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Abstract

For a two-node tandem fluid model with gradual input, we compute the joint steady
state buffer-content distribution. Our proof exploits martingale methods developed
by Kella & Whitt [16]. For the case of finite buffers, we use an insightful sample-path
argument to extend the proportionality result of Zwart [27] to the network case.
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1 Introduction

In this paper we study a tandem fluid network which operates in a two-state random
environment. Depending on the state of the environment, the content in the first buffer
either increases according to some general stochastic process or it decreases linearly. The
output of the first buffer is fed into a second buffer, after which it leaves the system. For
this model, we compute the Laplace-Stieltjes transform of the joint steady-state buffer
content distribution.
The model in this paper can be put in the context of tandem queues where the service
at the various queues is deterministic, and the probabilistic behavior is only due to the
stochastic arrival process(es). These systems may typically be used to model a sequence
of multiplexers in a communication network or a sequence of production lines that operate
in a deterministic manner.
The first of these systems to be analysed were classical tandem queues with determinis
tic service times; see e.g. Rubin [22]' Shalmon & Kaplan [24]' Boxma & Resing [5] and
references there. These may be viewed as slotted (discrete-time) versions of the model
considered here. In the last decade another class of models, operating in continuous time,
was studied successfully. Here, networks of fluid queues are driven by (instantaneous)
Levy input, see e.g. Kella & Whitt [16, 17], and Kella [18].
Several recent papers are concerned with a third class of models, in which fluid networks
are fed by gradual input; this type of model is considered in the present paper. Kroese &
Scheinhardt [20] (see also Scheinhardt [23]) analyse several systems of fluid queues that
are driven by a two-state Markov process. Their framework includes a two-node tandem
system for which the joint stationary distribution of the buffer contents was found. The
transform version of this result was generalized to feedforward networks with Markov
modulated input by Kella [19]. A different extension can be found in Aalto & Scheinhardt
[2], where a multi-node tandem fluid queue fed by homogeneous On-Off sources with
general On-time distribution was analyzed.
The main results in this study are strongly related to those in [19] and [2], but there are
some differences. The main difference with [2] is that we find the joint Laplace-Stieltjes
Transform of the buffer contents, whereas [2] is mainly concerned with marginal results.
Compared to [19], we study a simpler network topology. On the other hand, our input
process is more general than the (Markov-additive) input process of [19]. In particular, our
assumptions allow to consider non-Markovian input. For example, the Semi-Markov input
process as considered recently by Boxma et al. [8] falls within the framework considered
here, see Section 4.2. Non-Markovian input processes are currently particularly relevant in
communication networks, where it is now quite common to assume that On-periods of Qn
Off sources are heavy-tailed, hence not of phase-type. We refer to Boxma & Dumas [6] for
a survey on fluid queues with heavy-tailed input characteristics; see also the recent book
Park & Willinger [21]. Besides its intrinsic interest, the tandem fluid queue considered
here seems to play a key role in more complicated networks of fluid queues, see e.g. Van
Uitert & Borst [26] which is concerned with networks of fluid queues under the generalized
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processor sharing discipline.
The way in which we derive our results is as follows. First we show that the joint steady
state buffer-content distribution satisfies a decomposition property; this distribution can
be written as the sum of two random vectors (see also [8] for a similar result for the single
buffer case). The first term can be viewed as the steady-state buffer-content distribution
of a tandem network with instantaneous Levy input at both nodes. The joint buffer
content distribution of this particular tandem network is obtained by applying the powerful
martingale that was introduced by Kella & Whitt [16], which is also applied in [18, 19].
The second term in the decomposition is associated with the stationary distribution of a
clearing model.
We also treat the case in which the buffer sizes are finite. By means of an insightful
sample-path argument, it is shown that the steady-state distributions of the finite and
infinite buffer models are proportional. This extends the approach in Zwart [27], where
the corresponding result for the single-node case was obtained. The intuition behind the
proof is reminiscent of many papers dealing with traditional (i.e. non-fluid) finite-capacity
systems, such as those in Boots & Tijms [3, 4]' Gouweleeuw & Tijms [11], Hooghiemstra
[12] and Keilson & Servi [13, 14]. Our approach can also be applied to the finite-buffer
equivalents of the networks considered in [17]-[19].
The paper is organized as follows. Section 2 provides a detailed model description and
states a number of preliminary results. Our main results are in Section 3, where we show
the decomposition property. Furthermore, we use this property to find an expression for
the transform of the joint distribution. In Section 4 we apply the results of Section 3
to some examples which allow for explicit computations, namely the two respective cases
where the input into the first buffer is regulated by an On-Off process, and by a semi
Markov process. Section 5 finally treats the finite buffer case.

