r (s) � chn g = min
�

s : Z r (s) = hn � � j max (c)+1
	

=
j max (c)X

j =0

E 0
j

hn � � j
;

(4.57)

where we recognize a decomposition analogous to that of � skip (c) from (4.53), with
(E 0

j ) j 2 N rather than (E ( m )

j ) j 2 N. However, as both sets contain iid Exp(1) random
variables, the two processes evolve in the exact same way and the distributional
identity (4.54) follows.

Now all that is left is to determine the asymptotics of Z r (s) and apply Lemma 4.3.1
to translate it into the asymptotics of � skip (c). As Z r (s) is de�ned analogously
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to bSl (t), following the same dynamics on the rhs rather than the lhs, we can use
the results in Lemma 4.2.3 for Z r (s), with the exchange of lhs and rhs quantities.
Replacing the l -degree distribution by the r -degree distribution in (4.17) and (4.20)
yields that for any s0 �xed, as M n ! 1 ,

sup
s� s0

�
�M � 1

n Z r (s) � E[D r ]e� sG eD r (e� s)
�
� P�! 0: (4.58)

Since z�G eD r (z) = GD r ;? (z) by (2.3) and (2.4), E[D r
n ] ! E[D r ] by Assumption 2.2.1

(D) and hn = M n E[D r
n ] by (2.1), (4.58) implies that, for any s0 �xed,

sup
s� s0

�
�h � 1

n Z r (s) � GD r ;? (e� s)
�
� P�! 0: (4.59)

For c = f (s) = GD r ;? (e� s), its inverse is s = f ( � 1) (c) = � log
�
G( � 1)

D r ;? (c)
�
. Then

by Lemma 4.3.1 and (4.54), for any c0 �xed,

sup
c� c0

�
� � skip (c) + log

�
G( � 1)

D r ;? (c)
� �
� P�! 0: (4.60)

This concludes the proof of (4.32) as well as the proof of Lemma 4.3.2.

4.3.3 Concentration of death processes and their
hitting times

In this section, we prove Lemma 4.3.1. In fact, we only show that Lemma 4.3.1 (i)
implies Lemma 4.3.1 (ii); the reverse implication can be proved analogously.

Proof: Lemma 4.3.1 (i) implies Lemma 4.3.1 (ii).For � > 0; T < 1 and " > 0; c0 >
0, we de�ne the events

E( n )

1 (�; T ) :=
�

supt � T

�
�a� 1

n X ( n ) (t) � f (t)
�
� < �

	
; (4.61)

E( n )

2 ("; c0) :=
�

supc� c0

�
�T ( n ) (c) � f ( � 1) (c)

�
� < "

	
: (4.62)

Lemma 4.3.1 (i) implies that for any � > 0 and T < 1 �xed,

P
�
E( n )

1 (�; T )
�

! 1: (4.63)

Note that Lemma 4.3.1 (ii) is equivalent to E( n )

2 ("; c0) happening whp for any " >
0; c0 > 0. We prove this by �nding a convenient correspondence of the parameters
such that the known to be high probability event E( n )

1 (�; T ) implies E( n )

2 ("; c0). We
�x " > 0 and c0 > 0 and denote the random function x ( n ) (t) := a� 1

n X ( n ) (t). For
some � and T yet to be chosen, on the event E1(�; T ), for each t � T ,

f (t) � � < x ( n ) (t) < f (t) + �: (4.64)
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4.4 Proof of phase transition

Let t1 := f ( � 1) (c + � ) and t2 := f ( � 1) (c � � ). We choose T := f ( � 1) (c0 � � ), so
that t1; t2 � T for any choice of c � c0. Then, on the event E1(�; T ),

x ( n ) (t1) > f (t1) � � = c; (4.65a)
x ( n ) (t2) < f (t2) + � = c: (4.65b)

Recall that T ( n ) (c) = inf f t : x ( n ) (t) � cg. As x ( n ) (t) is non-increasing, necessarily

f ( � 1) (c + � ) = t1 � T ( n ) (c) � t2 = f ( � 1) (c � � ): (4.66)

Since f ( � 1) is continuous on (0; 1], it is uniformly continuous on [c0=2; 1]. Hence
we can choose 0 < � = � (" ) < c 0=2 such that that for any s1; s2 2 [c0=2; 1], if
js1 � s2j < � , then jf ( � 1) (s1) � f ( � 1) (s2)j < " . For this choice of � ,

f ( � 1) (c � � ) < f ( � 1) (c) + "; (4.67a)
f ( � 1) (c + � ) > f ( � 1) (c) � ": (4.67b)

Combining (4.66�4.67) yields that on the event E1(�; T ), jT ( n ) (c) � f ( � 1) (c)j < "
uniformly in c 2 [c0; 1]. That is, with T and � chosen as above, E( n )

1 (�; T ) implies
E( n )

2 ("; c0) for the given "; c0. Then, as n ! 1 ,

1 � P
�
E( n )

2 ("; c0)
�

� P
�
E( n )

1 (�; T )
�

! 1: (4.68)

We conclude that Lemma 4.3.1 (i) implies Lemma 4.3.1 (ii), as required.

4.4 Proof of phase transition

In this section, we combine the above results on the continuous-time exploration
algorithm and prove Theorem 2.4.2 in Section 4.4.1. As a consequence, we then
prove Theorem 2.4.1 in Section 4.4.2.

4.4.1 The giant of the BCM: proof of Theorem 2.4.2

The aim of this section is to prove Theorem 2.4.2. For technical reasons, our proof
requires that � l > 0 for � l de�ned in Theorem 2.4.1. In the following, we study
when � l = 0 happens and reduce this case to the case when � l > 0.

Recall that � l is the smallest solution to the �xed point equation (2.45). Re-
call from Section 4.1.1 that the function G eD r � G eD l is the generating function of

N r d=
P eD r

i =1
eD l

( i ) from (4.1). By properties of generating functions and this random
variable, � l = 0 exactly when GN r (0) = P(N r = 0) = 0 , or equivalently, when
P( eD l = 0) = P( eD r = 0) = 0 . By (2.3), this is further equivalent to p1 = q1 = 0 . In

119



4 The largest component of the RIGC

the proof, we shall impose the condition q1 > 0, with q1 de�ned in Assumption 2.2.1
(C1), which ensures that � l > 0. We show below that proving Theorem 2.4.2 for
q1 > 0 is su�cient:

Claim 4.4.1 (Reduction to the case q1 > 0). Theorem 2.4.2 withq1 > 0 implies
Theorem 2.4.2 forq1 = 0 .

Proof.Assume that Theorem 2.4.2 holds for q1 > 0, and that we are given a graph
sequence with q1 = 0 . In the following, we introduce a modi�cation of the graph
sequence, parametrized by " , such that q1(" ) > 0 for all " > 0, while we get better
approximations of the original graph sequence as " ! 0. Let dr

min := min f k 2
Z+ : qk > 0g � 2, i.e., the minimal degree of the asymptoticr -degree distribution,
and �x " such that 0 < " < q d r

min
. Then (for n large enough) we cut b"M n c

r -vertices of degree dr
min into vertices of degree 1, i.e., we replace each of them

by dr
min r -vertices of degree 1. The empirical r -degrees D r ;( n )

" then converge (as
n ! 1 ) in distribution to a modi�ed limit D r

" with probability mass function
(pmf):

qk (" ) :=

8
>>>>><

>>>>>:

"d r
min

1 + "(dr
min � 1)

for k = 1 ,
qd r

min
� "

1 + "(dr
min � 1)

for k = dr
min ,

qk

1 + "(dr
min � 1)

otherwise.

(4.69)

Denote the smallest �xed point of G fD r
"

� G fD l by � l (" ) > 0 and de�ne � l (" ) :=

1 � GD r
"

�
� l (" )

�
< 1, analogously to � l from Theorem 2.4.1. By our assumptions,

Theorem 2.4.2 holds for the modi�ed graph sequence, and consequently formulas
(2.48-2.50) hold with � l (" ) > 0 and � l (" ) < 1. We now let " ! 0, so that D r

"
d�!

D r , and thus G fD r
"

! G eD r pointwise on [0; 1], which implies � l (" ) ! � l = 0 and
� l (" ) ! � l = 1 . The above cutting operation can only decrease the number of
l -vertices in each connected component: components may become disconnected
when we cut r -vertices, and since we do not cut l -vertices, we do not create copies
of them.38 Then considering that � l (" ) ! 1, (2.48) must extend to � l = 1 as well,
and (2.49-2.50) follow for � l = 0 .

In the following, wlog we assume that q1 > 0 or equivalently, eq0 > 0, with eq0 =
q1=E[D r ] de�ned in Proposition 4.2.5 as we complete the analysis of Algorithm 4.2.1
and prove Theorem 2.4.2.

38It is possible that the number of r -vertices in a component increases: cutting a vertex creates several
copies of it, which may still remain connected through a chain of other vertices.
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4.4 Proof of phase transition

Identifying components in the exploration. Recall (4.17) and (4.26) and de�ne,
for z 2 [eq0; 1],

H (z) := h2(z) � h1(z) = E[D l ]z
�
G( � 1)

eD r
(z) � G eD l (z)

�
: (4.70)

For convenience, denote

h(z) := G( � 1)

eD r
(z) � G eD l (z): (4.71)

Recall the process bA l (t) from (4.21) that approximates A l (t). By Lemma 4.2.3 and
Proposition 4.2.5, for any t0 < � log eq0 < 1 , bA l (t) satis�es

sup
t � t 0

�
�
�

1
Nn

bA l (t) � H
�
e� t �

�
�
�

P�! 0: (4.72)

Recall that we start exploring a new component when step1 is executed, for
which A l (t) = 0 is a necessary condition. Based on (4.72) and the intuition
from Lemma 4.2.4 that A l (t)=Nn � bA l (t)=Nn , we want to �nd the zero(s) of
t 7! H

�
e� t

�
on R+ . By (4.70-4.71), the zeros of this function are characterized by

h(e� t ) = 0 . Rearranging yields the �xed point equation G eD r (G eD l (e� t )) = e � t

for t 2 R+ , or equivalently, G eD r � G eD l (z) = z for z 2 (0; 1), which is the
generating function of N r de�ned in (4.1). We always have the trivial �xed point
1, but whether a second �xed point exists in the open interval (0; 1) depends on
whether the derivative G0

N r (1) = E[N r ] = E[ eD r ]E[ eD l ] is larger than 1 or not,
i.e., whether the supercriticality condition (2.47) holds or not. In the following, we
study the two cases separately, and show that a giant component exists if and only
if (2.47) holds.

4.4.1.1 The supercritical case

First, we study the case when (2.47) holds. Recall (2.4) and N r from (4.1). Since
G0

N r (1) > 1, there exists a second �xed point � l < 1 in the interval [0; 1]. In
fact, � l > eq0 with eq0 from Proposition 4.2.5, by the following reasoning. By the
de�nition of N r , P(N r = 0) � P( eD r = 0) = eq0 = q1=E[D r ], which is positive
by assumption. Thus the �xed point � l cannot be 0, and consequently by the strict
monotonicity of GN r , � l = GN r (� l ) > G N r (0) = P(N r = 0) � eq0. De�ne

t? := � log � l ; (4.73)

which lies in (0; � log eq0). By the convexity of GN r , only two �xed points exist, and
consequently t? is the uniquepositive value t 2 R+ such that H

�
e� t ? �

= 0 . In the
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4 The largest component of the RIGC

following, we work towards showing that the exploration of the giant component
lasts from time 0 + oP(1) to time t? � oP(1). De�ne

t0 := � log
�
(� l + eq0)=2

�
; (4.74)

so that t? < t 0 < � log eq0, and denote the �good event�

E1(� ) = E( n )

1 (� ) :=
�

supt � t 0

�
�N � 1

n
bA l (t) � H (e� t )

�
� < �

	
: (4.75)

Note that since t0 < � log eq0, both Lemma 4.2.3 and Proposition 4.2.5 are applicable
for this choice of t0. Consequently, for any �xed � , by (4.72) the good event happens
whp, i.e.,

P
�
E( n )

1 (� )
�

! 1 (4.76)

as n ! 1 . By the convexity of GN r , rearranging (4.70) yields that z 7! H (z) is
positive for z 2 (� l ; 1), thus t 7! H (e� t ) is positive for t 2 (0; t?). In fact, we have
the following analytical properties of t 7! H

�
e� t

�
:

Claim 4.4.2. For any" > 0 small enough, there exists� = � (" ) > 0 such that
t 7! H

�
e� t

�
> � ont 2 ("; t ? � " ) andH

�
e� ( t ? + " )

�
< � 3� .

Proof.Recall (4.70) and (4.71) and note that 0 < e� t 0 < e� t < 1 is bounded for
t 2 (0; t0). Then it is su�cient to show that, for h from (4.71) and some � 0 > 0,

(
h

�
e� t

�
> � 0 on ("; t ? � " ),

h
�
e� t

�
< � 3� 0 at t = t? + " ,

(4.77)

and the required statement follows for � := � 0E[D l ]e� t 0 . By the strict monotonity
of the mapping t 7! e� t , (4.77) is equivalent to

(
h(z) > � 0 for z 2

�
e� ( t ? � " ) ; e� "

�
= ( � l + "1; 1 � "2),

h(z) < � 3� 0 for z = e � ( t ? + " ) < � l .
(4.78)

By q1 > 0 and (4.71), z 7! h(z) is strictly concave on its domain [eq0; 1] and positive
exactly on (� l ; 1), hence for any " �xed, we can choose � 0 > 0 appropriately such
that (4.78) holds. This concludes the proof of Claim 4.4.2.

Finding the largest component. In the following, we aim to characterize those
executions of step1 where we start exploring the giant component and the com-
ponent explored thereafter, i.e., when we �nish exploring the giant. Recall the list
S1 from Algorithm 4.2.1 that contains the time stamps when step1 was executed.
Denote the last element of S1 that is less than t?=2 by T1, and denote the next
element after T1 by T2, i.e., T2 is the �rst element of S1 that is at least t?=2. Formally,

T1 = max f t 2 S1 : t < t ?=2g; T2 = min f t 2 S1 : t � t?=2g; (4.79)
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4.4 Proof of phase transition

with the convention that the minimum over an empty set is + 1 . Later, we show
that the exploration of the largest component lasts from T1 to T2 whp. We �rst
show the following:

Lemma 4.4.3 (Exploration time of the �giant�). Asn ! 1 ,

T1
P�! 0; T2

P�! t?: (4.80)

Proof.Note that A l (t) � bA l (t) = bSl (t) � Sl (t) > 0 by de�nition. By (4.75) and
Claim 4.4.2, on the event E1(� ), for all t 2 ("; t ? � " ),

A l (t) � bA l (t) > �N n > 0: (4.81)

Recall that executing step1 requires A l (t) = 0 . Consequently, on the event E1(� ),
step1 could not have been executed within the time interval ("; t ? � " ), hence on
this event,

T1 � "; T2 � t? � ": (4.82)

Noting that 0 2 S1, thus 0 � T1, it follows that T1
P�! 0 by (4.76), (4.79) and (4.82).

