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Abstract

Nuclear fusion is in essence a promising alternative energy source. However, there
are still major design challenges to overcome, especially in the design of plasma fac-
ing components. These components are subjected to high heat loads and neutron
damaging. The proposed material for plasma facing components is tungsten, which
is characterized by excellent thermo-mechanical properties at high temperature. In
contrast to the favourable thermo-mechanical properties, there are still challenges
to overcome for tungsten in this application. Among other problems, tungsten is
extremely brittle at room temperature. However, it is significantly more ductile at
elevated temperatures. In this work, the influence of grain size on this brittle-to-
ductile transition temperature is numerically investigated.

The current work presents a 2-D dislocation based crystal plasticity model, which
is developed for a finite element solver. Different microstructural Representative
Volume Elements that represent polycrystalline tungsten are utilized to investigate
length scale effects on the transition temperature. The crystal plasticity simulation
results are compared to measured data from literature on yield stresses for a range of
grain sizes and temperatures. The model is thereafter extended to predict the grain
size dependency of the brittle-to-ductile transition temperature.

There are some discrepancies between the hardening behaviour from literature and
simulations. The reason lies in the modelling of geometrically necessary dislocation
densities, which may not be sufficiently adequate to describe the relevant underly-
ing physical mechanisms. A method to determine the critical stress to propagate a
crack as a function of mean grain size is developed as well. A prediction is made
for the critical stress in the grain size range relevant for fusion applications based on
the simulations.
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1 Introduction

1 Introduction

The search for alternative energy sources is an ongoing process. Fossil fuels are
the prime source of energy up to this day. However, the dependency on fossil
fuels as a primary energy source is being questioned due to the decreasing quan-
tities available and their environmental footprint. Nevertheless, the global energy
demand increases monotonously. Alternative energy sources have been proposed
and developed. Examples include bio-fuels, but also wind energy, solar energy,
hydro power and nuclear power are alternatives that are taken into serious consid-
eration. The drawbacks differ for each individual alternative energy source; either
the method to harvest energy is deemed inefficient, limited to specific geographical
conditions or even regarded as dangerous [1].

The previously mentioned drawbacks do not apply to nuclear fusion. Fusion re-
actors are one of the solutions proposed to fulfill increasing energy demand in a
clean and relatively safe way when compared to, for instance, nuclear fission [2].
There are however still many challenges to overcome, among which the extreme
thermo-mechanical loading on the plasma facing components.

1.1 Nuclear fusion

The general working principle of a nuclear fusion reactor is as follows. The ionized
deuterium and tritium form a plasma in the reaction vessel. These are heavy iso-
topes of hydrogen and can be harvested from water. This plasma of deuterium and
tritium is controlled by magnetic field fluxes in the vessel. Under high temperatures
(approximately 1.5× 108 oC) the atoms are fused to form helium, as [2]:

2
1D +3

1 T →4
2 He +1

0 n (1.1)

where the hydrogen isotopes are fused and a neutron (n) is formed. The mass lost in
this process is converted to energy, in correspondence to the Einstein’s energy-mass
relation ∆E = ∆mc2, where m is the mass and c the speed of light in vacuum.
The energy released by this reaction is in the form of thermal energy, generating
heat. The heat is then extracted from the plasma by means of a water flow through
heat exchanger components. The helium product can be used in other applications
of industrial relevance.

An example of a fusion reactor is the International Thermonuclear Experimental Reactor
(ITER). The design of ITER can be seen in Figure 1.1. It consists of a Tokamak type
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1 Introduction

reaction vessel. Some main components are shown in the figure. The vacuum vessel

Figure 1.1: An overview of the main components of the ITER fusion reactor. A selection of the most
vital components is depicted here. The functions of the components are elaborated on in the main text.
Image from https://www.iter.org/

is a stainless steel housing for the reactions and acts as a first containment barrier.
The blanket protects the vacuum vessel and the exterior components. The stainless
steel cryostat encapsulates the vessel and ensures the thermal state and the vacuum
environment of the interior. The magnets produce and control the magnetic field
and thereby the plasma. The so-called divertor is located at the bottom of the vessel,
where the plasma is conducted to by the magnetic fields. The divertor extracts the
heat and the reaction products from the plasma.

1.2 Component issues

One of the main challenges in the design of ITER is in the design of the divertor.
In Figure 1.2, the divertor can be seen in more detail. The surface of the vertical
targets is designed as an assembly of monoblocks units. These are the components
that are subjected to the plasma, see also Figure 1.3. The monoblocks consist of
a shielding material and of Cu-alloy pipes. The function of the pipes is to guide
the water flow and thus the thermal energy from the reactor. These CuCrZr pipes
are connected to the shielding material with a Cu interlayer, such that the design is
optimized for thermal conductivity.

2
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1 Introduction

(a) The position of the divertor. (b) The proposed design of the divertor.

Figure 1.2: An overview of the divertor in ITER. It is located at the bottom of the vessel. Some
component nomenclature is shown here as well. The dome, inner and outer vertical targets form a
divertor in a so-called cassette assembly. Images from https://www.iter.org/.

Figure 1.3: The positioning of the monoblock units in the vertical targets of the divertor. The copper
interlayer and copper alloy tubes are shown as well. Image adapted from Bonnin et al. [3].

The shielding material is subjected to high heat loads. A typical heat flow is approx-
imately 10 MWm�2 through the wall [4]. The shielding material is also damaged
due to neutron and ion irradiation with neutron loads typically in the order of 10�6

dpa s�1 [5]. The components should be designed in such a way that the reactor can
remain operational for approximately two years. A promising material to withstand
these harsh conditions is tungsten, as suggested by numerous researches, e.g. Hirai
et al. [6]. Among other reasons, it exhibits the highest melting temperature of all
metals (Tm = 3695 K) and a high thermal conductivity (170 Wm�1K�1) [2].

3
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1 Introduction

In contrast to the favourable characteristics of tungsten mentioned so far, there
are some undesired effects in this application. Due to the high temperatures in
the monoblock of approximately 400-1000 oC or higher [7], recrystallization can
occur. The recrystallization temperature is estimated in the order of 1300 oC [7].
Recrystallization impacts the mechanical performance of the monoblock. Stud-
ies on the recrystallization mechanisms of tungsten under these conditions is being
done up to this day as well to improve the design. An example is of the work of
Mannheim et al. [7]. They present a model for the grain growth and recrystalliza-
tion of tungsten under fusion conditions.

Another issue is the intrinsic brittle nature of tungsten at low temperatures. This
can be problematic for the application of fusion shielding for the operation of the
reactor. Experiments by for instance Loewenhoff et al. [8] showed this in detail.
Although the nature of tungsten is brittle at room temperature, it behaves signif-
icantly more ductile at elevated temperatures. The high thermal gradient in the
plasma facing monoblock to the cooling water in the CuCrZr tubes exposes this
effect. The transition from brittle to ductile occurs rather suddenly, and is depen-
dent on both the underlying micro-structure and operating conditions. [9]. The
tungsten monoblocks should be designed such that the brittle to ductile transition
temperature remains below the operating temperature. By understanding the role
of the microstructure and loading conditions, the design of these monoblocks can
be improved.

1.3 This thesis

The role of micro-structural parameters on the brittle-to-ductile transition temper-
ature of tungsten is studied in this thesis. In the next chapter, a theoretical overview
is presented regarding the brittle to ductile transition temperature of tungsten and
the underlying physical mechanisms. Then, a mathematical model framework for
numerical simulations to study this effect is presented. This model is validated next
on a Representative Volume Element (RVE) representing polycrystalline tungsten. This
work concludes with a prediction regarding the brittle to ductile transition temper-
ature for tungsten. This framework can be utilized to obtain a better insight in
improving design concepts for the shielding components of the reactor.
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2 Microstructure and the brittle-to-ductile transition temperature

2 Microstructure and the brittle-to-ductile tran-
sition temperature

In this section, the theory on the micro-structural effects on the brittle-to-ductile
transition temperature of tungsten is presented.

2.1 Introduction

The transition between ductile or brittle type of failure results from a competition
between the breaking of atomic bonds and the mechanisms for crystallographic slip
at the crack tip [10,11]. The type of failure can be observed by measurements, as by
e.g. impact tests. In Figure 2.1 a qualitative graph of impact energy as a function of
temperature is shown for various materials. The impact energy is a measure for the
brittle or ductile failure, as made clear in the figure as well. It can be concluded from

Figure 2.1: A qualitative image to demonstrate the effect of temperature on brittle and ductile be-
haviour. FCC, BCC and high strength metals are shown. Image adapted from Callister [12].

the figure that FCC metals are generally ductile in nature. This is due to the large
amount of slip systems (12) which are easily activated. High strength materials, like
HCP materials, have a limited amount of slip systems. Therefore there is such a dis-
crepancy between FCC and high strength materials. BCC materials, however, have
a relatively large amount of slip systems but these have a higher activation thresh-
old. The activation threshold decreases with increasing temperature. Bonnekoh
et al. showed that this dependency originates from the spreading of screw disloca-
tions, resulting in high Peierls stress barriers to overcome by kink pair nucleation at

5



2 Microstructure and the brittle-to-ductile transition temperature

lower temperatures [9–11]. Tungsten always crystallizes in a body-centric-cubic (BCC)
stacking [9, 10]. Tungsten is known to be brittle at low temperature and ductile at
high temperature. Hence, a brittle-to-ductile transition temperature exists. It is
dependent on strain rate (loading conditions) and grain size (microstructure) [10].
The dependency of the brittle-to-ductile transition temperature on strain rate and
grain size is experimentally measured by several studies [10,11,13–17]. Both effects
are addressed in this chapter.

