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The M / G /00 queue with oee
Simone Sassen and Jan van der Wal

Abstract

The M / G/00 queue with Optimistic Concurrency Control (OCC) is a model for transaction
processing in a real-time database. Transactions arrive according to a Poisson process and
require some generally distributed execution time. The number of servers is unlimited so ex
ecution of an arriving transaction always starts immediately. However there is a risk that after
completion of a transaction all work turns out to be useless because another transaction has
overwritten one or more data-items that were used. Thus, the total service time of a trans
action consists of a stochastic number of runs, dependent on the load of the system. In this
study we develop an approximation for the distribution of the total service time, and test the
approximation against simulation. Although in practice the number of servers is never unlim
ited, this study is very useful to judge the value of having a large number of servers in OCC
systems.

1 Introduction

In database systems one of the service disciplines to support parallelism is aptimistic Concur
rency Control (aCC). Under acc, services can always start, but there is the risk that after com
pletion of a transaction all work turns out to be useless because another transaction has overwritten
one or more data-items that were used. In that case, the transaction is invalidated and its execution
must be repeated from scratch. Thus, under acc, the total service time of a transaction consists
of a number of runs. How many runs are needed depends on how many other transactions are
executing at the same time and on the amount of data contention in the system.

In a number of previous papers (SASSEN and VAN DER WAL [1997a, 1997bD we studied acc
systems with afinite number of servers. However, to understand some of the asymptotic charac
teristics of acc systems, it is very useful to investigate the behavior of an infinite server acc
system. This study will clearly show the limited value of adding servers to cope with an increase
of the transaction arrival rate.

The paper is organized as follows. In Section 2 we describe the model. Section 3 contains an
approximate analysis of the mean and the distribution of the total service time in an M / G/00
queue with acc. In Section 4 we compare the analysis with a simulation of the model, for de
terministic and exponentially distributed run times. In Section 5 we analyze a slightly different
aCC-mechanism called Broadcast acc, and compare its performance to the so-called Pure acc
mechanism that is considered in Section 2 to 4. Section 6 contains some concluding remarks.

1



2

1E[Z] is the expectation of random variable Z

2 The Model

(1)
00

E [(1- b)Nx] = L P(Nx = n)(l - bt·
n=O

For the time being we assume that all jobs (transactions) that enter eventually leave again. So the
average number of departures per time unit is equal to the number of arrivals A.

Consider a transaction T that requires x time units of servicing. Every transaction that commits
during T's execution invalidates T with probability b. Thus, if the random variable Nx denotes
the number of commits during T's run of length x, the probability that the run is successful is1

3 The Analysis

The problem is, to determine the distribution of Nx • The number of commits during T's run de
pends on the time since the previous commit and on the remaining execution times of the other
transactions in the system. We are not very optimistic about the chances of an exact analysis of
the distribution of N x • Therefore, we make the following approximative assumption.

Departure Assumption
The departure process ofsuccessfully committing transactions is a Poisson process with rate A.

So we assume that Nx is Poisson distributed with mean AX. Recall that in the ordinary M/G/oo
queue the departure process is indeed Poisson (see e.g. DOOB [1953], p. 405-406, KENDALL

[1964] and NEWELL [1966]). In the acc model there is dependence between the departure epochs

The model we consider is the following. Transactions arrive according to a Poisson process with
rate A . The execution time X needed for one service run of a transaction has a general distribu
tion function F(x). We assume that transactions read all data-items they need at the start of their
execution. The values of the data-items are stored in a local buffer of the CPU (server) where the
execution takes place. The actual execution then comprises doing calculations with these data
items.

If a transaction is successful and completes without being invalidated by one of the other trans
actions it commits and leaves the system. The data-items changed locally by the transaction are
then updated globally (in main memory). When the transaction commits it invalidates any of the
other transactions in the system with probability b.

Whether a transaction has been invalidated is checked only at the end of the servicing. If it has
been invalidated it just restarts. We assume identical repeat, that is, if the first service run of a
transaction takes x time units then so do all the repetitions. When a transaction is restarted, all
data-items it needs are read anew from main memory. We call this complete data refreshment.