We have yet to give an upper bound on T2 to prove that T2
P�! t? . We do so by

proving that step1 must have been executed between t? � " and t? + " . In fact,
we show that the error A l � bA l has increased on the smaller interval between
t? and t? + " , which can only happen due to step1 , as discussed in the proof of
Lemma 4.2.4. Recall that H

�
e� t

�
is positive on (0; t?), hence on the event E1(� ),

N � 1
n

bA l (t) > � � on (0; t?). Lemma 4.2.4 is applicable for t0 from (4.74) and t? < t 0,
thus for any �xed � ,

A l (t?) � bA l (t?) � � inf
t � t ?

bA l (t) + dl
max < �N n + �N n =2 = (3=2)�N n ; (4.83)

as dl
max < �N n =2 for n large enough by Remark 2.2.2 (iii). However, on the event

E1(� ),
N � 1

n
bA l (t? + ") � � 2� (4.84)

by Claim 4.4.2, while A l (t) � 0 for any t . Thus

A l (t? + ") � bA l (t? + ") � 2�N n : (4.85)

Comparing (4.83) and (4.85), we see that A l (t) � bA l (t) increased between times t?

and t? + " , which is only possible when step1 is executed. Consequently by (4.79),
T2 � t? + " on the event E1(� ) that happens whp. Combining this with (4.82), we
obtain that T2

P�! t? , concluding the proof of Lemma 4.4.3.
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4 The largest component of the RIGC

Properties of the giant candidate. Recall that the exploration of each component
starts with an execution of step1 , thus by (4.79), only one component is explored
in the time interval (T1; T2). Let us denote this component by C? = C( n )

? . We
study some properties of C? that will help us in showing that C? is whp the largest
component. Recall from Section 4.2.1 that l -vertices can be sleeping or awake
and l -half-edges can be sleeping, active or paired. Also recall that V l

k (t) denotes
the number of vertices of degree k still sleeping at time t . Since T1; T2 2 S1, we
have A l (T1) = A l (T2) = 0 (see Algorithm 4.2.1), thus all l -half-edges that are
removed from the sleeping set between T1 and T2 must be paired by time T2. Thus
all l -vertices and l -half-edges that are removed from the sleeping set between T1

and T2 are part of the component C? . Hence, with V l
k de�ned in (2.6),

�
� V l

k \ C?
�
� = V l

k (T1) � V l
k (T2); (4.86)

�
� E( C?)

�
� = Sl (T1) � Sl (T2): (4.87)

Recall that t? is de�ned in (4.73) so that H (e� t ?
) = 0 , and further, H (e� t ) >

0 for t 2 (0; t?). By Lemma 4.4.3, T2
P�! t? . Hence by the continuity of H ,

inf t � T2 H
�
e� t

� P�! inf t � t ? H
�
e� t

�
= 0 . Further, (4.72) applies to T2 whp, which

yields that N � 1
n inf t � T2

bA l (t) P�! 0 as well. Note that bV l
k (t) � V l

k (t) for all t
and k, with bV l

k (t) de�ned in Section 4.2.2. Recall (4.15) and (4.16). By Lemma 4.2.4,
Remark 2.2.2 (iii) and the above observation that N � 1

n inf t � T2
bA l (t) P�! 0,

1
Nn

sup
t � T2

� bV l
k (t) � V l

k (t)
�

�
1

Nn
sup
t � T2

� bSl (t) � Sl (t)
�

�
1

Nn
inf

t � T2

bA l (t) +
dl

max

Nn

P�! 0:

(4.88)

Combining (4.86) and (4.88) with (4.18) from Lemma 4.2.3,

N � 1
n

�
� V l

k \ C?
�
� �

�
pk e� kT 1 � pk e� kT 2

�

= N � 1
n

�
V l

k (T1) � V l
k (T2)

�
� N � 1

n

� bV l
k (T1) � bV l

k (T2)
�

+
�
N � 1

n
bV l

k (T1) � pk e� kT 1
�

�
�
N � 1

n
bV l

k (T2) � pk e� kT 2
� P�! 0:

(4.89)

Since the function t 7! pk e� kt is continuous, by Lemma 4.4.3 and (4.73),

pk
�
e� kT 1 � e� kT 2

� P�! pk
�
e� k0 � e� kt ? �

= pk
�
1 � � k

l

�
: (4.90)

Then combining (4.89) and (4.90) yields that

N � 1
n

�
� V l

k \ C?
�
� P�! pk

�
1 � � k

l

�
: (4.91)
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4.4 Proof of phase transition

Similarly, by summation and (4.19), as well as (4.87) and (4.20), respectively,

N � 1
n

�
� V l \ C?

�
� P�! GD l

�
e� 0�

� GD l

�
e� t ? �

= 1 � GD l (� l ) = � l ; (4.92)

N � 1
n

�
� E( C?)

�
� P�! E[D l ]

�
1 � � l G eD l (� l )

�
= E[D l ]

�
1 � � l � r

�
: (4.93)

In particular, C? contains a linear proportion of edges and l -vertices.

Uniqueness. Next, we prove that whp there is no other component containing a
linear proportion of edges and vertices, hence C? must be C1;b and further, the giant
component is unique. Since T1

P�! 0, by (4.20), the total number of l -half-edges
explored before C? is oP(Nn ). Consequently, whp no linear-sized component is
explored before C? . Let us de�ne T3 as the element in S1 (see Algorithm 4.2.1) right
after T2 (and 1 if there is no such element).39 The time of T3 is given by

T3 = min
�

t 2 S1 n f T2g : t � t?=2
	

: (4.94)

Recall (4.83) and (4.85), that we have used to prove that step1 must have been
executed between t? and t? + " , since the di�erence A l � bA l can only increase due
to step1 . In fact, we have shown that on the event E1(� ), the di�erence increased
by at least �N n =2, that is, linearly with Nn ; however, each execution of step1 can
only increase the di�erence by dl

max , which is o(Nn ) by Remark 2.2.2 (iii). Thus,
step1 must have been executed not once, but many times between t? and t? + " ;
in particular, T3 � t? + " on the event E1(� ), which happens whp. Combining this
with T3 � T2 and T2

P�! t? yields that T3
P�! t? . Hence by (4.20), the component

C0 explored between T2 and T3 has oP(Nn ) edges. We show that this implies that
whp no linear-sized component is explored after C? .

We argue by contradiction. Assume that for some � > 0, there exists a com-
ponent bC with �N n many edges, that was not explored before C? . Then, since
we pick a new vertex by choosing a uniform sleeping l -half-edge in step1 , we
�nd bC at T2 with positiveprobability, i.e., P( C0 = bC) > 0, which implies that
lim inf n !1 P

�
j E( C0)j=Nn � �

�
> 0. This contradicts that j E( C0)j=Nn

P�! 0,
and thus bC cannot exist. We conclude that whp no component containing a linear
proportion of edges was explored before or after C? , thus no such component exists.
Note that if a connected component has linearly many vertices, it must also have
linearly many edges. Hence whp C1;b = C? is the largest component, and is unique
in the sense that there is no other linear-sized component. Then the properties
proven for C? in (4.91�4.93) verify the claimed properties of the giant in (2.48�2.50).
This concludes the proof of the supercritical caseof Theorem 2.4.2.

39It may occur that T3 = T2 , due to the multiplicities in the sequence S1 .
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4 The largest component of the RIGC

4.4.1.2 The non-supercritical case

We now study the case when (2.47) does not hold. For N r from (4.1), we now have
E[N r ] = E[ eD l ]E[ eD r ] � 1, thus GN r = G eD r � G eD l only has the trivial �xed point
1. Rearranging (4.70) yields that in this case, t 7! H

�
e� t

�
is negative on R+ , its

last and only zero is t?
subcrit = 0 .

Let us denote the �rst two elements of S1 by T0
1 = t?

subcrit = 0 and T0
2 = min

�
t 2

S1nf T0
1g

	
. By Lemma 4.2.4 and its proof, we have that A l (0)� bA l (0) = oP(Nn ) and

since the error can only increase due to step1 , A l (T0
2) � bA l (T0

2) � A l (0)� bA l (0)+

dl
max = oP(Nn ). On the other hand, for any " > 0, N � 1

n
bA l (" ) P�! H

�
e� "

�
< 0

by (4.72). Noting that A l (" ) � 0, N � 1
n (A l (" ) � bA l (" )) > 0 whp, that is, the

error has increased. Consequently T0
2 < " whp, i.e., T0

2
P�! 0. Denote by C0

the component explored between T0
1 and T0

2, then j E( C0)j = oP(Nn ) by (4.20).
With an analogous argument to the proof of uniqueness in the supercritical case,
no linear-sized component can exist, since we would �nd it at T0

1 with positive
probability. Hence j C( n )

1;bj = oP(Nn ). This concludes the proof of Theorem 2.4.2.

4.4.2 The phase transition of the RIGC

In this section, we prove Theorem 2.4.1 on the phase transition of the RIGC as a
corollary of Theorem 2.4.2 on the phase transition of the BCM .

Proof of Theorem 2.4.1.For some v 2 V l , let us denote its connected component
in the RIGC by Cp (v), and its connected component in the underlyingBCM
(see De�nition 2.1.2 (i)) by Cb(v). Since every community graph is connected,
two l -vertices are connected within the RIGC exactly when they are connected
within the underlying BCM . Consequently, Cp (v) = V l \ Cb(v), and each con-
nected component of the RIGC is exactly the set of l -vertices in the corresponding
component of the underlying BCM . However, note that ordering the connected
components of the underlying BCM by size generally does notensure that the
corresponding connected components of the RIGC are also ordered by size.

In the subcritical and critical case, i.e., when (2.47) does not hold, j C( n )

1;bj = oP(Nn )
by Theorem 2.4.2, using that M n = 
N n + o(Nn ) by Remark 2.2.2 (i). Since
j Cp (v)j � j Cb(v)j for any v 2 V l , we conclude that

j C1j = max
v2 V l

j Cp (v)j � max
v2 V l

j Cb(v)j = j C1;bj = oP(Nn ): (4.95)

We now consider the supercritical case, i.e., when (2.47) holds. In this case, by
Theorem 2.4.2, j C1;b \ V l j

�
Nn

P�! � l , and for any othercomponent C0 of the
BCM , j C0 \ V l j � j C0j � j C2;bj = oP(Nn ). Thus necessarily,
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C1 = C1;b \ V l whp; (4.96)

which implies that j C1j=Nn
P�! � l , and analogously with (4.95), j C2j = oP(Nn ).

This concludes the proof of Theorem 2.4.1.

4.5 Local properties of the giant component
of the RIGC

In this section, we consider a supercritical RIGC , and prove local properties of the
giant component using Lemma 4.1.2.

4.5.1 Degrees in the giant component of the RIGC

We now prove Theorem 2.4.4 as a consequence of Lemma 4.1.2.

Proof of Theorem 2.4.4.Recall (CP; o), the local weak limit of the RIGC , from
Section 3.3.1. Denote the degree of o in CP by deg(o) and the number of com-
munities that o is part of in CP by b-deg(o). Let V l

n � Unif[ V l ] and recall that
P(� j ! n ) denotes conditional probability wrt the graph realization. Note that

N � 1
n j V l

k \ V p
d \ C1j = P

�
p -deg(V l

n ) = d; l -deg(V l
n ) = k; V l

n 2 C1
�
� ! n

�
:

(4.97)
Intuitively, as (CP; o) approximates (RIGC ; V l

n ), the limit of the above quantity
must be P

�
b-deg(o) = k; deg(o) = d; jCPj = 1

�
. In the following, we prove

this formally. Recall (2.55) and that � (c j H ) denotes the number of vertices in
H with c-degree c. Using the construction of (CP; 0) in Section 3.3.1, we can
condition on b-deg(o), as well as the community graphs H1; : : : ; H k assigned to
the k communities that o is part of, and expand

P
�
b-deg(o) = k; deg(o) = d; jCPj = 1

�

= pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 Z+

c1 + ::: + ck = d

�
1 � �

P k
i =1 ( jH i j� 1)

r

� kY

i =1

� (ci j H i )� H i

E[D r ]
= A(k; d):

(4.98)

For convenience, we denote, with K 2 Z+ ,

AK (k; d) := P
�
b-deg(o) = k; deg(o) = d; jCPj � K

�
: (4.99)

To prove (2.56), it is su�cient to show that the following limit equals 0:
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4 The largest component of the RIGC

lim
n !1

P
� �

�N � 1
n j V l

k \ V p
d \ C1j � A(k; d)

�
� > "

�

� lim
K !1

lim
n !1

P
� �

�N � 1
n j V l

k \ V p
d \ C1j � N � 1

n j V l
k \ V p

d \ Z � K j
�
� > "= 3

�

(4.100a)

+ lim
K !1

lim
n !1

P
� �

�N � 1
n j V l

k \ V p
d \ Z � K j � AK (k; d)

�
� > "= 3

�
(4.100b)

+ lim
K !1

lim
n !1

P
� �

�AK (k; d) � A(k; d)
�
� > "= 3

�
: (4.100c)

By comparing (4.98) and (4.99), clearly AK (k; d) ! A(k; d) as K ! 1 , thus the
double limit in (4.100c) equals 0. Next, we look at (4.100b) and note that

N � 1
n j V l

k \ V p
d \ Z � K j = P

�
p -deg(V l

n ) = d; l -deg(V l
n ) = k; V l

n 2 Z � K
�
� ! n

�
:

(4.101)
Thus for K �xed, by (4.99), (4.101) and Theorem 2.3.3, the inner limit in (4.100b)
equals 0, and consequently (4.100b) equals 0. Removing some of the conditions, we
can bound (4.100a) as

P
� �

�N � 1
n j V l

k \ V p
d \ C1j � N � 1

n j V l
k \ V p

d \ Z � K j
�
� > "= 3

�

� P
�

N � 1
n j V l

k \ V p
d \ ( C1 4 Z � K )j � "=3

�

� P
�

N � 1
n j C1 4 Z � K j > "= 3

�
;

(4.102)

which tends to 0as �rst n ! 1 followed by K ! 1 , by Lemma 4.1.2. Thus (4.100a)
is also 0, and combining everything above, indeed N � 1

n j V l
k \ V p

d \ C1j P�! A(k; d).
That is, (2.56) holds, which concludes the proof of Theorem 2.4.4.