2 Model description and preliminaries

We start with a detailed model description. The content process of the first buffer falls
within the framework of Kella & Whitt [15], since it operates in a two-state random
environment. In particular, the first buffer is fed by a general source which operates in
two modes, which we calIOn and Off. When the source is On, the buffer content has
the same increments (in distribution) as the generic stochastic process X = {X(t), t ~ O},
which has non-decreasing sample-paths. An On-period is terminated after some (generic)
time A, which may depend on X and has finite mean. For Re u, v ~ 0, we define

,(u, v) = E{e-uX(A)-vA } (2.1)

as the Laplace-Stieltjes transform (LST) of (X(A),A). During Off-periods, which are
exponentially distributed with parameter A, the buffer content decreases linearly with
slope Cl > OJ Cl can be viewed as the output capacity of the buffer. It is easy to see that
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the steady-state probability that the source is On, which we denote by p, is given by

AIE{A}
p = 1 + AIE{A}' (2.2)

As long as the first buffer is not empty, it processes fluid at rate Cl, which is fed into a
second buffer with rate C2. To avoid a trivial model we will assume that CI > C2, so that
the second buffer is the bottle-neck.

The content of buffer i (i = 1,2) at time t is denoted by Vi(t). The process of interest is
then given by V = {V(t), t 2 OJ, where V(t) = (VI(t), V2(t)). A typical sample path is
depicted in the first part of Figure l.

It is clear that both buffer-content processes have negative drift if and only if the expected
amount of fluid that flows into the first buffer per unit oftime is less than C2, Le. iff

IE{X(A)} + cIE{A}
p = p E{A} < C2·

This may be rewritten, using (2.2), as

(2.3)

(2.4)

(2.5)

(2.7)

which we assume to hold throughout the remainder of the paper. Clearly, the process V
is regenerativej as regeneration epochs we take the instants when the On-Off source starts
an On-period in an empty network. Using standard regenerative process theory (see e.g.
Asmussen [1], Cohen [9]) it now follows that Vet) converges in distribution to a random
vector V = (VI, Vi). Choosing 0 to be a regeneration epoch and denoting a (generic)
regeneration cycle by G, the distribution of V can be written as

c

JP>{VI > Xlj V2 > X2} = 1E{~} JE{! l[Vl(t»xl,V2(t»x21dt}.
o

For later reference, we note that the probability of an empty system can be found as
1- pjc2' leading to

JP>{VI = 0, V2 = O} = JP>{Vi = O} = C2 - AIE{X(A)} - A(C!}- c2)E{A}. (2.6)
C2 + c2AlE{A

Similarly, we find for the first buffer that

JP>{VI = O} = 1 _ .!!... = CI - AIE{X(A)} .
CI CI + cIAIE{A}

We define the joint LST of V as w(u, v) = lE{e-UV1-VV2}. As mentioned in the introduction,
the main goal of this paper is to compute w(u, v). In doing so, we need two additional
random variables that are closely related to A and X (A). We define them as follows.
Firstly A* is distributed as the elapsed time that the source is On, ifwe observe the system
in steady state during an On-period. At that time, one can also observe the increase of the
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(2.8)

(2.9)

buffer content since the beginning of that On-period. This increase is denoted by X(A*).
The marginal distributions of A* and X(A*) are known, the second one being given in
[15]. However, in the sequel we will need the joint distribution of (X(A*), A*) as well. For
completeness, we give expressions for this distribution and its transform, which we denote
by ,* (u, v).

