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Abstract. Fluctuating viscoelasticity for conformation-tensor–based models is studied at equilibrium, in
simple-shear deformation, and in uniaxial extension. The models studied are the upper-convected Maxwell
model, the FENE-P model with finite chain-extensibility, and the Giesekus model with anisotropic drag.
Using numerical simulations, the models are compared in detail both with each other and with analytical
predictions for the Maxwell model. At equilibrium, the models differ only marginally, both in terms of
static and dynamic characteristics. When deformed, the average mechanical response of the Maxwell model
is unaffected by the strength of thermal fluctuations, while the mechanical response of the FENE-P and
Giesekus models show a slight decrease the stronger the fluctuations in simple shear, whereas the decrease in
uniaxial extension is marginal. For all models, the standard deviation of the mechanical response increases
with increasing strength of fluctuations, and the magnitude of the standard deviation relative to the average
for given fluctuation strength generally decreases the stronger the deformation, this effect being stronger
for uniaxial extension than for simple-shear deformation.

1 Introduction

Thermal fluctuations in viscoelastic fluids become impor-
tant if the length scales of observation and possibly con-
finement are of the same order of magnitude as the charac-
teristic length scale of the, often meso-scale, constituents
of the fluid. This is because the smaller the number of con-
stituents (e.g. polymer chains or segments, liquid crystal
rods, colloidal particles) in the volume of observation, the
more significant become fluctuations around the average
collective behavior. One application where the involved
length scales are small, and hence fluctuations can be rel-
evant, is micro- and nanofluidics [1,2]. Another one is mi-
crorheology, where the motion of sub-micron sized tracer
particles is studied with the use of microscopy to deduce
the rheological properties of the suspending fluid [3–6].

Different routes can be taken for modeling fluids at
small scales. Either one can use a particle-based approach,
related to e.g. molecular dynamics, dissipative particle dy-
namics or Brownian dynamics, or one prefers to adopt a
field-theoretic approach, related to fluid dynamics. The
latter route is what is examined further in this paper.

Several procedures have been proposed for including
thermal fluctuations in fluid dynamics. For Newtonian
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fluid dynamics, enrichment with thermal fluctuations has
been achieved by Landau and Lifshitz [7]. For non-New-
tonian fluids, it was proposed to relate the rate-of-deform-
ation tensor to the stress tensor via a memory kernel and
to add colored noise to the stress tensor [8, 9]. Further-
more, a multi-scale model has been developed in [10, 11],
which adds elasticity and colored noise to the Newtonian
fluid model. Alternatively, enriched smoothed-particle hy-
drodynamics has been used [12], which can be regarded
as a discretized numerical approximation to a continuum
model. Recently, Hütter et al. [13] developed a general
approach for including thermal fluctuations in conforma-
tion-tensor–based viscoelastic models, in accordance with
thermodynamic principles. The authors formulated these
models in terms of a “square root” of the conformation
tensor, namely what they call the contravariant deforma-
tion. In Carrozza et al. [14], it has already been shown
that by using the contravariant deformation formulation
in simulations of viscoelastic fluid flow without fluctua-
tions, the numerical stability is enhanced compared to the
conformation-tensor formulation. While the square root of
the conformation tensor is not unique, which is discussed
in detail elsewhere [15], the formulation in terms of the
contravariant deformation appeals because it is closely re-
lated to the microstructure and therefore has a more useful
physical interpretation than other square roots.

A systematic study of the intrinsic, generally non-
linear, behavior of complex fluids in the presence of ther-
mal fluctuations is a natural next step towards a more
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generic approach and more flexibility in applications of
fluctuating viscoelasticity. This should include variations
in the strength of the fluctuations, as well as a comparison
of different rheological models, for unraveling the charac-
teristic behavior.

The goal of this paper is to examine in detail the be-
havior of three viscoelastic models with fluctuations, at
equilibrium and in flow, by means of numerical simula-
tion. The three models examined are the upper-convected
Maxwell model, the FENE-P model, and the Giesekus
model, the formulation of which in terms of the contravari-
ant deformation with fluctuations has been established in
Hütter et al. [13]. The reason behind choosing these par-
ticular models is the following. When formulated in terms
of the conventional conformation tensor and in the ab-
sence of fluctuations, the Maxwell model is linear, while
the other two models are non-linear, for distinct reasons.
The FENE-P model owes its non-linearity to accounting
for finite extensibility of the chain in the corresponding
free energy. In contrast, the Giesekus model is non-linear
because of anisotropic mobility. Since free energy and mo-
bility are the key ingredients for formulating complex-fluid
models along non-equilibrium thermodynamic principles,
these three models are considered prototypical, and will
thus be studied in this paper.

The following notation will be used in this paper. Sum-
mations are indicated by Σ (i.e. no Einstein summation
convention is used), and the summation indices run over
all spatial dimensions, unless indicated otherwise. Fur-
thermore, (ex,ey,ez) denotes the (right-handed) set of
orthonormal basis vectors in Cartesian space.

The paper is organized as follows. The viscoelastic-
fluid models with thermal fluctuations, formulated in
terms of the contravariant deformation, are introduced in
sect. 2, and some predictions are formulated. In sect. 3,
the viscoelastic models are examined numerically at equi-
librium, in simple-shear flow, and in uniaxial extension.
The results are discussed and conclusions are drawn in
sect. 4.

2 Models of viscoelasticity

2.1 General aspects

Consider a complex fluid, the microstructure of which
shall be characterized by a symmetric and positive definite
conformation tensor c, representative of, e.g., the confor-
mation of polymer coils. Given a model of viscoelasticity
formulated in terms of this conformation tensor, the con-
travariant deformation b introduced by Hütter et al. [13]
is related to c by way of

c = b · bT, (1)

where the superscript “T” denotes the regular operator
(matrix) transpose. It has been shown that it is advanta-
geous to use b as a fundamental variable when incorporat-
ing thermal fluctuations in a viscoelastic model, see [13]
for details. A physical interpretation of this finding can

be given as follows. As stated in sect. 1, fluctuations orig-
inate from the number of constituents of the fluid in the
volume of observation being relatively small. In the case
of polymer chains, a detailed description would make use
of vectors for describing the structure of the chains, e.g.

in terms of N end-to-end vectors of chains or of chain seg-
ments, with N being relatively small. There are thermal
fluctuations on these vectors, because the entities making
up the polymers (e.g. monomers, coarse-grained beads)
are agitated by the surrounding molecules. Therefore, fluc-
tuations are naturally represented on the level of vectors.
Since the conformation tensor c can be interpreted as the
second moment of the distribution of the end-to-end or
segment vector [16, 17], the decomposition (1) suggests
that b is more closely related to the vector interpretation
than c is. And therefore, fluctuations are more readily in-
corporated on the level of b, rather than on the level of c.
Furthermore, the kinematics of b, i.e. its behavior in flow,
mimics that of a contravariant vector. More precisely, the
column vectors of b are chosen to obey contravariant be-
havior [13].