4.5.2 Edges in the giant component of the RIGC

In this section, we prove Theorem 2.4.6 as a consequence of Theorem 2.4.4 under
the additional uniform integrability condition (2.61). Further, we prove Lemma 2.4.7
on the equivalence of di�erent uniform integrability conditions.

4.5.2.1 The asymptotic number of edges in the giant component

Recall that V l
n � Unif[ V l ] denotes an l -vertex chosen uar and that E[�

�
� ! n ] de-

notes conditional expectation wrt the bipartite matching ! n , i.e., empirical average
for a given graph realization. Recall D c

n with pmf %( n ) from (2.12) and its limit D c

with pmf %from Remark 2.2.2 (ii). Also recall D p
n from (2.15) and its limit D p from

(2.24). Let H n and H denote random graphs with pmfs � ( n ) from (2.9) and � from
Assumption 2.2.1 (C), respectively.
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4.5 Local properties of the giant component of the RIGC

Proof of Theorem 2.4.6 subject to Lemma 2.4.7.Recall that for an l -vertex v, its pro-
jected degree p -deg(v) is random, as it depends on the bipartite matching ! n . Then
we can rewrite

j E( C1)j
Nn

=
1

2Nn

X

v2 C1

p -deg(v) =
1

2Nn

X

v2 [N n ]

p -deg(v)1f v2 C1 g

=
1
2

E
�
p -deg(V l

n )1f V l
n 2 C1 g

�
� ! n

�
:

(4.103)

By (2.56), analogously with (2.57), the random variables (p -deg(V l
n )1f V l

n 2 C1 g)n 2 N

converge in distribution. We use a uniform integrability (UI) argument to show
that their expectations also converge. Under the condition (2.61), by Lemma 2.4.7,
we have that (D p

n )n 2 N is UI. For any K 2 Z+ , trivially bounding 1f V l
n 2 C1 g � 1,

E
�
p -deg(V l

n )1f V l
n 2 C1 g1f p -deg( V l

n )>K g

�
� ! n

�

� E
�
p -deg(V l

n )1f p -deg( V l
n )>K g

�
� ! n

�
:

(4.104)

Consequently, (p -deg(V l
n )1f V l

n 2 C1 g)n 2 N is UI, as required. Thus the empirical
means converge to the mean of the limit, that we identify using (2.56):

j E( C1)j
Nn

=
1
2

E
�
p -deg(V l

n )1f V l
n 2 C1 g

�
� ! n

�

=
1
2

X

d2 N

d � P
�
p -deg(V l

n ) = d; V l
n 2 C1

�
� ! n

�
=

1
2

X

d2 N

d �
j V p

d \ C1j
Nn

=
1
2

X

d2 N

d �
X

k2 Z+

j V l
k \ V p

d \ C1j
Nn

P�!
1
2

X

d2 N

X

k2 Z+

d � A(k; d):

(4.105)

To prove (2.62), it is now su�cient to show that

1
2

X

d2 N

d �
X

k2 Z+

A(k; d) = 
 � E
�
j E(H )j

�
1 � � jH j

r

��
; (4.106)

with 
 from Remark 2.2.2 (i) and � r from Theorem 2.4.2. Under the condition
(2.61), by Lemma 2.4.7, E

�
j E(H n )j

� P�! E
�
j E(H )j

�
< 1 , and � r 2 [0; 1] by

de�nition, thus the rhs of (4.106) is indeed �nite. We show the equality by carrying
out the computation. We substitute A(k; d) from (2.55), and under the condition
d = c1 + : : : + ck , we also substitute d by this sum to obtain
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4 The largest component of the RIGC

X

d2 N

X

k2 Z+

d � A(k; d)

=
X

d2 N

X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 N
c1 + ::: + ck = d

� kX

j =1

cj

��
1 � �

P k
i =1 ( jH i j� 1)

r

�

�
kY

i =1

� (ci j H i )� H i

E[D r ]

=
X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 N

kX

j =1

cj

kY

i =1

� (ci j H i )� H i

E[D r ]
(4.107a)

�
X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

X

c1 ;:::;c k 2 N

kX

j =1

cj � �
P k

i =1 ( jH i j� 1)
r

kY

i =1

� (ci j H i )� H i

E[D r ]
;

(4.107b)

where we have used that summing over d removes the restriction c1 + : : : + ck = d.
In the following, we simplify (4.107a) and (4.107b) separately, starting with (4.107a).
For �xed k and H1; : : : ; H k 2 H , we compute

X

c1 ;:::;c k 2 N

kX

j =1

cj

kY

i =1

� (ci j H i )� H i

E[D r ]

=
X

c1 ;:::;c k 2 N

kX

j =1

cj � � (cj j H j )� H j

E[D r ]

Y

i 2 [k ]
i 6= j

� (ci j H i )� H i

E[D r ]

=
kX

j =1

P
cj 2 N cj � � (cj j H j )� H j

E[D r ]

Y

i 2 [k ]
i 6= j

P
ci 2 N � (ci j H i )� H i

E[D r ]
:

(4.108)

Recall that � (ci j H i ) counts the number of v 2 V (H i ) with degree ci . Thus

X

ci 2 N

� (ci j H i ) = jH i j;
X

cj 2 N

cj �� (cj j H j ) =
X

v2 V (H j )

deg(v) = 2 j E(H j )j: (4.109)

Again, denote a random graph with pmf � by H . Combining (4.108-4.109) and
substituting, (4.107a) equals

130



4.5 Local properties of the giant component of the RIGC

X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

kX

j =1

2j E(H j )j� H j

E[D r ]

Y

i 2 [k ]
i 6= j

jH i j� H i

E[D r ]

=
X

k2 Z+

pk

kX

j =1

P
H j 2 H 2j E(H j )j� H j

E[D r ]

Y

i 2 [k ]
i 6= j

P
H i 2 H jH i j� H i

E[D r ]

=
X

k2 Z+

pk

kX

j =1

2E
�
j E(H )j

�

E[D r ]

Y

i 2 [k ]
i 6= j

E
�
jH j

�

E[D r ]
=

X

k2 Z+

pk � k �
2E

�
j E(H )j

�

E[D r ]
;

(4.110)

since E
�
jH j

�
=E[D r ] = 1 , so the product over i disappears, which yields k iden-

tical terms in the sum over j . Note that
P

k2 Z+ pk � k = E[D l ] and recall from
Remark 2.2.2 (i) that E[D l ]=E[D r ] = 
 . We conclude that (4.107a) equals

2E
�
j E(H )j

�

E[D r ]
E[D l ] = 2 
 E

�
j E(H )j

�
: (4.111)

Next, we study (4.107b). Using (4.108-4.109) again and substituting,

X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

�
P k

i =1 ( jH i j� 1)
r

kX

j =1

2j E(H j )j� H j

E[D r ]

Y

i 2 [k ]
i 6= j

jH i j� H i

E[D r ]

=
X

k2 Z+

pk

X

H 1 ;:::;H k 2 H

kX

j =1

2j E(H j )j� H j � � jH j j� 1
r

E[D r ]

Y

i 2 [k ]
i 6= j

jH i j� H i � � jH i j� 1
r

E[D r ]

=
X

k2 Z+

pk

kX

j =1

P
H j 2 H 2j E(H j )j� H j � � jH j j� 1

r

E[D r ]

�
Y

i 2 [k ]
i 6= j

P
H i 2 H jH i j� H i � � jH i j� 1

r

E[D r ]
:

(4.112)

Recall (2.3), (2.4), and q from Assumption 2.2.1 (C1), and note that
P

H i 2 H jH i j� H i � � jH i j� 1
r

E[D r ]
=

X

m 2 Z+

m � qm

E[D r ]
� m � 1

r

=
X

m 2 Z+

P
� eD r = m � 1

�
� m � 1

r = G eD r (� r ) = � l ;
(4.113)
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4 The largest component of the RIGC

as we have shown in Section 4.1.1. Consequently in (4.112), the last product over i
equals � k � 1

l , and in the factor before, we recognize an expectation wrt the random
graph H with pmf � . Recall p from Assumption 2.2.1 (A). Combining (4.112-4.113),
we have that (4.107b) without the minus sign equals

X

k2 Z+

pk

kX

j =1

2E
�
j E(H )j� jH j� 1

r
�

E[D r ]
� k � 1

l

=
2E

�
j E(H )j� jH j� 1

r
�

E[D r ]

X

k2 Z+

pk � k � � k � 1
l

= 2E
�
j E(H )j� jH j� 1

r

� E[D l ]
E[D r ]

X

k2 Z+

k � pk

E[D l ]
� k � 1

l

= 2 
 E
�
j E(H )j� jH j� 1

r

�
G eD l (� l ) = 2 
 E

�
j E(H )j� jH j� 1

r

�
� r

= 2 
 E
�
j E(H )j� jH j

r

�
;

(4.114)

where we have used that we have de�ned � r = G eD l (� l ) in Theorem 2.4.4. Combi-
ning (4.111) and (4.114), we obtain that

X

k2 Z+

X

d2 N

d � A(k; d) = 2 
 E
�
j E(H )j

�
� 2
 E

�
j E(H )j� jH j

r

�
; (4.115)

which is equivalent to (4.106). Since we have previously reduced Theorem 2.4.6 to
this statement, this concludes the proof of Theorem 2.4.6 subject to Lemma 2.4.7.

4.5.2.2 E�ivalence of the uniform integrability conditions

In this section, we prove Lemma 2.4.7. Since the projected degree and number of
edges in a community graph are unrelated to each other, but both are related to the
community degrees, we show that Lemma 2.4.7 (i) is equivalent to Lemma 2.4.7 (ii),
as well as that Lemma 2.4.7 (i) is equivalent to Lemma 2.4.7 (iii).

Proof of Lemma 2.4.7 (i) implying (ii).We prove that (D p
n )n 2 N is uniformly inte-

grable by showing that for any " > 0, E[D p
n 1f D p

n � K g] < " for K large enough,
uniformly in n. Recall that V (Com ) denotes the disjoint union of all vertices in
community graphs and that for j 2 V (H ), dc

j denotes the degree of j within H .
Recall that v  [j denotes the event that j 2 V (Com ) is one of the community
roles assigned to v 2 V l , so that we can write the randomdegree of v (see (2.13)),
depending on the bipartite matching, as dp

v =
P

j 2 V (Com ) dc
j 1f v  [j g . We compute,

for K 2 N, by taking the empirical average �rst,
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E
�
D p

n 1f D p
n � K g

�
= E

h
N � 1

n

X

v2 [N n ]

X

j 2 V (Com )

dc
j � 1f v  [j g1f dp

v � K g

i

= N � 1
n

X

j 2 V (Com )

dc
j � E

h X

v2 [N n ]

1f v  [j g1f dp
v � K g

i

= N � 1
n

X

j 2 V (Com )

dc
j

X

v2 [N n ]

P
�
v  [j; d p

v � K
�
:

(4.116)

We further rewrite the probability as

P
�
v  [j; d p

v � K
�

= P
�
dp

v � K
�
� v  [j

�
� P(v  [j ): (4.117)

Note that P(v  [j ) = dl
v =hn . We now split the sum over j according to whether

dc
j is smaller or larger than

p
K . For dc

j �
p

K , we use the trivial bound P
�
dp

v �
K

�
� v  [j

�
� 1.

E
�
D p

n 1f D p
n � K g

�

� N � 1
n

X

j 2 V (Com )

dc
j 1f dc

j �
p

K g

X

v2 [N n ]

dl
v

hn
(4.118a)

+ N � 1
n

X

j 2 V (Com )

dc
j 1f dc

j <
p

K g

X

v2 [N n ]

P
�
dp

v � K
�
� v  [j

�
�

dl
v

hn
: (4.118b)

The term corresponding to large values of dc
j , i.e., (4.118a) equals

N � 1
n

X

v2 N n

dl
v

1
hn

X

j 2 V (Com )

dc
j 1f dc

j �
p

K g = E[D l
n ] � E[D c

n 1f D c
n �

p
K g]; (4.119)

where E[D l
n ] is bounded due to Assumption 2.2.1 (B) and since (D c

n )n 2 N is UI by
assumption, E[D c

n 1f D c
n �

p
K g] can be made arbitrarily small uniformly in n by

choosing K large enough. In the term corresponding to small values of dc
j , i.e.,

(4.118b), we further analyze P
�
dp

v � K
�
� v  [ j

�
. Note that conditionally on

v  [j , dp
v = dc

j + dc
J 2

+ : : : + dc
J l -deg( v )

, where J i is chosen uar from V (Com ) n

f j; J 2; : : : ; J i � 1g. Using that dc
j <

p
K ,

P
�
dp

v � K
�
� v  [j

�
= P

�
dp

v � dc
j = dc

J 2
+ : : : + dc

J l -deg( v )
� K � dc

j

�

� P
�
dc

J 2
+ : : : + dc

J l -deg( v )
� K �

p
K

�

�
E

�
dc

J 2

�
+ : : : + E

�
dc

J l -deg( v )

�

K �
p

K
;

(4.120)
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by Markov’s inequality. For any �xed v, l -deg(v) is constant, thus the depletion of
community vertices becomes negligible as n ! 1 , and E

�
dc

J i

�
= E[D c

n ](1 + o(1))
for all i . Substituting, and using that dc

j 1f dc
j <

p
K g �

p
K 1f dc

j <
p

K g �
p

K , we
can bound (4.118b) by

N � 1
n

X

j 2 V (Com )

dc
j 1f dc

j <
p

K g

X

v2 [N n ]

E[D l
n � 1] � E[D c

n ](1 + o(1))

K �
p

K
�

dl
v

hn

= E[D l
n � 1]E[D c

n ](1 + o(1))

P
v2 [N n ] dl

v

Nn

P
j 2 V (Com ) dc

j 1f dc
j <

p
K g

hn (K �
p

K )

� E[D l
n � 1]E[D c

n ](1 + o(1))E[D l
n ]

hn
p

K

hn (K �
p

K )
;

(4.121)

where E[D l
n � 1]E[D c

n ](1+ o(1))E[D l
n ] is bounded due to Assumption 2.2.1 (B) and

our assumption that (D c
n )n 2 N is UI, and

p
K=(K �

p
K ) can be made arbitrarily

small for K large enough. We conclude that by choosing K su�ciently large,
E

�
D p

n 1f D p
n � K g

�
can be made arbitrarily small, uniformly in n, that is, (D p

n )n 2 N is
uniformly integrable.