A

JPl{X(A*) > x, A* > y} - lE{~} lE{j I[X(t»x,t>YJ dt}.
o

A

,*(u, v) = lE{e-uX(A*)-vA*} = _1_lE{j e-uX(t)-vtdt}
E{A} .

o

In the sequel we will assume that ,* is known; Section 4 provides explicit expressions for ,*
in some special cases. As an aside we note that X (A*) can be interpreted as the stationary
workload of a (fluid) queue fed by X where all the work is removed after a random time
A. Such a model is called a clearing model, see e.g. Stidham [25]. The random variable
A* can then be interpreted as the time elapsed since the last clearing.
Finally, we need an expression for the transform 71"(8) = E{e-SP }, where the random
variable P is a generic busy period of the first buffer. It can be shown as in [6, 7] that
7I"(s) is the unique solution in the unit circle of the equation

( ) _ (8+).(1-71"(8)) )
7I"S-, ,So

CI

Note that it follows immediately from (2.10) that

lE{P} = cllE{A} + E{X(A)}
CI - >'E{X(A)} .

3 The joint steady state buffer-content distribution

(2.10)

(2.11)

In this section we give our main result, which is an explicit expression for the transform
w(u, v) of the steady-state buffer-content distribution. This expression is obtained in two
steps: First, we give a decomposition property of V, which reduces the problem to the
computation of the steady-state distribution of V, given that the source is Off. In the sec
ond step this problem is solved following the approach in [18] by applying the martingale
that was introduced in [16].

For the first step we define J(t) to be a 0 - 1 variable which equals 1 if the source is On
at time t (i.e., if the content of the first buffer is increasing) and aotherwise. Clearly,
in steady state J(t) is distributed as a random variable J which is 1 with probability
p and awith probability 1 - p, where p is given in (2.2). Also we introduce the process
V = {V(t), t ~ a}, with V(t) = (VI (t), V2(t)) , as the process obtained from V after deleting
the On-periods. As an illustration of this 'deleting procedure', we refer to Figure 1, rather
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V2(t)

Vi(t)

V2(t)

Figure 1: Construction of the process V from V.
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than giving the precise details. We refer to [15] or [27] for a detailed description of this
procedure in the single-node case.
It can be shown that this process V also has a steady-state distribution. Let V = (VI, V2)
denote a generic random vector with this distribution, and let w(u, v) denote the corre

sponding LST. We are now ready to state the decomposition result, where we will use ,4,
to indicate equality in distribution.

Theorem 3.1 The stationary buffer content V can be written as

V 4 V + J x (X(A*), (Cl - c2)A*) ,

where V, J, and (X(A*), (Cl - c2)A*) are independent. In terms of transforms:

w(u, v) = w(u, v) (1 - p + P'"Y*(u, (Cl - C2)V)) .

(3.1)

(3.2)

Proof
Note that J can be identified with the indicator of the event that the input source is On

in steady state. Observe that (VIJ = 0) 4 V. Using PASTA, the steady-state buffer
content distribution observed at the end of Off-periods has the same distribution as V.
This implies (using the definitions of A* and X(A*)) that

(V IJ = 1) 4 V + (X(A*), (Cl - c2)A*),

with V and (X(A*), (Cl - c2)A*) independent. Combining these results yields (3.1), from
which Equation (3.2) follows easily. 0

In view of this, it suffices to compute w(u, v). Hence, in the remainder of this section we
concentrate on the steady-state distribution of V.
The crucial observation is that V can be identified with the joint buffer-content process
of a tandem network with dependent Levy input as studied in [18]. In order to apply the
results of [18], we define Zl(t) = V1(t), Z2(t) = Vi(t) + V2(t), and Z(t) = (Zl(t),Z2(t)).
Observe that {Z2(t)} can be identified with the buffer-content process of an M/G/l-queue
with Poisson(>.)-arrivals, generic service time X(A) + (Cl - c2)A, and service speed C2.
We now find the following useful martingale from the fact that {Z (t)} is a two-dimensional
reflected Levy process, cf. Lemma 2.1 of [18].

Lemma 3.1 The process M = {M(t)}, given by

t

M(t) - ¢(u, v)! e-uZ1 (s)-vZ2(s)ds + 1 _ e-UZ1 (t)-VZ2(t) -

o
t t

uq ! e-vZ2
(s)l[zl(s)=ojds - VC2!I[Z2(s)=OjdS,

o 0
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with

¢(u, v) = UCI + VC2 - A(1 - ')'(u + v, (CI - C2)V)),

is a martingale.