The number of servers is 00 , so upon arrival a transaction immediately gets a server.



of the various transactions, so it is unlikely that the departure process will still be Poisson. In the
following extreme case it is clear that the departure process is not Poisson.

Example
Consider the case with b = 1. Assume all service times are deterministic and equal to 1. Then if
a transaction completes, all transactions in the system are invalidated. Thus during the next time
unit no departures are possible. Hence the interdeparture time is at least 1.

However we conjecture that in all practical situations (i.e., with bsmall, say b ::; 0.2) the Departure
Assumption is very close to reality.

Now let us return to transaction T oflengthx. SubstitutionofP(Nx = n) = e-AX(Axt/n!in
(1) yields a success probability for T of e-Abx . (Another way to find this success probability is to
realize that under the Departure Assumption the time between two invalidations is exponentially
distributed with parameter Ab.) Hence the total service time of T, including reruns, is a geometric
sum of periods oflength x, the mean of which is xeAbx. We will call this total time the generalized
service time.

Result 3.1 The mean generalized service time ofa transaction ofduration x, denoted by 9(x),
satisfies

So for any finite x, any Aand any b the mean generalized service time is finite. This justifies the
assumption made at the beginning of this section that the departure process of the transactions has
the same rate as the arrival process.

However, the overall mean generalized service time may be no longer finite even if the mean ex
ecution time (the mean of X) is finite.

Result 3.2 The overall mean generalized service time 9 satisfies

9 = faoo xeAbxdF(x) ,

with F the execution time distribution.

Further the mean number of active servers L is given by

L = A9.

If the execution time is deterministic with mean 1 then the overall mean generalized service time
9D is given by

Ab
9D = e .

If the execution time is exponentially distributed with mean 1 then the overall mean generalized
service time 9M is finite only if Ab < 1, in which case we have

1
9M = (1 - Abp .
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Besides an expression for the (overall) mean generalized service time, we can also derive an ex
pression for the distribution function of the (overall) generalized service time. Since under the
Departure Assumption the generalized service time of a transaction of duration x is a geometric
sum of periods of length x, the following result is immediate.

Result 3.3 The distribution function ofthe generalized service time ofa transaction ofduration
x, denoted by Gx(t), satisfies

(The notation lyJ denotes the largest integer smaller than or equal to y.)

Conditioning on the value of x yields Result 3.4.

Result 3.4 The distribution function G(t) ofthe overall generalized service time G satisfies

r tG(t) = F(t) - J
o

(1 - e--\bx)l:;J dF(x) ,

with F the execution time distribution.

A way to measure the real-time performance of a system is to compute the percentage of trans
actions that meets its deadline. If a% of the transactions meets deadline t, we call the system
(t, a)-efficient. From Result 3.3 (or 3.4) we easily obtain

Result 3.5 There exists a finite maximum value A* ofthe arrival intensity A/or which an M/ G/00
system with acc and conflict probability b is still (t, a) -efficient.

4 Numerical Results

In this section we consider two cases, deterministic and exponential execution time, in somewhat
more detail. For various choices of the input parameters Aand b, results produced by simulations
are compared with results from the approximative analysis for these two cases.

The quality of the approximation for the distribution of the generalized service time depends on
the quality of the Departure Assumption. Therefore, we studied the actual departure process of
the M / G/00 queue with acc by simulation. According to the Departure Assumption, the in
terdeparture time (Le., the time that elapses between two consecutive commits) is exponentially
distributed with parameter A. This implies that the coefficient of variation of the interdeparture
time (i.e., the standard deviation of the interdeparture time divided by the mean) equals 1. Further,
the assumption says that consecutive interdeparture times are independent.
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We studied the departure process for the cases of deterministic and exponential execution times,
for b = 0.01, 0.1, and 0.2, respectively. In all simulations, the average interdeparture time was
indeed equal to 1/)...