Proof of Lemma 2.4.7 (ii) implying (i).Recall that for v 2 V l and j 2 V (Com ),
v  [j denotes the event that j is one of the community roles assigned to v. Note
that each j is assigned to a uniquev, thus

P
v2 [N n ] 1f v  [j g = 1 . We calculate, for

some K 2 N,

E
�
D c

n 1f D c
n � K g

�
=

1
hn

X

j 2 V (Com )

dc
j 1f dc

j � K g

=
1

hn

X

j 2 V (Com )

dc
j 1f dc

j � K gE
h X

v2 [N n ]

1f v  [j g

i

= E
h 1

hn

X

v2 [N n ]

X

j 2 V (Com )

dc
j 1f v  [j g1f dc

j � K g

i
:

(4.122)

Recall from (2.13) that the projected degree of v equals dp
v =

P
j 2 V (Com ) dc

j 1f v  [j g ,
and note that on the event v  [j , dc

j � K implies that dp
v � K . Thus,

E
�
D c

n 1f D c
n � K g

�
� E

h 1
hn

X

v2 [N n ]

X

j 2 V (Com )

dc
j 1f v  [j g1f dp

v � K g

i

= E
h 1

E[D l
n ]Nn

X

v2 [N n ]

dp
v 1f dp

v � K g

i
=

1
E[D l

n ]
E

�
D p

n 1f D p
n � K g

�
:

(4.123)
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This can be made arbitrarily small, uniformly in n, by choosing K large enough,
since E[D l

n ] is bounded due to Assumption 2.2.1 (B) (and E[D l
n ] � 1 since d l � 1

pointwise), and (D p
n )n 2 N is UI by assumption. This implies that (D c

n )n 2 N is also
UI.

Proof of Lemma 2.4.7 (i) implying (iii).With an r -vertex V r
n � Unif[M n ] chosen

uar, note that ComV r
n

d= H n . Thus, for K 2 N, we compute

E
�
j E(H n )j1fj E(H n ) j� K g

�
=

1
M n

X

a2 [M n ]

j E(Coma)j � 1fj E(Com a ) j� K g: (4.124)

For any graph H , j E(H )j = 1
2

P
v2 V (H ) deg(v), further, j E(H )j � j H j(jH j� 1)=2.

Therefore, j E(H )j � K implies jH j �
p

2K , thus

E
�
j E(H n )j1fj E(H n ) j� K g

�

=
1

M n

X

a2 [M n ]

1
2

X

j 2 V (Com a )

dc
j � 1fj E(Com a ) j� K g

�
1

2M n

X

a2 [M n ]

X

j 2 V (Com a )

dc
j � 1fj Com a j�

p
2K g

=
1

2M n

X

j 2 V (Com )

dc
j � 1fj Com a ( j ) j�

p
2K g;

(4.125)

where a(j ) is the community that j is a vertex in. To estimate (4.125), we �rst
compute the number of terms, that is, the number of vertices in large enough
communities, using that V (Com ) = [ a2 [M n ] V (Coma):

� n : =
X

j 2 V (Com )

1fj Com a ( j ) j�
p

2K g =
X

a2 [M n ]

jComa j � 1fj Com a j�
p

2K g

= M n E
�
D r

n 1f D r
n �

p
2K g

�
:

(4.126)

By Assumption 2.2.1 (D), (D r
n )n 2 N is UI, thus E

�
D r

n 1f D r
n �

p
2K g

�
can be made

arbitrarily small uniformly in n by choosing K large enough. That is, we can
make � n � � 0M n � � hn , since hn =Mn = E[D r

n ] is bounded. Let dc
( i ) denote the

i th largest element in the sequence (dc
j ) j 2 V (Com ) . Since there are at most � hn

community roles in communities larger than
p

2K , we can bound the sum of their
c-degrees on the rhs of (4.125) by taking (at least40) � hn of the largest c-degrees:

40If there are several terms equal to the one with rank � hn , then we might include more terms.
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4 The largest component of the RIGC

E
�
j E(H n )j1fj E(H n ) j� K g

�
�

1
2M n

X

j 2 V (Com )

dc
j � 1f dc

j � dc
( � hn ) g: (4.127)

Note that dc
( � hn ) is the upper-� -quantile Q�

n of the empirical distribution D c
n , thus

it must converge to the upper-� -quantile Q� of the distribution D c . Consequently,
there exists n0 such that for n � n0, Q�

n � Q� � " =: K 0, and

E
�
j E(H n )j1fj E(H n ) j� K g

�
�

E[D r
n ]

2hn

X

j 2 V (Com )

dc
j 1f dc

j � Q � � " g

=
1
2

E[D r
n ]E

�
D c

n 1f D c
n � K 0g

�
:

(4.128)

Since E[D r
n ] is bounded due to Assumption 2.2.1 (D) and (D c

n )n 2 N is UI, the up-
per bound can be made arbitrarily small for n � n0 by choosing K 0 su�ciently
large. This is possible by choosing the earlier K su�ciently large so that � is
su�ciently small. Further, since n < n 0 is a �nite set, we can increase K so that
maxn<n 0 E

�
j E(H n )j1fj E(H n ) j� K g

�
is su�ciently small as well. We conclude that

indeed, (j E(H n )j)n 2 N is UI.

Proof of Lemma 2.4.7 (iii) implying (i).Recall that V (Com ) denotes the union of
vertices in all Coma 2 Com . We calculate, for some K 2 N,

E
�
D c

n 1f D c
n � K g

�
=

1
hn

X

j 2 V (Com )

dc
j 1f dc

j � K g

=
1

hn

X

a2 [M n ]

X

j 2 V (Com a )

dc
j 1f dc

j � K g:
(4.129)

Note that j E(Coma)j = 2
P

j 2 V (Com a ) dc
j , and further, that for j 2 V (Coma),

dc
j � K implies j E(Coma)j � K . Thus

E
�
D c

n 1f D c
n � K g

�
�

1
hn

X

a2 [M n ]

X

j 2 V (Com a )

dc
j � 1fj E(Com a ) j� K g

=
1

E[D r
n ]M n

X

a2 [M n ]

2j E(Coma)j � 1fj E(Com a ) j� K g

=
2

E[D r
n ]

E
�
j E(H n )j1fj E(H n ) j� K g

�
:

(4.130)

This can be made arbitrarily small, uniformly in n, by choosing K large enough,
since E[D r

n ] is bounded due to Assumption 2.2.1 (D) (and bounded away from 0),
and j E(H n )j is UI. This implies that (D c

n )n 2 N is also UI.
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Chapter 5
Percolation on and
robustness of random
intersection graphs

Based on [117, 138]

This chapter is dedicated to studying percolation on the RIGC model, including
both bond and site percolation, as well as their robustness. In particular, we prove
the results from Section 2.5. The main idea behind the analysis of percolation is
recognizing that percolation on the RIGC is in fact equivalent to another RIGC
with random parameters, to which we can apply our results on the giant component
phase transition. In Section 5.1, we introduce and prove this representation, state
the convergence of the random parameters and use these to complete the proof
of the phase transition. We postpone the proof of the convergence of the random
parameters, together with the implicit description of the critical value, to Sections 5.2
and 5.3 for bond and site percolation respectively. Finally in Section 5.4, we study
robustness of percolation on the RIGC , which shows more intricate behavior than
classical random graph models such as the con�guration model.

5.1 The phase transition of percolation on
the RIGC

In this section, we prove the phase transition of bond and site percolation on the
RIGC model separately.

5.1.1 Phase transition of bond percolation: proof of
Theorem 2.5.1

As stated above, our strategy focuses on �rst gaining a qualitative understanding
of bond percolation and representing it as another RIGC with random parameters.
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5 Percolation on and robustness of random intersection graphs

Recall the construction of the RIGC from Section 2.1. Recall that E(Com )
denotes the disjoint union of edges in all community graphs. Further, denote the
probability measure of the bipartite matching ! n by P! n . For a given ! n , denote
the edge set of the corresponding realization of the RIGC by E(! n ). Note that
by construction and by our choice of treating the RIGC as a multigraph, for any
given ! n , there is a one-to-one correspondence between E(Com ) and E(! n ). For
e 2 E(Com ), we denote the corresponding edge e0 = e(! n ) 2 E(! n ).

Recall that percolation is de�ned conditionally on the realization of the random
graph RIGC , as follows. Given ! n , each edge e0 2 E(! n ) is assigned an indepen-
dent Bernoulli random variable X e0 with success probability � , and we denote this
conditional measure by P� (� j ! n ). Together with the measure P! n of ! n , this
determines the joint measure P� of the percolated graph RIGC( � ) = RIGC e(� ).
In the following, we establish an alternative representation as a product measure.
Intuitively, we make use of the correspondence between E(Com ) and E(! n ) to
de�ne percolation on the communities, rather than on the RIGC , which can be
done independentlyof the bipartite matching.

We de�ne percolation on the communities and the percolated community list
Com (� ) = Com e(� ), as follows. With each e 2 E(Com ), we associate an
independent Bernoulli( � ) random variable X e; e is retained exactly when X e = 1 .
Denote by Coma(� ) = Com e

a(� ) the random graph produced by bond percolation
on Coma . Note that Coma(� ) is not necessarily connected, which con�icts with
our initial assumptions. Thus, we need to replace Coma(� ) by the random list
of its connected components

�
Coma;i (� )

�
i 2 [c(Com a ( � ))] , where c(Coma(� )) =

ce(Coma(� )) denotes the number of connected components of Coma(� ). Then�
Coma;i (� )

�
a2 [M n ];i 2 [c(Com a ( � ))] is the new list of communities.41 We introduce

the new number of communities M n (� ) = M e
n (� ) :=

P
a2 V r c(Coma(� )) , so

that the new rhs partition is [M n (� )]. By re-indexing, we can now write and de�ne
Com (� ) = Com e(� ) :=

�
Com�

a0

�
a02 [M n ( � )] . With these new parameters, the

above intuition can be formalized as follows:

Proposition 5.1.1 (Percolation on the RIGC is still an RIGC ). Bond percolation
with edge retention probability� on anRIGC with parametersd l and Com is
equivalent to anRIGC with parametersd l andCom e(� ). Formally,

RIGC e(d l ; Com )( � ) d= RIGC( d l ; Com e(� )) : (5.1)

We refer to RIGC( d l ; Com e(� )) as the RIGC representation ofRIGC e(� ).
41Strictly speaking, as Com �

a0 arose as a connected component in some unpercolated community graph
Coma , it is generally not labeled by [jCom �

a0j], hence it is not a graph in H (see Section 2.1). However,
since H contains a labeled graph from each isomorphism class of �nite connected graphs, necessarily
Com �

a0 is isomorphic to some H 2 H . Then we can re-label Com �
a0 according to this isomorphism

and the �xed labeling of H , and use it as a community graph in H .

138



5.1 The phase transition of percolation on the RIGC

(a) The percolatedRIGC
The removed edges are re-
presented as dashed.

(b) Percolation on the communities
Using the group memberships, we can �trace back� each removed
edge to a community edge.

(c) The new, percolated community list
If communities become disconnected, we separate each connected
component as its own community, e.g. b is separated into b and d.

Figure 5.1:Reducing percolation on the RIGC to percolation on the communities

Proof.Recall that given ! n , percolation on the RIGC is described by the iid
Bernoulli( � ) random variables (X e0)e02 E( ! n ) . Also recall that each e0 2 E(! n )
can be written as e0 = e(! n ) for a unique e 2 E(Com ) and de�ne X e(! n ) := X e0

for each e 2 E(Com ).

A given realization of RIGC( � ) can be characterized by its (unpercolated) edge
set E(! n ) = E and the outcomes of the Bernoulli variables, xe0 2 f 0; 1g for e0 2 E.
De�ne xe := xe0, with e0 = e(! n ). Then for any given edge set E and (xe0)e02 E ,
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5 Percolation on and robustness of random intersection graphs

P�
�
E(! n ) = E; X e0 = xe0 8e0 2 E

�

= P! n

�
E(! n ) = E

�
P�

�
X e0 = xe0 8e0 2 E(! n )

�
� ! n

�

= P! n

�
E(! n ) = E

�
P� (X e(! n ) = xe 8e 2 E(Com )

�
� ! n

�

= P! n

�
E(! n ) = E

�
P

�
X e = xe 8e 2 E(Com )

�
;

(5.2)

where in the last step we have used that for any ! n , (X e(! n ))e2 E(Com ) are inde-
pendent Bernoulli( � ) random variables, thus the collection has the same law as
(X e)e2 E(Com ) . We conclude that the law of the percolated graph can indeed be
written as a product measure.

Noting that ! n did not change throughout (5.2), we conclude that the new mea-
sure is still an RIGC . Similarly, as d l did not even appear in the formulas, it neces-
sarily remains unchanged. As intuition has predicted, percolation can be executed
on the communities before constructing the random graph, the formulas indeed
contain the random variables X e corresponding to e 2 E(Com ), meaning that the
new RIGC must use Com (� ). This concludes the proof of Proposition 5.1.1.