Proof
Let Y(t) = (YI(t), Y2(t)) be a two-dimensional Levy-process with exponent ¢(u,v), i.e.,

lE{e-uY1(t)-vY2(t)} = e4>(u,v)t.

Furthermore, we define

i = 1,2.

Then, Z(t) may be represented as follows (note that Z(O) == 0):

i = 1,2.

Noting that d1i(t) = Cil[z;(t)=ojdt for i = 1,2, the lemma follows from [16]. o

Using this martingale, it is possible to obtain an expression for the LST of the stationary
distribution of {Z(t)}, which is given in the following theorem.

Theorem 3.2 The joint LST of Z is given by lE{e-UZ1 -vZ2} =

u(AlE{X(A)} - cdlE{e-VZ2IZ1 = O} + v (AlE{X(A)} + A(CI - c2)lE{A} - C2)
UCI + VC2 - A(1 - ')'(u + v, (CI - C2)V))

Proof
We mimic the proof of Corollary 2.3 in [18]. As a stopping time we take some epoch T
with ZI(T) = Z2(T) = O. Applying Doob's optional stopping theorem as in [18] and using
regenerative process theory as in (2.5) one gets for Re u, v ~ 0,

Keeping the definitions of Zl and Z2 in mind, the two respective probabilities in (3.4)
can be found by dividing the right-hand sides of (2.7) and (2.6) by 1 - p. The result now
follows after noting that lE{e-uz1 lZ2 = O} = 1. 0

The translation of Theorem 3.2 to the transform of (VI, V2) is done by noting that
lE{e-UZI-VZ2} = w(u + v,v) and lE{e-VZ2IZI = O} = lE{e-VV2 WI = O}. Hence, the only

unknown we have to find is lE{e-VV2 WI = O}. By Theorem 3.1, (Vi, V2) 4 ((VI, V2)IJ = 0).
Hence (noting that Vi = 0 implies J = 0),

lE{e-VV2 WI = O} = lE{e-vV2 1Vi = o}.

Note that the second buffer can be identified with a fluid queue fed by a single On
Off source having constant input rate CI during On-periods. These On-periods are busy
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periods of the first buffer. Appropriately scaling time, such that the output rate becomes
1, this means that the distribution of (V2 1Vi = 0) can be identified with the steady
state workload distribution of an M/G/l queue with arrival rate >-"/C2 and service times
(CI - C2)P (see also [2] and [17]). Hence we have

E{e-VV2 IVI = O} = (C2 - >-..(Cl - c2)E{P})v . (3.5)
C2V - >-"(1 - 1l"((CI - C2)V))

If we combine our findings we arrive at the main conclusion of this section:

Theorem 3.3 The LST of (Vi., V2 ) is given by

w(U, v) = w(u, v) (1 - p +n* (u, (Cl - C2)V)) ,

with w(u, v) =

(u - v)(>-"lE{X(A)} - cI)E{e-VV2 1V1 = O} + v (>-"E{X(A)} + >-"(Cl - c2)E{A} - C2)
(u - V)CI + VC2 - >-"(1 - ,(u, (Cl - C2)V))

and E{e-VV2 1V1 = O} given in (3.5).

From Theorem 3.3 it is straightforward to derive expressions for the moments, marginal
distributions and correlations. To compute the original steady-state probabilities from
Theorem 3.3 one may use the multi-dimensional transform-inversion technique described
in Abate & Whitt [10].
We end this section with a brief outline of how to extend Theorem 3.3 to the multi-node
tandem case. Consider n nodes with capacities C1 > C2 > ... > en and assume that the
stability condition (2.4) holds with C2 replaced by Cn. If we let Vi denote the steady-state
buffer content of buffer i, i = 1, ... ,n, we find a decomposition result as in Theorem 3.1,
which leads to

w(u U) _ lE{e-'lll Vl- ...-Un Vn }
1,· .. , n

where w is defined in the obvious way. To find w one can study the multidimensional
martingale M = {M(t)}, given by

t

M(t) = ¢(Ul,"" un)! e-UIZl(S)- ...-unZn(s)ds + 1 _ e-'lllZl(t)- ...-unZn(t) -

o
t

U C je-u2Z2(S)- ...-unZn(S)1 ds-
1 1 [Zl(S)=Oj

o
t

U C je-u3Z3(S)- ...-unZn(S)1 ds-
2 2 [Z2(S)=O]

o

9
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where the Zi(t), i = 1, ... ,n, are defined similarly as before, and ¢ is given by