For b = 0.01, the coefficient of variation of the interdeparture time was 0.99 for all cases of )..
considered, both for deterministic and for exponential execution times. Moreover, the simula
tions showed that subsequent interdeparture times were practically uncorrelated and independent.
Hence, for b = 0.01 the Departure Assumption is almost exact. For b = 0.1 and 0.2, we found
that the interdeparture times are less exponential (i.e., the coefficient of variation is less than 1)
and subsequent interdeparture times become more (negatively) correlated. Whether this causes a
serious error in the approximative analysis is seen below.

Table 1 and 2 compare analysis with simulation for deterministic and exponential execution times,
respectively. The input parameters are the arrival intensity ).. and the conflict probability b. The
average execution time is taken equal to 1. The tables show the average number of active servers
L, the overall mean generalized service time g, and the tail probabilities P(G > 1), P(G > 2),
andP(G > 5).

LD gD P(GD> 1) P(GD > 2) P(GD > 5)
).. b Ana Sim Ana Sim Ana Sim Ana Sim Ana Sim

20.0 0.01 24.43 24.43 1.22 1.22 0.18 0.18 0.033 0.033 0.0002 0.0002
40.0 0.01 59.7 59.7 1.49 1.49 0.33 0.33 0.11 0.11 0.0039 0.0039
80.0 0.01 178.0 178.5 2.23 2.23 0.55 0.55 0.30 0.30 0.051 0.051

2.0 0.10 2.44 2.45 1.22 1.22 0.18 0.18 0.033 0.033 0.0002 0.0002
4.0 0.10 5.97 6.00 1.49 1.50 0.33 0.33 0.11 0.11 0.0039 0.0043
8.0 0.10 17.80 18.13 2.23 2.27 0.55 0.56 0.30 0.31 0.051 0.055
1.0 0.20 1.22 1.23 1.22 1.23 0.18 0.18 0.033 0.034 0.0002 0.0002
2.0 0.20 2.98 3.02 1.49 1.51 0.33 0.34 0.11 0.11 0.0039 0.0047
4.0 0.20 8.90 9.26 2.23 2.31 0.55 0.57 0.30 0.32 0.051 0.059

Table 1: Analysis versus simulation for deterministic execution times

All simulations were run until 4 million transactions committed. The simulation results in the
tables are accurate up to the last digit shown2

• Numerical integration was used to do the analysis
for P(G > t) in the case of exponential execution times.

Analysis versus Simulation

Since the analysis of the generalized service time G only depends on the product)"b and not on
).. and b separately, the results the analysis produces for G in the upper, middle and lower part of

2That is, a simulated value of 2.45 means, that the 95% confidence interval lies inside [2.44,2.46]. Similarly, a
simulated value of 112 means that the 95% confidence interval lies inside [111, 113]. The only exceptions are the
values in italics in Table 2, which have a wider confidence interval. More about those values later in this section.
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Table I (Table 2) are the same. However, the simulation results for G in the three parts of Table 1
(Table 2) differ slightly. This indicates that the system behavior is not completely characterized by
>"b but depends also on >.. and bseparately. In general we see that as bbecomes larger (keeping >"b
fixed), the simulated values of9 and P(G > t) become larger (whereas the analytic values remain
unchanged). Apparently, the analysis overestimates the success probability of transactions when
b= 0.1 or 0.2.

LM gM P(GM > 1) P(GM > 2) P(GM > 5)
>.. b Ana Sim Ana Sim Ana Sim Ana Sim Ana Sim

20.0 0.01 31.3 31.3 1.56 1.56 0.40 0.40 0.20 0.20 0.056 0.056
40.0 0.01 111 112 2.78 2.79 0.43 0.43 0.25 0.25 0.10 0.10
80.0 0.01 2000 1100 25 14 0.48 0.48 0.33 0.33 0.19 0.19