Next, we show that RIGC( d l ; Com (� )) still satis�es our assumptions, in the
sense of Remark 2.2.3. Denote the (random) empirical distribution of Com (� ) =
Com e(� ) by � ( n ) (� ) = � e;( n ) (� ). Here, � ( n )

H (� ) is the frequency of community
graphs Com�

a0 in the percolatedcommunity list Com (� ) that are isomorphicto
H 2 H . Then, we have the following convergence result:

Proposition 5.1.2 (Convergence of the random parameters of bond percolation).
Assume that the originalCom sequence satis�es Assumption 2.2.1 (C). Then for the
sequence ofCom (� ) = Com e(� ), there exists a mass function� (� ) = � e(� ) on
H , such that for eachH 2 H , asn ! 1 ,

� ( n )

H (� ) P�! � H (� ): (5.3)

LetH n andH denote random graphs with pmfs� ( n ) (� ) and� (� ), respectively, and
denoteD r

n (� ) = D r ;e
n (� ) := jH n j, D r (� ) = D r ;e(� ) := jH j; intuitively, these

random variables represent the empirical and limiting percolated community sizes. If
the originalCom sequence also satis�es Assumption 2.2.1 (D), then

E
�
D r

n (� )
�
� Com (� )

� P�! E[D r (� )] < 1 : (5.4)

We prove Proposition 5.1.2 in Section 5.2.1.1. Recall that V (Com ) denotes
the disjoint union of vertices in all community graphs, and recall that Jn �
Unif[ V (Com )] as well as (2.3). For j 2 V (Com ), let Cc (j; � ) = Cc;e(j; � )
denote the percolated component of j under bond percolation within its commu-
nity. The following statement provides insight into the percolated community sizes
and it is also instrumental to the proof of Proposition 2.5.2:
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5.1 The phase transition of percolation on the RIGC

Claim 5.1.3 (Representation of size-biased percolated community size). We have
the following identity in distribution:

D̂ r
n (� ) d= j Cc (Jn ; � )j � 1: (5.5)

We give the proof of Claim 5.1.3 in Section 5.2.1.2. Intuitively, Claim 5.1.3 relates
the size-biased version of the percolated community size to the size of the percolated
component of a uniform community vertex. We are now ready to prove the phase
transition of bond percolation on the RIGC .

Proof of Theorem 2.5.1 subject to Proposition 5.1.2.By Proposition 5.1.1, it is equiva-
lent to study component sizes in RIGC e(� ) and component sizes in its RIGC re-
presentation RIGC( d l ; Com e(� )) . By a slight abuse of notation, we use C1(� ) =
Ce

1 (� ) and C2(� ) = Ce
2 (� ) to denote the largest and second largest component

of RIGC( d l ; Com (� )) , respectively. Recall � (� ) from Proposition 5.1.2, and the
corresponding limiting community-size D r (� ).

By Proposition 5.1.2 and Remark 2.2.3, our results from Sections 2.3�2.4 apply to
RIGC( d l ; Com (� )) . In particular, applying Theorem 2.4.1 yields the following:

Corollary 5.1.4. There exists� l (� ) = � e
l (� ) 2 [0; 1], the smallest solution of the

�xed point equation
� l (� ) = G

D̂ r ( � )

�
G eD l

�
� l (� )

��
; (5.6)

and� l (� ) = � e
l (� ) := 1 � GD l

�
� l (� )

�
2 [0; 1] such that

j C1(� )j=Nn
P�! � l (� ): (5.7)

Furthermore,� l (� ) > 0 exactly when

E[ eD l ]E[D̂ r (� )] > 1; (5.8)

which we callsupercritical percolation. In this case,C1(� ) is unique in the sense that
j C2(� )j = oP(Nn ), and we callC1(� ) thepercolated giant component.

In the following, we show that there exists � c = � e
c 2 [0; 1] such that the set of

supercritical parameters � can be (almost exactly, as explained shortly) characterized
by � > � c. We do so by proving that � l (� ) is a non-decreasing function of � . Subject
to this statement, clearly there exists a threshold � c given by

� c := inf f � : � l (� ) > 0g = inf
�

� : E[ eD l ]E[D̂ r (� )] > 1
	

: (5.9)

This shows that the characterization is almost exact: � > � c implies that � is
supercritical, and � < � c implies that � is not supercritical. Whether � c itself
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5 Percolation on and robustness of random intersection graphs

is supercritical, i.e., whether � l (� c) < 1, depends on continuity properties of
� 7! � l (� ), which are nontrivial in some cases. We conjecture that � = � c is not
supercritical; from the discussion in Section 5.4.1 below, we shall see that this is
true in special cases.

We now prove the required monotonicity of � l (� ), by showing that for any n �xed,
j C1(� )j=Nn is non-decreasing in � , in the sense of stochastic domination. Subject to
j C1(� )j=Nn being non-decreasing in � , clearly the required monotonicity follows
for the limit � l (� ) as well, by (5.7). We prove monotonicity for �xed n through
the so-called Harris-coupling, de�ned as follows. To each edge e 2 E(RIGC) ,
we assign independent standard uniform random variables Ue, and for any � ,
de�ne X �

e := 1f Ue � � g . The edges retained in RIGC( � ), i.e., in � -percolation
on RIGC , are exactly the edges e such that X �

e = 1 . Clearly, for � 1 < � 2, we
have X � 1

e � X � 2
e for any edge e, thus RIGC( � 1) is a subgraph (that is, an edge-

subgraph) of RIGC( � 2). Denote the component of v in RIGC( � ) by C(v; � ).
Suppose v 2 C1(� 1), then

j C1(� 1)j = j C(v; � 1)j � j C(v; � 2)j � j C1(� 2)j; (5.10)

as C1(� 2) is the largest component by de�nition. Consequently, j C1(� 1)j �
j C1(� 2)j holds under this coupling, which implies the required stochastic domi-
nation j C1(� 1)j=Nn � j C1(� 2)j=Nn . This concludes the proof of Theorem 2.5.1
subject to Proposition 5.1.2.

5.1.2 Phase transition of site percolation: proof of
Theorem 2.5.3

Analogously to the above, we �rst focus on an intuitive understanding of site
percolation and represent it as another RIGC with random parameters. (These
random parameters are di�erent from those arising in the representation of bond
percolation.) Recall that percolation is de�ned conditionally on the realization
of the graph, that is, the percolated graph RIGC( � ) = RIGC v (� ) has double
randomness. Further, recall from Section 2.1 that we de�ne the RIGC using the
underlying BCM (see De�nition 2.1.2 (i)) and the community projection, and we
rely on this construction to understand the e�ect of site percolation on the RIGC .

Deleting vertices of the RIGC , i.e., l -vertices, has a two-fold e�ect. Clearly, the
direct e�ect is that we have to remove the l -vertex from the underlying BCM .
Indirectly, since the individual is identi�ed with its assigned community roles in the
community projection, we also must remove these community roles, which may
disconnect communities. While one has to deal with disconnecting communities
in bond percolation as well, this disconnecting e�ect is caused indirectly in site
percolation, which makes it harder to quantify, and the analysis becomes more
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5.1 The phase transition of percolation on the RIGC

delicate. Fortunately, as we prove shortly, it is also true for sitepercolation on
the RIGC that we can represent it as another RIGC with random parameters
(d l (� ); Com (� )) = ( d l (� ); Com v (� )) de�ned below.

First, we look at the direct e�ect of removing l -vertices and de�ne d l (� ). Recall
that site percolation is de�ned by the collection (X v )v2 V l of iid Bernoulli( � )
random variables, associated with l -vertices, and v 2 V l is retained if X v = 1 .
We can think of (X v )v2 V l as the characteristic vector of the percolated (retained)
vertex set V l (� ) := f v 2 V l : X v = 1g, and we denote its size by Nn (� ) :=
j V l (� )j =

P
v2 V l X v . De�ne d l (� ) := ( dl

v )v2 V l ( � ) . We denote the number of
retained and removed l -half-edges respectively by

hn (� ) :=
X

v2 V l ( � )

dl
v ; h rem

n := hn � hn (� ): (5.11)

We now look at the indirect e�ect of site percolation, i.e., also removing commu-
nity roles, and de�ne Com (� ) = Com v (� ) conditionally onV l (� ). Considering
the underlying BCM , if we remove an l -half-edge, we must also remove the r -half-
edge matched to it. Consequently, after removing h rem

n l -half-edges, we must also
remove the same number of community roles from V (Com ) = [ a2 V r V (Coma),
due to the correspondence of r -half-edges and community roles. Due to ! n being
uniform, it is intuitively clear (we prove it formally shortly), that we can also pick the
removed community roles uniformly at random. Given h rem

n , let V rem (Com ) be a
uniformly chosen subset of V (Com ) of size h rem

n .42 Then we de�ne site percolation
on all the communities Com = (Com a)a2 V r jointly by removing all vertices of
V rem (Com ) from V (Com ). We denote the resulting site percolation on Coma by
Coma(� ) = Com v

a (� ). Note that this is a marginal distribution and is dependent
on site percolation Comb(� ) on other communities b 6= a. As Coma(� ) may have
become disconnected, we cannot consider it a community anymore; instead, we take
its list of connected components (Coma;i (� )) i � c(Com a ( � )) , where c(Coma(� )) =
c(Comv

a (� )) � 0 denotes the number of components of Comv
a (� ).43 Then we can

take (Coma;i (� )) i � c(Com a ( � )) ;a2 V r as the new list of communities.44 We introduce
the new number of communities M n (� ) = M v

n (� ) :=
P

a2 V r c(Coma(� )) , and
write V r (� ) = V r ; v (� ) = [ M n (� )] for the new rhs partition. By re-indexing, we
can write and de�ne Com (� ) = Com v (� ) := (Com �

a0)a02 [M n ( � )] . We can now
formalize the above intuition as follows:
42We can de�ne the uniformly chosen subset V rem (Com ) in two equivalent ways: either by drawing
h rem

n community vertices uniformly at random without replacement, or by choosing a subset of
V (Com ) uniformly at random among all possible subsets of size h rem

n .
43If all vertices of Coma have been removed, then c(Com a (� )) = 0 and the list of connected
components is empty.
44Once again, the new communities generally do not follow the labeling conventions for H , but we can
re-label each according to some H 2 H it is isomorphic to.
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5 Percolation on and robustness of random intersection graphs

Proposition 5.1.5 (Site percolation on the RIGC is equivalent to another RIGC ).
Site percolation onRIGC( d l ; Com ) with vertex retention probability� 2 [0; 1]
is equivalent to anRIGC with the random parameters(d l (� ); Com v (� )) de�ned
above. Formally,

RIGC v (d l ; Com )( � ) d= RIGC( d l (� ); Com v (� )) : (5.12)

Proof.We prove (5.12) by constructing a (many-to-one) mapping between the
underlying probability spaces; we have already used this mapping intuitively for
constructing the random parameters. By de�nition, the percolated graph on the
lhs is characterized by the bipartite matching ! n � Unif[
 n ] (with j
 n j = hn !)
and the iid Bernoulli( � ) random variables (X v )v2 V l . In the following, we use
these to derive the variables describing the distribution on the rhs of (5.12): V l (� )
that determines d l (� ), V rem (Com ) that determines Com (� ) and a (smaller)
bipartite matching ! n between the retained half-edges. Note that V l (� ) arises
naturally through its characteristic vector (X v )v2 V l , and so does V rem (Com )
as the community roles matched to removed l -vertices. Conditionally on V l (� ),
we decompose ! n as follows. Let ! n (� ) denote the sub-matching restricted to
retainedl -half-edges, and ! rem

n denote the complement, i.e., the sub-matching
restricted to removedl -half-edges, so that ! n = ! n (� )

�
[ ! rem

n arises as a disjoint
union. Intuitively, ! n (� ) corresponds to ! n . Let (xv ) 2 f 0; 1gV l

denote a possible
outcome of (X v )v2 V l and k(xv )k1 :=

P
v2 V l xv . Let wn 2 
 n be a �xed matching

and (wn (� ); wrem
n ) its decomposition conditionally on (X v ) = ( xv ), and W �

V (Com ) the corresponding outcome of removed community roles V rem (Com ).
Then, noting that V rem (Com ) is determined by (X v ) and ! n ,

P
�
! n = wn ; (X v ) = ( xv )

�

= P
�
! n = wn ; (X v ) = ( xv ); V rem (Com ) = W

�

= P
�
! n = wn

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�

V rem (Com ) = W; (X v ) = ( xv )
�

(5.13)

Conditionally on f V rem (Com ) = W; (X v ) = ( xv )g, we know which l - and
r -half-edges are retained and which are removed, which implies that the sub-
matchings ! n (� ) and ! rem

n are conditionally independent, however W and (X v )
do not determine which sub-matchings are realized among retained and removed
half-edges, respectively. Hence

P
�
! n = wn ; (X v ) = ( xv )

�

= P
�
! n (� ) = wn (� )

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�
! rem

n = wrem
n

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�

V rem (Com ) = W
�
� (X v ) = ( xv )

�
� P

�
(X v ) = ( xv )

�
:

(5.14)
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5.1 The phase transition of percolation on the RIGC

We know want to express this probability explicitly. By the above reasoning, ! n (� )
and ! rem

n are conditionally independent and further, they are uniform over all
possible sub-matchings of retained and removed half-edges, respectively, since
! n is uniform over 
 n . Note that conditionally on (X v ) = ( xv ), h rem

n is known,
further, conditionally on h rem

n , V rem (Com ) is a uniform subset of size h rem
n . Then,

we have that45

P
�
! n = wn ; (X v ) = ( xv )

�
=P

�
(X v ) = ( xv )

�

= P
�
! n (� ) = wn (� )

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�
! rem

n = wrem
n

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�

V rem (Com ) = W
�
� (X v ) = ( xv )

�

=
1

hn (� )!
1

h rem
n !

1
� hn

h rem
n

� =
1

hn !
;

(5.15)

which in fact equals P
�
! n = wn

�
= P

�
! n = wn

�
� (X v ) = ( xv )

�
, by independence,

however this decomposition is crucial. We can now de�ne the mapping between
the probability spaces. Since ! n (� ) and ! n are both uniform matchings between
retained half-edges, they can can be realized by the same outcome wn (� ). Note that
the variables (X v )v2 V l and V rem (Com ) are identical in the construction of the
random graphs RIGC( d l ; Com )( � ) and RIGC( d l (� ); Com (� )) . However, ! rem

n
does not have an equivalent in RIGC( d l (� ); Com (� )) . Fortunately, conditionally
on the other variables, all outcomes of ! rem

n = wrem
n yield the same realization

of the percolated graph RIGC( d l ; Com )( � ). Intuitively this is because it does
not matter which of the removed vertices has indirectly caused the removal of a
given community role, as long as the same set of vertices and community roles are
removed and the retained vertices take the same community roles. Thus, we can
map ((xv ); wn ), or equivalently ((xv ); W; wn (� ); wrem

n ), for all feasible values of
wrem

n , into ((xv ); W; wn (� )) . We next check that this indeed yields the required
distribution for ! n (� ), V rem (Com ) and (X v ), which are the governing random va-
riables of RIGC( d l (� ); Com (� )) . Using (5.13�5.15), and that (X v ) is the random
characteristic vector of retained individuals,

P
�
! n (� ) = wn (� ); ! rem

n = wrem
n ; V rem (Com ) = w; (X v ) = ( xv )

�

= P
�
! n = wn ; (X v ) = ( xv )

�
=

1
hn !