This section is structured as follows. First, a short overview of the effect of loading
conditions on the temperature transition is given, in particular the strain rate. Next,
the micro-structural effects on the transition temperature is elaborated in context
of mean grain size. A representative selection of these results in literature will be
discussed. This part closes with the underlying physical mechanisms for these effects
regarding the brittle-to-ductile transition temperature.

2.2 Influence of strain rate

In Figure 2.2, the influence of strain rate ε̇ on the brittle-to-ductile transition tem-
perature of tungsten is shown as presented by Stephens [13,18]. In this experiment,
tungsten specimens with an average grain sizes of approximately 50 µm were uti-
lized in a tensile test at constant ambient temperature. For the ductile specimens,
non propagating inter-granular cracks were found. The cracks were located at a
distance from the fracture surface, about 20 - 150 µm in length. From the results in

Figure 2.2: The influence of strain rate _" on the brittle-to-ductile transition temperature of tungsten,
as shown by Stephens [13, 18]. Tensile tests were performed at constant ambient temperature. The
polycrystalline specimens have average grain sizes of 50 �m.

Figure 2.2 it can be concluded that the brittle-to-ductile transition temperature is
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2 Microstructure and the brittle-to-ductile transition temperature

exponentially proportional to the strain rate. A relation is proposed of the following
Arrhenius type [9, 19]:

TBDT =
EBDT

kb ln(ε̇0/ε̇)
(2.1)

with TBDT the brittle-to-ductile transition temperature, ε̇ the strain rate and EBDT

the activation energy, as in correspondence to Figure 2.2. This activation energy
can be regarded as a coefficient for tungsten and has been measured in literature
more than once [15, 19]. However, some disagreement exists between the values
of this activation energy, with ranges claimed from 0.2 to 3.0 eV [9]. Reiser et
al. [15] provide a summary of these values, see also Table 2.1. Table 2.1 confirms
the disagreement on this value of activation energy. This obstructs an accurate
prediction of the brittle-to-ductile transition temperature for a given strain rate.

Table 2.1: Summary of research on the brittle-to-ductile activation energies, from Reiser et al. [15]

Author EBDT [eV]
Giannattasio and Roberts [19] 1.00± 0.04
Gumbsch et al. [20] 0.2
Giannattasio, Roberts et al. [21] 1.00
Rupp and Weygand [22, 23] 1.32− 1.44
Nemeth et al. [24] 2.9 + 2.6,−0.9

2.3 Influence of grain size

In Figures 2.3 to 2.5, the influence of main grain size on the brittle-to-ductile tran-
sition temperature of tungsten is shown. Figure 2.3 shows an overview of data from
different experiments, indicated by symbols defined in the legend. The tungsten
shielding material for ITER is expected to be of a finer micro-structure. Therefore
the red line indicates the relevant data for this application. This is the region for
mean grain sizes between 0.1 and 0.001 mm. Figure 2.4 shows the impact of mean
grain size on the brittle-to-ductile transition temperature for cold- and hot-rolled
tungsten sheets with original thickness of six millimetres. The degree of defor-
mation φ is defined as φ = ln(6

t
) where t is the rolled sheet thickness in mm.

The mean grain size has been determined parallel to the normal direction of the
plane (ND). Three models have been fitted to capture this trend; (i) an inversely
proportional law, (ii) a Hall-Petch like law and (iii) a logarithmic law.

7



2 Microstructure and the brittle-to-ductile transition temperature

Figure 2.3: The influence of main grain size on the brittle-to-ductile transition temperature of tungsten,
adjusted from Stevens [13]. An overview is given for different experiments, distinguished by symbols
(see the legend). On the left side of the red line, data for mean grain sizes which are relevant for ITER
are shown. This is the region for mean grain sizes between 0:1 and 0:001 mm.

Figure 2.4: The influence of mean grain size on the brittle-to-ductile transition temperature of tungsten
[10]. The degree of deformation φ is defined as φ = ln(6t ) where t is the rolled sheet thickness in
mm. The grain sizes are measured parallel to the normal direction of the plane (ND in the figure).
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2 Microstructure and the brittle-to-ductile transition temperature

Figure 2.5: The influence of main grain size d on the brittle-to-ductile transition temperature of
tungsten [17], measured in a three point bending test. The strain rate was set to approximately 0:025
per minute during the experiments.

The outlier for the finest grain size at φ = 4.1 shows that these fits do not capture
the trend for very fine grain sizes.

Farrell et al. [17] determined the brittle-to-ductile transition temperature as a func-
tion of mean grain diameter as shown in Figure 2.5. The specimens were measured
by using a three point bending test, resulting in a strain rate of approximately 0.025
per minute.

It can be seen from Figure 2.3, that the influence on mean grain size on the brittle-
to-ductile transition temperature of tungsten is increasing, up to a critical mean
grain diameter in which a maximum is observed and thereafter decreases. Note
that Figure 2.5 shows the same regime of Figure 2.3.

In correspondence to the results above, Qiu et al. [25] argue that the brittle-to-
ductile transition temperature is a Hall-Petch like function of the grain size:

TBDT = D0 −D1d
� 1

2 , (2.2)

where D0 and D1 are material coefficients.

In the research of Simm et al. [26], the proposed form for the influence of grain

9



2 Microstructure and the brittle-to-ductile transition temperature

size on the brittle-to-ductile transition temperature as in Equation (2.2) is elabo-
rated in more detail. In their work, it is stated that the brittle-to-ductile transition
temperature depends strongly on a stress required to move a dislocation at a certain
temperature. If the temperature is below the transition temperature, the stress can
exceed a critical stress value to propagate a crack (σc) before the yield stress (σy) is
reached, resulting in a brittle type of failure. The brittle-to-ductile transition tem-
perature elevates to higher temperatures by an increase in mean grain size or when
the movement of dislocations is inhibited. Both the yield stress and the critical
stress are dependent on the grain size. However, the critical stress is expected to
have a stronger dependency on the mean grain size than the yield stress [27]. This
dependency is expected to be of a Hall-Petch type of relation [25, 26, 28, 29]:

σy = σy;0 + kHPd
� 1

2 , (2.3)

σc = σc;0 + kcd
� 1

2 , (2.4)

st
re

ss
 

grain size

yield stress

critical stress

Figure 2.6: A schematic qualitative representation of the relation between the critical stress (Equation
2.4) and yield stress (Equation 2.3) of the mean grain size. The transition line in grey indicates the
brittle-to-ductile transition.

with kc > kHP. This is schematically shown in Figure 2.6. The critical stress does
not depend on the temperature [26, 30], however, unlike the yield stress. Hana-
mura et al. presented this schematically in Figure 2.7. The dashed line indicates
an increase in yield stress and fracture stress. This could be achieved by decreasing
the grain size, see also Equations (2.3) and (2.3), which leads to a decrease in the
brittle-to-ductile transition temperature. It can be reasoned that the DBTT de-
creases when d decreases. This is in line with e.g. Figure 2.3 and the discussion in

10



2 Microstructure and the brittle-to-ductile transition temperature

Figure 2.7: Schematic representation from Hanamura et al. [30] of the relation between the critical
stress (Equation 2.4) and yield stress (Equation 2.3) of temperature. The critical stress does not depend
on temperature. The dashed line indicates an increase in yield stress and fracture stress. This could
be achieved by decreasing the grain size, which leads to a decrease in the brittle-to-ductile transition
temperature.

the works of Farrell et al. [17].

In conclusion, the findings of Simm et al. [26] and Hanamura et al. [30] show
a reasonable explanation for the dependency of the the transition temperature on
the mean grain size. It is the interplay between σy and σc that determines a brittle
or ductile type of failure. The temperature dependence of σy, and of σc result in a
shift of the transition temperature with a change in grain size.

2.4 Physical mechanisms

The physical motivation for the microstructural effect on the yield stress is sourced
in the ratio of grain boundary surface per unit volume. The dislocation slip resis-
tance increases with a high grain boundary surface per unit area, since (higher-angle)
grain boundaries impede dislocation motion. As a result, decreasing the grain size
results in a higher grain boundary ratio per unit volume which increases the yield
stress of the material, but also decreasing ductility. This is however not valid for
relatively coarser nor relatively finer granular microstructures [12].

It remains unclear why the critical stress is dependent on the grain size. How-
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2 Microstructure and the brittle-to-ductile transition temperature

ever, in literature several explanations can be found as listed below.

Hanamura et al. [30] state that, for fine grain sizes, the surface energy of fracture
increases when the mean grain size decreases. This is also argued by Morris [28,29].
If the mean grain size decreases, then the resistance to trans-granular cleavage, as
commonly observed in tungsten, increases [31,32]. The reduction of grain bound-
ary impurities due to a decrease of grain boundary density may be the reason for
this [31,32]. Due to a higher surface energy of fracture the brittle-to-ductile transi-
tion temperature decreases as a consequence, confirming the trend seen experimen-
tally as in e.g. Figure 2.3 for finer grain sizes. If the stress exceeds the critical stress,
the crack drives through adjacent grains inducing brittle failure. The brittle failure
for tungsten is observed to be of intergranular nature, and can be controlled even
more by elongating the grains [31]. If the stress does not exceed this critical stress,
the crack will rupture in a ductile fashion since the crack stops at the boundary.