2.0 0.10 3.12 3.14 1.56 1.57 0.40 0.40 0.20 0.20 0.056 0.057
4.0 0.10 11.1 11.3 2.78 2.82 0.43 0.43 0.25 0.25 0.10 0.11
8.0 0.10 200 151 25 19 0.48 0.48 0.33 0.33 0.19 0.19
1.0 0.20 1.56 1.57 1.56 1.57 0.40 0.40 0.20 0.20 0.056 0.057
2.0 0.20 5.6 5.8 2.78 2.92 0.43 0.43 0.25 0.25 0.10 0.11
4.0 0.20 100 89 25 22 0.48 0.48 0.33 0.34 0.19 0.19

Table 2: Analysis versus simulationfor exponential execution times

The more deterministic the commit process and the higher b, the larger is the error made by the
analysis. The analysis then overestimates the success probability so underestimates the mean and
tail of G. Nevertheless, in both Table 1 and 2 (and in all other investigated cases) we see that the
influence of the separate parameters>.. and b on the distribution of the generalized service time is
not large.

The tables clearly show that the analysis produces an excellent approximation for the mean and
distribution of the generalized service time, both with deterministic and with exponential execu
tion times. Only in the cases of Table 2 where the simulation results are printed in italics, the
analysis appears to be (very) inaccurate. A detailed investigation of these cases led to the sur
prising conclusion that the discrepancy between analysis and simulation is not caused by a bad
analysis, but by a bad (that is, too short) simulation!

In order to explain why the simulations that produced the values in italics were too short, we con
sider the case ofexponential execution times with>" = 80 and b = 0.01. According to the analysis,
LM = 2000 and gM = 25. Simulation of 4 million transactions gives L M ~ 1100 and gM ~ 14.
To understand this difference, let us consider the set of transactions with an execution time of 15
or more. A simulation run of 4 million transactions contains on the average only 1.2 transactions
with an execution time of 15 or more. In equilibrium, however, the number of transactions of
length 15 and more is >.. fl~ xeAbxe-x dx, so nearly 400. So the simulation should have had a du
ration of at least 400 times 4 million transactions. But this also means that the long transactions
will experience extremely long delays, and that aee for long transactions is disastrous.
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So the system with 4 million simulated transactions is still far away from statistical equilibrium
(the steady state). More transactions should be simulated to bring the system in the steady state,
but this will take weeks of computer time. Since this is not the purpose of our study, we chose
not to do these time-intensive simulations. For the tables already show that our simple and fast
analytic approximation is very useful. Moreover, in contrast to the influence of the long transac
tions on the mean response time g, their influence on the tails of G (and thus the error made by
simulating only 4 million transactions) is negligible.

The Maximum Allowable Arrival Rate

We see from Table 1 and 2 that the performance from a transaction point of view, Le., the mean
and distribution of the generalized service time, depends heavily on the type of the execution time
distribution. In the deterministic case, if we are willing to accept a mean generalized service time
of 5 then from gD = e>.b it follows that )"b should be less than In(5). In the exponential case
gM = 1/(1 - )"b)2, so )"b should be less than 1 - (V5/5). For b = 0.01, this gives a maximum
arrival rate).. of 161 and 55 in the deterministic and exponential case, respectively.

As for the real-time performance (which concerns the probability that the generalized service time
is larger than some maximum allowable value t), we see that the system with exponential execu
tion times has a much larger probability of missing deadlines than the system with deterministic
execution times. If we have a (relative) deadline of 5 and we are willing to accept a miss proba
bility of 0.05 (this is called (5, 95)-efficiency, see also Result 3.5), then for b = 0.01 in the deter
ministic case).. should be less than 79, while in the exponential case the bound for).. is 17.

In Table 3, for the deterministic and the exponential case, we show the maximum value )..* of
the arrival rate for various efficiency levels and for various values of b. Since the analysis only
depends on )"b and not on).. and bseparately, the values of )..* change proportionally to b.