In the following, the upper-convected Maxwell model,
the FENE-P model, and the Giesekus model are pre-
sented in compact form; for more details, the reader
is referred to the original development [13]. To in-
clude thermal fluctuations properly, the general equation
for the non-equilibrium reversible-irreversible coupling
(GENERIC) [17–19] has been employed [13], whereby it
is guaranteed that the fluctuation-dissipation theorem is
respected.

All three models have a characteristic relaxation time
λ and a shear modulus G. Throughout this paper, time-
related quantities are scaled with the relaxation time λ,
while stress-related quantities are scaled with the shear
modulus G, in order to make these quantities dimension-
less. For example, t will be used to denote the dimension-
less time, L stands for the dimensionless (transpose of the)
velocity gradient, and σ is the dimensionless stress tensor.
The dynamics of b is presented in the form of stochas-
tic differential equations (SDE). For all SDEs reported in
this paper, it is understood that the Itô interpretation of
stochastic calculus [20,21] is used.

2.2 Thermodynamics for finite N

The essential building blocks in the thermodynamic ap-
proach taken in [13] are the free energy per unit volume ψ
and the relaxation tensor Λ(4). In [22], these two quanti-
ties have been derived by statistical mechanics, departing
from the underlying vector description, for a finite num-
ber N of chains or chain segments, respectively. It turned
out that there is a finite-N correction ∆ψ to the thermo-
dynamic limit ψ∞ of the free energy density [22],

ψN = ψ∞ + ∆ψ, (2)

with

∆ψ =
G

2N
(D + 1) ln(det c), (3)
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where G = nkBT for entropy elasticity has been used with
number density n, and D stands for the number of spatial
dimensions. While the free energy used in the applications
in [13] thus needs to be refined, according to eq. (2) and
eq. (3), the relaxation tensor requires no correction for
finite N .

As a result of including ∆ψ in the thermodynamic
derivation [13] of the three models presented below, the
corresponding drift terms are modified. It is noted that
the corresponding models presented below are fully com-
patible with the c-dynamics derived directly on the basis
of the corresponding vector-descriptions, see [22] for de-
tails.

This finite-N correction is a manifestation of the small-
ness of the volume element considered. In the following,
models will be presented that are based on such finite-N
extension of macroscopic “bulk” expressions for the free
energy. It should be mentioned, however, that by doing so
the presence of walls —which alter the polymer conforma-
tions (e.g., see [23])— is not taken into account. Therefore,
the models as presented below are applicable to small vol-
ume elements in the context of micro-/nanofluidics and
microrheology where small volume elements are required,
as long as the volume element is not immediately adjacent
to the confining surface; there, strictly speaking, another
free energy function would have to be used.

2.3 Upper-convected Maxwell model

The b-representation of the fluctuating dynamics of the
upper-convected Maxwell model, in the following simply
referred to as the Maxwell model, and the corresponding
stress tensor are given by (see [13], and using eq. (2) and
eq. (3))

db = L · bdt − 1

2
(b − b

−1,T)dt

−Θ

2
Db

−1,Tdt +
√

ΘdW , (4)

σ = c − ν1, (5)

with ν = 1 − (D + 1)Θ.
The four contributions on the right-hand side (r.h.s.)

of eq. (4) represent, in this order, deformation, relax-
ation, thermal drift (closely related to the fluctuations),
and fluctuations. The dimensionless parameter Θ quanti-
fies the importance of the thermal fluctuations with re-
spect to the characteristic elastic energy, and is defined
by Θ = kBT/(GV), with kB the Boltzmann constant, T
the absolute temperature, and V the size of the volume
of observation. The smaller the volume of observation,
the more important are the thermal fluctuations. For en-
tropy elasticity, one finds Θ = 1/N . In eq. (4), the sym-
bol dW denotes the dimensionless increments of a multi-
component Wiener process, representing white noise. This
second-order tensor is specified by the following averages
and covariances:

〈dWt〉 = 0, (6)

〈〈dWt; dWt′〉〉 = δ(t − t′)dt dt′1(4), (7)

where t and t′ denote two moments in time, 1
(4) is the

fourth-order unit tensor with components [1(4)]ijkl =
δikδjl, and where the covariance of two quantities A and B
is denoted by 〈〈A;B〉〉 ≡ 〈AB〉−〈A〉〈B〉. Equations (6), (7)
show that dW is uncorrelated in time and that its com-
ponents are independent of each other.

2.4 FENE-P model

The dynamics and the stress tensor are given by (see [13],
and using eq. (2) and eq. (3))

db = L · bdt − 1

2
(f b − b

−1,T)dt

−Θ

2
Db

−1,Tdt +
√

ΘdW , (8)

σ = f c − ν1. (9)

These equations differ from the Maxwell model in sect. 2.3
only by the dimensionless factor f = β/(β + 3 − tr(c)),
which describes the finite extensibility of the chain, with
β a constant. This model reduces to the Maxwell model
for β → ∞.

2.5 Giesekus model

The dynamics and the stress tensor are given by (see [13],
and using eq. (2) and eq. (3))

db = L · bdt − 1

2

(

c − 1 + α(c − 1)2
)

· b−1,Tdt

+
Θ

2
(αc − (1 − α)D1) · b−1,Tdt

+
√

Θ
(√

1 − αdW1 +
√

αb · dW2

)

, (10)

σ = c − ν1, (11)

with dW1 and dW2 increments of two statistically inde-
pendent multicomponent Wiener processes, which individ-
ually obey the statistics described by eqs. (6), (7). The
dimensionless parameter α determines the magnitude of
the anisotropic drag, and D is the dimensionality of the
model. The Giesekus model reduces to the Maxwell model
for α → 0.