Farrell et al. [17] state that large crystals typically have a low brittle-to-ductile tran-
sition temperature due to the insufficient amount of suitable boundaries for crack
initiation. This could explain the trend of decreasing brittle-to-ductile transition
temperature in Figure 2.3 for coarse grain sizes.

12



3 Crystal plasticity model framework

3 Crystal plasticity model framework

In this section the constitutive modelling framework will be discussed. This frame-
work will capture the visco-elastic material response and is based on an enhanced
dislocation based crystal plasticity model.

3.1 Introduction

Plastic behaviour in metals is mainly driven by the physical mechanism of disloca-
tion slip. Dislocations movement can be activated in the plastic regime along slip
systems in the lattice. The amount of crystallographic slip is determined by loading
conditions and microstructure. This physical mechanism is modelled in the visco-
plastic crystal plasticity model as presented by e.g. Asaro et al. [33]. These type of
models show to be able to predict the visco-plastic response of metals accurately by
coupling loading conditions on macroscopic scale on the microstructure. However,
length scale effects are not explicitly modelled in this formulation. Therefore these
models are not convenient to expose these effects, which Plancher et al. have also
shown [34].

Evers et al. [35] presented in his work an enhanced version of the crystal plas-
ticity model as formulated by Asaro et al. [33]. This model is also able to capture
length scale effects in mechanical behaviour, in contrast to the crystal plasticity
model of Asaro et al. A key difference in his formulation is the explicit modelling
of dislocation densities in the microstructure. Both dislocation density nucleation,
annihilation and slip are explicitly modelled.

In this chapter a dislocation based crystal plasticity model in trend of Evers et al. [35]
is presented. The kinematics of the elasto-plastic model are discussed. Thereafter
the constitutive modelling of the material is elaborated.

3.1.1 Kinematics

For full details on the kinematic model framework the reader is referred to other
sources, e.g. [33]. A material point can be described in a reference configuration as
x⃗0. The mapping of this material point to a positional description in the deformed
configuration x⃗ is defined by the deformation gradient tensor F as follows:

x⃗ = F · x⃗0, (3.1)

13



3 Crystal plasticity model framework

where · is the inner product between two vectors. The deformation gradient tensor
is decomposed by multiplicative decomposition into an elastic part, Fe, and a plastic
part, Fp according to:

F = Fe · Fp. (3.2)

The decomposition of the deformation gradient tensor introduces a stress free in-
termediate state resulting from plastic deformation only. The plastic deformation
is volume invariant, since the crystallographic slip carrying the plastic deformation
does not result in a net compression or extension of the crystal lattice [36]. In Figure
3.1 the multiplicative decomposition of the deformation gradient tensor is shown.

FepF

F

Reference Intermediate Current 

Figure 3.1: Illustration of the multiplicative decomposition of the deformation gradient F into an
elastic part Fe and a plastic part Fp. The corresponding reference, intermediate and deformed (current)
configuration are depicted as well.

The plastic part of the deformation gradient tensor is coupled to the plastic velocity
gradient tensor Lp according to:

Lp = Ḟp · F�1
p . (3.3)

In the crystal plasticity framework, the plastic part of the veloctiy gradient tensor is
determined by the amount of crystallographic slip. This relation reads in line with
the works of Asaro et al. [33], but also later works as e.g. Acharya et al. and Arsenlis
et al. [37, 38], as:

Lp =
Ns∑

�=1

γ̇�s⃗�
0 n⃗

�
0 (3.4)

=
Ns∑

�=1

γ̇�P�
s;0, (3.5)

where n⃗ is the vector normal to the slip plane, s⃗ the slip direction, Ns the number
of slip systems and γ̇� the resolved shear rate on a slip system α.
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3 Crystal plasticity model framework

3.1.2 Elastic response

The elastic response of a crystal is modelled by the elastic part of the deformation
gradient tensor. This stress inducing deformation is coupled to the elastic Green-
Lagrange strain tensor Ee:

Ee =
1

2

(
FT

e · Fe − I
)

(3.6)

where I is the second order unity tensor. Subsequently, the stress state from the
elastic deformation is determined by Hooke’s law:

Se =
4C : Ee (3.7)

where Se is the elastic second Piola-Kirchhoff stress tensor and 4C the fourth order
elasticity tensor. The elastic second Piola-Kirchhoff stress tensor Se is defined as:

Se = JF�1
e · �e · F�T

e , (3.8)

with J = det(Fe) and �e the elastic Cauchy stress tensor.

3.1.3 Plastic response

The plastic response is determined by the shear stress orientated parallel to the slip
plane. This is the resolved shear stress τ , defined as:

τ� = S · FT
e · Fe : P�

s;0. (3.9)

The resolved shear stress can activate the slip system in the crystal to trigger crys-
tallographic slip and thus plasticity; the nucleation and slip of dislocations is the
physical driving force of plasticity. To this end a rate-dependent flow rule is mod-
elled for the resolved shear rate in the following commonly known form (see for
instance [39, 40]):

γ̇� = γ̇0

(τ�

s�

) 1
m

sign(τ�) (3.10)

where m is the strain rate sensitivity and s� the slip resistance on slip system α. For
low values of resolved shear stresses, the slip resistance deterrents crystallographic
slip, resulting in an elastic response. It results in a relatively low shear rate of the slip
system.

The slip resistance s� can be decomposed into two contributions: kink pair and
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3 Crystal plasticity model framework

obstacle slip resistance, as done by e.g. Terentyev et al. [41]. The obstacle slip resis-
tance physically models the slip resistance of the interaction between dislocations.
A kink pair is a mechanism by which a dislocation is thermally activated to cross a
Peierl’s barrier. This Peierl’s barrier represents the resolved shear stress required to
move a dislocation within an atomic plane in the unit cell. This is also illustrated
in Figure 3.2. A motivation for such a formulation is that for a BCC atomic pack-

Kink pair 

Peierl´s barrierPeierl´s valley

Dislocation line

Figure 3.2: A schematic of the kink pair nucleation mechanism. The dislocation line is thermally
activated to cross the Peierl's barrier. Image adapted from Goryaeva et al. [42] (edited).

ing, like tungsten, the kink pair resistance has a relatively high contribution when
compared to, e.g. FCC materials with respect to the dislocation forest hardening
contribution [12, 43]. In this work a formulation in line with Terentyev [41] is
adopted:

s� = s�
obs + s�

kp (3.11)

The kink pair resistance s�
kp is related to the energy for dislocations to overcome

Peierl’s barriers. The effect of slip resistance due to Peierl’s barriers is not negligible
at lower temperatures [44] for BCC materials. This temperature regime is defined
by a knee temperature Tk:

T�
k =

G0

kb ln(γ̇kp
0 /(|γ̇�|+ δnum))

, (3.12)

with Go the so-called activation energy. The knee temperature is a threshold tem-
perature for the activation of this slip resistance. The kink pair slip resistance is
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formulated in line with e.g. Oude Vrielink et al. [9] and Weinberger et al. [44] as:

s�
kp =

8<:skp
0

[
1−

(
T

T �
k

) 1
q
] 1

p
+ s1

kp if T ≤ T�
k ,

s1
kp otherwise,

where s1
kp is the saturation value of the kink pair slip resistance at higher tempera-

tures, and p and q are modelling parameters which are typically in the order 1.

The obstacle slip resistance is a long-range effect. It dependends on the interactions
between dislocations [35]. The dislocation density contributes to the slip resistance
according to the well-known Taylor equation [35, 45]:

s�
obs = cµb

vuut Ns∑
�=1

A��
(
ρ�

SSD + ρ�
GND

)
, (3.13)

where µ is the shear modulus, b the magnitude of the Burgers vector, c a constant, ρ
the dislocation density and A the dislocation interaction matrix. When β = α, self
hardening is modelled. Equivalently, latent hardening is modelled when β ̸= α.
The dislocation interaction matrix A is adapted from Madec et al. [46]. They show
that only 6 independent coefficients, ai, i = 0, 1, ..., 5, are needed in this matrix.
Then, the matrix for the {110}⟨11̄1⟩ slip systems is fully described due to lattice
symmetry. The exact positioning of the coefficients in the matrix is based on the
convention adopted by Madec et al. as well.

Only the {110}⟨11̄1⟩ family is modelled. These are the most active slip systems
for tungsten [12,47], see also Figure 3.3. For a BCC atomic arrangement, it can be
shown easily that the magnitude of the Burgers vector equals [12]:

b⟨11̄1⟩ = 2r, (3.14)

Where r is the radius of an atom in the lattice.
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Figure 3.3: A schematic picture of a few slip systems of the {110}⟨1�11⟩ family. These slip systems
are the most active for BCC materials [12,47], and will be modelled.

In the Taylor equation (3.13) the dislocation density is superimposed by two con-
tributions, statistically stored and geometrically necessary dislocations, denoted by ρSSD

and ρGND respectively. The former net contribution to the slip resistance is per
definition zero, i.e. summed over the whole domain, their net Burger’s vector is
zero. The latter carries the necessary slip for the curvature of the material on a
macroscopic scale.