¢(Ub ... ,un) = UlCl + ... + UnCn -

>'(1- '"Y(Ul + ... + Un, (Cl - CZ)U2 + ... + (Cn-l - cn)un))·

This martingale leads to a generalized version of Equation (3.4) (one can also directly
apply Corollary 2.3 of [18]). This equation can be solved in a similar way as in the proof
of Theorem 3.2.

4 Examples

In the previous section we derived an expression for w(u, v) in terms of '"Y(', '), '"Y*(',')
and 71"(')' The main goal of this section is to give some examples of the input process X
for which it is possible to get tractable expressions for these transforms. Together with
Theorem 3.3, this provides an explicit expression for w(u, v) in these cases. In the next
two subsections we treat (i) input from an On-Off source, and (li) Semi-Markov input.

4.1 Input from a simple On-Off source

Our first example, which was the original motivation for this work, is the case where the
first buffer is fed by a single On-Off source. If this source is On, it feeds fluid into the first
buffer with constant rate r > CI. For this special case, we take X(t) = (r - CI)t, t ~ O. If
we denote the LST of A by a(s) = E{e-sA }, we get

(4.1)

(4.2)

(4.3)

E{X(A)} 

'"Y(u, (CI - cz)v) -

'Y*(u, (CI - cz)v) -

(r - ct}E{A},

a((r - Cl)U + (Cl - C2)V),
1 - a((r - CI)U + (CI - cz)v)
E{A}((r - Cl)U + (el - C2)V)"

The latter equation follows immediately from the obvious identity (X(A*),A*) ;:; ((r
cI)A*, A*). An explicit expression for the LSTofVl and V2 follows by combining Equations
(4.2) and (4.3) with Theorem 3.3. Finally, 71"(') follows from

7I"(S) = a((r - CI)(S + A(1 - 1I'(s))) + s).

Several other studies contain results for this canocical model which are strongly related to
the problem adressed here: The marginal distributions of VI and V2, and the correlation
between Vl and Vz have been computed in [2]. The joint distribution of (Vb V2) in case A
has a phase-type distribution has been found in [19]. When A is exponentially distributed
it is possible to invert w to find an expression for the distribution of V, see [20,23].

4.2 Semi-Markov input

In this subsection we assume that the content of the first buffer is regulated by a semi
Markov process. This is motivated by the recent study [8], in which a single fluid buffer is
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analyzed that is fed by the same type of input. Hence we will follow [8] and consider the
Markov renewal process {(Yn,Tn+d In 2: O} with state space {O, ... , K} x [0,00). We let
To = 0 and Tn = L~=1 Tk, n 2: 1, and introduce the corresponding counting process by
N(t) = sup{n : Tn ::; t}. Then the semi-Markov process (SMP) {yet), t 2: O} is defined by
yet) = YN(t). The behavior of this process is given by the stochastic matrix P consisting
of the transition probabilities Pij = JID{Y1 = j I Yo = i},O S i, j ::; K (we assume that
Pii = 0), and the functions Fij(t), defined by

(4.4)

(4.5)

It is convenient to also define:

K

Fi(t) - JP>{T1 ::; t IYo = i} = LPijFij(t),
j=O

~j{'} = lE{- I YO = i, Y1 = j},

~{.} - lE{' IYo = i},

Tij(U) = ~j{e-UTI },

Ti(U) - ~{e-UTI },

TnU)
1 - Ti(U)

-
U~{Tl} ,

mij = ~j{T1},

mi - ~{Td·

An important assumption is that the sojourn time in state 0 (say) is exponentially dis
tributed and independent of the next jump, Le.: FOj(t) = Fo(t) =1- e->'t.
The SMP regulates the content of the first buffer in our tandem queue in the following
way. If yet) = i, i 2: 1, then the buffer content increases at rate qi = ri - C1, where Ti 2: C1.