2.6 Analytical calculations and predictions

In this section, analytical calculations and predictions are
made, in order to be able to rationalize in more detail the
results of the numerical simulations presented further be-
low. The two non-linear models, FENE-P and Giesekus,
are not amendable to a detailed analytical analysis, par-
ticularly when fluctuations are included. In contrast, the
Maxwell model is more straightforward to analyze, which
is presented in the following. To that end, it is useful
to present, in addition to the b-formulation (4), also the
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c-formulation of the Maxwell model (see [13], and using
eq. (2) and eq. (3)),

dc =
(

L · c + c · LT − (c − 1)
)

dt

+
√

Θ(b · dW + dW
T · bT), (12)

where D is the dimensionality of the model.
The dynamics of b, (4), has the following properties. In

the absence of flow (L = 0) and fluctuations (Θ = 0), one
finds from the dynamics (4) that the contravariant defor-
mation must obey b = b−1,T at equilibrium, while from
the dynamics of c (12) one finds c = 1. The fact that
other states than b = 1 are admissible is a consequence
of the decomposition (1) not being unique. To any b that
satisfies eq. (1) for given c, an orthogonal transformation
can be multiplied to the right of b without affecting c

(see also [15] for a more detailed discussion). In the pres-
ence of small fluctuations, 0 < Θ ≪ 1, we can expect c

to be close to 1 at all times, while b, however, may keep
rotating randomly in equilibrium by virtue of the fluctua-
tions. Transferring the considerations about isotropically
distributed random rotations described in appendix A to
the evaluation of 〈b · bT〉eq = 〈c〉eq, one expects for the
average and variance of the components of b,

〈bij〉eq = 0, ∀(i, j), (13)

〈〈bij ; bij〉〉eq =
1

D
, ∀(i, j), (14)

where 〈c〉eq = 1 has been used (see eq. (17) below). A
further prediction that one can make concerns the cor-
relation time for fluctuations in b. Particularly, it can be
shown (see appendix B) that there are two (dimensionless)
correlation times, namely,

λs ≃ 1, (15)

λr ≃
2

(D − ϑ)Θ
, (16)

which are related to stretch (s) and rotation (r), respec-
tively, with ϑ < D. In contrast to appendix B, ϑ in eq. (16)
effectively contains an average over many states around
which the fluctuations are examined. Equation (15) shows
that stretch decorrelates with the characteristic relaxation
time of the polymer, while the decorrelation of rotation is
delayed by a factor 2/((D − ϑ)Θ), see eq. (16).

The properties of the dynamics of c, (12), can be as-
sessed as follows. Taking the average of eq. (12), and re-
alizing that the fluctuation contribution on the r.h.s. van-
ishes because of the Itô interpretation (meaning that b

and dW are uncorrelated), one obtains for the evolution
of the average

d

dt
〈c〉 = L · 〈c〉 + 〈c〉 · LT − (〈c〉 − 1). (17)

Therefore, the solution for the average in the presence of
fluctuations is equal to the solution to the deterministic
model, i.e. to eq. (12) with Θ = 0. Particularly, at equilib-
rium 〈c〉eq = 1. If one considers start-up of simple shear,

L = Wiexe
T
y , (18)

with Weissenberg number Wi = λγ̇ for constant shear-rate
γ̇ for t > 0, the conformation tensor is given by

〈c〉sh = 1 + Wi
(

1 − e−t
) (

exe
T
y + eye

T
x

)

+2Wi2
(

1 − e−t − te−t
)

exe
T
x . (19)

In contrast, if one examines start-up of uniaxial extension,

L = Wi

(

exe
T
x − 1

2

(

eye
T
y + eze

T
z

)

)

, (20)

with Weissenberg number Wi = λε̇ for constant extension-
rate ε̇ for t > 0, the conformation tensor is given by

〈c〉ex =

(

1

w1
+

(

1 − 1

w1

)

e−w1t

)

exe
T
x

+

(

1

w2
+

(

1 − 1

w2

)

e−w2t

)

(

eye
T
y + eze

T
z

)

,

(21)

with w1 = 1− 2Wi and w2 = 1 + Wi, for −1 < Wi < 1/2.
Based on eq. (12), also an evolution equation for the

covariance tensor 〈〈c; c〉〉 can be derived, using Itô calcu-
lus [20,21], which leads to

d

dt
〈〈cij ; ckl〉〉 =

∑

m

Lim〈〈cmj ; ckl〉〉 +
∑

m

Ljm〈〈cim; ckl〉〉

+
∑

m

Lkm〈〈cij ; cml〉〉 +
∑

m

Llm〈〈cij ; ckm〉〉

−2〈〈cij ; ckl〉〉
+Θ

(

〈cik〉δjl + 〈cil〉δjk

+〈cjk〉δil + 〈cjl〉δik

)

, (22)

in component notation. For the stationary states of sim-
ple shear (18) and uniaxial extension (20) specified above,
and hence also for equilibrium (Wi = 0), these equations
can be solved in closed form. All non-zero components of
the covariance tensor are listed in table 1, for D = 3. In
particular, it is noted that the covariance between any two
different components of the conformation tensor vanishes
at equilibrium (Wi = 0) and in uniaxial extension, but
not in simple shear.

In view of the expression for the stress (5), the state-
ments made above about the conformation tensor transfer
readily to statements about the stress tensor. Particularly,
we note in passing that the variance of the off-diagonal
components of the stress tensor at equilibrium are given
by 〈〈σi�=j ;σi�=j〉〉eq = Θ, which closely resembles fluctua-
tion formulas for the stiffness matrix of solids [24], when
written in dimensional form.

Finally, the following can be anticipated about the
decorrelation of components of the conformation tensor.
The discussion of b has brought forward two time scales,
related to stretch and rotation, respectively. Since the con-
formation tensor, in contrast, has a well-defined equilib-
rium state and fluctuations around it will thus not suffer
from continued rotations, it is anticipated that only the
stretch relaxation-time, λs, will be observed for the con-
formation tensor.
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Table 1. Components of the covariance tensor 〈〈c; c〉〉 for the
Maxwell model in the stationary states of simple shear and
uniaxial extension, respectively. Other components can be con-
structed by using the symmetries cji = cij and 〈〈ckl; cij〉〉 =
〈〈cij ; ckl〉〉, and are zero otherwise. The variances at equilibrium
can be obtained from either of the two modes of deformation
by setting Wi = 0.