The evolution equation for the change of the statistically stored dislocation density
under plastic deformation has been formulated in numerous ways. In this work, the
formulation similar to e.g. Terentyev et al. [41], Evers et al. [35, 48] and Rubio et
al. [49] is adopted and is given by:

ρ̇�
SSD =

1

b

(
K1

√
(ρ�

SSD + ρ�
GND)−K2ρ

�
SSD

)
|γ̇�|, (3.15)

in which K1 is a nucleation constant. The positive term represents dislocation
nucleation and the negative term dislocation annihilation [35,50]. The annihilation
constant K2 can be approximated as discussed by Essmann and Mughrabi [51] as:

K2 ≈
µb

πs�
kp

. (3.16)

This estimation is based on two screw dislocations of opposite sign, in which an
intrinsic attractive shear stress is present (3.16). It is a temperature dependent re-
sistance [44], since the short range dislocation slip resistance s�

kp is modelled as the
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thermally activated kink pair slip resistance. Thermal effects can thus hereby be
captured in the model.

Modelling the ρGND evolution can be done by strain gradient models [35, 38, 52].
Although e.g. Evers et al. [35] showed that these strain grain gradient models
capture grain length scale effects on mechanical behaviour, such models are com-
putationally expensive. Therefore a simplified alternative will be proposed here to
model the length scale effects on the mechanical behaviour without the price of an
excessively high computational cost.

The geometrically necessary dislocation density is modelled as a function of the
distance to the grain boundary, in general:

ρGND =
C√
ξ
, (3.17)

where C is a (yet unknown) function and ξ the distance to the grain boundary. The
form is adopted from De Geus et al. [53] who predicated the dependency of the
dislocation density to be proportional to the inverse square root of the distance to
the grain boundary when close to the boundary. The valid domain of this function
is determined by the grain boundary layer thickness l [54,55]. It is the length scale
over which pile ups occur measured from the grain boundary.

For a single stressed pile up, the distribution of dislocations is predicted by Hirth [56]
as

n�(x) =
2(1− ν)τ�

µb

( l
2
+ x

l
2
− x

) 1
2

, − l

2
≤ x ≤ l

2
, (3.18)

where ν is the Poisson ratio of the material, l the grain boundary layer thickness,
and x the distance from the edge of the grain boundary layer to the grain bound-
ary. The dislocation distribution n physically represents the distribution of pile up
dislocations near a grain boundary. The domain can be shifted to 0 ≤ x ≤ l by a
horizontal translation of the function of l

2
in positive direction:

n�(x) =
2(1− ν)τ�

µb

(
x

l − x

) 1
2

, 0 ≤ x ≤ l. (3.19)

Let ξ be the distance to the grain boundary, such that x = l − ξ. In that case,
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Equation (3.19) can be rewritten as function of ξ instead:

n�(ξ) =
2(1− ν)τ�

µb

(
l

ξ
− 1

) 1
2

, 0 ≤ ξ ≤ l. (3.20)

The dislocation distribution n physically represents the distribution of pile up dis-
locations near a grain boundary on a pile up dislocation line only, implying it is a line
density. Corresponding units to (3.19), (3.20) are then also m�1. In Figure 3.4 a
schematic illustration of the situation is given. Therefore, a relation of the following

l

�

�

Figure 3.4: A schematic illustration of a single stressed pile up as given in Hirth [56]. The black
vertical line represents an obstacle to dislocation slip, in this case, a grain boundary. The dislocation
distribution along � is given by an orange line; Equation (3.20), in the domain of 0 ≤ � ≤ l.

form is proposed for the GND density:

ρGND = Dn�(ξ) (3.21)

where D is a yet unknown constant of dimension m�1. Physically, this should
represent the distribution of pile up densities parallel to the dislocation pile up line.
This constant is estimated in view of this physical interpretation. Let δ be the
spacing between two parallel dislocation planes, then D is the inverse of δ: D = 1

�
,

see also Figure 3.5. Assuming all slip systems are active, the spacing between two
parallel slip planes in a BCC lattice is

δ =
1

2

√
2a (3.22)

where a is the length of the BCC unit cell. This result comes from the symmetry
of the BCC lattice. The coupling between the atomic radius r and the unit cell
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�

Figure 3.5: A sketch of some dislocation pile up lines (dashed) and an obstacle to dislocation slip
(solid line), the grain boundary. In the figure it is assumed all shown slip systems are active. Then the
physical interpretation of � is the perpendicular spacing between two dislocation lines.

length can be easily shown to be [12]

a =
4

3

√
3r. (3.23)

Therefore D can be expressed as a function of r, using that only the {110}⟨11̄1⟩
slip system family is modelled, as

D ≤
√
6

6b
, (3.24)

which is an upper bound where all slip systems are assumed to be active. Let K3

be the slip plane activity factor, such that K3 = 1 if all slip planes are active, and
K3 = 0 if none are active, then:

D = K3

√
6

6b
(3.25)

In conclusion the following form is proposed for the modelling of GND densities
as a function of the distance to the boundary ξ:

ρ�
GND =

8><>:K3
12

p
6(1��)��

�b2

(
l
�
− 1

) 1
2

if ξ ≤ l,

0 otherwise.
(3.26)
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The expression derived as in (3.26) is of the same form as predicted by De Geus
et al. [53]; the pile up dislocation density is proportional to the inverse square root
of the distance to the grain boundary. Equation (3.26) does not model a time
evolution, but a steady state of dislocations for a given local stress level along the
boundary. Therefore the GND density goes to zero if the resolved shear stress τ
goes to zero, which is not always physical. When for instance a sample deforms
plastically and the load is released, the GND densities carry the plastic deformation
in the stress free deformed state. The GND densities are in that case not equal to
zero. Furthermore, the growth of GND densities exclusively depends on τ�. This
implies that GND densities are mobile even if there is no shear rate on a slip system.
Thus this formulation would not be physical in the elastic domain.

Note that the grain boundary layer thickness l is a material parameter and thus
conclusively grain size independent. It has been reported for FCC copper [54, 55]
in orders of 1 µm, but no data specifically for tungsten is available to the author’s
best knowledge. By assuming l to be a material constant, the grain volume aver-
aged GND density will be grain size dependent, because the ratio between ξ and l
capture the length scale effects. Grain size effects on the mechanical behaviour can
be exposed this way when altering the grain size in the model.

3.2 Numerical implementation

Next, the implementation of the model as discussed above is addressed. For the
sake of simplicity, this part focuses on the adaptations to a standard crystal plasticity
model, as discussed in the previous section.

The model is embedded in a commercial finite element solver1, which has been
altered on a material point level. The subroutine for this purpose is the Beaver2

crystal plasticity tool.

3.2.1 General outline

The distance to the grain boundary ξ is an input for the crystal plasticity routine. It
is pre-determined from the mesh for every integration point. The routine updates
the state variables at each time increment. When incrementing, the resolved shear
rates γ̇ are solved for in closed form.

1MSc Marc Mentat 2013
2http://momgit.wfw.wtb.tue.nl/BeaverBoys/Beaver.git
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3 Crystal plasticity model framework

However, since in practice, the increments in slip rate can be high in these sort
of formulations, this closed form could induce numerical instabilities. Therefore
the increment in shear ∆γ will be solved instead. The relation between the shear
rate and increment in shear is the time integration in the form of a trapezoidal rule:

∆γ =
γ̇(t+∆t) + γ̇(t)

2
∆t (3.27)

Such that the closed form formulation in ∆γ reads:

1. ∆γ → Lp(∆γ) Equation (3.4)

2. Lp(∆γ) → Fp(∆γ) Equation (3.3)

3. Fp(∆γ) → Fe(∆γ) Equation (3.2)

4. Fe(∆γ) → Se(∆γ) Equation (3.7)

5. Se(∆γ) → τ(∆γ) Equation (3.9)

6. τ(∆γ) → γ̇(∆γ) Equation (3.10)

7. γ̇(∆γ) → ∆γ Equation (3.27)

This corresponds to the mathematical framework in the previous paragraph, and
Equation (3.27). The residual of∆γ should vanish. To this end, a Newton Raphson
iteration scheme is adopted to approximate ∆γ. Consequently all state variables are
updated. The remainder of this section describes the update of the dislocation
densities as state variables in more detail.

3.2.2 SSD density evolution

The SSD density as in Equation (3.15) can be solved by various numerical inte-
gration techniques. In line with the work of Cereceda Senas [57], a forward Euler
formulation is implemented. The formulation is relatively friendly to implement
numerically, but many timesteps are required [58]. For the convergence of γ̇, a
small time step size is needed nevertheless. The numerical time integration for the
SSD density is implemented as

ρ�
SSD(t+∆t) = ρ�

SSD(t) + ρ̇�
SSD(t)∆t, (3.28)

ρ�
SSD(t = 0) = ρ�

SSD;0. (3.29)

∆t is the time increment, t the current time and ρ�
SSD;0 the initial SSD density prior

to deformation.
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3.2.3 GND density

Equation (3.26) describes the GND density as a function of the distance to the
grain boundary ξ. In the numerical scheme, the SSD and GND densities are com-
puted as state variables. These densities are computed in the integration points of
the elements. So-called quad 8 reduced integration elements are utilized; these are
quadratic serendipity elements with reduced integration. See also Figure 3.6. The

1 2

34

5

6

7

8

Figure 3.6: The utilized element in the mesh is shown here. It is a quadratic serendipity element
with reduced integration. The numbering as defined in the program is shown here as well.

local GND density as in Equation (3.26) depends therefore on the distance of the
integration points in the elements to the grain boundary ξ. ξ is determined only
for the initial configuration and serves as an input.