When the SMP is in the special state 0, the buffer content decreases at rate Cl. Hence,
we can construct our process X as follows. Suppose that the SMP jumps from state 0 at
time O. Then

t

X(t) - ! qy(u)du, t 2: 0,

o
A - inf{t > 0 : yet) = O}.

We now compute the LST's of (X(A), A) and (X(A*), A*), extending the approach of [8]
by which the marginal LST's of X(A) and X(A*) were found. Keeping Equation (2.9) in
mind, we define for 1 ::; i ::; K,

A

f3i(u, v) = ~{! e-uf; qy(s)dS-vtdt}.

o

11



By conditioning upon Yl and Tl we obtain,

K

!3i(u, v) = miTt(qiu + v) + LPijTij(qiu + v)!3j(u, v),
j=1

1:::; i:::; K. (4.6)

This system of equations has a unique solution. To obtain an expression for ,*(u, v), note
that 1E{A} can be computed as

K

IE{A} = LPOiai,
i=1

where the ai = ~ {A}, i = 1, ... , K, form the unique solution of

K

ai = mi + LPijaj.
j=1

(4.7)

(4.8)

(4.9)

Combining Equations (2.9), (4.6), and (4.7) we obtain

*( ) L:t=1 POj{3j(u, v)
, u,v = K

L:j=IPOjaj

The computation of, is similar but easier (see also [8]) so we only state the final result:
, can be written as

K

leu, v) = LPOj!3j(u, v),
j=1

with {3j (u, v), j = 1, ... , K, the unique solution of

K

{3i(U, v) = PiO'TiO(qiu + v) + LPij'Tij(qiu + v){3j(u, v),
j=1

1:::; i:::; K.

(4.10)

(4.11)

Recursive expressions for the moments of A, X(A), and X(A*) can be found in [8].

5 Finite Buffers

In this section we look at the case where the buffers have respective sizes Kl and K2.
Using obvious notation, we will denote the transient process that describes both buffer
contents by VK1 ,K2. It can be shown that this process has a stationary distribution and
we let V K1 ,K2 = (V1

K1 ,K2, V2
K1 ,K2) be distributed accordingly.

The main result of this section is Theorem 5.1 below. In this theorem, we relate the
steady-state distribution of VK1 ,K2 to that of V. Hence, it is still assumed that (2.4)
holds, even though this is no longer required for stability. Furthermore, we need to make
the following additional assumption:
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Assumption 5.1 K 1, K2 and X are such that the second buffer fills before the first one

does, i.e. for all t,

If X(t) == (r - Cl)t (the scenario considered in Section 4.1), and ifthe system is empty at
time t = 0, this assumption is satisfied iff

~> K2
r - C1 Cl - C2

A similar characterization holds for the model considered in Section 4.2.

(5.1)

The main result of this section now states that the distributions of V and V Kl,K2 are
proportional:

Theorem 5.1 If Assumption 5.1 holds, then for 0:::; x < Kl' 0:::; y < K 2 ,

JPl{v,Kl,K2 < .V;Kl,K2 < } = JPl{V1 :::; Xj~ :::; y}
1 - x, 2 - Y JPl{W < K }JPl{W < K }'1_ 1 2_ 2

with WI ~ (~ I J = 0) and W2 ~ (~ IVI = 0).

(5.2)

Both this theorem and its proof below are an extension of the single node case which is
treated in [27].

Proof
The proof consists of two steps:

• First we consider the fluid tandem queue with buffer sizes K 1 = 00 and K2 < 00.

Denote this process by VOO ,K2, and let VOO,K2 = (VtO,K2, V;oo,K2) be distributed

according to its stationary distribution. We show that, for y < K2'

JPl{l1,oo,K2 < X. V;OO,K2 < } = JPl{V1 :::; Xj V2 :::; y} .
1 -, 2 - Y JPl{W: < K }2 _ 2

(5.3)

• In our second step, we show that, if Assumption 5.1 holds, for x < K 1 and y < K2,

(5.4)

The proof is then completed by combining (5.3) and (5.4).