Variance Simple shear Uniaxial extension

〈〈cxx; cxx〉〉 2Θ(1 + 2Wi2)2 2Θ

(1−2Wi)2

〈〈cxy; cxy〉〉 Θ(1 + 3Wi2) Θ

1−Wi−2Wi2

〈〈cxz; cxz〉〉 Θ(1 + 2Wi2) Θ

1−Wi−2Wi2

〈〈cyy; cyy〉〉 2Θ
2Θ

(1+Wi)2

〈〈cyz; cyz〉〉 Θ
Θ

(1+Wi)2

〈〈czz; czz〉〉 2Θ
2Θ

(1+Wi)2

〈〈cxx; cyy〉〉 2ΘWi2 0

〈〈cxx; cxy〉〉 2Θ(Wi + 2Wi3) 0

〈〈cyy; cxy〉〉 2ΘWi 0

〈〈cyz; cxz〉〉 ΘWi 0

3 Numerical calculations

3.1 General aspects

In this section, the behavior of the models presented in
sect. 2 is examined numerically for D = 3. For the FENE-
P model, the parameter β describing the finite extensi-
bility of the chain is chosen to be β = 50 [25, 26]. For
the Giesekus model, the parameter α representing the
anisotropy in mobility is set to α = 0.1 [27].

Forward-Euler time-discretization with step size ∆t is
applied to the equations in sects. 2.3–2.5 to obtain the so-
lution for the contravariant deformation tensor b at equi-
librium as well as in simple shear and uniaxial extension,
by imposing a constant velocity gradient L, see eq. (18)
and eq. (20). To start the time stepping, the initial condi-
tion b(t = 0) = 1 is used in all calculations, which is the
square root of the average conformation tensor at equilib-
rium for the Maxwell model, see eq. (17). Random num-
bers to generate the Wiener-process increments dW are
drawn from a standard normal distribution with a vari-
ance equal to ∆t (see eqs. (6), (7)) using the Ziggurat
method [28]. For this method, the random numbers have
a period of 232 − 1.

3.2 Equilibrium

We start with analyzing the time-correlation of the fluc-
tuations in b and c. The time-correlation function of a
time-dependent quantity A is given by

CA(τ) =
〈〈A(t);A(t + τ)〉〉
〈〈A(t);A(t)〉〉 , (23)

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

0 5 10 15

0.6

0.8

1

Fig. 1. Time-correlation function Cbxx
for the FENE-P model

without RI at equilibrium, for two different strengths of the
fluctuations, Θ = 0.03 (solid line) and Θ = 0.1 (dashed line).
The inset shows the range that is used for the fitting, with a
logarithmic Cbxx

-axis.

where τ is the dimensionless time-difference, or lag time.
At equilibrium, obviously, the explicit dependence on the
instance of time t disappears, and only the time difference
τ is relevant. This correlation function will be studied in
the following for components of b and c.

In view of the discussion in the previous section, one
expects that two relaxation processes are present in the
dynamics of b, with dimensionless relaxation times equal
to unity (see eq. (15)) and proportional to 1/Θ (see
eq. (16)), representative of stretch and rotations, respec-
tively. This has been taken into account in setting up the
simulations. Particularly, two types of simulations have
been performed. First, the dynamics of b has been sim-
ulated for tsim = 800/Θ, which is preceded by an equi-
libration of duration tequil = 15/Θ that is not included
in the calculation of the correlation function. Second, the
dynamics of b has also been examined when after every
time step a re-initialization (RI) of the spurious rotation
is performed by setting b equal to the symmetric square-
root of c, which should get rid of the rotational relaxation
altogether. For this modified b-dynamics as well as for the
dynamics of c, tsim = 800, since the strength of the noise
Θ should not affect the correlations. For these cases, no
equilibration has been used for the Maxwell model, since
the initial condition represents its average solution. In con-
trast, for the FENE-P and Giesekus models, tequil = 5 has
been used. The time step was set to ∆t = 10−2, which is
small enough in view of the anticipated relaxation times.
The corresponding number Ns of samples, i.e. statistically
independent trajectories, of the ensemble has been chosen
carefully as to not interfere with the period of the ran-
dom number generator; the detailed values are discussed
in appendix C, in table 3.

As an example, the correlation function for bxx for the
FENE-P model without RI is shown in fig. 1. In the semi-
logarithmic representation in the inset, the presence of two
relaxation processes is clearly visible. In order to quan-
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Table 2. Relaxation times λs and λr, as well as ϑ, as obtained
by fitting eq. (24) to the time-correlation function CA obtained
by numerical simulation, at equilibrium. Equation (16) is used
for translating λr to the parameter ϑ.

Model Θ = 0.03 Θ = 0.1

– Quantity A λs λr (ϑ) λs λr (ϑ)

Maxwell

– bxx, no RI 0.992 61.505 (1.916) 0.979 15.683 (1.725)

– bxy, no RI 0.996 62.050 (1.926) 0.957 15.710 (1.727)

– bxx, with RI 0.981 0.961

– bxy, with RI 0.982 0.965

– cxx 0.988 0.988

– cxy 0.989 0.988

FENE-P

– bxx, no RI 0.979 61.412 (1.914) 0.968 15.678 (1.724)

– bxy, no RI 0.985 62.097 (1.926) 0.947 15.712 (1.727)

– bxx, with RI 0.962 0.941

– bxy, with RI 0.980 0.961

– cxx 0.967 0.963

– cxy 0.986 0.982

Giesekus

– bxx, no RI 0.967 62.268 (1.929) 0.967 16.050 (1.754)

– bxy, no RI 1.024 62.605 (1.935) 0.969 15.966 (1.747)

– bxx, with RI 0.982 0.965

– bxy, with RI 0.985 0.974

– cxx 0.982 0.970

– cxy 0.987 0.981

tify the corresponding relaxation times, representative of
stretch (s) and rotation (r), the following function is fit to
the numerical results,

CA(τ) = γe−τ/λs + (1 − γ)e−τ/λr . (24)

Notably, for the time-correlation functions of components
of b with RI and for components of c, there is no rotational
relaxation (not shown in figure), and therefore only one
exponential is used to represent the data (i.e., γ = 1). The
fit is performed only in a certain range 0 ≤ τ ≤ τfit, which
is chosen in such a way that both relaxation processes give
significant contributions. Particularly, for the b-dynamics
without RI, τfit = 1/(2Θ) at Θ = 0.03, and τfit = 1/Θ
at Θ = 0.1. For the b-dynamics with RI and for the c-
dynamics, τfit = 1, independent of Θ.