The remainder of this paragraph will describe how the input of the mesh into
the program is equipped with a tool to determine ξ for every mesh.

First, the grain boundary is determined from the mesh. The input mesh is a pe-
riodic RVE of a multi grain structure. The grain boundary is then defined as the
nodes that correspond to at least two grains. Next, the distance to the closest grain
boundary ξ is determined. The closest distance is the orthogonal projection of the
integration point to the boundary, see also Figure 3.7. The vector c⃗ is the distance
from the first boundary node to the integration point. Let a⃗ and b⃗ be the position
vectors of the integration point and the first boundary node respectively. Then c⃗ is
their difference vector;

c⃗ = a⃗− b⃗ (3.30)

The vector d⃗ in Figure 3.8 represents here the boundary connectivity vector be-

24



3 Crystal plasticity model framework

Figure 3.7: A schematic grain boundary mesh. The vector c⃗ is the distance from the first boundary
node to the integration point. The vectors a⃗ and b⃗ are the position vectors of the integration point
and first node of the grain boundary respectively in reference to a certain basis. In this case, a two
dimensional Cartesian basis is depicted. The relative vector c⃗ is composed as the difference between the
absolute vectors a⃗ and b⃗ as c⃗ = a⃗ − b⃗. The closest distance to the boundary segment � is shown as
well.

tween two nodes on the boundary. The enclosed angle θ between vectors c⃗ and d⃗
is expressed as

θ = arccos
(

c⃗ · d⃗
∥c⃗∥∥d⃗∥

)
. (3.31)

Where ∥∥ denotes the Euclidean norm of the vector. The enclosed angle θ of
Equation (3.31) can be used to compute the shortest distance to the grain boundary
segment ξ as

ξ = ∥c⃗∥ sin(θ). (3.32)

This algorithm is executed for every integration point. Only boundary nodes of
corresponding texture will be used to compare the distance to. Boundary nodes
with different texture would not be in the grain of interest so these do not have to
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be compared. The closest boundary is stored for each integration point. Thus, the
value of ξ that is minimal:

ξ = min(ξi) (3.33)

where ξi is a list of distances to boundaries with similar texture of the integration
point of interest. This algorithm stores the data for every integration point of every

Figure 3.8: The vector c⃗ of Figure 3.7 is shown here along with the vector d⃗. d⃗ represents the
connectivity of the nodes of the boundary. The angle � is the enclosed angle of vectors c⃗ and d⃗. The
distance to the grain boundary of the integration point is �, shown in green.

element before the simulation and serves therefore as an input.

There has been accounted for the periodicity of the RVE in determining the shortest
distance to the boundary. If the periodicity of the RVE is not taken into considera-
tion, an integration point could get assigned an incorrect ξ. See for instance Figure
3.9. The solid lines are grain boundaries and the grey lines represent the domain of
the RVE. The RVE satisfies the periodicity requirement, however, the green line is
the actual shortest distance to the boundary and therefore ξ. The red line might get
assigned if this would not be accounted for. Figure 3.10 shows the final result of the
algorithm. The red lines and nodes correspond to the boundary. The integration
points are scattered over the domain of the RVE with a color representing ξ.
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Figure 3.9: A schematic depiction of an RVE. The grain boundary lines (solid) satisfy the periodicity
of the RVE. The integration point (×) might get a value assigned for � corresponding to the red line, if
no periodicity is embedded in the algorithm. This has been accounted for, so the green line corresponds
to � in this case.

2.8 � m

2.8 � m

Figure 3.10: A periodic mesh where the result of the algorithm to compute � for every integration
point in the mesh is shown. The elements are not visible here. The red lines and nodes correspond to
the boundary. The integration points are scattered over the domain of the RVE with a color representing
�. A mean grain size of 0:7 �m is modelled here. Units in the legend are in mm.
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4 Model validation

The model as outlined in the previous chapter will be validated in this chapter. For
this purpose, the Hall-Petch effect in the simulations is investigated.

Although the matter is briefly discussed in Chapter 2, a more elaborate overview of
the Hall-Petch effect is given as an introduction to this chapter. Then, the model
that is utilized to perform the simulations is given in detail. Corresponding results
and conclusions complete this part.

4.1 Introduction

The Hall-Petch effect is one of the first effects published on the relation between
grain boundaries and yield stress [27]. The empirical relation states that the yield
stress is inversely proportional to the square root of the mean grain size d [12,27,59]:

σy = σy;0 + kHPd
� 1

2 , (4.1)

where σy;0 and kHP are material constants. The latter is also referred to as the Hall-
Petch coefficient, which is in general dependent on the temperature. The physical
motivation for this microstructural effect on the yield stress is presented in Chapter
2. The Hall-Petch relation is however not valid for relatively coarse nor relatively
fine granular microstructures. The validity of this relation is restricted to a specific
range of grain sizes [12].

The Hall-Petch coefficient kHP can be determined from tensile testing or inden-
tation tests. In literature, the data for the Hall-Petch coefficient of (commer-
cially pure) tungsten is however limited. In the remainder of this introduction,
an overview of a selection of known data for this Hall-Petch effect is given.

Kravchenko et al. [60] present yield stresses of tungsten for different mean grain
sizes and temperature, see Figure 4.1. The Hall-Petch coefficients which result
from the fit are shown Table 4.1. The coefficient gives an indication of the length
scale hardening effect for this data. This way different measurements can be com-
pared. The values for the yield stress appear to be relatively low. This will become
apparent later.

Li et al. [61] show the yield stress for tungsten as a function of the inverse square
root of the mean grain size for T = 600 ◦C, see Figure 4.2. The grain size range is
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Figure 4.1: The yield stress of commercially pure tungsten as measured by Kravchenko et al. [60] as
a function of mean grain size d for different testing temperatures. The mean grain sizes were varied
between 1000 and 10 �m. The data points shown correspond to the measurements of Kravchenko et
al. [60].

Table 4.1: The Hall-Petch relation fit has been added to the data. The corresponding Hall-Petch
relation coefficients are shown corresponding to Figure 4.1.

T [◦C] KHP[MPa
√

m]
500 1.48
1000 1.32
1500 0.895

0.16 to 4 µm. The Hall-Petch coefficient from the fit equals kHP ≈ 1.26 MPa
√

m.
The yield stresses differ about a factor 2 for the same grain size in relation to the
data of Kravchenko [60] in Figure 4.1. The samples of Li et al. were in the form
of sintered powder, which may explain why the results are different.

The data in Figure 4.3 from Bonk et al. [62] show the yield stress of tungsten as
a function of d for a range of temperatures. The Hall-Petch coefficients which
result from the fit are shown Table 4.2. When comparing the data to Li [61]
in Figure 4.2, the data can be compared in a grain size range of approximately
1200 ≤ d�0:5 ≤ 2000 m� 1

2 and T = 600 ◦C. Li et al. [61] observed a significantly
lower yield stress for the grain sizes considered. However different samples were
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Figure 4.2: The yield stress for tungsten as a function of mean grain size. The data points shown
are adopted from the work of Li et al. [61]. The linear fit shown is congruent with the Hall-Petch
relation. The Hall-Petch coefficient equals kHP ≈ 1:26 MPa

√
m. The testing temperature is about

600 ◦C, while the grain size is varied from 0:16 to 4 �m.

utilized with different loading conditions. The data from Li et al. [61] in Figure
4.2 is obtained from sintered powder samples loaded in compression, while Bonk
et al. [62] performed tensile tests on tensile bars, as shown in Figure 4.3.

Although the availability of coherent data for the plastic behaviour of commer-
cially pure tungsten is rather limited, the model will be validated by simulating the
mechanical behaviour for a range of mean grain sizes and temperatures. The data in
literature as presented before is adopted as a reference for this purpose. Specifically
the data of Bonk (Figure 4.3) is relevant since the yield stress is measured by tensile
testing as a function of both grain size and temperature.
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Figure 4.3: Yield stress of tungsten as a function of mean grain size d, for a range of temperatures.
The data points were adopted from Bonk et al. [62]. The samples were tested with a strain rate of
approximately 1 × 10�3s�1, while the grain size is varied from 0:7 to 0:25 �m.

Table 4.2: The Hall-Petch coefficients from the fit are presented in correspondence to Figure 4.3.

T [◦C] KHP[MPa
√

m]
−50 0.887
20 0.823
200 0.925
400 0.797
500 0.676
600 0.551
800 0.200

31



4 Model validation

4.2 Model set up

In this section, the set up of the simulations is discussed. The goal of the simulations
is to validate the model by exploring the Hall-Petch effect in simulations in reference
to literature, specifically the data from Bonk et al. [62].

4.2.1 RVE generation

The grains have been created by means of Voronoi tessellation, with a total of 16
grains. In the earlier work of Bonk et al. [63] it is shown that the microstructure of
the samples is elongated by cold rolling. The aspect ratio of the grains is approx-
imately 5. The RVE that was generated in order to represent the microstructure
is shown in Figure 4.4. The RVE is polycrystalline in order to capture the grain

L = 5 x 4d

H = 4d

u

Figure 4.4: The geometry and boundary conditions of the RVE that is utilized for the simulation.
The RVE is a periodic RVE and consists of 16 grains which have been created by Voronoi tessellation.
The resulting geometry can then be linked to the microstructural grain size d as L = 5 × 4d and
H = 4d.

size effects of the crystal plasticity model. Each grain is oriented by an assigned
(random) texture. The RVE satisfies the periodicity requirements.