Step I
From each sample path of V we construct a sample path of VOO ,K2. This construction is
done as follows (see also Figure 2): Given a sample path of V, consider the excursions of
{V2(t)} above level K 2• These excursions consist of two parts (a) and (b), corresponding
to (a) and (b) in the Figure:

13



(5.5)

(a) The time it takes until the first buffer becomes empty, i.e., the remaining busy period
of the first bufferj

(b) The remaining part of the excursion.

Now construct a sample path of a process V from a sample path of Vas follows:

• Time epochs where V2(t) ::; K2 remain unchanged;

• Part (a) of the excursions as described above is modified as follows: V2(t) = K 2 and
'Ci(t) = Vdt)j

• Delete the remaining parts of the excursions of V2 (t).

The constructed process Vhas the same law as V OO ,K2: Every time V2(t) leaves state K2 the
environment process is Off (in fact, the first buffer is empty), and the remaining Off-time
is exponentially distributed with rate>. - as it should be. Henceforth, take VK1 ,K2 == V.
Denote a regeneration cycle of this process by GOO,K2. An immediate consequence of the
construction of V K1 ,K2 is that, sample-path wise, for y < K2,

coo ,K2 C

J 1[V1OO,K2 (t):$x,V2
oo ,K2 (t):$yjdt = J1[VI (t):$X,V2 (t):$yj dt.

o 0

Combining this with regenerative process theory (like in Equation (2.5)), we get, for all x

and y < K 2 ,

lID{V1
OO

,K2 ::; Xj V2
oo

,K2 ::; y} = IE{~~L}JP>{Vi ::; Xj V2 ::; y}.

In particular, for x -+ 00, we get

{
OOK2 } JE{G} {

lID V2 ' ~ y = JE{GOO,K2} lID V2 ::; y}.

From Theorem 5.2 of [27] we obtain

which proves (5.3).

(5.6)

(5.7)

Step II
This step is similar to Step I, and gives a sample-path construction ofthe process VK1 ,K2

from VOO ,K2. For each sample path of the latter process, consider the excursions of
{V1

OO
,K2(t)} above level Kl. Note that Assumption 5.1 ensures that the second buffer

is full during these excursions (our method would break down if this would not be the
case). As before, divide the excursions into two partsj the first part ends when an Off
period is finished. Truncate the first part of the excursion of V1

oo
,K2 (t) to K 1 (while

14
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(a)
Figure 2: Construction of the process VOO ,K2 from V.
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V;oo,K2(t) remains unchanged), and delete the second part of the excursion.

Due to exactly the same argument as in Step I, the constructed process can be identified
with VK1 ,K2. This construction ofVK1 ,K2 implies that, sample-path wise,

C Kl.K2 coo.K2

! 1[VIKl,K2(t)~x,Vrl,K2(t)~y]dt = ! 1[Vloo,K2(t)~x,V200,K2(t)~y]dt.
o 0

Using regenerative process theory, this implies

(5.8)

(5.10)

JlP{V K1 ,K2 < x' V; K l,K2 < y} = E{C
OO

,K2} JlP{11,OO,K2 < x' V;OO,K2 < y}. (5.9)
1 -, 2 - E{CKl,K2} 1 . - , 2 -

What remains is to identify the pre-factor on the right-hand side of (5.9). From Theorem
5.2 of [27] it follows, for x < K2,

JlP{Vtl,K2 < x} = JlP{V1 ~ x} = JlP{V1
00

,K2 ~ x} .
- JlP{W1 ~ K1} JlP{W1 ~ Kd

Also, note that

JlP{Vt1,K2 = 0, V2
K l,K2 = K2} = JlP{V1

00 ,K2 = 0, V2
oo ,K2 = K2} = O.

Combining Equations (5.10) and (5.11) we obtain

JlP{V
1
Kl,K2 = O}

JlP{Vioo ,K2 = O}
JlP{W1 ~ K 1 }

JlP{V1
00 ,K2 = 0; V2°o,K2 < K2}

=
JlP{W1 ~ Kd

(5.11)

Invoking (5.9) for x = 0 and y = K2 yields that the unknown pre-factor in (5.9) equals
JlP{W1 ~ Kd -1. This completes Step II, and the proof of the theorem. 0

It can be shown that analogues of Theorem 5.1 also hold for the networks considered
in [17]-[19], after obvious modifications of Assumption 5.1. These result may be derived
in a similar way as Theorem 5.1.
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