The relaxation times obtained by performing a least-
squares fit of eq. (24) to the time-correlation function
CA obtained by numerical simulation are listed in ta-
ble 2. All models show a relaxation processes that has
a relaxation time of order unity, related to stretch (see
eq. (15)). Specifically, 0.96 ≤ λs ≤ 1.00 for the Maxwell
model, 0.94 ≤ λs ≤ 0.99 for the FENE-P model, and
0.97 ≤ λs ≤ 1.02 for the Giesekus model, respectively.
Within these ranges, the stretch relaxation time for each

-1

0

1

0

1

2

Fig. 2. Equilibrium average and standard deviation for bxx and
bxy without RI (circles), as well as for cxx and cxy (triangles),
for all three models. Dark-filled symbols: Θ = 0.03; light-filled
symbols: Θ = 0.1.

model decreases slightly upon increasing the fluctuation
strength from Θ = 0.03 to Θ = 0.1. Only for the corre-
lation functions of the components of b without RI, there
is a second significantly slower process which, because it
occurs only for these cases, can be interpreted as being re-
lated to the rotations. Translating the corresponding time
scales λr by way of expression (16) into the parameter ϑ,
one observes that ϑ indeed takes values smaller than D,
with only minor differences between the models. There
is a slight decrease of ϑ with increasing strength of the
fluctuations, as expected (see appendix B).

For the calculation of the equilibrium averages and
variances of b and c, simulations of duration tsim = 25/Θ
for the b-dynamics without RI and tsim = 25 for the c-
dynamics are performed, and the ensemble averages and
variances at the end of the simulations are recorded. The
time step is again ∆t = 10−2. The corresponding numbers
of samples, Ns, are provided in appendix C, table 4.

Several observations can be made in fig. 2. First, for
all three models, both diagonal and off-diagonal compo-
nents of b fluctuate around zero, the standard deviation
being slightly larger than 0.5. Particularly, for the Maxwell
model, the numerically determined standard deviations
differ from the analytical predictions based on eq. (14) by
less than 1%. And second, as expected, the off-diagonal
components of the conformation tensor c for all three
models fluctuate around zero, while the diagonal compo-
nents fluctuate around unity. There are only marginal dif-
ferences between the models. For the Maxwell model, the
averages and standard deviations determined numerically
deviate from the analytical predictions by less than 1%.

Based on the results in table 2 and fig. 2, one observes
that the differences between the models are quite small,
which suggests the following. Apparently, the region in
phase space probed by the thermal fluctuations is rela-
tively small, more specifically, too small to feel a signifi-
cant effect of the finite extensibility and anisotropic drag,
which are higher-order effects. The observation that 〈c〉 is
not affected by Θ can be rationalized as follows. For the
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Fig. 3. Shear stress σxy for the Giesekus model in start-up
simple-shear deformation with Wi = 1. The filling of the sym-
bols represents the strength of the fluctuations (from dark to
light; from left to right in every quadruple of symbols): Θ = 0,
Θ = 10−3, Θ = 10−2, and Θ = 10−1.

Maxwell model, this fact has been proven in sect. 2.6. For
the FENE-P model, which differs from the Maxwell model
only in terms of the dimensionless factor f in the restor-
ing force (see sect. 2.4), one observes that for β = 50 this
factor f is approximated well by f ≃ 1 + (tr(c) − 3)/β,
which is close to unity at equilibrium for | tr(c)| ≪ β, i.e.,
the FENE-P model is represented well by the Maxwell
model under these circumstances. The Giesekus model
differs from the Maxwell model only in terms of the mo-
bility tensor, but not in terms of the Helmholtz free en-
ergy. Therefore, the Giesekus model has the same prob-
ability distribution at equilibrium as the Maxwell model
(see also [13,22]), and therefore the average of the confor-
mation tensor must be the same for these two models.

3.3 Simple shear and uniaxial extension

In this section, the effect of fluctuations on the rheologi-
cal behavior is studied, for simple shear (18) and uniaxial
extension (20). For most of simulations under deforma-
tion, the time step used is ∆t = 10−2. However, in some
cases ∆t = 10−3 has been used, namely i) for the FENE-
P model in simple shear at Wi = 1 at Θ = 0.1, and at
Wi = 3 and Wi = 10, as well as in uniaxial extension at
Wi = 3, and ii) for the Giesekus model in uniaxial exten-
sion at Wi = 3 and Θ = 0.1. When using these time steps,
a tenfold refinement of the time step changed the results
for the averages and standard deviations by less than 1%.
The number of samples are Ns = 1.9×105 for the Maxwell
and FENE-P models, while Ns = 9.5× 104 has been used
for the Giesekus model, the latter model requiring twice
as many random numbers as the former two models.

An example of start-up flow is shown in fig. 3. For
assessing the effect of fluctuations, the stationary state
at tsim = 25 is examined in detail in the following. The
results for simple-shear deformation are shown in fig. 4

0

0.5

1

1.5

2

Fig. 4. Stationary-state average and standard deviation for
the shear stress σxy in simple-shear flow, normalized by the
corresponding value at Θ = 0, σxy,Θ=0, for all three models.
The Weissenberg numbers Wi are specified underneath each
measurement. The filling of the symbols represents the strength
of the fluctuations (from dark to light; from left to right in
every quadruple of symbols for each Wi): Θ = 0, Θ = 10−3,
Θ = 10−2, and Θ = 10−1. Square symbols are used for cases
where the standard deviation is larger than the average; the
corresponding dimensionless standard deviations are (from left
to right) 1.19, 1.22, and 2.19.

and fig. 5. For each model, different Weissenberg numbers
Wi have been examined, as indicated in the figure. For
each value of Wi, various strengths of fluctuations have
been studied, namely Θ = 0, Θ = 10−3, Θ = 10−2, and
Θ = 10−1. In order to compare the three models and rates
of deformation and to highlight the effect of fluctuations
more easily, the mechanical response is normalized by its
value in the absence of fluctuations; those latter values
can be found in appendix D for completeness.