4.2.2 Boundary conditions

The boundary conditions are shown in Figure 4.4. The boundary conditions are
periodic. The displacement u is defined as εtotL, where εtot is the total amount
of strain in loading direction. This strain is defined as εtot = ε̇tend, where ε̇ is the
applied strain rate and tend the total simulated time. The applied strain rate ε̇ is
equal to the applied strain rate of the measurements of Bonk et al. [62], which is
ε̇ = 1.0× 10�3 s�1. Also, plane strain is assumed for the components out of plane.

32



4 Model validation

4.2.3 RVE discretization

The domain of the RVE is discretized in elements as a mesh, see also Figure 4.5. The
element type of the mesh is the so-called Quad 8 type with reduced integration,
which are square quadratic elements as shown in Figure 3.6 in Chapter 3. The
mesh has been locally refined near the grain boundaries. In Appendix A, a study
of the mesh quality and convergence is presented.

Figure 4.5: The discretized RVE is depicted here. The elements that are utilized are all quadratic
elements with reduced integration, as shown in Figure 3.6 in Chapter 3. The colours represent the
grains. Each grain is oriented by an assigned (random) texture.

4.2.4 Material parameters

An overview of the material parameters that are adopted is shown in Table 4.3. The
shear modulus µ, the Poisson’s ratio ν, the power law parameters γ̇0 and m and the
knee temperature parameter G0 for commercially pure tungsten are adopted from
the work of Oude Vrielink et al. [9]. It is assumed that the shear modulus µ and the
Poisson’s ratio ν are constant in temperature. The constant in the Taylor equation
c is adopted from the Lavrentev [45], who reported this value for molybdenum, an
element with similar properties as tungsten. As discussed in Chapter 3, the mag-
nitude of the Burger vector b is expressed in the atomic radius of tungsten, which
is reported in Callister [12]. The coefficients ai, i = 0, 1, ..5 of the dislocation in-
teraction matrix A from tungsten are adopted from the work of Madec et al. [46],
who obtained these parameters from discrete dislocation dynamics. Lim et al. [65]
reported the values of the knee temperature exponents p and q and the kink pair re-
sistances skp;0 and skp;1 for tungsten. The initial dislocation density ρSSD;0 is adopted
from the works of Terentyev et al., Evers et al. and Cereceda Senas [35,41,57]. The
dislocation pile-up length l has been estimated for copper by Ghorbani Moghad-
dam et al. [55], but no value for tungsten is available to the author’s best knowledge.

The value of the GND dislocation concentration factor K3 is based on the yield
stress in the measurements of Figure 4.3. The resulting yield stress from the sim-
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Table 4.3: An overview of the material parameters for BCC tungsten. The presented quantities are
adopted from other work. If the parameter is obtained from experimental data, it is stated as well.

Parameter Magnitude Reference
Shear modulus µ 161 GPa [9]
Poisson ratio ν 0.28 − [9]
Strain rate sensitivity m 0.05 − [9, 35, 64]
Initial slip rate γ̇0 1× 10�4 s�1 [9]
Taylor constant c 1.5 − [45]
Burgers vector b 3.43× 10�7 mm [12]
Interaction coefficients a0 0.10 − [46]

a1 0.80 −
a2 0.22 −
a3 0.25 −
a4 0.32 −
a5 0.30 −

Knee temp. exponents p 0.8 − [65]
q 1.2 −

Kink-Pair ref. slip res. skp;0 820 MPa [9, 65]
Kink-Pair plateau slip res. skp;1 35 MPa [65]
Kink-Pair ref. slip rate γ̇kp

0 3.71×10�10 s�1 [65]
Activation free energy G0 2.0 eV [9]
Disl. source factor K1 5× 10�1 − fitted [35]
Initial SSD density ρSSD;0 1× 107 mm�2 [35, 41, 57]
Slip plane conc. factor K3 5× 10�6 − fitted [62]
Pile up length l 1.0 µm [55]

ulation is tailored for a point in these measurements. Then the trend is compared
for various grain sizes.

The dislocation source factor K1 is identified from the experimentally obtained
dislocation density data of Terentyev et al. [41]. Terentyev et al. measured the dis-
location densities of a commercially pure tungsten specimen as a function of strain
by means of TEM measurements, see also Figure 4.6. Tensile tests were performed
at a testing temperature of 873 K on samples with a mean grain size of 0.25 mm.
Note that the experiments do not allow for a distinction between SSD and GND
densities. However, since the mean grain size is quite coarse, it is assumed most
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Figure 4.6: Results from TEM measurements of Terentyev et al. [41] are shown in black. It shows
the dislocation densities of commercially pure tungsten as a function of strain. The testing temperature
was 873 K. A sample with a mean grain size of 0:25 mm was analysed. The red line shows the
simulated SSD evolution with the model.

of these densities are SSD densities. The value of parameter K1 obtained from this
data and its magnitude is in correspondence to other work, e.g. Evers et al. [35].

4.2.5 Macroscopic stress response

The macroscopic first Piola-Kirchhoff stress tensor P is determined by a volume
average of the microscopic stresses of the microstructure. For periodic boundary
conditions, it can be expressed as:

P =
1

V0

∑
p=1;2;4

f⃗e;px⃗0;p, (4.2)

where V0 is the reference volume of the RVE, p an index to specifiy the three pre-
scribed corner nodes of the RVE, f⃗e;p the reaction forces on nodes p and x⃗0;p the
position vectors of nodes p with respect to the reference configuration as formulated
by Kouznetsova et al. [66]. This macroscopic stress tensor is typically compared to
experimental tensile test results, where it is assumed that the yield stresses reported
in literature are measured as engineering stress.
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The RVE will be loaded by a prescribed displacement u, as shown in Figure 4.4,
up to a total engineering strain of 0.01 in loading direction. The resulting first
Piola-Kirchhoff stress - engineering strain curve is then compared to the measured
values of the yield stress. In this work, the conventional definition of yield stress is
adopted, where the yield stress is defined as the stress at which 0.02 plastic strain
has been achieved. It is expected that the yield stresses reported in literature are also
defined this way.

4.3 Yield stress comparison

The yield stress is simulated with identical parameters for different grain sizes and
temperatures and compared to the experimental results in literature. The grain sizes
in the simulations are in correspondence with the grain sizes reported by Bonk et
al. [62].

In order to compare the yield stress obtained from simulation results to experi-
mental observations, a tensile test is performed numerically at T = 1073 K and
with a mean grain size range as reported by Bonk et al. [62]. The macroscopic
stress-strain response is shown in Figure 4.7. In in the results of Bonk in Figure
4.3 [62], the yield stress for d� 1

2 = 1500 m�0:5 and T = 1073 K is 778 MPa. From

Figure 4.7: The macroscopic stress strain curve in loading direction from the simulations for an identical
range of grain sizes as reported by Bonk et al. [62] and T = 1073 K.
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Figure 4.7 it is concluded that indeed the yield stress at 0.002 plastic strain matches
the measured yield stress. It confirms the fit for the slip plane concentration factor
K3.

The yield stresses as a function of different grain sizes at different temperatures are
shown in Figure 4.8. The slope of the line in Figure 4.8 represents the Hall-Petch

Figure 4.8: The yield stress as a function of grain size at different temperatures. The temperatures
shown are a selection of the temperature range by Bonk et al. and are labelled by color, see also the
legend. The dashed lines and the crosses correspond to the data of Bonk et al. and the solid lines and
the circles correspond to the data from the simulation.

coefficient kHP, see also Equation (4.1). For a range of temperatures identical to
the testing temperatures in the data of Bonk et al. [62], the dependency of kHP on
temperature is compared to the measured values. These coefficients as a function
of temperature are shown in Figure 4.9. For the fit of kHP in Figure 4.9 a linear fit
with respect to temperature is proposed in line with the findings of other works,
e.g. Xiao et al. [67] and Li et al. [61].

The results of the simulations in Figure 4.9 show that the trend of kHP in com-
parison with the measurements is captured in the sense that the yield stress increases
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Figure 4.9: The Hall-Petch coefficients as a function of temperature is shown here. The data of Bonk
et al. [62] is shown in red and the results from the simulations are shown in blue. The proposed fit
for the simulations is: kHP(T ) = −0:0005T + 0:4988.

with decreasing grain size and kHP decreases with increasing temperature. There
is however some discrepancy in the hardening parameter kHP with varying mean
grain size, as exposed in Figure 4.9. The length scale effects are embedded in the
formulation of the obstacle slip resistance s�

obs, in the GND density hardening. This
term should be refined. In the formulation of the GND density, ρGND is dependent
on the ratio of the distance to the grain boundary ξ and the grain boundary pile-up
length l.

In the model set up as described above, the grain boundary pile up length l was
1 µm. Since the grain size dependency of the yield stress is found to have a large
mismatch with experimental observations, the influence of the dislocation pile-up
length l is further investigated.