� k(X v )k1 (1 � � )N n �k (X v )k1
(5.16)

for all h rem
n ! possible values of wrem

n , and

45While these calculations may not sound intuitive in light of Janson’s construction [128], they are
made possible by the bipartite nature of the graph and the extensive conditioning.
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5 Percolation on and robustness of random intersection graphs

P
�
! n = wn (� ); V rem (Com ) = W; (X v ) = ( xv )

�

= P
�
! n = wn (� )

�
� V rem (Com ) = W; (X v ) = ( xv )

�

� P
�

V rem (Com ) = W
�
� (X v ) = ( xv )

�
� P

�
(X v ) = ( xv )

�

=
1

hn (� )!
1

� hn
h rem

n

� � k(X v )k1 (1 � � )N n �k (X v )k1

=
h rem

n !
hn !

� k(X v )k1 (1 � � )N n �k (X v )k1 = h rem
n ! � P

�
! n = wn ; (X v ) = ( xv )

�
:

(5.17)

We have thus con�rmed that the above mapping between the probability spaces
implies (5.12), which concludes the proof of Proposition 5.1.5.

In the following, we state that the arising random parameters satisfy Assump-
tion 2.2.1, in the sense of Remark 2.2.3. Let V l

k (� ) := f v 2 V l (� ) : l -deg(v) = kg
and V r

H (� ) = V r ; v (� ) := f a0 2 V V r ; v
H (� ) : Com�

a0 ' H g. Further, let
V l

n (� ) � Unif[ V l (� )] and D l
n (� ) := l -deg(V l

n (� )) .

Proposition 5.1.6 (Convergence of the random parameters of site percolation).
Consider the original parameters(d l ; Com ) under Assumption 2.2.1, then

A) p( n )

k (� ) := P
�
D l

n (� ) = k
�
� d l (� )

�
= j V l

k (� )j=Nn (� ) P�! pk .

B) E
�
D l

n (� )
�
� d l (� )

�
= 1=Nn (� )

P
v2 V l ( � ) dl

v
P�! E[D l ].

C) There exists a mass function� (� ) = � v (� ) on H such that

� ( n )

H (� ) = � v;( n )

H := j V r ; v
H (� )j=M v

n (� ) P�! � v
H (� ): (5.18)

C1) Let H n and H denote random graphs with pmfs� ( n ) (� ) and � (� )
respectively, and de�neD r

n (� ) = D r ; v
n (� ) := jH n j and D r (� ) =

D r ; v (� ) := jH j. Then Proposition 5.1.6 (C) implies that

P
�
D r

n (� ) = k
�
� Com (� )

�
=

X

H 2 H ;jH j= k
� ( n )

H (� )

P�! P
�
D r (� ) = k

�
:

(5.19)

D) Further,E
�
D r

n (� )
�
� Com (� )

� P�! E
�
D r (� )

�
.

We postpone the proof of Proposition 5.1.6 to Section 5.3.1 and �rst state a useful
corollary:
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5.2 Bond percolation

Corollary 5.1.7 (Retained and removed half-edges). With hn from(2.1), the number
of retained and removed half-edgeshn (� ) andh rem

n from (5.11) satisfy

hn (� )
hn

P�! �;
h rem

n

hn

P�! 1 � �: (5.20)

The statement is quite intuitive, considering that each individual l -half-edge is
retained exactly when the incident l -vertex is retained, with probability � . However
for the concentration, we have to ensure that the dependency between l -half-edges
incident to the same l -vertex is not too large. Conveniently, Corollary 5.1.7 follows
from Proposition 5.1.6 (B), and we complete the proof in Section 5.3.1. With all
ingredients in hand, we now prove the phase transition of site percolation.

Proof of Theorem 2.5.3 subject to Proposition 5.1.6.This proof is analogous to the
proof of Theorem 2.5.1 in Section 5.1.1. By Proposition 5.1.5, we can represent
the site-percolated graph RIGC v (d l ; Com )( � ) by a RIGC with random parame-
ters RIGC( d l (� ); Com v (� )) . Subject to Proposition 5.1.6, the random parameters
converge, thus by Remark 2.2.3, Theorem 2.4.1 is applicable for the above RIGC
with random parameters, which implies that

i) a function � l (� ) = � v
l (� ) exists so that j Cv

1 (� )j=Nn (� ) P�! � l (� ) (for � > 0,
since Nn (� ) = 0 );

ii) � l (� ) > 0 exactly when E[ eD l ]E
�
D̂ r ; v (� )

�
> 1.

Similarly to the proof of Theorem 2.5.1, the Harris-coupling shows that for all
n 2 N, the size of the largest component scaled by the original number of vertices
j C1(� )j=Nn is monotone in � . By binomial concentration, Nn (� )=Nn

P�! � , hence
j C1(� )j=Nn

P�! � � � l (� ), and this limit must also be non-decreasing. Necessarily,
there exists a threshold � c = inf

�
� : � � � l (� ) > 0

	
= inf

�
� : � l (� ) > 0

	

= inf
�

� : E[ eD l ]E
�
D̂ r (� )

�
> 1

	
that characterizes the phase transition, where

the �rst equation holds since we have assumed that � > 0. This concludes the
proof of Theorem 2.5.3 subject to Proposition 5.1.6.

5.2 Bond percolation

In this section, we focus on bond percolation and provide further details on the
phase transition. In particular, we prove the convergence of the random model
parameters from Section 5.1.1 and implicitly identify the critical probability. As
we only deal with bond percolation in this section, we omit the superscripts e to
simplify the notation.
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5 Percolation on and robustness of random intersection graphs

5.2.1 The parameters of bond percolation

In this section, we provide the proof for Proposition 5.1.2 and Claim 5.1.3.

5.2.1.1 Convergence of the percolated community list

Proof of Proposition 5.1.2.We �rst prove (5.3). Recall Com (� ) = (Com �
a )a2 [M n ( � )]

from Section 5.1.1. Recall (2.8) and for any possible community graph H 2 H , we
introduce

V r
H (� ) := f a 2 [M n (� )] : Com�

a ' H g: (5.21)

Our aim is to prove that the following quantity converges in probability to some
constant:

� ( n )

H (� ) = j V r
H (� )j

�
M n (� ) =

j V r
H (� )j
M n

�
M n

M n (� )
: (5.22)

In the following, we prove convergence in probability to respective constantsfor
both factors separately. This implies convergence in probability for the product,
despite the dependence.

Recall that each new community in Com (� ) is a connected component under
percolation on some original community in Com . Thus, to count the frequencies
and total number of new communities, we break it down with respect to the
original communities, and �rst study percolation on an arbitrary community and
the frequency of each outcome.

We introduce some notation. Recall that H denotes the set of possible community
graphs: simple, �nite, connected graphs, with a �xed arbitrary labeling. For an
arbitrary F 2 H , denote bond percolation on F by F (� ). We introduce an object to
compare realizations of this random graph to: let Gdenote the set of simple, �nite,
not necessarily connected, unlabeled graphs. Denote by supp(F (� )) the set of all
G 2 G that are isomorphic to some possible realization of F (� ), which is exactly
the set of edge-subgraphs of F (hence it is in fact not dependent on � ). Note that for
a �xed F , supp(F (� )) is a �nite set. Recall (2.8). For F 2 H and G 2 supp(F (� )) ,
de�ne the random subset of original r -vertices with original community graph F
that become isomorphic to G under percolation:

V r
F ( � ) ' G := f a 2 V r

F : Coma(� ) ' Gg: (5.23)

Note that X

G2 supp( F ( � ))

j V r
F ( � ) ' G j = j V r

F j; (5.24)

with V r
F de�ned as in (2.8). Since percolation on di�erent communities is indepen-

dent, (j V r
F ( � ) ' G j)G2 supp( F ( � )) has a multinomial distribution with number of trials
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5.2 Bond percolation

j V r
F j and probability vector

�
P(F (� ) ' G)

�
G2 supp( F ( � )) . Thus by multinomial

concentration and j V r
F j=Mn ! � F (Assumption 2.2.1 (C)), as a random vector,

M � 1
n �

�
j V r

F ( � ) ' G j
�

G2 supp( F ( � ))
P�! � F �

�
P(F (� ) ' G)

�
G2 supp( F ( � )) : (5.25)

In the following, we study how one or more copies of H 2 H can be produced
by percolating some F 2 H . We de�ne the multiplicity of H in any G 2 G,
denoted by � (H j G) � 0, as the number of distinct connected components in G
that are isomorphic to H . Note that there exists some (possibly more than one)
G 2 supp(F (� )) such that � (H j G) � 1 exactly when H is isomorphic to an
edge-subgraph of F . We compute, for arbitrary H 2 H ,

M � 1
n j V r

H (� )j =
X

F 2 H

X

G2 supp( F ( � ))

M � 1
n j V r

F ( � ) ' G j � � (H j G): (5.26)

We claim that

M � 1
n j V r

H (� )j P�!
X

F 2 H

X

G2 supp( F ( � ))

� F � P(F (� ) ' G) � � (H j G) < 1 : (5.27)

For convenience, we denote the inner sums by

T �
n (F; H ) :=

X

G2 supp( F ( � ))

M � 1
n j V r

F ( � ) ' G j � � (H j G);

T � (F; H ) :=
X

G2 supp( F ( � ))

� F � P(F (� ) ' G) � � (H j G):
(5.28)

Since supp(F (� )) is a �nite set, and � (H j G) are constants, by (5.25) the linear
combinations T �

n (F; H ) P�! T � (F; H ) as n ! 1 , for each H; F 2 H and � .
Next, we use a truncation argument to prove the convergence of the in�nite sum
over F 2 H . The same argument also reveals the rhs of (5.27) to be �nite.

Note that, since � (H j G) counts componentsof G that are isomorphic to H ,
� (H j G) � j Gj

�
jH j = jF j

�
jH j. Recall (2.9). Thus, for a �xed F , by (5.24),

T �
n (F; H ) �

X

G2 supp( F ( � ))

M � 1
n j V r

F ( � ) ' G j �
jF j
jH j

= M � 1
n j V r

F j �
jF j
jH j

=
� ( n )

F jF j
jH j

:

(5.29)
By Assumption 2.2.1 (D),

X

F 2 H

� ( n )

F jF j = E[D r
n ] ! E[D r ] =

X

F 2 H

� F jF j < 1 : (5.30)
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5 Percolation on and robustness of random intersection graphs

Thus for arbitrary " > 0, there exists K = K (") and n0 = n0(" ) such that for all
n � n0,

X

F 2 H ;jF j>K

� F jF j < "= 6;
X

F 2 H ;jF j>K

� ( n )

F jF j < "= 3: (5.31)

Combining (5.29-5.31), we obtain that for n � n0,

0 �
X

F 2 H
jF j>K

T �
n (F; H ) �

X

F 2 H
jF j>K

� ( n )

F jF j
jH j

< "= 3: (5.32)

Analogously, using (5.30) and the identity
P

G2 supp( F ( � )) P(F (� ) ' G) = 1 ,

0 �
X

F 2 H
jF j>K

T � (F; H ) �
X

F 2 H
jF j>K

X

G2 supp( F ( � ))

� F P(F (� ) ' G)
jF j
jH j

=
X

F 2 H
jF j>K

� F
jF j
jH j

< "= 6:
(5.33)

Note that the number of F 2 H such that jF j � K is �nite, thus by (5.25), it
follows that the truncated sum converges in probability, i.e., as n ! 1 ,

P
� �

�
�

X

F 2 H
jF j� K

T �
n (F; H ) �

X

F 2 H
jF j� K

T � (F; H )
�
�
� < "= 2

�
! 1: (5.34)

Combining (5.32-5.34) via the triangle inequality yields the desired convergence
in probability in (5.27). Note that the rhs of (5.27) is the sum of a �nite sumP

F 2 H ;jF j� K T � (F; H ) in (5.34) and a bounded quantity
P

F 2 H ;jF j>K T � (F; H )
in (5.33), and it is thus �nite.

Next, we study M n (� )=Mn , that is the reciprocal of the second factor in (5.22).
Recall that for G 2 G, the number of connected components in G is denoted by
c(G). Recall (5.23) and compute

M n (� )=Mn =
X

F 2 H

X

G2 supp( F ( � ))

M � 1
n j V r

F ( � ) ' G j � c(G): (5.35)

We note the similarity between this formula and (5.26), as well as c(G) � j Gj = jF j.
Thus, with analogous arguments and the same truncation as above, we conclude
that

M n (� )=Mn
P�!

X

F 2 H

X

G2 supp( F ( � ))

� F � P(F (� ) ' G) � c(G) < 1 : (5.36)
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Combining (5.22), (5.26) and (5.36) yields

� ( n )

H (� ) =
j V r

H (� )j
M n

. M n (� )
M n

P�!

P
F 2 H

P
G2 supp( F ( � )) � F � P(F (� ) ' G) � � (H j G)

P
F 2 H

P
G2 supp( F ( � )) � F � P(F (� ) ' G) � c(G)

=: � H (� ):

(5.37)

This concludes the proof of (5.3). Note that community sizes cannot increase
under percolation, thus D r

n (� ) � D r
n , and (D r

n )n 2 N is tight (since it is also UI).
Consequently, by P

�
D r

n (� ) � K
�

� P
�
D r

n � K
�
, (D r

n (� ))n 2 N is also tight, thusP
H 2 H � ( n )

H (� ) = 1 for each n 2 N implies that
P

H 2 H � H (� ) = 1 .
Next, we prove (5.4). By de�nition, we compute

E
�
D r

n (� )
�
� Com (� )

�
=

1
M n (� )

X

a2 [M n ( � )]

jCom�
a j =

j V (Com (� )) j
M n (� )

: (5.38)

Recall that, by the de�nition of Com (� ), j V (Com (� )) j = j V (Com )j = hn .
Thus,

E
�
D r

n (� )
�
� Com (� )

�
=

hn

M n (� )
=

hn

M n
�

M n

M n (� )
= E[D r

n ] �
M n

M n (� )

P�!
E[D r ]

P
F 2 H

P
G2 supp( F ( � )) � F � P(F (� ) ' G) � c(G)

=: C < 1 ;
(5.39)

by Assumption 2.2.1 (D) and (5.36). We have yet to show that C = E[D r (� )].
From (5.3), it follows that D r

n (� ) d�! D r (� ) as n ! 1 . Further, the stochas-
tic domination 0 � D r

n (� ) � D r
n also holds conditionally on Com (� ). By

Assumption 2.2.1 (D), (D r
n )n 2 N is UI. For any �xed K , by stochastic domina-

tion, E
�
D r

n (� )1f D r
n ( � )>K g

�
� E

�
D r

n 1f D r
n >K g

�
, thus (D r

n (� ))n 2 N is also UI, and
consequently the total expectation E[D r

n (� )] ! E[D r (� )] < 1 . Noting that
E

�
D r

n (� )
�
� Com (� )

�
� E[D r

n ] by stochastic domination, and (E[D r
n ])n 2 N is

bounded, E
�
D r

n (� )
�
� Com (� )

� P�! C implies that E
�
E[D r

n (� ) j Com (� )]
�

=
E[D r

n (� )] ! C. Since the limit is unique, we obtain that necessarily C = E[D r (� )].
This concludes the proof of (5.4) as well as the proof of Proposition 5.1.2.