Based on fig. 4 and fig. 5, the following observations
can be made about the relative influence of the fluctua-
tions. For the Maxwell model, increasing the fluctuation-
strength Θ does not affect the average response, as ex-
pected based on eq. (19), independent of the Weissenberg
number Wi. In contrast, the average response of the
FENE-P and Giesekus models does change (decreases)
upon increasing Θ, particularly so for the higher values
of Wi, i.e. when the non-linearity in these models be-
comes significant. Both of these models show a compa-
rable decrease of the average shear stress and average first
normal-stress difference upon increasing Θ (approx. 4.5%
at Θ = 10−1 and Wi = 10), with the exception that
the decrease of the shear stress for the FENE-P model
is weaker (approx. 1% at Θ = 10−1 and Wi = 10). For
all models, the standard deviation increases with increas-
ing strength of fluctuations Θ at all Wi, obviously, and
in some cases the standard deviation becomes even larger
than the average itself, see the square symbols in fig. 4 and
fig. 5. And, the relative magnitude of the standard devia-
tion for given Θ generally decreases the higher the Weis-
senberg number Wi. It is noteworthy that the standard
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Fig. 5. Stationary-state average and standard deviation for the
first normal-stress difference N1 in simple-shear flow, normal-
ized by the corresponding value at Θ = 0, N1,Θ=0, for all three
models. The specification of the Weissenberg number Wi and
the strength of fluctuations Θ, and the meaning of the square
symbols are explained in the caption of fig. 4. The dimension-
less standard deviations for the square-symbol datapoints are
(from left to right) 1.17, 3.71, 1.18, 3.74, 1.20, and 3.79.
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Fig. 6. Stationary-state average and standard deviation for the
first normal-stress difference N1 in uniaxial extension, normal-
ized by the corresponding value at Θ = 0, N1,Θ=0, for all three
models. The specification of the Weissenberg number Wi and
the strength of fluctuations Θ, and the meaning of the square
symbols are explained in the caption of fig. 4. The dimension-
less standard deviations for the square-symbol datapoints are
(from left to right) 2.04, 2.04, and 2.05.

deviation relative to the average decreases more strongly
when increasing Wi for the Giesekus model than it does
for the other models. Finally, it is mentioned that, for
the Maxwell model, the difference between the numerical
results presented in fig. 4 and fig. 5 and the analytical
predictions for the average (19) and standard deviation,
based on table 1, is on the order of 1% or less.

The first normal-stress difference in uniaxial extension
is shown in fig. 6. It is noted that the Maxwell model is

examined only for relatively small Weissenberg numbers
Wi, since no stationary solution exists for Wi ≥ 1/2, see
eq. (21). In contrast to the case of simple-shear defor-
mation, increasing the fluctuation-strength Θ in uniaxial
extension does not leave the average response of only the
Maxwell model unaffected, as expected based on eq. (21),
but has also only marginal effect on the averages of the
other two models. The only exception is that for both the
FENE-P model and the Giesekus model there is a weak
decrease of the average for Θ = 0.1 at Wi = 0.3 by approx.
2%. Similar to simple shear, the standard deviation in uni-
axial extension increases with increasing strength of fluc-
tuations Θ at all Wi, obviously, and also here the standard
deviation becomes even larger than the average for some
cases. The relative magnitude of the standard deviation
for given Θ decreases the higher the Weissenberg number
Wi, this effect being stronger for uniaxial extension than
for simple-shear deformation. For the Maxwell model, the
difference between the numerical results presented in fig. 6
and the analytical predictions for the average (21) and the
standard deviation, based on table 1, is on the order of 1%
or less.

It has been shown analytically in sect. 2.6 that the av-
erage response of the Maxwell model is not affected by the
strength of the thermal fluctuations Θ. Formulating clear-
cut analytical predictions for the FENE-P and Giesekus
models is cumbersome for two reasons. First, taking the
average of the corresponding SDE for c (see [13] for de-
tails) and considering stationary state results in an equa-
tion that is not closed in terms of 〈c〉. And second, one
does not have knowledge about the probability distribu-
tion of c either. Both of these issues occur because there is
non-linearity and multiplicative noise in the corresponding
SDE.

We now return to the cases for which the standard
deviation is larger than the magnitude of the average, see
the square symbols in fig. 4, fig. 5, and fig. 6. In order to
identify the border-line for this to occur, we seek pairs of
values (Wi, Θ) that satisfy

〈σxy〉2 = 〈〈σxy;σxy〉〉, (only for simple shear), (25)

〈N1〉2 = 〈〈N1;N1〉〉. (26)

One can study these conditions for a given model by nu-
merical means, in general, i.e., by running a large set of
simulations for various combinations of Wi and Θ, and
subsequently extract the combinations (Wi, Θ) that sat-
isfy the above conditions. For the Maxwell model, a more
direct route can be taken, since analytical expressions for
the averages (see eq. (19) and eq. (21)) and standard de-
viations (by way of table 1) are available. Using these re-
lations for D = 3, the combinations (Wi, Θ) satisfying the
conditions (25) and (26) can be determined readily; the
solutions are shown in fig. 7 for simple-shear deformation,
and in fig. 8 for uniaxial extension.

In both figures, only values Θ ≤ 1 are shown, but on
physical grounds one can argue that reasonable choices
should even be significantly smaller than unity. Particu-
larly for entropy elasticity, the strength of the fluctuations,
Θ, is equal to the inverse of the number of chains (or chain
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Fig. 7. Relation between Θ and Wi as obtained from the con-
dition that the standard deviation equals the magnitude of
the average (see eq. (25) and eq. (26)), for simple shear: σxy

(dashed line), N1 (dash-dotted line). The circles represent the
cases studied in detail in this paper.
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Fig. 8. Relation between Θ and Wi as obtained from the con-
dition that the standard deviation equals the magnitude of the
average (see eq. (26)), for uniaxial extension: N1 (dash-dotted
line). The circles represent the cases studied in detail in this
paper.

segments) in the volume of observation [13]. Therefore, it
seems that for Θ � O(10−1) the modeling approach taken
in this paper is not appropriate, and rather a particle-
based approach should be taken instead. The curves shown
in fig. 7 and fig. 8 are monotonously increasing for Wi > 0,
and monotonously decreasing for Wi < 0.