(t, a)-efficiency
b g=5 (5,90) (5,95) (5,99)

D M D M D M D M
0.01 161 55 99 38 79 17 50 1.3
0.1 16 5.5 9.9 3.8 7.9 1.7 5.1 0.13
0.2 8.0 2.7 4.9 1.9 3.9 0.85 2.5 0.065

Table 3: Maximum arrival rate)"* for which 9 or (t, a)-efficiency is guaranteed

A final remark about the maximum allowable value)"* of the arrival intensity).. in relation to the
number of servers. This value is 0.5 in an M IM 100 system with acc if b = 0.2 and the require
ment is that 96.5% of the transactions must meet deadline t = 5. Now consider a system without
concurrency so with only 1 CPU. Let the execution time be exponentially distributed with mean
1. So in fact we are looking at an lv[IM II queue. The probability that the response time in an
MIM/l system is larger than 5 equals e-(1-,\)5. Thus, the )..* in the MIMll system such that
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96.5% of the transactions meets deadline 5 is 1 + (In(0.035)15) = 0.33. Hence, going from 1
to 00 epus increases the maximum allowable value of ). for which the system is still (5,96.5)
efficient from 0.33 to 0.5, that is only by about 50%. For the same parameters, the MIDII queue
compared to the MIDI00 queue with ace for gives a ).* of 0.66 compared to 3.5.

5 Broadcast OCC

The database system considered in Section 2 to 4 is governed by Pure ace, that is, a transaction
is aborted only at validation time (so after an execution run). In this section, we investigate the
performance of a real-time database with Broadcast ace.

Under Broadcast ace, a transaction is aborted as soon as any data-item it has accessed is changed
by another transaction. So no CPU time is wasted on completing unsuccessful execution runs.
This implies that Broadcast ace performs better than Pure ace.

We analyze the mean and distribution of the generalized service time under Broadcast ace in
Section 5.1. Just as for Pure ace, we use the assumption of complete data refreshment, i.e., in
every run of a transaction all data to be used by the transaction are refreshed. In Section 5.2, we
test our approximation of the generalized service time under Broadcast ace against simulation.

Remark
Efficient implementations of both Pure and Broadcast ace do not read anew all data-items of a
transaction in every rerun. anly data-items that were involved in the conflict which caused the re
run are refreshed in the next run. We call this minimal data refreshment. If reading data is costly
(i.e., takes a relatively large part of the execution time X), then the length of a rerun under ace
with complete data refreshment may be considerably larger than the length of a rerun under min
imal data refreshment.
Under complete data refreshment, it is clear that Broadcast ace outperforms Pure ace. Yu et al.
[1993] stress that under minimal data refreshment, Pure ace may perform better than Broadcast
ace. The reason for this is that reruns under Broadcast ace may take longer than reruns under
Pure ace. Under Broadcast ace, the earlier the first run is aborted, the fewer data-items have
already been read, so the more items must be accessed in the next run; under Pure ace, all items
have already been read in the first run, so in a rerun only those data-items that caused conflicts
must be reread. Therefore, under minimal data refreshment, the success probability of a rerun
under Broadcast ace may be smaller than that under Pure ace. The gain that Broadcast ace
makes over Pure ace by having a shorter first (unsuccessful) run may be undone by the larger
number of reruns that is needed by Broadcast ace.

In this paper, we only consider ace algorithms with complete data refreshment. A study oface
with minimal data refreshment is a topic for future research.

5.1 Analysis

As in Section 3 for Pure ace, we make the following assumption.
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Departure Assumption
The departure process ofsuccessfully committing transactions is a Poisson process with rate A.

Let us consider a transaction that requires x time units of servicing. Under the Departure As
sumption, a Poisson process with rate Atries to invalidate the transaction during its execution.
An invalidation attempt is successful with probability b. So successful invalidation attempts strike
according to a Poisson process with rate Ab. Thus the transaction is successful with probability
e- Abx . If the first run of a transaction is successful, the mean generalized service time g(x) equals
x. Otherwise, if an invalidation attempt strikes the transaction at time t during the first run, the
transaction is aborted and must be rerun. Then the mean generalized service time g(x) equals
t +g(x). Hence, conditioning on the abort time t yields

g(x) = xe- Abx +l x
(t +g(x))Abe- Abt clt.

Canceling and rearranging terms gives the following result.

Result 5.1 Under Broadcast ace, the mean generalized service time gBC (x) ofa transaction of
duration x satisfies

Conditioning on x leads to Result 5.2.