4.3.1 Influence of dislocation pile-up length

It is expected that a decrease in the dislocation pile-up length parameter l decreases
the GND density, which lowers the forest hardening contribution and thus increases
the crystallographic slip. The increase in crystallographic slip would decrease the
kink-pair slip resistance. Consequently, the total slip resistance term decreases. It
is thus expected that the hardening contribution decreases. This implies kHP is ex-
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pected to lower. Analogously to this reasoning it is expected that kHP increases as
the dislocation pile-up length l increases.

The yield stress as a function of temperature is shown in Figure 4.10 for various
temperatures and l = 0.2 µm. Figure 4.10 shows that a lower value of l decreases

Figure 4.10: The yield stress as a function of temperature for l = 1
5 �m. The temperatures shown

are a selection of the temperature range by Bonk et al. [62] and are labelled by color, see also the
legend. The dashed lines and the crosses correspond to the data of Bonk et al. [62] and the solid lines
and the circles correspond to the data from the simulation. The proposed fit for the simulations is:
kHP(T ) = −0:0002T + 0:2463.

kHP as expected. It can be concluded that l has a significant influence on the kHP.
Also, the value of 1 µm reported by Ghorbani Moghaddam et al. [55] for (FCC)
copper seems to be an underestimation for tungsten.

Preliminary results indicated that there is little influence of the Voronoi geome-
try and elongation of the RVE on the Hall-Petch coefficients with this model.
Therefore a simplified RVE is adopted hereafter, see also Figure 4.11.
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Figure 4.11: The geometry and boundary conditions of the RVE that is utilized for the simulation.
The periodic RVE consists of an assembly of 4 × 4 equally sized grains in a square shape. The
resulting geometry can then be linked to the microstructural grain size d as L = 4d and H = 4d.

The RVE is less computationally expensive. It consists of an assembly of 4 × 4
equally sized grains in a square shape. The geometry is discretized in a mesh. The
material parameters and loading conditions are the same as described earlier. The
influence of the grain boundary pile up length l is investigated when l is increased.
It is expected that this would increase the GND densities and, in accordance to the
reasoning as presented in the previous section, increase the hardening parameter
kHP.

The yield stress as a function of temperature for the case l = 10µm is shown in
Figure 4.12. In the figure it is shown that the hardening parameter kHP decreases,
contrary to the expectation. A potential source of this decrease is located in the for-

mulation of ρGND. It is formulated as ρGND ∝
√

l
�

(see also Figure (3.4) in Chapter

3), where ξ is the distance to the grain boundary. As ξ → ∞ then ρGND → 0
slowly. But, As ξ → 0 then ρGND → ∞. This occurs rather suddenly, and thus if
the ratio l

d
is sufficiently high, a plateau in ρGND can be the source of little change

in grain size effects. Since this formulation should be able to model the mechanical
behaviour with the exposure of grain size effects, this may indicate a deficiency of
the model. The source of the difference could also lie in the dependency of ρGND on
the resolved shear stress, instead of the gradient of strain, as elaborated in Chapter 3.

Variations of l to l = 2 µm and l = 5 µm have been adopted as well. The re-
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Figure 4.12: The yield stress as a function of mean grain size for l = 10�m. The temperatures
shown are a selection of the temperature range by Bonk et al. [62] and are labelled by color, see also
the legend. The dashed lines and the crosses correspond to the data of Bonk et al. [62] and the solid
lines and the circles correspond to the data from the simulation.

sults of the Hall-Petch coefficients are shown in Table 4.4, as well as earlier results
for comparison.

Table 4.4: A summary of the results obtained in this chapter for the Hall-Petch coefficient kHP as a
function of temperature, for variating pile-up lengths l.

Pile-up length kHP [MPa
√

m]
l = 0.2µm −0.0002T + 0.2463
l = 1µm −0.0005T + 0.4988
l = 2µm −0.0004T + 0.4872
l = 5µm −0.0003T + 0.4234
l = 10µm −0.0001T + 0.1858

Although the model is unable to quantitatively describe the measurements of Bonk
et al. [62], the trend of the hardening by length scale is being covered by the GND
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density model formulation. The trend of the thermal effects has been covered as
well by the model.

4.3.2 Extrapolation to larger grain sizes

The value of l that matches best with the measurements is l = 1µm. For this value
of the grain boundary pile up length, an extrapolation in range of grain sizes to
0.001 ≤ d ≤ 0.1 mm is made. This is the range of grain sizes that is most relevant
for the ITER application, as shown in Figure 2.3 in Chapter 2.

The Hall-Petch coefficient kHP is:

kHP = −0.0003T + 0.1694, (4.3)

which is lower than the result for the grain size range of Bonk et al [62] for l = 1
µm in Table 4.4. Since the grain size range d is larger in this case and the grain
boundary pile-up length l is a constant, the domain where GND densities are mod-
elled decreases. The length scale effects on the yield stress decrease if the mesh is
not further refined near the grain boundaries.

4.4 Conclusions

A validation of the model has been presented by comparing the simulation results
to the measurements of Bonk et al [62], where the Hall-Petch coefficients are fitted
to experimental data. It shows that the model can qualitatively describe the length
scale and temperature effects on the yield stress. However, there are still differences
in the Hall-Petch coefficients when compared to the values from the measurements.
A potential source of this discrepancy lies in the formulation of ρGND. The ratio l

d

has undesired effects when l is altered, as presented in Table 4.4. If the ratio l
d

is
sufficiently high, a plateau in ρGND can be the source of little change in grain size
effects. The estimation of Ghorbani Moghaddam et al. [55] for l = 1µm matches
best with the measurements. For this case, an extension to the 0.001 ≤ d ≤ 0.1
mm grain size range has been done. The formulation of ρGND is already based on
physical motivations. A formulation of GND densities based on strain gradients, as
done by e.g. Evers et al. [35], would be more physical in the sense that ρGND does
not change when γ̇� is zero. This has an effect on the yield stress due to the forest
hardening contribution in the obstacle slip resistance s�

obs formulation.
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5 Brittle-to-ductile transition temperature

In this chapter, the investigation of the brittle-to-ductile transition temperature is
presented. First, the subject is briefly introduced in line with Chapter 2. Next, the
dependency of the mean grain size d on the critical stress to propagate a crack σc

is discussed. The results on the yield stress σy as discussed in Chapter 4 along with
the brittle-to-ductile transition temperature TBDT from literature is then discussed.

5.1 Introduction

As discussed in Chapter 2, the competition between plasticity and brittle type of
failure determines the brittle-to-ductile transition temperature. This competition
is governed by the interplay between the yield stress σy and the critical stress σc.
The yield stress can be expressed in a Hall-Petch equation as:

σy(T, d) = σy;0(T ) + kHP(T )d
� 1

2 , (5.1)

where the dependency on both temperature T and mean grain size d is explicitly
written. Also the critical stress σc depends on d in a Hall-Petch kind of relation:

σc(d) = σc;0 + kcd
� 1

2 . (5.2)

The critical stress is however temperature independent, in contrast to the yield stress.
As a consequence, the transition temperature should follow a Hall-Petch relation
as well. The transition temperature can be interpreted in this context as the inter-
section between σy and σc as a function of temperature. Experimental data from
literature confirms this hypothesis, as shown in Figure 5.1. Here, the transition
temperature is shown as a function of grain size. The solid lines represent a least-
squares fit through the experimental data presented. The data from Farrel et al. [17]
are determined by three point bend testing, in contrast to the data of Stephens et
al. [13]. The discrepancy between the data for smaller grain sizes probably lies in
the different testing conditions.

In the next section it is shown how the dependency of the critical stress on the
mean grain size can be extracted from this data.

5.2 Critical stress and mean grain size

The dependency of the Hall-Petch coefficients for the yield stress on temperature
can be written as:
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Figure 5.1: Overview of the brittle-to-ductile transition temperature TBDT as a function of mean
grain size d. Here the Hall-Petch fit is shown in black from Stephens [13], see also Figure 2.3 in
Chapter 2. In red the fit for data of Farrell et al. is shown as well, corresponding to Figure 2.5 in
Chapter 2 [17].

σy;0(T ) = σ0 + σTT, (5.3)

kHP(T ) = k0 + kTT, (5.4)

where the coefficients σ0, σT, k0 and kT are extracted from experimental data from
literature. The fit from the data of Bonk et al. [62] is shown in Table 5.1.

Table 5.1: The fit from the Hall-Petch coefficients as measured by Bonk et al. [62]. The measure-
ments have been presented in Figure 4.3 in Chapter 4.

Coefficient Value Unit
σ0 392.5570 MPa
σT −0.3675 MPaK�1

k0 1.1779 MPa
√

m
kT −0.0007 MPa

√
mK�1

The brittle-to-ductile transition temperature TBDT can be written in a Hall-Petch
formulation as:

TBDT = D0 +D1d
� 1

2 . (5.5)

The experimental data in Figure 5.1 is fitted with a Hall-Petch type equation as
well, see Table 5.2. In Figure 5.2 the fitting of σy(T, d) and TBDT(d) is shown
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Table 5.2: The fit of the Hall-Petch coefficients for the brittle-to-ductile transition temperature. The
measurements have been presented in Figure 5.1.