The standard deviation is smaller than the magnitude
of the average in the regions in the lower left and lower
right corners in fig. 7 and fig. 8, whereas the standard
deviation is larger than the magnitude of the average in
the upper center. Naturally, the separation lines between
these regions depend on the criterion looked at, and there-
fore there are separation lines associated with the shear

stress and with the first normal-stress difference, respec-
tively, in fig. 7. It is noted that, for simple shear (fig. 7),
the first normal-stress difference sets more stringent con-
ditions than the shear stress for having the standard de-
viation smaller than the magnitude of the average. The
graphs also contain the cases studied in fig. 4, fig. 5, and
fig. 6, for the Maxwell model. Particularly, points which
are above the respective separation lines in fig. 7 and fig. 8
have indeed been identified already in fig. 4, fig. 5, and
fig. 6 as the ones with standard deviation larger than the
average.

4 Discussion and conclusions

The effect of thermal fluctuations on viscoelasticity has
been examined, by analytical and numerical analyses. The
models examined are based on a conformation tensor in
principle, but earlier work has shown that it is benefi-
cial to formulate the fluctuating extensions of such mod-
els in terms a “square root” of the conformation tensor,
namely the so-called contravariant deformation [13]. The
models examined are the most standard and simple model
of all (Maxwell), a model that accounts for non-linearity in
terms of the thermodynamics (FENE-P, with finite chain-
extensibility), and a model accounting for anisotropic mo-
bility (Giesekus). From a non-equilibrium thermodynam-
ics viewpoint, they are prototypical for a wide class of
conformation-tensor–based models.

While analytical predictions can be formulated for the
Maxwell model due to its simplicity, the other two models
could only be studied numerically. The simulation results
can be summarized as follows. All three models display
two relaxation processes related to stretch and rotation,
respectively. As deformation is imposed, the average me-
chanical response of the Maxwell model is unaffected by
the strength of thermal fluctuations Θ. In contrast, the
average response of the FENE-P and Giesekus models de-
creases slightly in simple shear upon increasing Θ, partic-
ularly so for the higher values of the Weissenberg number
Wi; this decrease is marginal in uniaxial extension. For all
models, the standard deviation increases with increasing
strength of fluctuations Θ for given Wi. And, the magni-
tude of the standard deviation relative to the average for
given Θ generally decreases the higher the value of Wi,
this effect being stronger for uniaxial extension than for
simple-shear deformation.

Fluctuations in the rheological response are ubiquitous
in molecular-dynamics simulations of polymer solutions
and melts at finite temperature, see e.g. [29–32]. For exam-
ple, it has been observed that, in the steady state, the mag-
nitude of fluctuations in the shear viscosity and in the first
normal-stress coefficient decreases upon increasing the
shear rate in the shear-thinning regime [29, 30, 32]. Rep-
resenting the results of this paper in unscaled form, the
same qualitative behavior is found for both the FENE-P
model and the Giesekus model. A more detailed compari-
son with molecular-dynamics simulations in a future study
will be valuable in order to highlight the capabilities and
shortcomings of the coarse-grained approach in this paper.
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Our results show that there are conditions under
which, in stationary flow, the standard deviation of the
mechanical response is larger than the magnitude of the
average. This occurs particularly for low Weissenberg
number Wi and relatively high strength of the fluctu-
ations Θ. These results have been obtained from aver-
aging over a large number of trajectories. However, as-
suming ergodicity, which seems justified for the models
at hand, the same results could have been obtained by
time-averaging over a single sufficiently long trajectory in
stationary state. For the example of the shear stress (but
completely analogously for the first normal-stress differ-
ence), this implies that when imposing simple-shear de-
formation with Wi > 0, the shear stress can become nega-
tive temporarily, which can be interpreted as the viscosity
being temporarily negative, while the average shear stress
and average viscosity are positive. Shear banding is often
associated with a non-monotonic relation between the rate
of deformation and the stress [33]. The relation between
these findings and ours needs further studies; in our case,
it is just the fluctuations around the average that are un-
usual, and also we do not observe a negative slope in the
stress vs. strain-rate relation, but rather the ratio between
stress and strain-rate becomes negative temporarily. Fur-
thermore, in the literature, molecular simulations of poly-
meric glasses revealed the existence of negative moduli,
however, in that case this occurred in small regions that
remained rather stable in the course of time [34]. The con-
sequences of our findings about the large standard devia-
tion need to be investigated in further studies.
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Appendix A. Isotropically distributed random

rotations

Consider a 3-dimensional rotation R, and let us denote
the set of orthonormal basis vectors by (e1,e2,e3), in-
stead of (ex,ey,ez), for simplicity. If R is drawn from an

isotropically distributed set of random rotations, the vec-
tor R · ej is isotropically distributed on the unit sphere,
and therefore

〈Rij〉 = 〈eT
i · R · ej〉 = 0, ∀(i, j). (A.1)

This means that all components of the rotation matrix
are randomly distributed with vanishing average. Since
the vectors ei and R · ej are uncorrelated for any com-
bination of i and j, not only the average of Rij but its
entire distribution is independent of i and j, i.e. 〈R2

ij〉 is
equal to a constant independent of i and j. This constant
can be determined by considering a diagonal component
of the average of R · RT = 1, which results in

〈R2
ij〉 =

1

3
, ∀(i, j). (A.2)

Combining eq. (A.1) and eq. (A.2), one can write
〈〈Rij ;Rij〉〉 = 1

3 .

Appendix B. Correlation time scales for

rotation and stretch at equilibrium

For the Maxwell model, the dynamic effect of the fluctua-
tions at equilibrium can be assessed analytically as follows.
Particularly, the b-representation of the model, (4), is
studied for small perturbations around an isotropic state,
i.e. for b = b0(1 + ǫ) with constant b0 and ‖ǫ‖ ≪ 1. In-
serting this ansatz into eq. (4) and keeping only terms up
to first order in ǫ, one obtains an evolution equation for
ǫ that can be split into its symmetric and anti-symmetric
parts, which in a finite perturbation context are represen-
tative of stretch (s) and rotation (r), respectively. As it
turns out, not only are the (stochastic) evolution equa-
tions for ǫs and ǫr decoupled from each other, but also
for each of these two tensors the corresponding compo-
nents are uncorrelated as well. Analyzing the correspond-
ing evolution equations along the lines of p.105ff. in [21]
for calculating the time-self-correlation function for all of
these components separately, one finds that the correla-
tion times for the components of ǫs and ǫr, respectively,
are given by

λs =
2

1 + ζ
, (B.1)

λr =
2

1 − ζ
, (B.2)

with ζ = (1 − DΘ)/b2
0. Notably, the relaxation times de-

pend on the state around which the fluctuations are ex-
amined, namely on b0. In order to get a reasonable esti-
mate for b0, we proceed as follows. By evaluation of the
free energy for the b-representation of the Maxwell model
(see [13], and using eq. (2) and eq. (3)) for b = b01, one
obtains

ψ̃/ψ̃⋆ =
(

b2
0 − 1

)

− (1 − ΘD) ln b2
0, (B.3)

where ψ̃⋆ does not depend on b0. This free energy is mini-
mal for b0 =

√
1 − DΘ. However, by virtue of fluctuations



Eur. Phys. J. E (2020) 43: 24 Page 11 of 12

Table 3. Number of samples Ns for calculating the time-
correlation function CA.