Result 5.2 Under Broadcast ace, the overall mean generalized service time gBC satisfies

with F the execution time distribution.

If the execution time is deterministic with mean 1 then the overall mean generalized service time
gEC is given by

g~C = (e Ab _ 1)/ Ab.

If the execution time is exponentially distributed with mean 1 then the overall mean generalized
service time g~C is finite only if Ab < 1, in which case we have

BC 1
gM = 1- Ab

Note that, as expected, for all x > 0 the mean generalized service time gBC (x) of a transaction
of duration x under Broadcast OCC is smaller than the mean generalized service time g(x) under
Pure ace. Hence, we have

Result 5.3 The overall mean generalized service time gBC under Broadcast ace with complete
data refreshment is smaller than the overall mean generalized service time 9 under Pure oee
with complete data refreshment.
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We next derive the distribution function of the (overall) generalized service time under Broadcast
ace. Let us consider a transaction with execution time x. Denote the generalized service time of
a transaction of duration x by Gx, and its distribution function by Gx(t). Gx consists of a number
of unsuccessful execution runs, all shorter than x, and one successful run, of length x. Denote
by Ux the total length ofthe unsuccessful runs. Then Gx is distributed as Ux + x. The problem
of deriving the distribution of Ux is essentially equivalent to the following basic problem in the
theory of Poisson processes:

In a Poisson process with rate >.b, what is the distribution ofthe total time Ux until thefirst moment
at which an interarrival time starts that is larger than x?

Solving this problem is not trivial and even quite elaborate. In the Appendix, we give a derivation
of the distribution function of Ux ' Using the Appendix, the following results are immediate.

Result 5.4 Under Broadcast acc, the distribution function G~c (t) of the generalized service
time ofa transaction ofduration x satisfies

l~J-l ( l)n(>.b)n
G~C(t) = L - , e-(n+l)Abx(t - (n + l)xt [n + 1 + >.b(t - (n + l)x)]

n=O (n + 1).

for x St.

Result 5.5 Under Broadcast acc, the distribution function GBC (t) of the overall generalized
service time GBC satisfies

GBC (t) = l t

G~c (t) dF(x) ,

with F the execution time distribution.

5.2 Numerical Results

Again we consider the two cases, deterministic and exponential execution time, this time for Broad
cast ace. Results produced by simulations are compared with the approximative analysis.

In Table 4 we show L, g, P(G > 1), P(G > 2), and P(G > 5) (dropping the superscript Be) for
a system with deterministic transaction lengths. The same is shown in Table 5 for the exponential
case. As with Pure ace, the analytic values for P(G > t) in the exponential case were com
puted by numerical integration. This time, all simulations were run until 1 million transactions
committed.

A simulation study of the departure process under Broadcast ace showed that the Departure As
sumption is excellent for b = 0.01, and less accurate but still useful for b = 0.1 and 0.2, just as
under Pure ace.
For Broadcast ace, analysis and simulation agree very well, both in the deterministic and in the
exponential case.

10



LD gD P(GD > 1) P(GD > 2) P(GD > 5)
A b Ana Sim Ana Sim Ana Sim Ana Sim Ana Sim

20.0 0.01 22.14 22.14 1.11 1.11 0.18 0.18 0.018 0.018 0.0000 0.0000
40.0 0.01 49.2 49.2 1.23 1.23 0.33 0.33 0.062 0.062 0.0002 0.0002
80.0 0.01 122.6 122.7 1.53 1.53 0.55 0.55 0.19 0.19 0.0050 0.0051

2.0 0.10 2.21 2.22 1.11 1.11 0.18 0.18 0.018 0.017 0.0000 0.0000
4.0 0.10 4.92 4.94 1.23 1.23 0.33 0.33 0.062 0.063 0.0002 0.0002
8.0 0.10 12.26 12.41 1.53 1.55 0.55 0.56 0.19 0.20 0.0050 0.0059
1.0 0.20 1.11 1.11 1.11 1.11 0.18 0.19 0.018 0.018 0.0000 0.0000
2.0 0.20 2.46 2.48 1.23 1.24 0.33 0.34 0.062 0.064 0.0002 0.0003
4.0 0.20 6.13 6.29 1.53 1.57 0.55 0.57 0.19 0.20 0.0050 0.0077