Coefficient Value Unit Source
D0 561.6236 K Stephens [13]
D1 −0.3965 K

√
m

D0 553.662 K Farrell et al. [17]
D1 −0.1721 K

√
m

Figure 5.2: The yield stress is shown here as a function of temperature. The grain size range shown
here is 0:001 to 0:101 mm with intervals of 0:01 mm, indicated by colours. The black crosses represent
the intersections with the critical stress at the TBDT from the data of Stephens.

for a range of grain sizes for the data of Stephens [13]. The grain size range shown
here is 0.001 to 0.101 mm with intervals of 0.01 mm. The black crosses represent
the intersections with the critical stress at the TBDT. The stress values at these in-
tersections are the critical stress σc. Figure 5.3 shows the critical stress as a function
of d� 1

2 , where d is the mean grain size. Here, the dots represent the intersections
as highlighted in Figure 5.2. Table 5.3 shows the coefficients of the fit. Note that
from these values, the expectation that the critical stress would be more strongly
dependent on the mean grain size is valid. Figure 5.3 shows that the dependency
of the mean grain size on the critical stress is similar for both the TBDT data of
Stephens [13] and Farrell et al. [17]. Although there exists a significant difference
in the measured transition temperature for smaller grain sizes in Figure 5.1, the
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Figure 5.3: Fit of �c(d) following from the intersections in Figure 5.2. The coefficients of this fit
are shown in Table 5.3.

Table 5.3: The fit of the Hall-Petch coefficients of the critical stress, as shown in Figure 5.3.

Coefficient Value Unit Source
σc;0 144.8991 MPa Stephens [13]
kc 1.2436 MPa

√
m

σc;0 171.1796 MPa Farrell et al. [17]
kc 0.9906 MPa

√
m

difference in critical stress in this regime is low, due to the low slope of the yield
stress as a function of temperature for smaller grain sizes. This is visible in Figure
5.2. This relation between critical stress and mean grain size will be assumed in the
remainder of this work.

5.3 Critical stress comparison

The results from the simulations are next combined with the TBDT data to estimate
the critical stress as a function of mean grain size. In particular, the result from the
previous chapter is adopted where the grain boundary pile up length l = 1 µm and
the mean grain size is to 0.001 ≤ d ≤ 0.1 mm .

Since the critical stress σc is derived from the data of Bonk et al. [62] for σy and
the data of Stephens and Farrell et al. [13, 17] for TBDT, it is equivalent to compare
either σc or TBDT resulting from σy of the simulations. Only the comparison be-
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tween critical stresses will therefore be made.

Analogously to the previous section, the intersections between TBDT(d) and σy(T, d)
determine the critical stress σc(d). This is shown in Figure 5.4. The Hall-Petch

Figure 5.4: The yield stress from the simulation is shown here as a function of mean grain size. The
grain size range shown here is 0:001 to 0:101 mm with intervals of 0:01 mm. The black crosses
represent the intersections with the critical stress at the TBDT from the data of Stephens [13].

coefficients of this fit are shown in Table 5.4, for both the Stephens and Farrel et al.
measurements of TBDT. The result is plotted as well in Figure 5.5. When comparing

Table 5.4: The fit from the Hall-Petch coefficients for the critical stress as shown in Figure 5.4. The
yield stress relation from the simulations has been utilized here.

Coefficient Value Unit Source
σc;0 2406.1 MPa Stephens [13]
kc 0.1418 MPa

√
m

σc;0 2416.3 MPa Farrell et al. [17]
kc 0.0644 MPa

√
m

the data for σc resulting from the simulations in the previous section in Figure 5.5
to the data resulting from literature in Figure 5.1, the critical stress is qualitatively
well described. The quantitative description, however, differs roughly a factor 2
to 8. This becomes also visible when comparing Tables 5.4 and 5.3, where the
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Figure 5.5: Fit of �c(d) following from the intersections in Figure 5.4. The coefficients of this fit
are shown in Table 5.4.

Hall-Petch coefficients of the critical stress differ. This difference follows directly
from the discrepancy of yield stress, as discussed in the previous section.
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6 Conclusions

The objective of this thesis is to investigate the role of microstructural parameters on
the brittle-to-ductile temperature transition of tungsten. To this end, a dislocation
based crystal plasticity framework is implemented in a commercial finite element
code. The length scale is explicitly modelled in terms of GND pile up densities
as a function of the distance to the grain boundary and resolved shear stress. The
GND density formulation is based on an analytical dislocation pile-up model. An
advantage over strain gradient models is that the formulation in this work is ex-
traordinarily less computationally expensive. The thermal effects are modelled in
the kink-pair slip resistance and the annihilation of SSD densities. The presented
model allows to predict the influence of microstructural parameters on the brittle-
to-ductile transition temperature.

It can be concluded that:

• The brittle-to-ductile transition temperature is a function of loading condi-
tions and micro-structural parameters. The influence of grain size is due to
the interplay between the yield stress σy and the critical stress σc. Both can
be modelled with a Hall-Petch like equation, but σc is found to be stronger
dependent on the mean grain size than σy. The former is independent of
temperature, in contrast to σy. This results in a Hall-Petch-like relation for
the brittle-to-ductile transition temperature.

• The physical mechanism of the dependency of σy on the mean grain size d
lies mainly in the ratio of grain boundary surface per unit volume. Since
(higher-angle) grain boundaries impede dislocation motion, the dislocation
slip resistance increases with decreasing grain size.

• It remains unclear why the critical stress is dependent on the grain size. How-
ever, works in literature argue that, if the mean grain size decreases, the re-
sistance to trans-granular cleavage, as commonly observed in tungsten, in-
creases. The reduction of grain boundary impurities due to a decrease of
grain boundary density may be the reason for this.

• The simulated effects on σy have been compared to measured data in liter-
ature. It showed that the model qualitatively describes the trends of yield
stress as a function of grain size and temperature as seen in literature. Quan-
titatively, however, there is a disparity between the simulations of the crystal
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plasticity model and the measurements. The reason lies in the modelling of
GND dislocation densities ρGND.

• A physical alternative to model the GND densities to strain gradient formu-
lations was presented, since this is remarkably less computational expensive.
However, the formulation was based on an equilibrium of dislocations for
a given stress state, only depending on the resolved shear stress and the lo-
cation in the grain, which may not be sufficiently adequate to describe the
relevant underlying physical mechanisms. Either the formulation needs to be
rewritten or another approach should be used, like strain gradient models.

• A method to determine the critical stress as a function of mean grain size
has been developed in this work. It relates the critical stress to the brittle-to-
ductile temperature transition and yield stress. By using measurements from
literature, coefficients for tungsten in the grain size range relevant for the
ITER application have been found.

• A prediction for the critical stress as a function of mean grain size has been
made by the previously mentioned method. This is equivalent to a prediction
of the brittle-to-ductile transition temperature. It showed that the accuracy
of the prediction is limited by the accuracy of the hardening behaviour. The
disparities between the simulations and the measurements lead to the dispar-
ities in the prediction based on the simulations and literature.
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7 Recommendations

Recommendations for future work on this subject are the following:

• A reformulation for GND densities is needed to expose the grain size ef-
fects on the brittle-to-ductile transition temperature in correspondence to
measurements in literature.

• Tensile tests on tungsten samples at grain sizes relevant for the ITER applica-
tion (0.001 ≤ d ≤ 0.1 mm) and temperatures are required, because the data
in literature is limited on the elasto-plastic mechanical behaviour of tungsten.

• The brittle-to-ductile transition temperature is also dependent on loading
conditions. The model can be utilized to investigate the role of strain rate on
the brittle-to-ductile transition temperature as well.
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Appendix A Mesh quality: convergence study

The validity of the solution depends on the resolution of the mesh. In this part a
study is presented on the quality of the GND density and the Cauchy stress as the
mesh refinement increases. Figure A.1 shows the geometry of the RVE. The RVE

Figure A.1: Geometry of the RVE for this study. The RVE consists of an assembly of 4×4 equally
sized grains in a square shape. Each grain will consist of 2n × 2n elements. In red a path x is shown
as well.

consists of an assembly of 4×4 equally sized grains in a square shape. Each grain will
consist of 2n × 2n elements. The value n determines the level of mesh refinement.
Identical boundary conditions and material parameters are adoptetd as described
in Chapter 4. Note in particular that a value of l = 0.2 µm has been adopted as
dislocation pile up length here. A plot over the integration points can be made along
the path x. In this work a path line along x = 2.5d is used, ensuring the path does
not fall in line with a boundary in vertical direction. A schematic representation of
the path x is shown in Figure A.1 as a red line. Since the quantities are evaluated
at the integration points an extrapolation to the path is shown. In Figure A.2 the
plot along the path is presented for varying n and d = 0.67 mm. An additional plot
along the path x for the Cauchy stress in loading direction σ11 is shown in Figure
A.3. In Figure A.2 it can be observed that the GND density goes to infinity, as the
distance to the grain boundary goes to zero. It shows at least some refinement is
needed near the grain boundaries. This can also be seen in Figure A.3 where for
n = 4 the mesh is regarded to be sufficiently fine. Therefore in the simulations a
mesh is used where at the grain boundaries the mesh is strongly refined.

59



A Mesh quality: convergence study

Figure A.2: A plot along the path x of the GND density for varying n. In this case, � = 1 and
d = 0:67 mm. The green lines indicate where the grain boundaries are located.

Figure A.3: A plot along the path x of the Cauchy stress in loading direction for varying n. In this
case, d = 0:67 mm. The green lines indicate where the grain boundaries are located.
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