Model Quantity A Θ = 0.03 Θ = 0.1

Maxwell and bxx, bxy no RI 170 580

FENE-P bxx, bxy with RI 5900 5900

cxx, cxy 5900 5900

Giesekus bxx, bxy no RI 87 290

bxx, bxy with RI 2900 2900

cxx, cxy 2900 2900

Table 4. Number of samples Ns for calculating the averages
and variances of b and c, respectively.

Model Quantity Θ = 0.03 Θ = 0.1

Maxwell and 〈b〉, 〈〈b; b〉〉 5700 19000

FENE-P 〈c〉, 〈〈c; c〉〉 184000 184000

Giesekus 〈b〉, 〈〈b; b〉〉 2800 9500

〈c〉, 〈〈c; c〉〉 95400 95400

at finite temperature, also levels of the free energy higher
than the minimum are explored. From the shape (asym-
metry) of the free-energy function in eq. (B.3), one can
infer that the average b is stretched with respect to its
size at the minimum of the free energy. One may thus
write b0 =

√
1 − ϑΘ with ϑ < D. Inserting this estimate

of b0 in eq. (B.1) and eq. (B.2), and considering small fluc-
tuations only, 0 < Θ ≪ 1, one obtains to dominant order
in Θ,

λs ≃ 1, (B.4)

λr ≃
2

(D − ϑ)Θ
. (B.5)

This implies that the time scale for the decorrelation of the
stretch is equal to the characteristic time scale of the poly-
mer (the latter being λ in a dimensional representation).
In contrast, the decorrelation of the rotation is delayed by
a factor 2/((D − ϑ)Θ). It is to be expected that, for ϑ to
represent a typical state at a given strength of the ther-
mal fluctuations Θ, the value of ϑ decreases slightly upon
increasing Θ, since in this case higher free-energy values
are probed and the asymmetry of the free-energy function
has a stronger effect.

Admittedly, the analysis above is a simplification of
the true dynamics in several respects. On the one hand, we
can anticipate that b will show arbitrarily large on-going
rotations in the course of the equilibrium dynamics, and
therefore considering fluctuations about b = b01 only and
looking at fluctuations that are small are simplifications.
On the other hand, the above result would need averaging
over the various states populated at equilibrium. Despite
these shortcomings, the above result gives an indication
of there being two relaxation processes, related to stretch
and rotation, respectively.
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Fig. 9. Stationary-state shear stress in simple-shear flow at
Θ = 0, σxy,Θ=0, for all three models. The Weissenberg numbers
Wi are specified underneath each measurement.

Appendix C. Number of samples Ns for

equilibrium calculations

The random number generator is called whenever the ran-
dom increments in the dynamics are determined, i.e., in
every time step, over the entire duration of the simulation,
and for all samples. As mentioned in the main text, the
number of samples Ns has been chosen such that, for the
given time step and simulation time, the period of the ran-
dom number generator is not surpassed. Table 3 lists the
values of Ns used for the simulations on which the time-
correlation functions are calculated. Several observations
can be made about table 3. First, the simulations of the
Giesekus model have about half the number of samples
compared to the other two models, because the Giesekus
model requires twice as many random numbers per time
step. Second, for a given model, the b-dynamics without
RI has about a factor Θ fewer samples compared to the
other dynamics, because its respective simulation time for
each sample is longer by a factor 1/Θ. And third, for the
same reason, only for the b-dynamics without RI does the
number of samples depend on Θ, whereas the number of
samples for the other dynamics does not depend on Θ.

Keeping in mind that the equilibrium averages and
variances for b have been calculated without RI in the
dynamics, the same observations made about table 3 also
apply to the number of samples reported in table 4.

Appendix D. Stationary-state rheological

response in the absence of fluctuations,

Θ = 0

Since this paper focuses on the effect of fluctuations on
the dynamics and rheological response, the rheological re-
sults presented in the main text (see figs. 4–6) have been
normalized with respect to the corresponding values in
the absence of fluctuations, i.e. Θ = 0. For completeness,
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Fig. 10. Stationary-state first normal-stress difference in
simple-shear flow at Θ = 0, N1,Θ=0, for all three models. The
Weissenberg numbers Wi are specified underneath each mea-
surement.
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Fig. 11. Stationary-state first normal-stress difference in uni-
axial extension at Θ = 0, N1,Θ=0, for all three models. The
Weissenberg numbers Wi are specified underneath each mea-
surement.

the values at Θ = 0 for all three models and all deforma-
tions studied in the main text are shown correspondingly
in figs. 9–11 in this appendix.
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21. H.C. Öttinger, Stochastic Processes in Polymeric Fluids

(Springer, Berlin, 1996).
22. M. Hütter, P.D. Olmsted, D.J. Read, Fluctuating viscoelas-

ticity based on a finite number of dumbbells, in preparation.
23. V.G. Mavrantzas, A.N. Beris, J. Chem. Phys. 110, 628

(1999).
24. J.R. Ray, Comput. Phys. Rep. 8, 109 (1988).
25. L.E. Wedgewood, R.B. Bird, Ind. Eng. Chem. Res. 27,

1313 (1988).
26. A.P.G. van Heel, M.A. Hulsen, B.H.A.A. van den Brule,

J. Non-Newton. Fluid Mech. 75, 253 (1998).
27. H. Giesekus, J. Non-Newton. Fluid Mech. 11, 69 (1982).
28. G. Marsaglia, W.W. Tsang, J. Stat. Softw. 5, 1 (2000).
29. J.T. Padding, W.J. Briels, J. Chem. Phys. 118, 10276

(2003).
30. C. Baig, V.G. Mavrantzas, M. Kröger, Macromolecules 43,
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