Table 4: Analysis versus simulation for Broadcast acc with detenninistic execution times

In the deterministic case, the only significant errors occur in the less-than-l % tails for b = 0.1
and b = 0.2 when A is large. As under Pure acc, these errors are explained by the fact that for
b = 0.1 and 0.2 the analysis does not recognize that the commit process (Nx ) is more regular than
Poisson, leading to an overestimation of the success probability and thus to an underestimation
of the tail probabilities of GD.

Although it is not shown in Table 5, the same error occurs in the tail of G for b = 0.1 and 0.2 in
the exponential case. Further, in Table 5 some simulation results are printed in italics to indicate
that a simulation of 1 million committed transactions was not sufficient to bring the system in the
steady state (cf. the discussion in Section 4).

The system with deterministic execution times has considerably smaller generalized service times
than the system with exponential execution times. However it is worth noting that the difference
between gD and 9M is much smaller than it was under Pure ace.

Finally, we note that the tables clearly show that Broadcast acc outperforms Pure ace.

6 Conclusions

We analyzed the generalized service-time distribution in an M / G/00 queue with two variants
of aptimistic Concurrency Control (aCC): Pure acc and Broadcast ace. Under Pure aec,
transactions are checked for data conflicts only at the end of their service. Under Broadcast ace,
a transaction is aborted and rerun as soon as any data-item it has accessed is changed by another
transaction. Broadcast ace obviously performs better than Pure acc under the assumption of
complete data refreshment (i.e. when a transaction is restarted, all data-items it needs are read
anew from main memory). A comparison of the approximative analysis with simulation showed
that the analysis is very accurate.

Although in practice the number of servers is never unlimited, this study is very useful to judge
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LM gM P(GM > 1) P(GM > 2) P(GM > 5)
A b Ana Sim Ana Sim Ana Sim Ana Sim Ana Sim

20.0 0.01 25.0 25.0 1.25 1.25 0.39 0.39 0.17 0.17 0.032 0.032
40.0 0.01 67 67 1.67 1.66 0.41 0.41 0.21 0.21 0.060 0.060
80.0 0.01 400 331 5.0 4·1 0.44 0.44 0.27 0.27 0.12 0.12

2.0 0.10 2.50 2.50 1.25 1.25 0.39 0.39 0.17 0.17 0.032 0.032
4.0 0.10 6.7 6.7 1.67 1.68 0.41 0.41 0.21 0.21 0.060 0.061
8.0 0.10 40 38 5.0 4·7 0.44 0.44 0.27 0.27 0.12 0.12
1.0 0.20 1.25 1.25 1.25 1.25 0.39 0.39 0.17 0.17 0.032 0.033
2.0 0.20 3.33 3.40 1.67 1.70 0.41 0.41 0.21 0.21 0.060 0.061
4.0 0.20 20 21 5.0 5.2 0.44 0.45 0.27 0.27 0.12 0.12

Table 5: Analysis versus simulationfor Broadcast DCC with exponential execution times

the value of having a large number of servers in acc systems. At least two important conclusions
can be drawn from this study.

The first conclusion has to do with the real-time performance of acc systems. Even with an
unlimited number of CPUs (servers), the real-time performance in terms of the mean response
time and the distribution of the response time may be very low. Thus, in acc systems adding
servers is not the answer to all problems.

The second conclusion concerns the tremendous influence of long transactions on the (average)
performance of acc systems. For exponential execution times, and more general the case of
moderately to highly variable execution times, acc is not the appropriate concurrency control
algorithm. Long execution times may lead to ridiculously long generalized service times and a
serious waste of CPU power. As a consequence, it takes an extremely large number of transactions
to bring a simulation of the system in the steady state.