5.2.1.2 Representation of size-biased community sizes

Proof of Claim 5.1.3.Recall that for j 2 V (Coma), Cc (j; � ) denotes its connected
component under � -percolation on Coma . Recall the percolated community list
Com (� ) = (Com �

a )a2 [M n ( � )] . Using the de�nition of the empirical distribution
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D r
n (� ) and the transform in (2.3), we compute the empirical mass function of D̂ r

n (� )

P
�
D̂ r

n (� ) = k
�
� Com (� )

�
=

(k + 1) P
�
D r

n (� ) = k + 1
�
� Com (� )

�

E
�
D r

n (� )
�
� Com (� )

�

=
(k + 1) 1

M n ( � )

P
a2 [M n ( � )] 1fj Com �

a j= k+1 g

1
M n ( � )

P
a2 [M n ( � )] jCom�

a j
:

(5.40)

In the numerator, we substitute (k +1) � 1fj Com �
a j= k+1 g = jCom�

a j � 1fj Com �
a j= k+1 g .

Also note that, by construction of Com (� ) (see Section 5.1.1), the sum in the
denominator equals

P
a2 [M n ( � )] jCom�

a j = j V (Com )j =
P

a2 [M n ] jComa j = hn ,
with hn from (2.1). Thus,

P
�
D̂ r

n (� ) = k
�
� Com (� )

�
=

P
a2 [M n ( � )] jCom�

a j � 1fj Com �
a j= k+1 g

hn

=
1

hn

X

a2 [M n ( � )]

X

j 2 V (Com �
a )

1fj Com �
a j= k+1 g

=
1

hn

X

a2 [M n ( � )]

X

j 2 V (Com �
a )

1fj Cc ( j;� ) j= k+1 g;

(5.41)

where we have used that for j 2 V (Com�
a ), its percolated component is ex-

actly Com�
a , thus j Cc (j; � )j = jCom�

a j. Once again by [ a2 [M n ( � )] V (Com�
a ) =

V (Com ),

P
�
D̂ r

n (� ) = k
�
� Com (� )

�
=

1
hn

X

j 2 V (Com )

1fj Cc ( j;� ) j= k+1 g

= P
�
j Cc (Jn ; � )j = k + 1

�
� Com (� )

�
= P

�
j Cc (Jn ; � )j � 1 = k

�
� Com (� )

�
:

(5.42)

It follows that P
�
D̂ r

n (� ) = k
�

= P
�
j Cc (Jn ; � )j � 1 = k

�
for all k, which implies

(5.5). This concludes the proof of Claim 5.1.3.

5.2.2 Critical value of bond percolation

This section is dedicated to proving Proposition 2.5.2.

Proof of Proposition 2.5.2.First, we prove (2.63). Recall that in (5.9), we have identi-
�ed � c = inf f � : E[ eD l ]E[D̂ r (� )] > 1g. Thus, it is su�cient to show that

E
�
D̂ r (� )

�
= E

�
jH j (j CH (UH ; � )j � 1)

�
=E[D r ]; (5.43)
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where H is a random graph with pmf � , UH j H � Unif[H ], and E[�] on the
right hand side denotes total expectation (wrt the joint measure of H , UH and the
percolation).

To express its expectation, we analyze the distribution of D̂ r (� ), using that
D̂ r

n (� ) d�! D̂ r (� ) by Proposition 5.1.2 and j Cc (Jn ; � )j� 1 d= D̂ r
n (� ) by Claim 5.1.3.

As before, Cc (j; � ) denotes the component of j 2 Coma under � -percolation on
Coma , and Jn � Unif[ V (Com )], where V (Com ) denotes the disjoint union of
all vertices in community graphs.

Note that Jn is chosen uniformly at random among all community roles, which
is equivalent to choosing a community in a size-biasedfashion, then choosing a
uniform member of the chosen community. In the following, we use this observation
to analyze the distribution of j Cc (Jn ; � )j. Recall from Section 2.1 that all isomorphic
community graphs are labeled in the same way and community roles in H are
described by a label l 2 [jH j]. Intuitively, for the distribution of Cc (Jn ; � ), only
the community graph and label of Jn matter, thus we introduce the concept of
type to represent this pair. Recall that a community role j 2 V (Com ) that
is in Coma and has label l can be represented by the pair (a; l), and de�ne its
type as Type(j ) := (Com a ; l ). Using that Jn � Unif[ V (Com )], we compute
the distribution of its random type Type(Jn ) =: ( H ?

n ; I n ). Using (2.9) and that
j V (Com )j = hn = M n E[D r

n ] by Remark 2.2.2 (i),

P
�
H ?

n = H
�

= P
�
Jn 2 [ a2 V r

H
V (Coma)

�

=
j V r

H j � j H j
j V (Com )j

=
j V r

H j � j H j
M n E[D r

n ]
=

� ( n )

H � jH j
E[D r

n ]
=: � ( n ) ;?

H :
(5.44)

Indeed, as intuition suggests, H ?
n is chosen in a size-biased fashion wrt its number

of vertices. It is also intuitive that conditionally on H ?
n , I n is uniform on [jH ?

n j].
Noting that in each community graph Coma ' H there is one vertex with label l
and jH j vertices in total, we indeed obtain

P
�
I n = l

�
� H ?

n = H
�

=
j V r

H j � 1
j V r

H j � j H j
=

1
jH j

: (5.45)

By Assumption 2.2.1 (C) and (D), the joint mass function converges:

P
�
(H ?

n ; I n ) = ( H; l )
�

=
� ( n )

H � jH j
E[D r

n ]
1

jH j

!
� H � jH j
E[D r ]

1
jH j

=: P
�
(H ?; I ) = ( H; l )

�
;

(5.46)

so that (H ?
n ; I n ) d�! (H ?; I ). We now return to studying j Cc (Jn ; � )j. Let us

write Cc (j; � ) in terms of Type(j ) = ( H; l ) as CH (l; � ) d= Cc (j; � ) (see Proposi-
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tion 2.5.2), and consider Cc (Jn ; � ) d= CH ?
n (I n ; � ) as a mixture. We have shown that

the type of Jn which serves as the mixing variable satis�es (H ?
n ; I n ) d�! (H ?; I ),

and since it has countably many values, this implies46 that the mixture also con-
verges in distribution: j Cc (Jn ; � )j d= j CH ?

n (I n ; � )j d�! j CH ?
(I; � )j. Recall that

D̂ r
n (� ) + 1 d= j Cc (Jn ; � )j by Claim 5.1.3 and D̂ r

n (� ) d�! D̂ r (� ) by Proposi-
tion 5.1.2. Necessarily, by the uniqueness of the limit, D̂ r (� ) + 1 d= j CH ?

(I; � )j.
We compute

E
�
D̂ r (� )

�
= E

�
j CH ?

(I; � )j � 1
�

= E
h
E

�
j CH ?

(I; � )j � 1
�
� (H ?; I )

� i

=
X

H 2 H

X

i 2 [jH j ]

E
�
j CH (i; � )j � 1

� 1
jH j

� H jH j
E[D r ]

=
X

H 2 H

� H jH j
�

1
jH j

X

i 2 [jH j ]

E
�
j CH (i; � )j � 1

�
� .

E[D r ]:

(5.47)

Recall that H denotes a random graph with pmf � and UH j H � Unif[ V (H )];
in particular, UH � Unif[ V (H )] for �xed H 2 H . Then

E[D̂ r (� )] =
X

H 2 H

� H jH j � E
�
j CH (UH ; � )j � 1

��
E[D r ]

= E
h
jH j � E

�
j CH (UH ; � )j � 1

�
� H

� i.
E[D r ];

(5.48)

which is equivalent to (5.43) by the tower property of conditional expectation. This
concludes the proof of (2.63).

Next, we prove that � c < 1. Recall that we only study percolation under the
supercriticality condition (2.47). We show that there exists some � < 1 such that
E[D̂ r (� )] > 1=E[ eD l ], which is equivalent to (5.8). Using (5.47), for some K 2 Z+

to be speci�ed later, we bound

E[D̂ r (� )] �
X

H 2 H
jH j� K

� H

E[D r ]

X

i 2 [jH j ]

E
�
j CH (i; � )j � 1

�
=: S� K (� ): (5.49)

We show that, for appropriately chosen K and � , S� K (� ) > 1=E[ eD l ] by compa-
ring both to S� K (1) as an intermediate step. In fact, noting that CH (i; 1) is the
unpercolated component of i , i.e., the entire graph H , we have
46The pointwise di�erence of mass functions of the mixtures can be bounded in terms of the total

variation distance of the mixing variables.

154



5.3 Site percolation

S� K (1) =
X

H 2 H
jH j� K

� H

E[D r ]

X

i 2 [jH j ]

E
�
j CH (i; 1)j � 1

�

=
X

H 2 H
jH j� K

� H

E[D r ]

X

i 2 [jH j ]

(jH j � 1) =
X

H 2 H
jH j� K

� H

E[D r ]
jH j(jH j � 1)

=
E

�
jH j(jH j � 1)1fj H j� K g

�

E[D r ]
;

(5.50)

where H is a random graph with pmf � . Then, by Assumption 2.2.1 (C1), jH j d= D r .
Further using (2.3),

S� K (1) =
E

�
D r (D r � 1)1f D r � K g

�

E[D r ]
= E

� eD r � 1f eD r <K g

�
: (5.51)

Clearly, the partial sums S� K (1) ! E[ eD r ] as K ! 1 . By the supercriticality
condition (2.47), we know that E[ eD r ] > 1=E[ eD l ], thus there exists K large enough
so that S� K (1) > 1=E[ eD l ]. We �x such a K . Next, we compare S� K (� ) and
S� K (1). Note that S� K (� ) is a �nite sum, as f H 2 H : jH j � K g is a �nite set.
Further, E

�
j CH (i; � )j

�
is a polynomial in � for any �xed (H; i ), thus it is continuous.

Consequently, � 7! S� K (� ) is continuous, and by S� K (1) > 1=E[ eD l ], we can
choose � < 1 su�ciently close to 1 so that S� K (� ) > 1=E[ eD l ]. We have thus
shown that for some K 2 Z+ and � < 1, as chosen above,

E[D̂ r (� )] � S� K (� ) > 1=E[ eD l ]; (5.52)

which implies that indeed � c < 1. This concludes the proof of Proposition 2.5.2.

5.3 Site percolation

In this section, we focus on site percolation and provide further details on the phase
transition. In particular, we prove the convergence of the random model parameters
from Section 5.1.2 and implicitly identify the critical probability. As we only deal
with site percolation in this section, we omit the superscripts v to simplify the
notation.

5.3.1 The parameters of site percolation

This section is dedicated to proving Proposition 5.1.6 and Corollary 5.1.7.
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5.3.1.1 Random left-degrees

We �rst prove the statements related to the l -degrees in Proposition 5.1.6 (A-B)
and Corollary 5.1.7.

Proof of Proposition 5.1.6 (A).Recall V l
k = f v 2 V l : l -deg(v) = kg. We �rst

show that

j V l
k (� )j=j V l

k j P�! �; (5.53a)

Nn (� )=Nn
P�! �: (5.53b)

By the de�nition of V l (k), V l (� ) and V l
k (� ),

j V l
k (� )j = j V l

k \ V l (� )j =
X

v2 V l
k

1f v2 V l ( � )g =
X

v2 V l
k

1f X v =1 g; (5.54)

Nn (� ) = j V l (� )j =
X

v2 V l

1f X v =1 g: (5.55)

By the de�nition of percolation, the indicators on the rhs are iid Bernoulli( � )
random variables, thus (5.53) follows by binomial concentration. Combining (5.53)
and Assumption 2.2.1 (A),

j V l
k (� )j

Nn (� )
=

j V l
k (� )j
j V l

k j
�

j V l
k j

Nn
�

Nn

Nn (� )
P�! � � pk

�
� = pk : (5.56)

This concludes the proof of Proposition 5.1.6 (A).

Proof of Proposition 5.1.6 (B).We prove the required convergence via a truncation
argument. We compute the conditional expectation by de�nition and with some
K 2 Z+ to be chosen later, we decompose it as follows:

E
�
D l

n (� )
�
� d l � =

1X

k=1

k � p( n )

k (� ) =
KX

k=1

k � p( n )

k (� ) +
X

k>K

k � p( n )

k (� ): (5.57)

By Proposition 5.1.6 (A), the �nite sum
P K

k=1 k � p( n )

k (� ) P�!
P K

k=1 k � pk , i.e., for
any " > 0,

�
�
�

KX

k=1

k � p( n )

k (� ) �
KX

k=1

k � pk

�
�
� � "=3 whp: (5.58)

Using (5.54), we rewrite the tail as

X

k>K

k � p( n )

k (� ) =
X

k>K

k �
j V l

k (� )j
Nn (� )

=
X

k>K

k �

P
v2 V l

k
1f v2 V l ( � )g

Nn (� )
: (5.59)
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Bounding the indicators by 1,

X

k>K

k � p( n )

k (� ) �
Nn

Nn (� )

X

k>K

k �
j V l

k j
Nn

=
Nn

Nn (� )

X

k>K

k � pk : (5.60)

By (5.53b), Nn =Nn (� ) P�! 1=� , thus Nn =Nn (� ) � 2=� whp. Since E[D l ] < 1 ,
we can choose K large enough so that

P
k>K k � pk < "�= 6, then

X

k>K

k � p( n )

k (� ) < "= 3 whp: (5.61)

Since "�= 6 < "= 3,
P

k>K k � pk < "= 3 for our choice of K . Thus, by (5.58), (5.61)
and the triangle inequality,

�
�E

�
D l

n (� )
�
� d l � � E[D l ]

�
� =

�
�
�

1X

k=1

k � p( n )

k (� ) �
1X

k=1

k � pk

�
�
� < " whp: (5.62)

That is, the convergence in probability in Proposition 5.1.6 (B) holds.