Appendix

In this appendix, we derive the distribution of the total length Ux of a transaction's unsuccessful
runs under Broadcast acc with complete data refreshment. We first give three alternative ways
of looking at this problem.

Consider a pedestrian who wants to traverse a one-way street. The pedestrian needs x time units
to cross the street and can only cross ifno cars are passing. Ifcars pass according to a Poisson
process with rate A, what is the distribution of the time until the pedestrian can cross the street?

This problem relates to the basic properties of a Poisson process. It can therefore also be formu
lated as follows.

In a Poisson process, what is the distribution of the total time until the first moment at which an
interarrival time starts that is larger than x?

12



or

t ?: O.

1= E [e- SUx IXl = y] dH(y)

1x
E [e-S(Y+Ux)] dH(y) +1= e-SO dH(y).

13

( ) 1
. P(Ux E (t, t + L\t))

U x t = 1m A ,
~t-+O ut

First we remark that

e->'x (.\ +s)e->'X
E [e-

sUx
] = 1- _>'_(1_ e-(A+s)x) = -'s-+-.\-e-'---'-(>.-+-s)""-x'

>.+s

which yields

Direct inversion of this transform to get ux(t) and/or Ux(t) is not trivial. Therefore, we derive
ux(t) and Ux{t) in another way.

(
.\(1 e-(>'+S)X))

E [e- sUx ] = e->'x 1 + - .
s + .\e-(>'+s)x

Density U;e ( t) of U;e

N

N = min{n I Xi < x,i = 1, ... ,n, X n+1 ?: x} and Ux = LXi.
i=l

Condition on the epoch at which the first arrival occurs. Denote by H(y) the distribution function
of Xl. Then

Thus,

Laplace Transform of U;e

Or, more formally,

Consider a Poisson process with intensity.\. Denote the interarrival times by {Xl, X 2, ... }. Let

Derive the distribution function ofUx .

In this appendix we solve the problem of the pedestrian. Let ux(t) be the density, and Ux(t) be
the distribution function of Ux '



J... J ~ dXl··· dxx n n,

O<Xi<X, l<i<n
Xl+oo+X;;"=t

00

Ux(t) = e-'\xe-.\t L (AX t
n=l

because

00

e-.\x L J JAn e-,\(Xl +"+Xn) dXl ... dxn.
n=l O<Xi<~"~<i<n

Xl +.o+xnE(ti+~t)
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00 zn-l (n) Zll Zll-lL , = fez + ,e
z
.

n=1I (n - 1). v v. (v - 1).

Since (t - vx)+ = 0 for v ~ L;J + 1, this reduces to

or

where the multiple integral is the density in t of the sum of n uniform(O, x )-distributed random
variables. Using the notation (y)+ = max{y, O}, this density equals

00

P(UX E (t, t + ~t)) = L P(Xl +... +Xn E (t, t + ~t), Xl < X, ... ,Xn < x, Xn+l > x)
n=l

Since the sum with infinitely many terms is not desirable for computational purposes, we simplify
this expression further. We separate the term with v = 0 and interchange the order of summation:

So

see e.g. FELLER [1966], p. 27. Hence, for t ~ 0,

It is readily seen that



Distribution Function Um( t) of Um

First note, that Ux has probability mass e- AX in 0, so Ux(O) = e-AX .

Using again that the term (_A)ne-(n+l)AX[n +A(Y - nx)](y - nx)n-l In! occurs in ux(Y) for all
y 2 nx with n 2 1, we get

L~J it (_l)n An
Ux(t) = e-AX + Ate-AX +E nx n! e-(n+l)Ax [n + A(Y - nx)] (y - nxt-1 dy

L~J (_l)n An t
e-AX + Ate-AX +~ n! e-(n+l)Ax lx [n + A(Y - nx)] (y - nx )n-l dy,

so for t 20,

LfJ ( l)n An
Ux(t) = L - ,e-(n+l)AX(t - nxt [n +1 + A(t - nx)] .

n==O (n +1).

The check dU;?) indeed yields ux(t) for nx ::; t < (n + l)x with n 2 O.
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