Proof of Corollary 5.1.7.By the relation h rem
n = hn � hn (� ), it is su�cient to prove

that hn (� )=hn
P�! � . We rewrite, recognizing the empirical average,

hn (� )
hn

=

P
v2 V l ( � ) dl

v

Nn (� )
Nn (� )

Nn

Nn

hn
= E

�
D l

n (� )
�
� d l � Nn (� )

Nn

1
E[D l

n ]
: (5.63)

By Proposition 5.1.6 (B), (5.53b) and Assumption 2.2.1 (B),

hn (� )
hn

P�! E[D l ]�= E[D l ] = �; (5.64)

which concludes the proof of Corollary 5.1.7.

5.3.1.2 Random community list

We now prove results on the random communities: Proposition 5.1.6 (C-D). We
prove Proposition 5.1.6 (C) analogously to the proof of (5.3) in Section 5.2.1.1. For
this, we require the following de�nitions and lemma below.

Recall that (Coma(� ))a2 V r , i.e., percolation on the original communities is de�-
ned jointly, by removing a uniformly chosen subset of given size of the community
vertices. We refer to the resulting marginal distribution of some Coma(� ) as mar-
ginal percolation for clarity, as we will be comparing it to Bernoulli site percolation
on Coma . Further recall that each community in the percolated community list

157
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is a component of percolation on an original community. We �rst study how the
joint percolation of communities a�ects V r

F = f a 2 V r : Coma = F g, the set of
original communities with community graph F 2 H . Denote by supp(F (� )) the
set of all possible (not necessarily connected) labeled graphs G that are obtained
from F by deleting a subset of vertices (and all adjacent edges); in other words,
all possible outcomes of site percolation on F . For some community a such that
Coma = F and some G 2 supp(F (� )) , denote the event that percolation on Coma

results in G by f Coma(� ) �= Gg. Denote the random set of original communities
with original community graph F where percolation results in G 2 supp(F (� ))
by

V r
F ( � ) �= G = V r ; v

F ( � ) �= G := f a 2 V r : Coma = F; Coma(� ) �= Gg: (5.65)

Then, we have the following result on the size of this set:

Lemma 5.3.1 (Percolation on communities). LetF 2 H andG 2 supp(F (� )) ,
and considerV r

F ( � ) �= G as arising from thejoint site percolation(Comv
a (� ))a2 V r .

Then
j V r

F ( � ) �= G j

M n

P�! � F � PBer
�
F (� ) �= G

�
; (5.66)

wherePBer denotes the probability measure ofBernoulli site percolation, i.e., retaining
each vertex ofF independently with probability� .

We prove Lemma 5.3.1 in Section 5.3.1.3. Intuitively, Lemma 5.3.1 asserts that
percolation on communities (as de�ned by removing a set of community roles
chosen uar) is �close� to Bernoulli percolation on V r

F , the set of communities with
the same, given community graph, and further asymptotically independent for all
communities in this set. In fact, the �rst and second moment method used in the
proof can be extended to show asymptotic independence of marginal percolation
Comv

a (� ), Comv
b (� ) on any two communities a; b2 V r , with di�erent community

graphs as well. Subject to this lemma, we are now ready to prove the convergence
of the empirical distribution of the random community list Com v (� ):

Proof of Proposition 5.1.6 (C) subject to Lemma 5.3.1.The proof closely follows the
argument in the proof of Proposition 5.1.2 in Section 5.2.1. We rewrite

j V r
H (� )j

M n (� )
=

j V r
H (� )j
M n

M n

M n (� )
; (5.67)

and prove that each factor converges in probability to an appropriate constant;
then we can de�ne � H (� ) as the product of the limits. We study j V r

H (� )j=Mn

�rst. As sketched above, we calculate j V r
H (� )j by considering how H arises as a
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connected component when percolating di�erent original communities F 2 H .
In Lemma 5.3.1, we have identi�ed how often percolation on F results in some
G 2 supp(F (� )) . Let us denote the number of distinct connected components of
G that are isomorphic to H by � (H j G) � 0. Then we can count

j V r
H (� )j
M n

=
X

F 2 H

X

G2 supp( F ( � ))

j V r
F ( � ) �= G j

M n
� � (H j G): (5.68)

Note that the inner sum is �nite : jsupp(F (� )) j = 2 jF j < 1 , hence by Lemma 5.3.1
and Assumption 2.2.1 (C), it converges, without requiring independence of the
terms:

X

G2 supp( F ( � ))

j V r
F ( � ) �= G j

M n
� � (H j G)

P�! � F �
X

G2 supp( F ( � ))

PBer( � )
�
F (� ) �= G

�
� � (H j G):

(5.69)

That is, each term in the in�nite outer sum over F in (5.68) converges in probabi-
lity. In fact, we can show via a truncation argument, analogously to the proof of
Proposition 5.1.2 in Section 5.2.1.1, again without requiring any independence, that
the in�nite sum converges as well, i.e.,

V r
H (� )
M n

P�!
X

F 2 H

� F

X

G2 supp( F ( � ))

PBer( � )
�
F (� ) �= G

�
� � (H j G): (5.70)

We sketch the truncation argument, as follows. Clearly, a �nite sum for jF j �
K converges. As we count distinct components isomorphic to H , � (H j G) �
jGj=jH j � j Gj � j F j, since jH j � 1 and G is a subgraph of F . Then

X

F 2 H
jF j>K

j V r
F j

M n

X

G2 supp( F ( � ))

j V r
F ( � ) �= G j

j V r
F j

� � (H j G)

�
X

F 2 H
jF j>K

j V r
F j

M n

X

G2 supp( F ( � ))

j V r
F ( � ) �= G j

j V r
F j

jF j =
X

F 2 H
jF j>K

� ( n )

F jF j = E
�
D r

n 1f D r
n >K g

�
;

(5.71)

which is small uniformly in n for K large enough, since (D r
n )n 2 N is UI by Assump-

tion 2.2.1 (D). Similarly, the tail of the suggested limit, i.e., the rhs of (5.70) can be
upper bounded by

P
F 2 H ;jF j>K � F jF j, which tends to 0 as K ! 1 , and (5.70)
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follows by the triangle inequality. To study M n (� )=Mn , denote the number of
components of G 2 supp(F (� )) by c(G), and compute

M n (� )
M n

=
X

F 2 H

X

G2 supp( F ( � ))

j V r
F ( � ) �= G j

M n
� c(G): (5.72)

Noting the similarity with (5.68), and bounding c(G) � j Gj � j F j, an analogous
truncation argument shows that

M n (� )
M n

P�!
X

F 2 H

� F

X

G2 supp( F ( � ))

PBer( � )
�
F (� ) �= G

�
� c(G): (5.73)

Combining (5.73) and (5.73) yields that

j V r
H (� )j

M n (� )
P�!

P
F 2 H � F

P
G2 supp( F ( � )) PBer( � )

�
F (� ) �= G

�
� � (H j G)

P
F 2 H � F

P
G2 supp( F ( � )) PBer( � )

�
F (� ) �= G

�
� c(G)

=: � H (� ):

(5.74)

In the following, we prove completeness of the limiting measure � (� ). Recall that
D r (� ) and D r

n (� ) denote the community sizes corresponding to � (� ) and � ( n ) (� ),
respectively. Thus it is su�cient to show (D r

n (� ))n 2 N is tight, which implies that the
measure of D r (� ) is complete. Recall Com (� ) = (Com �

a0)a02 [M n ( � )] and denote
the set of retained community roles by V (Com (� )) := [ a02 [M n ( � )] V (Com�

a0).
Computing the conditional expectation as an empirical average yields that

E
�
D r

n (� )
�
� Com (� )

�
=

1
M n (� )

X

a02 [M n ( � )]

jCom�
a0j

=
1

M n (� )
j V (Com (� )) j:

(5.75)

Recall that V rem (Com ) denotes the set of removed community roles and h rem
n

denotes the size of this set. Note that V (Com (� )) = V (Com ) n V rem (Com ),
j V (Com (� )) j = hn � h rem

n = hn (� ). Then

E
�
D r

n (� )
�
� Com (� )

�
=

hn (� )
M n (� )

=
hn (� )

hn

hn

M n

M n

M n (� )

P�!
� � E[D r ]

P
F 2 H � F

P
G2 supp( F ( � )) PBer( � )

�
F (� ) �= G

�
� c(G)

=: C 2 R+ ;

(5.76)

by Corollary 5.1.7, Remark 2.2.2 (i) and (5.73). Fix " > 0. We have to show that
for K = K (") large enough, supn 2 N P

�
D r

n (� ) � K
�

� " . We decompose, with
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L 2 Z+ to be chosen later,

P
�
D r

n (� ) � K
�

= P
�
D r

n (� ) � K; E
�
D r

n (� )
�
� Com (� )

�
� LC

�

+ P
�
D r

n (� ) � K; E
�
D r

n (� )
�
� Com (� )

�
> LC

�
:

(5.77)

We bound each term separately. The second term can be bounded as

P
�
D r

n (� ) � K; E
�
D r

n (� )
�
� Com (� )

�
> LC

�

� P
�
E

�
D r

n (� )
�
� Com (� )

�
> LC

�
:

(5.78)

By (5.76),
�
E

�
D r

n (� )
�
� Com (� )

��
n 2 N is tight, thus we can chooseL large enough

so that
sup
n 2 N

P
�
E

�
D r

n (� )
�
� Com (� )

�
> LC

�
� "=2: (5.79)

We rewrite the �rst term of (5.77) and bound it by Markov’s inequality, for all
n 2 N, as

P
�
D r

n (� ) � K
�
� E

�
D r

n (� )
�
� Com (� )

�
� LC

�
� P

�
E

�
D r

n (� )
�
� Com (� )

�
� LC

�

�
E

h
D r

n (� )
�
�
� E

�
D r

n (� )
�
� Com (� )

�
� LC

i

K
� 1 �

LC
K

� "=2; (5.80)

by choosingK large enoughso that K � 2LC=" . Combining (5.77), (5.79) and
(5.80) yields that supn 2 N P

�
D r

n (� ) � K
�

� " , as required. We conclude that
(D r

n (� ))n 2 N is tight, thus the limiting measure � (� ) is complete. This concludes
the proof of Proposition 5.1.6 (C) subject to Lemma 5.3.1.

Proof of Proposition 5.1.6 (D).Recall from (5.76) that

En := E
�
D r

n (� )
�
� Com (� )

� P�! C (5.81)

for some constant C 2 R+ . In the following, we verify that C = E[D r (� )] via a
truncation argument. For convenience, we denote, with K 2 Z+ to be chosen later,

S := E[D r (� )] =
X 1

k=1
k � P

�
D r (� ) = k

�
;

S� K := E
�
D r (� )1f D r ( � ) � K g

�
=

X K

k=1
k � P

�
D r (� ) = k

�
;

E � K
n := E

�
D r

n (� )1f D r
n ( � ) � K g

�
� Com (� )

�
=

KX

k=1

k � P
�
D r

n (� ) = k
�
� Com (� )

�
;

E >K
n := En � E � K

n = E
�
D r

n (� )1f D r
n ( � )>K g

�
� Com (� )

�
:

(5.82)
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By de�nition, S� K is non-decreasing but not necessarily bounded, hence S� K !
S � 1 as K ! 1 . Thus, by the uniqueness of the limit on R, it is su�cient to
show that S� K ! C as K ! 1 . In the following, we will show that there exist
monotone sequences " i ! 0 and K i ! 1 such that for all i 2 N,

jC � S� K i j � " i : (5.83)

Note that a priori, this statement for �xed i does not guarantee that jC � S� K j � " i

for all K � K i (we have yet to prove that S� K is bounded). However, the statement
for all i 2 N together with S� K being non-decreasing implies S� K ! C, by the
following reasoning. For " > 0, take i 1 large enough so that " i 1 � " . Since K i

is increasing, for any K � K i 1 , there exists i 2 � i 1 so that K i 2 � K < K i 2 +1 .
Denote the interval [x � " ] := [ x � "; x + " ]. By i 2 � i 1 and " i 2 � " i 1 � " ,
we have that K i 2 2 [C � " i 2 ] � [C � " ], and K i 2 +1 2 [C � " i 2 +1 ] � [C � " ].
Thus necessarily, by the monotonicity of S� K and the above arguments, S� K 2
[S� K i 2 ; S� K i 2 +1 ] � [C � " ], in other words, jC � S� K j � " for all K � K i 1 .
As " > 0 was arbitrary, S� K ! C by de�nition, which concludes the proof of
Proposition 5.1.6 (D) subject to (5.83).

To prove (5.83), we �x an arbitrary monotone sequence " i ! 0, e.g. " i = 1=i,
and construct the monotone sequence K i ! 1 below. By the triangle inequality,
for K i yet to be chosen and all n, almost surely

jC � S� K i j � j C � En j + jEn � E � K i
n j + jE � K i

n � S� K i j: (5.84)

We �rst study the second term. Recall Com (� ) = (Com �
a0)a02 [M n ( � )] and interpret

the conditional expectation as the empirical average to obtain

jEn � E � K i
n j = jE >K i

n j = E >K i
n = E

�
D r

n (� )1f D r
n ( � )>K i g

�
� Com (� )

�

=
1

M n (� )

X

a02 [M n ( � )]

jCom�
a0j � 1fj Com �

a 0j>K i g: (5.85)

We rewrite jCom�
a0j =

P
j 2 V (Com �

a 0) 1, and further, for a retained community
role j 2 V (Com (� )) , denote the percolated community containing j by a0(j ) 2
[M n (� )], so that

E >K i
n =

1
M n (� )

X

a02 [M n ( � )]

X

j 2 V (Com �
a 0)

1fj Com �
a 0( j )

j>K i g

=
1

M n (� )

X

j 2 V (Com (� ))

1fj Com �
a 0( j )

j>K i g;
(5.86)

by V (Com (� )) = [ a02 [M n ( � )] V (Com�
a0). Next, we rewrite this in terms of the

original communities. Let a(j ) 2 [M n ] denote the original community containing a
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